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 21 

Abstract 22 

The ongoing Arctic warming has been pronounced in winter and has been associated with an 23 

increase in downward longwave radiation. While previous studies have demonstrated that 24 

poleward moisture flux into the Arctic strengthens downward longwave radiation, less attention 25 

has been given to the impact of the accompanying increase in snowfall. Here, utilizing state-26 

of-the art sea ice models, we show that typical winter snowfall (snow water equivalent) 27 

anomalies of around 1.0 cm, accompanied by positive downward longwave radiation anomalies 28 

of ~5 W m-2 can cause basin-wide sea ice thinning by around 5 cm in the following spring over 29 

the Eurasian-Pacific Seas. In extreme cases, this is followed by a shrinking of summer ice 30 

extent. In the winter of 2016–17, anomalously strong warm/moist air transport combined with 31 

~2.5 cm increase in snowfall (snow water equivalent) decreased spring ice thickness by ~10 32 

cm and decreased the following summer sea ice extent by 5–30%. This study suggests that 33 

small changes in the pattern and volume of winter snowfall can strongly impact the sea ice 34 

thickness and extent in the following seasons.  35 
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1. Introduction 36 

The multi-decadal retreat in Arctic sea ice has been superposed upon pronounced 37 

interannual variability, which has motivated efforts to understand year-to-variability in the 38 

winter sea ice growth season (Ricker et al. 2017; Stroeve et al. 2018; Petty et al. 2018a). For 39 

example, previous studies have shown that the initial sea ice thickness in late autumn–early 40 

winter preconditions the heat conductivity of the sea ice, and thereby strongly influences sea 41 

ice growth through the winter (Maykut 1978; Stroeve et al. 2018; Petty et al. 2018a). Autumn-42 

winter variations in poleward moisture transport also modulate winter sea ice growth via 43 

changes in downward longwave radiation (Park et al. 2015; Woods and Caballero 2016; Hegyi 44 

and Taylor 2018), and are predicted to become increasingly influential during the coming 45 

decades (Petty et al. 2018a).  46 

This study considers an additional direct effect of interannual variations in moisture 47 

transport into the Arctic on sea ice growth: increased winter snowfall. Over the Eurasian-48 

Pacific Seas, such as the Laptev, East Siberian, and Chukchi Seas, snowfall makes up more 49 

than 60% of the annual precipitation (Bintanja and Andry 2017). Because the thermal 50 

conductivity of snow is about 7 times lower than ice, it may be expected to insulate the sea ice 51 

in these sectors from the atmosphere, and thus suppress winter ice growth (Sturm et al. 2002; 52 

Persson et al. 2017). This insulation should be particularly effective in the Eurasian-Pacific 53 

Seas, where relatively thin first-year ice is becoming increasingly dominant (Petty et al. 2018b). 54 

This raises the possibility that a small increase in snowfall associated with atmospheric 55 

moisture flux convergence may suppress sea ice growth throughout the winter. While previous 56 

studies have pointed out the close linkage between poleward moisture flux into the Arctic and 57 

increased downward longwave radiation (Park et al. 2015; Woods and Caballero 2016; Hegyi 58 
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and Taylor 2018), relatively little attention has been given to the accompanying increase in 59 

snowfall and its potential suppression of sea ice growth.  60 

In this study, the impact of winter snowfall on the wintertime seasonal cycle of sea ice thickness 61 

is investigated using a state-of-the-art sea ice model, the Los Alamos sea-ice model CICE 62 

version 6.0 (hereafter CICE6) (Craig et al. 2018). The model is forced by an atmospheric 63 

state reconstructed from the European Center for Medium-Range Weather Forecasts 64 

version 5 (ERA5) reanalysis dataset (Hersbach et al. 2020). An interim version of ERA5, 65 

ERA-interim (Dee et al. 2011) has shown the best performance in simulating the Arctic 66 

surface radiative fluxes (Zib et al. 2012) among various reanalysis products. ERA-interim 67 

also exhibits good performance in simulating total precipitation in the Arctic (Lindsay et 68 

al. 2014), although rainfall (liquid precipitation) is about 5 times more frequent than in 69 

satellite observations (Boisvert et al. 2018). By performing idealized perturbations 70 

experiments using CICE6, we demonstrate that typical positive winter snowfall anomalies 71 

of 1.0 cm in snow water equivalent (SWE), which is approximately 3.0 cm of snow depth, 72 

averaged over the Eurasian-Pacific Seas (60°E–240°E; 69°N–90°N) suppress the sea ice 73 

growth in the winter and early spring and cause substantial ice thinning in the following 74 

late spring and summer. We further demonstrate that the snowfall-driven sea ice thinning 75 

is doubled by the accompanying strengthening of downward radiation and surface air 76 

warming/moistening that this combination is often sufficient to reduce summer sea ice 77 

extent.   78 

 79 

2. Data and methods 80 

  In order to assess the interannual variations of winter snowfall of ERA5, we examined 81 
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the Japanese 55-year reanalysis (JRA55) (Kobayashi et al. 2015), the modern-era retrospective 82 

analysis for research and applications version 2 (MERRA2) (Gelaro et al. 2017), and the 83 

climate forecast system reanalysis (CFSR) (Saha et al. 2014). We use these four reanalysis 84 

products because they provide estimates of the atmospheric state beyond 2019, and because 85 

their performances in simulating the Arctic precipitation variability have been evaluated 86 

(Barrett et al. 2020). To validate the CICE6-simulated sea ice extent, we utilized the satellite-87 

observed sea ice extent version 3 provided by the National Snow and Ice Data Center (NSIDC) 88 

