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ABSTRACT

Identification of homogeneous subgroups of subjects plays a key
role in the study of precision medicine. While there are a number
of approaches based on the clustering of low-level features such as
behavioral variables, work that makes use of fully multivariate na-
ture of medical imaging data is very limited. Given that the individ-
ual variability in brain functional networks obtained from functional
magnetic resonance imaging (fMRI) data is noted as being both sig-
nificant and consistent like fingerprints, its use provides a particu-
larly appealing approach to this challenging problem. We present a
completely data-driven approach, subgroup identification using in-
dependent vector analysis (SI-IVA), which leverages the desirable
properties of IVA to uncover the relationship across subjects along
with the discovery of subgroup structures revealed by Gershgorin
disc theorem. We show that SI-IVA outperforms an eigenanalysis-
based approach by simulations. We then apply the method to real
fMRI data obtained from patients of during resting state to iden-
tify group differences in multiple relevant brain regions including
primary somatosensory and motor cortex, which demonstrates that
SI-IVA provides interpretable and meaningful results.

Index Terms— Subgroup identification, IVA, Gershgorin disc,
Eigenanalysis, Precision medicine

1. INTRODUCTION

Identification of homogeneous subgroups of patients serves as a core
step in precision medicine, which aims to tailor medical treatments
to the individual patient who has been classified into subpopula-
tions. Based on different subgroups, treatments can be concentrated
on those who will benefit, sparing side effects for those who will
not [1]. In the clinical field, heterogeneity of patients is a challeng-
ing problem for mental disorders such as autism, bipolar disorder,
and schizophrenia [2-5]. There are a number of approaches that per-
form clustering of behavioral variables, clinical, cognitive or other
related scores to define subgroups [6, 7], however, work that takes
into account the fully multivariate nature of medical imaging data is
very limited. Recent work [8] shows that the individual variability
in brain functional networks from fMRI data is both significant and
consistent on identifying subjects. This makes use of fMRI data on
subgroup identification problem very appealing.

A subgroup study using fMRI data can be done via clustering of
subjects based on the correlation structures of their functional net-
work activities. A two-step procedure is used in [9] to partition sub-
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jects by first extracting subjects’ functional connectivity (FC) pat-
terns followed by clustering of those FCs. One limitation of this
method is that the final subgroups are found based on clustering of
FC patterns obtained through separate independent component anal-
yses (ICA) for each subject. Separate analyses do not fully take
the multivariate information across the subject datasets into account.
Another recent study, independent vector analysis (IVA) for common
subspace extraction (IVA-CS) [10], identifies subgroups by jointly
analyzing multi-subject data using IVA. By taking into account the
dependence across multiple datasets, [IVA generalizes ICA to jointly
analyze multiple datasets. Compared with other multi-subject ICA
algorithms like Group ICA [11], IVA can more effectively capture
inter-subject variability [12]. Using multivariate Gaussian density
model, IVA can effectively reveal the correlation structure of the
latent variables in multisubject data, which has been leveraged in
IVA-CS. Although IVA-CS is a promising approach for the subgroup
identification problem, it relies heavily on user-defined parameters.
One way to alleviate this issue is to apply eigenanalysis to covariance
matrices as proposed in [13, 14]. These papers focus on complete
model identification, i.e., identifying the number of all correlated
signals across multiple datasets, and as a result, their computational
complexity grows significantly with the number of datasets, mak-
ing them impractical when there are more than a couple of datasets.
Obviously, for the subgroup identification problem what we are in-
terested in is a method that can effectively work with a large num-
ber of datasets, which correspond to each subject’s fMRI data. In
this paper, we leverage the strengths of these two approaches, use
of IVA with the multivariate Gaussian model (IVA-G) to reliably
reveal the correlation structure of latent variables across large num-
ber of datasets [10], and use of eigenanalysis of covariance matrices
to identify the highly correlated subgroups revealed by IVA-G as
in [13,14].