(Fetterer et al. 2017). To systematically evaluate our model’s simulated sea ice thickness and 89 

snow depth, we examined the coupled Pan-Arctic Ice-Ocean Modeling and Assimilation 90 

System (PIOMAS) (Zhang and Rothrock 2003) and the NASA Eulerian Snow on Sea Ice 91 

Model (NESOSIM) (Petty et al. 2018b). While PIOMAS spans 1979–present, NESOSIM spans 92 

2000–2015. The February–March average Arctic sea ice thickness simulated by PIOMAS is 93 

similar to that derived from satellite observations (Collow et al. 2015), although the satellite-94 

observed Arctic sea ice thickness has large uncertainty (Lindsay and Schweiger 2015). 95 

PIOMAS evolves the snow depth over sea ice via a snow thickness distribution equation that 96 

conserves snow mass (Flato and Hibler 1995). NESOSIM uses the median snowfall from 97 

multiple reanalysis products (ERA-I, MERRA2, JRA55, and the Arctic System Reanalysis 98 

version 1 (Bromwich et al. 2016)) to drive its ocean-sea ice model. The seasonal cycle and 99 

regional distribution of the NESOSIM snow depth match well with in situ station data (Petty 100 

et al. 2018b).  101 

 102 

a) Sea ice–slab ocean model configuration 103 

To investigate the impact of snowfall on the seasonal ice thickness, we utilized a state-of-104 
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the-art model, the Los Alamos sea-ice model CICE6 (Craig et al. 2018). The material and 105 

thermal characteristics of sea ice are represented using an elastic-anisotropic-plastic rheology 106 

(Wilchinsky and Feltham 2006; Tsamados et al. 2013) and using mushy layer thermodynamics 107 

(Feltham et al. 2006; Turner et al. 2013), respectively. The model has five ice categories with 108 

seven vertical layers and calculates energy fluxes between snow and each ice category. We use 109 

a displaced pole grid with 320×384 grid points, corresponding to a horizontal grid spacing of 110 

approximately 1 degree. Solar radiation within the sea ice and overlying snow cover is 111 

computed via the delta-Eddington method (Briegleb and Light 2007). 112 

The sea ice model is coupled to a slab ocean model to simplify the ocean dynamics. The 113 

mixed layer depth in the Arctic Ocean has a seasonal cycle, ranging from depths greater than 114 

20 m in winter to depths of 5–30 m in summer (Cole et al. 2014; Peralta-Ferriz and Woodgate 115 

2015). In this study, we imposed a spatially-uniform and seasonally-varying mixed layer depth 116 

based on the CMCC Global Ocean Physical Reanalysis System (C-GLORS) version 5 (Storto 117 

and Masina 2016), a global ocean reanalysis combined with in situ and satellite observations. 118 

We slightly reduced the C-GLORS mixed layer depth in summer to better track hydrographic 119 

observations (see Supplementary Fig. 1). 120 

Over the sub-Arctic seas, where the sea ice concentration is generally less than 15% 121 

throughout the season (since year 2000), we restored the sea surface temperatures to monthly 122 

historical SSTs. The rationale for this restoring is that the marginal seas, especially the Nordic 123 

Sea surface temperatures, have continuously increased over the last decades (Supplementary 124 

Fig. 2), and the slab ocean model of CICE6 underestimates this warming trend if the model is 125 

integrated without the restoring. Other than imposing the SSTs in the marginal seas, we used 126 

default parameter values for the slab ocean, with zero ‘deep ocean heat flux’ (qdp=0). The sea 127 
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surface salinity (SSS) is set to 31 PSU throughout the year, which is close to the observed 128 

salinity over the Arctic Ocean (Steele et al. 2001). Thus, the modeled sea surface salinity does 129 

not respond to changes in ice growth and melt.  130 

 131 

1) Historical simulation (Hist) 132 

Our simulations run for 40 years, from 1979 to 2018, during which satellite-observed Arctic 133 

sea ice concentration and reanalysis data are available. For the atmospheric forcing of CICE6, 134 

we utilized ERA5 (Hersbach et al. 2020). Specifically, we imposed 6-hourly meteorological 135 

fields (temperature, specific humidity, and zonal and meridional winds), 6-hourly radiative 136 

fluxes (downward shortwave and longwave radiation at the surface), and 6-hourly precipitation 137 

(rainfall and snowfall) in each model grid cell. CICE6 was integrated over 80 years to “spin 138 

up”, during which we repeated the 1979–1988 atmospheric forcing eight times. The historical 139 

simulations were then initialized from the end of this spin-up simulation, starting from year 140 

1979. 141 

 142 

2) Climatological winter snowfall experiment (cSnow) 143 

To identify the impact of anomalous snowfall on Arctic sea ice growth on interannual time 144 

scales, we configured a CICE6 simulation in which the winter (November to March) snowfall 145 

in each year was replaced by climatological snowfall. Specifically, each year’s November of 146 

historical simulation (Hist) was used for the initial condition of the climatological winter 147 

snowfall experiment (cSnow), in which the winter (November to March) snowfall was replaced 148 

by climatological snowfall. Each cSnow experiment was integrated 12 months, starting from 149 
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November of the year in which the experiment was initiated and ending in October of the 150 

following year. Because the Arctic winter snowfall shows an increasing trend in ERA5, 151 

accumulated snowfalls in recent years are substantially larger than 1980–90s. To remove this 152 

long-term trend, which is possibly unreliable, the snowfall climatology is defined via the linear 153 

regression line of the winter snowfall at each grid point. Therefore, the snowfall anomalies 154 

correspond to interannual variability. We then compared winter ice thicknesses between this 155 

simulation (cSnow) and our historical simulation (Hist) to quantify the impact of anomalous 156 

winter snowfall. Again, these idealized experiments were conducted until the following 157 

October to identify the impact of the winter snowfall on the subsequent spring and summer sea 158 

ice.  159 

 160 

3) Combination of parameters: the net effect of increased snowfall and accompanying 161 

atmospheric forcings (cSnow+cDLW+cT+cq) 162 

This experiment is designed to identify the combined effects of snowfall and downward 163 

longwave radiation, which is also accompanied by surface air warming and moistening. Similar 164 

to experiment cSnow, we configured CICE6 with historical atmospheric forcing, but replaced 165 

the downward longwave radiation, surface air temperature, surface specific humidity, and 166 

snowfall with their climatological counterparts from November to March in each year. 167 

Specifically, for each year (1979/80 to 2017/18) we initiated an experiment 168 

(cSnow+cDLW+cT+cq) using the model state at the start of November in our historical 169 

simulation (Hist). In this experiment we replaced the winter (November to March) downward 170 

longwave radiation, surface air temperature, surface specific humidity, and snowfall by their 171 

respective climatological means. We integrated each experiment until the end of October in the 172 
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following year.  173 

 174 

b. CESM2: Sea ice–full ocean model simulations 175 

To verify the robustness of CICE6–slab ocean model simulations, we also performed an 176 

ocean–ice couple model experiment using the Community Earth System Model version 2 177 

(CESM2) (Danabasoglu et al. 2020). The ocean and ice components of CESM2 are the second 178 

version of the Parallel Ocean Program (POP2) (Smith et al. 2010) and Community Ice Code 179 

version 5 (CICE5) (Hunke et al. 2015). POP2 has a displaced North Pole horizontal grid with 180 

gx1v7 grid resolution, which is the same as the CICE6–slab ocean model used in this study, 181 

and 60 vertical levels whose thicknesses monotonically increase from 10 m in the upper ocean 182 

to 250 m in the deep ocean. The ocean-ice coupled model simulation is forced by a 3-hourly 183 

atmospheric state (temperature, sea level pressure, humidity, winds), radiative fluxes 184 

(downward longwave and shortwave), and precipitation from JRA55-do (Tsujino et al. 2018), 185 

a surface dataset designed for driving ocean-sea ice models. Specifically, surface fields of 186 

JRA55 are adjusted using satellite observations and other reanalysis data to better simulate sea 187 

surface temperatures and sea ice in the polar regions (Tsujino et al. 2018). The historical 188 

CESM2 ocean–sea ice simulations driven by JRA55-do comprises one of the standard 189 

component sets of CESM2.  190 

We performed additional historical CESM2 ocean–sea ice simulations using ERA5 forcing, 191 

which is not listed as a standard component set of CESM2. CESM2 ocean–sea ice forced by 192 

ERA5 simulates excessively small summer sea ice extent. To reduce this bias, the base ice and 193 

snow tuning parameters are increased to 40 and 15 respectively (r_ice = 40 and r_snw = 15) 194 

when ERA5 data are used for driving CESM2. Increasing the ice and snow tuning parameters 195 



10 

 

(r_ice and r_snw) increases the surface albedo and decreases the transmissivity into sea ice 196 

layers, respectively (Briegleb and Light 2007).  197 

 198 

1) Historical simulation (Hist) 199 

For CESM2 with JRA55-do forcing, we integrated the model for 61 years from 1958 to 200 

2018, then used the first 21 years (from 1958 to 1978) as a spin-up simulation and the remaining 201 

40 years (from 1979 to 2018) as a historical simulation. For CESM2 with ERA5 forcing, the 202 

model was integrated over 20 years to “spin up”, during which we repeated the 1979–1988 203 

atmospheric forcing two times. The historical simulations were then initialized from the end of 204 

this spin-up simulation, starting from year 1979. In both model configurations (JRA55-do and 205 

ERA5 forcings), four different ensemble historical runs were simulated by using 4 different 206 

initial conditions (perturbations in high latitude SSTs) in January 1979.   207 

 208 

2) Combination of parameters: the net effect of increased snowfall and accompanying 209 

atmospheric forcings (cSnow+cDLW+cT+cq)  210 

To identify the combined effects of snowfall and downward longwave radiation, which is 211 

also accompanied by surface air warming and moistening, we followed a similar procedure as 212 

in our CICE6–slab ocean model experiments. We configured CESM2 with historical 213 

atmospheric forcing, but replaced the downward longwave radiation, surface air temperature, 214 

surface specific humidity, and snowfall with their climatological counterparts from November 215 

to March for 1998–99 and 2016–17. Specifically, we conducted two experiments 216 

(cSnow+cDLW+cT+cq) starting from the state of the historical simulation (Hist) at the 217 
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beginning of November 1998 and November 2016, respectively, in which the winter 218 