Hence, we present a new approach, subgroup identification us-
ing independent vector analysis (SI-IVA), to automatically identify
subgroups from multi-subject fMRI data without the need for user-
defined threshold selection for the covariance matrices. By defining
a source component vector (SCV), IVA takes the dependence (cor-
relation in the case of IVA-G) across the datasets into account. In
addition, IVA-G enables reliable estimation of the correlation struc-
ture through strong identifiability guarantees, which is not the case
with the multiset extension of canonical correlation analysis, MCCA
[15-17]. SI-IVA leverages these advantages of IVA and uses it as a
guide for subgroup identification. Since the correlation structure of
the underlying datasets are captured through SCVs, SI-IVA is fun-
damentally different from the aforementioned two-step procedure
in [9]. Inspired by [13, 14], we propose to use eigenanalysis with
Geshgorin disc theorem (GDT) on the SCV covariance matrices for
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Fig. 1: Block diagram of the proposed method for subgroup identification, SI-IVA. The first step is to apply IVA-G on a multi-subject dataset.
Then, eigenanalysis based on Gershgorin disc (EGD) is applied to each SCV covariance matrix. Based on the eigenvalues that are greater
than the smallest radius of Gershgorin discs and the corresponding eigenvectors, the number of subgroups and the subjects that belong to the

subgroups are identified.

subgroup identification. GDT ensures that the eigenvalues of a ma-
trix are included in sets such as a given disc [18]. We show that
the number of eigenvalues that are located outside the smallest disc
provides an effective way for identifying the number of subgroups.
Since GDT provides a range of eigenvalues for the covariance matrix
of each SCV, predefined thresholds are no longer needed. Compar-
ing with the most recent work that is also based on the use of IVA,
IVA-CS [10], the proposed method is (i) fully data-driven ; (ii) iden-
tifies subgroups based on each individual SCV, which allows us to
determine the contribution of each component that define subgroups,
also improving interpretability. We test the performance of the pro-
posed method on both simulated and real data. Using simulation
results, we show that SI-IVA outperforms the eigenanalysis-based
approach as in [13, 14] with respect to the correctly estimated num-
ber of subgroups. With real fMRI data, we demonstrate that the
subgroups identified by SI-IVA are interpretable and meaningful.

The rest of this paper is organized as follows: the background for
IVA and eigenanalysis-based approach are presented in Section 2.
The details of the proposed method are in Section 3. Simulation re-
sults are presented in Section 4, followed by the conclusion in Sec-
tion 5.

2. BACKGROUND

This section details the two parts that compose SI-IVA, independent
vector analysis and eigenanalsis-based approach for subgroup iden-
tification.

2.1. Independent Vector Analysis (IVA)

Given K datasets, IVA models each dataset as a mixture of NV inde-
pendent sources. At a sample index v, the IVA generative model the
k™ dataset is given as:

x )= Ay 1 <k < K (1)

where Al ¢ RY*N are invertible mixing matrices. In addition
to the assumption of independence among sources within a dataset,
IVA models the dependence across datasets by defining an SCV as
sn(v) = [SE](U), s (v)]T € R¥,1 < n < N, consisting of
the n™ source component s (v) from each of the K datasets. The
goal of IVA is to estimate K demixing matrices that minimize the

mutual information among the SCVs, which can be achieved by the

following cost function
N

K
Tiva(W) = ZH(yn) - Zlog\det(w[k]ﬂ (@)
k=1

n=1

where W = {W[l]7 whklo 7W[K]} are the K datasets’ demix-
ing matrices, y, is the estimated SCV, and H(y,) = —E{logpn(yn»)}
is the (differential) entropy of y,, and p, (-) is the multivariate prob-
ability density function (pdf) of the n™ SCV. Minimization of (2)
is equivalent to maximization of likelihood [16]. The estimated
sources of each dataset are given by y*!(v) = WFx[¥l(v) for
k =1,..., K. With V samples of the observed data, the source
estimates are given as the matrix equation Y = WX with
Y XF e RYXV and the estimate source vector is given as
Y, = [yE],yE], . ,yLLK]]T e RE*V Here, ny] is the estimated
component from the k™ dataset belonging to the n™ SCV. The IVA
generative model is shown in Fig. 1.

Depending on the choice of pdf of SCVs, IVA can take second-
order statistics (SOS) and/or higher-order statistics (HOS) into ac-
count. IVA with multivariate Gaussian distribution (IVA-G) assumes
that the sources in an SCV are multivariate Gaussian distributed.
IVA-G only takes SOS into account, and can be shown to have a pos-
itive definite Hessian matrix of the objective function [17]. Recent
work on subgroup identification, IVA-CS [10], shows that because
of the strong identifiability condition of IVA-G, i.e, the ability to
uniquely identify source signals under very general conditions, the
dependence structure among datasets are well preserved with IVA-
G. IVA-CS is also a pioneer work of using IVA to identify subgroups.
However, the need of setting multiple user-defined parameters lim-
its reproducibility of the method. Besides , IVA-CS identifies sub-
groups based on the average of multiple SCV covariance matrices,
which makes it hard to evaluate the contributions of different SCVs.
As we discuss next, by analyzing each individual SCV covariance
matrix separately, the contribution of different components can be
easily revealed, and the user-defined parameters required in IVA-CS
can be automatically determined by looking at specific eigenvalues
and eigenvectors of the SCV covariance matrices.

2.2. Subgroup identification by eigenanalysis

We assume that, all components are zero mean and unit variance so
that the definition of covariance and correlation coincide. In order to
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apply the eigenanalysis-based approach on the covariance matrices
to subgroup identification, the following two assumptions are made:

* Components are uncorrelated within a dataset and correlated
only among the corresponding components across datasets.
This is automatically satisfied in the latent space when IVA is
applied.

¢ All correlations are transitive so that SCV covariance matri-
ces have block structures.

We define the element on the &% row, k% column of the n™ SCV
covariance matrix as pit"2) = E{slF1s2 e the correlation
coefficient between ki and k- for the n™ SCV. Based on eigenvalue
decomposition, we factor the sample covariance matrix into C, =
(1/V)Y,Y, = QDQT, where D is a diagonal matrix whose
diagonal elements X, are the i eigenvalue of C,, and q), € R¥ is
the corresponding eigenvector, the 7" column of Q € R¥* X,

Subgroup identification problem aims at identifying a group of
subjects across which the components in the n™ estimated SCV are
correlated. The correlation of components within an SCV means the
subjects have similar activated functional networks. Since the com-
ponents in each SCV come from individual subjects, the index of
the correlated components can be used to identify subjects that be-
long to the same subgroup. Based on [14], for each SCV covariance
matrix C,,, the number of eigenvalues that are greater than one and
the corresponding eigenvectors can be used to identify the number
of subgroups and the index of subjects that belong to each subgroup.
In the rest of this paper, we refer this method as eigenanalysis based
on hard thresholding (EHT).

However, without thresholding the covariance matrix, the num-
ber of eigenvalues that are greater than one does not accurately re-
flect the number of subgroups. One example is showed in Fig. 2b,
where the middle plot is the eigen-profile of the SCV covariance ma-
trix that is on the left side. The simulation set up is discussed in Sec-
tion 4. We can see that 4 eigenvalues are greater than 1, which im-
plies 4 subgroups while there are only two. For practical fMRI data,
which typically has a low signal-to-noise ratio, the eigen-profile of
C. typically has a smooth transition causing eigenanalysis-based
approaches to overdetermine the number of subgroups. A subop-
timal solution is to set a user-def}ned value 7, however its choice is
difficult and might vary for each C,,. As we discuss in Section 3, this
problem can be addressed by making use of GDT as we propose.

3. PROPOSED METHOD

Given the fact that the subgroup structures are well preserved in
IVA-G analysis, the first step of our new method, SI-IVA, is to
apply IVA-G on a multi-subject dataset. Let C,. be the sample
covariance matrix of the n™ SCV. Based on this SCV, we de-
fine subgroups as the diagonal blocks that form C.,., where each
block points out the correlations between the subjects in the cor-
responding subgroup. Now, consider after certain permutations,
the covariance matrix C,, has m > 1 block-diagonal structures as
C, = blkdiag(GL, ..., G™ I), where G,, € R9*9 represents the
correlation coefficients between the g subjects within the subgroup
associated with the ™ SCV. Then, in order to identify the number
of subgroups, m, eigenanalysis based on Gershgorin disc (EGD) is
applied on each C,.. To this end, we first define Gershgorin discs on
the sample covariance matrix Cn