(November to March) downward longwave radiation, surface air temperature, surface specific 219 

humidity, and snowfall were replaced by climatological means. We integrated each experiment 220 

until the subsequent Octobers (until October 1999 and October 2017, respectively). For each 221 

of these experiments, we ran an ensemble of 4 simulations with SST perturbations. Each 222 

ensemble member shows very similar sea ice thickness and concentration anomalies 223 

throughout the season, probably because atmospheric boundary conditions are prescribed and 224 

the model is integrated only for 12 months.  225 

 226 

c. A simple one-dimensional (1D) sea ice model with snow 227 

The insulating effect of snow may be understood with the aid of a one-dimensional 228 

conceptual model of the sea ice/snow heat budget. Assuming that the sea ice is composed of a 229 

single homogeneous layer of ice for simplicity, and that the sea ice temperature instantaneously 230 

equilibrates to the heat fluxes at its base and to the atmospheric conditions above the ice and 231 

snow, the heat balance at the ice-atmosphere interface can be written as 232 

   𝐹!
↑ = 𝐹#$

↑ − 𝐹#$
↓ + 𝑆𝐻𝐹↑ + 𝐿𝐻𝐹↑.  (1) 233 

Here, 𝐹#$
↑ and 𝐹#$

↓ denote upward and downward longwave radiative fluxes, respectively, 234 

and 𝑆𝐻𝐹↑ and 𝐿𝐻𝐹↑ denote upward sensible and latent heat fluxes, respectively. We have 235 

neglected net shortwave radiation 𝐹&$
↓ + 𝐹&$

↑, which is much weaker than other heat fluxes 236 

in winter. Increased snowfall suppresses the ice growth by reducing the upward conductive 237 

heat flux (𝐹!
↑), leading to a lower snow surface temperature and decreased sensible heat flux 238 

(𝑆𝐻𝐹↑) and upward longwave radiation (𝐹#$
↑).  239 
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To aid conceptual understanding of snow insulator effect on sea ice thickness, we construct 240 

a minimal 1D column model of the Arctic snow/sea ice heat budget following Maykut (1982) 241 

and Petty et al. (2013), assuming a steady balance between upward conductive heat flux 242 

through the snow/ice layer and the net surface heat loss. Utilizing bulk formulas for sensible 243 

and latent heat fluxes, equation (1) can be re-written as: 244 

𝐹!(𝑇&)↑ = 𝜎𝑇&
' 	− 𝐹#$

↓ + 𝜌(𝑐)𝐶*𝑼(𝑇&−𝑇() + 𝜌(𝐿+𝐶*𝑼(𝑞+(,(𝑇&) − 𝑞(),						(2) 245 

where 𝑇&  and 𝑇(  are snow-covered ice surface temperature and 2 m air temperature, 246 

respectively. 𝑼 is wind speed at 10 m and 𝑞( is the specific air humidity at 2 m. 𝑞+(, is the 247 

saturation specific humidity. 𝜎 is Stefan-Boltzmann constant and 𝐶*  is turbulent transfer 248 

coefficient over sea ice. 249 

Following Semtner (1976), we assume a linear temperature gradient through snow and sea 250 

ice, so the conductive heat flux 𝐹!(𝑇&)↑ may be written as: 251 

𝐹!(𝑇&)↑ =
𝑘-𝑘+5𝑇.−𝑇&6
(𝑘-ℎ+ + 𝑘+ℎ-)

	.												(3) 252 

Here 𝑇. is the freezing temperature of sea water, ℎ- and ℎ+ are the thicknesses of ice and 253 

snow, respectively, and 𝑘- and 𝑘+ are the thermal conductivities of ice and snow, respectively. 254 

Note that snow is an effective thermal insulator: 𝑘+ is about seven times smaller than 𝑘-. In 255 

winter, sea ice grows by conducting heat upward from the bottom of the ice to the surface. 256 

Assuming that the ocean surface is at the freezing temperature, the freezing rate at the bottom 257 

of ice is simplified as:  258 

Φ/ = 𝐹!
↑	 5𝜌-𝐿.6: 	,										(4) 259 
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where 𝜌- is the density of ice and 𝐿. is latent heat of fusion. Here, we calculate 𝑇& and 𝐹!
↑ 260 

by solving equations (2) and (3) with prescribed thicknesses of ice and snow, ℎ- and ℎ+. Then, 261 

the ice growth rate Φ/ can be estimated from equation (4). Because there is no ice-ocean heat 262 

exchange, the ice growth rate of this simple model is entirely controlled by surface heat 263 

exchange. 264 

In this study, we estimated typical values of these parameters from ERA5, specifically 265 

wintertime (NDJFM) mean values, over the Arctic Ocean averaged from 1979 to 2018. We 266 

used entire–Arctic (above 69°N) averages and the Eurasian-Pacific sector (60°E–240°E; 69°N–267 

90°N) averages. The parameters we used for the Eurasian-Pacific sector of the Arctic Ocean 268 

are given in the Appendix.  269 

 270 

3. Results 271 

a. CICE6–slab ocean model simulation of sea ice thickness and extent 272 

The satellite-observed August-September sea ice extent exhibits a rapid decline from 2001 273 

to 2012, during which the sea ice extent has decreased by around 35% (black line of Fig. 1a). 274 

Our CICE6 simulation with ERA5 atmospheric boundary conditions (Hist) simulates the 275 

observed variability and trend of summer sea ice extent well (blue line in Fig. 1a): the 276 

correlation coefficient between the August-September average sea ice extent in CICE6 and in 277 

observations is 0.95, although there are substantial differences in regional sea ice 278 

concentrations between CICE6 and observations (Supplementary Fig. 3). Specifically, the 279 

CICE6–simulated SICs are generally smaller than those derived from satellite observations  280 

(Supplementary Fig. 3). This suggests that CICE6 simulates a larger marginal ice zone than 281 
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typically exists in nature, and therefore that summer SICs are likely to be more sensitive to the 282 

recent increase in downward longwave radiation and surface air warming. 283 

The seasonal cycles of sea ice extent and volume are also captured by CICE6 (Figs. 1c and 1d). 284 

Figure 1b shows that the CICE6-simulated interannual variations of the wintertime snow depth 285 

over sea ice, averaged over the entire Arctic, are well correlated with those of the coupled 286 