Let Ry =3, |P£f’3 ]| be the sum of the absolute values of the

non-diagonal entries in the i" row of C.. A Gershgorin disc is a

closed disc centered at p%’i] with radius R;, {z € R: |z — p%’i]| <

R;}. Examples of Gershgorin disc can be found in Fig. 2. For
the normalized covariance matrix with unit variance, the diagonal
entries are 1, pgf’i] =1. Since C,, is a symmetric matrix, the eigen-
values are always real. So the center of the discs of C,, are always
located at (1,0). The radius R; of each disc represents the energy
of the i™ row of Cn. The eigenvalues of Cn locate in the union of
Gershgorin discs, eig(C,) € U, {z € R : |2 — pk’l]| < R;}.
Now, consider Ry, to be the smallest radius which reflects the low-
est energy among the rows of the covariance matrix. To identify
the number of subgroups, we find the number of the eigenvalues
of Cn that are located outside the smallest disc, i.e. greater than
Ruin + 1. These eigenvalues can be interpreted as the energy of the
blocks (subgroups) in C.,., which contain the largest percentages of
the whole energy in C,.

The last step of SI-IVA is to identify the indexes of the associ-
ated subjects that belong to each subgroup. To this aim, we apply
K-means clustering [19] on the eigenvectors corresponding to the
eigenvalues that are outside the smallest disc. According to the iden-
tified subgroup indexes, a permutation matrix P,, can be formed to
sort the columns of C,,. The hidden subgroup structure is revealed
by C, = P,C,. The process of implementing SI-IVA is sum-
marized in Algorithm-1 and the flowchart of SI-IVA is shown in
Fig. 1. We note that in Algorithm-1 the eigenvalues are sorted as
AL > A2 > > AN

Algorithm 1 eigenanalysis based on Gershgorin disc (EGD)

: Inputs: Cn: estimated covariance matrix of the n®™ SCV
M=0 .

A%, gl < sort(eig(Cr) )

B X ilon

: if A}, > Rmin + 1 then

the number of subgroup: M <+ M + 1
corresponding eigenvector: qf,

: end if

form=1,2,---,M do

P, + K-means(q;,’, 2)

: end for
O
: Output: C,,

R ANR AR I > e

—_—
—9@

—_—
[SSIN ]

4. EXPERIMENTAL RESULTS

In this section, we first compare our proposed method SI-IVA with
the eigenanalysis approach based on hard thresholding (EHT) [14]
on synthetic data. Then we test SI-IVA with fMRI data.

4.1. Application to synthetic data

To compare the prediction accuracy regarding to the number of sub-
groups from EGD and eigenanalysis-based approach, we run these
two algorithms 100 times on a set of simulated data. All SCVs used
for simulation are generated from multivariate generalized Gaussian
distribution (MGGD) [20], which has super-Gaussian marginals for
B < 1, sub-Gaussian for § > 1 and is Gaussian when 3 = 1. The
shape parameter S is randomly selected from the interval [0.1, 0.8],
which is a good match for fMRI data. The correlation values for
correlated and uncorrelated sources are p. = U ~ [0.7,0.9] and
pa = U ~ [0.05,0.25] separately. A total of N = 20 SCVs are
generated with V' = 10000 voxels and K = 15 datasets. The first 5
SCVs are simulated as components that are highly correlated across
all subjects with correlation value as p.. The second group of 5 SCV
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Fig. 2: Application of EHT and EGD to simulated data. The first col-
umn shows the generated SCV covariance matrices, C.,.. The second
column is the eigen-profile of C.,.. The blues dots are the eigenvalues
L. We look for eigenvalues that are greater than 1 (above the red
dash line) to represent the number of block structures (subgroups) in
C,,. The third column are the results of applying eigenanalysis based
on Gershgorin disc (EGD) to Cn. The red dots and the circles are
the actual eigenvalues \!, and the Gershgorin discs of C,.. The cor-
relation values for the correlated and uncorrelated subjects are (a):
pe=0.9,p5 =0, (b): pc =U ~[0.7,0.9], pg = U ~ [0.05,0.25].
When p¢, pq are specified values, the number of subgroups detected
by eigenanalysis and EGD are the same as EHT. When the values of
Pes pa are within a range, EHT shows 4 eigenvalues are greater than
1, i.e., 4 subgroup are detected, but EGD shows 2 eigenvalues are
located outside the smallest circle, i.e., 2 subgroup are detected.