PIOMAS (Zhang and Rothrock 2003) (correlation coefficient is 0.73) and NESOSIM (Petty et 287 

al. 2018b). However, the mean snow depths and the amplitudes of interannual variability 288 

simulated by PIOMAS and NESOSIM are about 30% larger than those of CICE6. 289 

Reconstruction of snow depth over Arctic sea ice is challenging because in-situ observations 290 

of snow on sea ice have been sparse and methods of retrieving snow depth from satellite 291 

measurements have only recently been developed (Kwok et al. 2020). Moreover, validating the 292 

snow depth over the eastern Arctic is more difficult than other regions (Blanchard-293 

Wrigglesworth et al. 2018) because of sparse observations. CICE6 includes more sophisticated 294 

schemes for snow sinks than PIOMAS and NESOSIM, such as snow lost during ridging 295 

(Roberts et al. 2019) (Roberts et al. 2019), snow-ice formation, and sublimation (Pomeroy et 296 

al. 1997), which could partly explain the relatively thin snow depth. However, the snow sinks 297 

associated with snow-ice formation and sublimation are an order of magnitude smaller than 298 

accumulation and melting (Webster et al. 2021). While September snow is almost entirely 299 

melted away in CICE6, snow in NESOSIM persists over perennial sea ice (Supplementary Fig. 300 

3). Also, September sea ice concentrations in CICE6 are smaller than those of derived from 301 

satellite observations (Supplementary Fig. 3), implying that CICE6 receives less snowfall in 302 

September. Note that NESOSIM directly assimilates the satellite-observed sea ice 303 

concentration.  304 
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 305 

b. Snow depth and ice growth rate in winter 306 

To what extent is the wintertime sea ice growth controlled by snow? Snow is a relatively 307 

poor conductor of heat, compared with sea ice, because a substantial fraction of its volume is 308 

trapped air. In winter, the insulating effect of snow decreases the conductive heat flux 𝐹!
↑, 309 

through the sea ice and snow, and thus decreases the rate at which seawater freezes to the base 310 

of the sea ice. 311 

In this study, we examined the basin-scale sea ice growth rate from November, during 312 

which the Arctic Ocean basin above is mostly covered by sea ice. Because the delayed freeze-313 

up in recent decades has substantially decreased sea ice cover, it is difficult to quantify the 314 

basin-scale snowfall forcing on the first-year sea ice in October. Moreover, the sea ice growth 315 

rate is more closely related to the late summer sea ice thickness than to the atmospheric state 316 

in October (Petty et al. 2018a). A recent study (Stroeve et al. 2018) defined the wintertime 317 

Arctic sea ice growth as the difference between November and April sea ice thickness. In our 318 

CICE6 simulations, the interannual variability of the ice growth rate from November to March 319 

is strongly correlated with snow depth in winter, when averaged over the entire Arctic (Fig. 2a). 320 

This is consistent with our expectation that the decreased conductivity of the sea ice/snow layer 321 

should suppress ice growth, but this high correlation is also contributed by the negative 322 

correlation between sea ice thickness and growth rate, i.e., thin sea ice grows faster by energy 323 

exchange over young sea ice in the central Arctic (Maykut 1978; Stroeve et al. 2018).  324 

It is important to note that the insulating effect of snow on sea ice is geographically 325 

dependent. Over the Atlantic sector of the Arctic, the accumulated winter snowfall often 326 
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exceeds 25 cm (SWE) (Fig. 3a) and snow-ice formation is generally larger than 15 cm (SWE) 327 

(Fig. 3b). Anomalously large winter snowfall over the Atlantic Seas tends to produce 328 

anomalously thick ice, rather than anomalously thin ice (Granskog et al. 2017; Merkouriadi et 329 

al. 2017, 2020). In this study, we focus on the snow effect on sea ice in the Eurasian-Pacific 330 

Seas, where first-year sea ice is becoming increasingly dominant (Petty et al. 2018b) and the 331 

snow-ice formation is relatively small. Over the Eurasian-Pacific Seas, the correlation 332 

coefficient between the areally-averaged detrended snow depth and the detrended ice growth 333 

rate is –0.80 (Fig. 2b), indicating that the insulation effect of snow cover is probably dominant 334 

over the snow-ice formation.  335 

This statistical relationship between the wintertime snow depth and ice growth is consistent 336 

with a simple 1D ice-snow model, indicated via red-dotted lines in Figs. 2a and 2b. This 1D 337 

model indicates that increasing the wintertime mean snow depth from 13 cm to 18 cm can 338 

suppress the ice growth rate by 2 cm month-1, in average, or approximately 10 cm over a five-339 

month period (NDJFM). Note that our 1D model assumes a constant sea ice thickness (1.38 m) 340 

and does not account for the seasonally increasing sea ice thickness from November to March. 341 

In reality, the sea ice growth may be expected to be more sensitive to snow depth anomalies in 342 

early winter than in late winter. The ice growth rate variations predicted by snow depth changes 343 

alone in this 1D model (red-dotted lines) generally underestimate the sensitivity estimated from 344 

the interannual relationship between snow depth and ice growth rate (green scatter plots), both 345 

when averaged over the entire Arctic and over the Eurasian-Pacific Seas (Figs. 2a and 2b). This 346 

suggests that there may be other factors that co-vary with snow depth (or snowfall) and 347 

suppress sea ice growth, as will be explored in the following sections.  348 

To identify the spatial pattern of snow depth and ice growth rate on interannual time scales, 349 
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we construct composite maps of snow depth and ice growth rate anomalies, as shown in Figs. 350 

2c and 2d. In this study, we applied a simple linear regression analysis: the linear relationship 351 

between the winter snow depth anomaly and the ice growth from November to March is 352 

calculated. Specifically, the ice growth rate at each grid point is regressed on the winter 353 

(NDJFM) snow depth anomaly averaged over the Eurasian-Pacific Seas, including the Laptev, 354 

East Siberian, and Chukchi Seas (60°E–240°E; 69°N–90°N). We then present the winter ice 355 

growth (cm) at each geographical location per one standard deviation (1 s.d.) of areally-356 

averaged (Eurasian-Pacific sector averaged) snow depth anomaly.  357 

The regression map exhibits a basin-wide increase in snow depth (Fig. 2c) and a basin-wide 358 

decrease of the ice growth rate (Fig. 2d), corroborating our earlier finding of a link between 359 

snow depth and ice growth over the Eurasian-Pacific sector of the Arctic. On sub-basin scales, 360 

however, the spatial pattern of the reduced ice growth (Fig. 2d) does not visibly correspond to 361 

that of the snow depth (Fig. 2c). This may be due to other factors, such as atmospheric 362 

circulations, wind-driven ice drift and initial (autumn–early winter) sea ice thickness, that 363 

modify the spatial patterns of both snow depth and ice thickness. In order to overcome this 364 

limitation, we designed idealized experiments that modulate snowfall in our sea ice model (see 365 

Sec. 2). Unlike snow depth, which is a diagnostic variable of the sea ice model, snowfall is 366 

unambiguously a forcing for ice thickness and is an input variable for our sea ice model. Over 367 

the first-year sea ice region, which we define as locations where the October-average sea ice 368 

concentration is less than 15%, the areally-averaged interannual correlation between the winter 369 

(NDJFM) snowfall accumulation and the snow depth is about 0.80 (Fig. 4). This high 370 

correlation indicates that snowfall is a key factor controlling the snow depth variations, 371 

although there are various other factors affecting snow depth on regional scales, such as  372 
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wind-blown snow (Pomeroy et al. 1997; Pomeroy and Li 2000), densification (Herron and 373 

Langway 1980), ridging (Roberts et al. 2019), and wind-driven sea ice flux 374 

convergence/divergence (Sturm and Stuefer 2013). 375 

 376 

c. The impact of winter snowfall on seasonal sea ice thickness 377 

To quantitatively assess the impact of anomalously large winter snowfall on sea ice, we 378 

performed idealized perturbation experiments using CICE6. Specifically, we imposed 379 

climatological-mean 6-hourly snowfall (the five-month (NDJFM) climatological mean 380 

snowfall is shown in Fig. 3a) in the model from November to March for each of the 39 winters 381 

in the simulated period (see Sec. 2). Because of the increasing trend of winter snowfall over 382 

the recent 40 years (Fig. 5a), we increased the snowfall climatology linearly from 1979-80 to 383 

2017-18 following the linear regression line (red-dashed line in Fig. 5a for ERA5) for each 384 

month. It is unclear whether the increasing winter snowfall trends in these reanalysis products 385 

are reliable or not (Boisvert et al. 2018) because non-climatic factors such as replacements of 386 

satellite sensors can affect the trend (Barrett et al. 2020). In these experiments, the same 387 

historical atmospheric boundary conditions are used to force the model. In summary, there are 388 

two experimental configurations: historical atmospheric boundary conditions (Histi), and 389 

historical atmospheric boundary conditions with climatological snowfall from November to 390 

March (cSnowi). These model simulations have been integrated through the winter and the 391 

following summer of each year and these two simulation outputs are subtracted (Histi – cSnowi). 392 

The resulting differences quantify the impact of the winter snowfall anomalies on winter sea 393 

ice growth and the following season’s snow–albedo feedbacks that eventually affect the 394 

seasonal sea ice thickness and summer sea ice extent.  395 
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In Figures 5b–h, we plot 39-year regression maps, showing the model-simulated seasonal 396 

snow depth (Figs. 5c – e) and sea ice thickness (Figs. 5f – h) responses to the winter snowfall 397 

anomalies (Fig. 5b) on interannual time scales. Here, the winter accumulated snowfall, the 398 

seasonal snow depth and the seasonal ice thickness anomalies at each grid point are regressed 399 

on the winter accumulated snowfall anomaly averaged over the Eurasian-Pacific Seas. Again, 400 

the long-term increasing trend of snowfall at each grid point was removed prior to calculating 401 

the winter accumulated snowfall anomaly averaged over the Eurasian-Pacific Seas. The 402 

regression slopes are multiplied by one standard deviation of the snowfall anomaly averaged 403 

over the Eurasian-Pacific Seas, which is approximately 1.0 cm (SWE) in ERA5. The resulting 404 

snowfall map exhibits positive anomalies over wide areas of the Eurasian-Pacific Seas, 405 

especially over the Chukchi Sea and the Kara Sea (Fig. 5b). A very similar pattern appears in 406 

other reanalysis datasets: JRA55, MERRA2, and CFSR (see Supplementary Fig. 4). This 407 

geographic concentration may occur because a majority of Arctic snowfall is associated with 408 

cyclone activity (Webster et al. 2019) and many of these cyclones pass through the Chukchi 409 

Sea and the Barents-Kara Seas. The snowfall in MERRA2 is about 20–25% larger than in the 410 

other reanalysis products (Fig. 5a) and using MERRA2 to force sea ice models is known to 411 

simulate thicker snow depth over sea ice (Blanchard-Wrigglesworth et al. 2018). Recent studies 412 

found that reanalysis products capture the satellite-observed and in situ-observed interannual 413 

variability in Arctic snowfall reasonably well (Barrett et al. 2020; Cabaj et al. 2020).   414 