covariance matrices have block structures with high/low correlation
values as p. and p4 respectively. One example can be found in Fig.
2b. The block structure represents subgroups, i.e., some subjects are
highly correlated, but others are not. The third group of 5 SCV co-
variance matrices are simulated for the components that are varied
from subject to subject with low correlation values pq. As it is shown
in Fig. 2 (a), when the off-diagonal elements of C,, are exactly zero,
the number of subgroups identified by EGD is the same as EHT. As
it is seen Fig. 2b, our method is still able to detect subgroup number
correctly when the off-diagonal elements’ values of C,, are noisy,
where EHT approach fails. We run this simulation 100 times. In all,
our method was able to identify the correct subgroup number, while
the EHT failed in detecting the right subgroup number.

4.2. Application to multi-subject resting-state fMRI data

We use resting-state fMRI data collected from 88 schizophrenia pa-
tients (SZs) and 91 healthy controls (HCs). Fifty of the patients were
randomly selected for implementing the proposed method. The data
is from the Center of Biomedical Research Excellence (COBRE)
[21-23], and is available to download from (https://coins.
trendscenter.org/). Participants were instructed to keep their
eyes open during the scan and stare passively at a central fixation
cross. Each subject data consists of 144 volumes and 53 x 63 X 46
voxels.

IVA-G is applied to 50 patients that are randomly selected and
85 SCVs are estimated as in [10]. The value at each voxel of the
estimated source is Z-scored before any calculation of metrics, so
the covariance and correlation coincide. To achieve better repro-
ducibility of the results, we run IVA-G 10 times and select the most

-16
Fig. 3: Results from SI-IVA. The underlying subgroup structure in
Cn is revealed in én T-maps include the brain areas that show
significant group difference. The first row shows the subgroup iden-
tified from SCV 50, where primary somatosensory and motor cortex
show significant differences between subgroups (p = 1.6 x 10™%).
The second row is from SCV 62, which is a particular case that
a very small area of activation shows significant differences (p =
2% 107%.

consistent run using cross intersymbol interference (Cross-ISI) mea-
sure [24]. Applying the EGD to each SCV covariance matrix returns
the number of eigenvalues that are located outside the smallest disc,
i.e., the subgroup number. K-means clustering is performed on the
corresponding eigenvectors to identify the subject indexes that be-
long to different subgroups. Based on the subject indexes, the sub-
group structures are reveal by permuting the original covariance ma-
trix.

To compare the spatial activation patterns of resting-state net-
works (RSNs) across subgroups in each SCV, a two-sample t-test is
performed on the activation value at each voxel of the spatial map
across the subjects within each subgroup. The areas that show sig-
nificant group differences (p < 0.05) are highlighted in the t-maps.
False discovery rate (FDR) correction is conducted throughout all
comparisons. Fig. 3 shows the SCV covariance matrices before and
after SI-IVA, Brain regions that show significant subgroup differ-
ences include primary somatosensory and motor cortex, and a small
area of activation that shows significant differences between sub-
groups.

5. CONCLUSION AND DISCUSSION

A new method of subgroup identification using IVA, SI-IVA, is pro-
posed to automatically divide subjects into subgroups based on the
correlation of their functional network activities. Comparing with
the most recent work IVA-CS, which is also based on the use of
IVA, SI-IVA is fully data-driven and identifies subgroups based on
each SCV, which allows us to determine the contribution of each
SCV that defines subgroups, which is important for interpreting the
results. The simulation results show that EGD is more robust in
identifying subgroup numbers on low signal-to-noise ratio data. It
should be added that, the level of correlation that constitutes ”com-
monality” for subgroup definition affects the performance, as well as
the accuracy of IVA estimates which might over/under estimate cor-
relation values when there is not enough sample support. In addition,
the properties of GDT needs to be established to provide theoretical
guarantees for its performance.
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