Because of the snowfall accumulation throughout the winter, the snow depth anomalies 415 

peak in late winter and spring, from March to May (Fig. 5d). This regression map of ice 416 

thickness anomalies exhibits a basin-wide ice thinning throughout the winter and spring in 417 

response to increased snow depth (Figs. 5f – h). The ice thickness anomaly is largest in the late 418 
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winter and spring (Fig. 5g) and persists into the summer (Fig. 5h), although the increased snow 419 

depth in the spring (Fig. 5d) would increase surface albedo as fresh snowfall accumulates on 420 

older snowpacks. From Figure 5, we conclude that positive winter snowfall (SWE) anomalies, 421 

which typically deviate from the climatology by 1.0 cm (one standard deviation of the winter 422 

snowfall averaged over the Eurasian-Pacific Seas), suppress the winter ice growth and can 423 

cause basin-wide ice thinning through the following spring and summer.  424 

On the contrary, idealized experiments also indicate that anomalously large winter snowfall 425 

over the Atlantic Seas, defined as larger than one standard deviation on interannual time scales, 426 

rather causes ice thickening (Fig. 6). Here, the sea ice thickening to the anomalously large 427 

snowfall appears only in the extreme snowfall years. The simple linear regression between the 428 

winter snowfall anomalies over the Atlantic sector of the Arctic and the seasonal sea ice 429 

thickness does not produce any statistically significant sea ice thickness responses, probably 430 

because of the compensation between the snow insulation effect and the snow-ice formation. 431 

As shown in previous studies (Granskog et al. 2017; Merkouriadi et al. 2017, 2020), extreme 432 

snowfall events over the Atlantic sector of the Arctic substantially increase snow-ice formation 433 

and thereby can increase ice thickness.  434 

Because the anomalously large snowfall over the Atlantic sector of the Arctic is often 435 

accompanied by anomalously less snowfall over the Pacific sector of the Arctic (Fig. 6b), 436 

reduced snowfall over the Eurasian-Pacific sector causes sea ice thickening in winter and spring 437 

(Figs. 6c, d) that can persist into the summer (Fig. 6e). Figs. 5 and 6 indicate that small changes 438 

in winter snowfall pattern can cause basin-wide sea ice thickness changes. However, this ice 439 

thickness pattern associated with snowfall anomalies may be difficult to discern in observations 440 

because these snowfall anomalies are accompanied by atmospheric circulation changes (Cohen 441 
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et al. 2017), which can also change sea ice thickness via wind-driven ice flux divergence 442 

(Jakobson et al. 2019).   443 

  444 

d. Covariance between winter snowfall and downward longwave radiation 445 

Because precipitation is dynamically tied to clouds and water vapor, anomalously large 446 

wintertime snowfall is accompanied by stronger downward longwave radiation. On interannual 447 

time scales, the winter snowfall is strongly correlated with downward longwave radiation over 448 

the Eurasian-Pacific Seas, and both exhibit increasing trends since early 2000’s (Fig. 7a). In 449 

addition, downward longwave radiation is closely coupled to surface air temperature during 450 

the winter (Woods et al. 2013; Park et al. 2015) and is often accompanied by surface air 451 

moistening. The interannual variabilities of 2m air temperature and near-surface specific 452 

humidity, averaged over the Eurasian-Pacific Seas, are very similar to each other (Fig. 7b), and 453 

are strongly correlated with those of snowfall / downward longwave radiation (compare Figs. 454 

7a and 7b). The correlation coefficient between snowfall and downward longwave radiation 455 

(2m air temperature and near-surface specific humidity), averaged over the Eurasian-Pacific 456 

seas, is 0.66 (0.64 and 0.64) and these values are statistically significant (p<0.05). The spatial 457 

patterns of snowfall (Fig. 7c), downward longwave radiation (Fig. 7f), 2m air temperature and 458 

near-surface specific humidity (Figs. 7d and 7e) anomalies are also similar to one another. 459 

Because precipitation and downward longwave radiation are strongly tied to clouds, it is not 460 

surprising to see that the spatial pattern of cloud liquid water anomaly (Fig. 7g) is also very 461 

similar to those of snowfall and downward longwave radiation.  462 

The surface air warming is often associated with the development of low pressure with 463 

cyclonic circulation (Fig. 7h) via hydrostatic balance (Kim et al. 2019). Because the wintertime 464 
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cyclonic sea ice drift can decrease sea ice thickness over the Eurasian seas (Williams et al. 465 

2016; Park and Stewart 2018), the snowfall–induced negative sea ice thickness anomalies (Fig. 466 

5f) are likely to further decrease. These air temperature and humidity anomalies are in fact 467 

directly linked to the poleward moisture flux anomalies: the development of south-westerlies 468 

over the Barents-Kara Seas and the Chukchi Sea (vectors in Fig. 7h) contributes to the increased 469 

poleward moisture flux that strengthens downward longwave radiation (Park et al. 2015; Hegyi 470 

and Taylor 2018), and likely increases precipitation (snowfall) over the Eurasian-Pacific Seas 471 

as well.  472 

 473 

e. The net effect of increased snowfall and the accompanying atmospheric forcings 474 

To quantitatively assess the combined impact of snowfall, longwave radiation, air 475 

temperature and humidity anomalies on sea ice, we performed additional idealized perturbation 476 

experiments for all of the 39 winters in our sea ice model simulation. Similar to the cSnow 477 

experiments described above, we created a model configuration in which the NDJFM 478 

downward longwave radiation, surface air temperature, specific humidity and snowfall are 479 

replaced by their respective climatological means. We refer to this idealized experiment as 480 

“cSnow+cDLW+cT+cq” (see Sec. 2). The combined impact of the increased snowfall, stronger 481 

downward longwave radiation, and the associated surface air warming/moistening can be 482 

estimated from the difference between the historical simulation and the idealized experiment, 483 

i.e. Hist – (cSnow+cDLW+cT+cq). Here the climatological mean values of downward 484 

longwave radiation, surface air temperature and specific humidity are defined via linear 485 

regression lines, shown in Figs. 7a and 7b.  486 

The response of seasonal snow depth anomalies (Figs. 8a – c) to the combined forcings are 487 
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qualitatively similar to those of the snowfall forcing alone (Figs. 5c – e), which we attribute to 488 

the surface air moistening keeping the surface relative humidity and the associated snow 489 

sublimation almost unchanged. With the snow depth approximately unchanged, the increased 490 

downward longwave radiation and surface air warming serve to further decrease the ice 491 

thickness. Consequently, the sea ice thickness anomalies show a larger thinning in these 492 

experiments (Fig. 8d) than in response to snowfall forcing alone (Fig. 5f) in Dec-Jan-Feb. The 493 

suppression of winter ice growth is followed by the ice thinning in the ensuing spring and 494 

summer. In Mar-Apr-May, sea ice thickness decreases by around 4–8 cm (Fig. 8e), doubling 495 

the ice thickness anomalies driven by the snowfall anomalies alone (compare Figs. 8e and 5g). 496 

The spatial patterns of the ice thickness anomalies exhibit a pronounced ice thinning throughout 497 

the season, not only over the Eurasian-Pacific Seas, but also over the entire Arctic (Figs. 8d – 498 

f), and the majority these ice thickness anomalies are statistically significant, exceeding 95% 499 

confidence interval derived from the interannual ice thickness variations (stipples in Fig. 8). 500 

Because the basin-wide ice thinning persists into the summer (Fig. 8f), the summer sea ice 501 

extent is likely to be affected. Indeed, our model simulates a non-negligible dependence of the 502 

summer sea ice extent on the preceding winter’s snowfall and downward longwave radiation 503 

anomalies. Several years exhibited a notable reduction of the summer sea ice extent, 504 

particularly in recent years, during which the multi-decadal trend toward thinner sea ice might 505 

have increased the sensitivity of ice thickness to winter clouds and snowfall. In the winter of 506 

2016–17, warm and moist air transported from lower latitudes by atmospheric rivers caused 507 

unprecedently warm Arctic, suppressing sea ice growth (Hegyi and Taylor 2018). The 508 

wintertime snowfall was also large in the winter of 2016–17 not only over the Eurasian-Pacific 509 

Seas but also over the wide areas of the Arctic, including the Barents and Kara Seas (Figs. 9a 510 
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and 9g). CICE6 simulations show that the large snowfall combined with positive downward 511 

longwave and air temperature anomalies in the winter of 2016–17 suppressed the winter sea 512 

ice growth and decreased the spring and early summer sea ice thickness by ~10 cm over the 513 

Eurasian-Pacific Seas (Fig. 9c). This seasonally persistent ice thinning was followed by a 514 

notable reduction of ice cover in August–September (Fig. 9b), corresponding to an 515 

approximately 30% reduction in sea ice extent.  516 

Similarly, our CICE6 simulations also indicate that anomalously small snowfall during the 517 

winter of 1998–99 (Figs. 10a and 10g) accelerated the winter sea ice growth and increased the 518 

spring and summer sea ice thickness up to 17 cm (Fig. 10c). This was followed by a large 519 

increase in summer sea ice concentration – more than 15% over wide areas of the Arctic Ocean 520 

in August–September (Fig. 10b). These results are consistent with previous studies (Liu and 521 

Key 2014; Park et al. 2015; Letterly et al. 2016) finding that downward longwave radiation 522 

anomalies in the Eurasian-Pacific Seas precondition sea ice thickness, which in turn has 523 

nontrivial influence on summer sea ice extent. This study further presents that the 524 

accompanying increase in snowfall can double the ice thinning and thereby suggests that winter 525 

snowfall should be factored into quantifying the seasonal sea ice thickness and extent, although 526 

summer weather often exerts a stronger influence on September sea ice extent.   527 

 528 

f. Sea ice model coupled to a full ocean model  529 

A caveat of our CICE6-slab ocean model is that the ocean mixed layer depth cannot respond 530 

to changes in snowfall and downward longwave radiation. Such changes in the ocean mixed 531 

layer could feed back on sea ice growth, and so excluding them in CICE6 might bias our results. 532 

To test the robustness of our CICE6–slab ocean model simulations, we utilized the CESM2 533 
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(Danabasoglu et al. 2020) forced by both ERA5 and JRA55 atmospheric boundary conditions 534 

(see Sec. 2).  535 

The interannual variability of winter snowfall over the Eurasian-Pacific Seas in JRA55 is 536 

very similar to that of ERA5 (Fig. 5a), except that the wintertime mean snowfall is about 10% 537 

smaller than that of ERA5. While using a full ocean model has merit in realistically simulating 538 

the interaction between sea ice growth/melting and the ocean mixed layer, it is difficult to 539 

control the SSTs over the marginal seas of the Arctic, which strongly influence sea ice extent 540 

(Bitz et al. 2005). Consequently, CESM2 forced by JRA55 and ERA5 atmospheric boundary 541 

conditions underestimates the summer sea ice extent (Fig. 1a), although the observed 542 

variability and trend of summer sea ice extent are reasonably well simulated by CESM2 (sky 543 

blue and magenta lines of Fig. 1a). While the CESM2-simulated interannual variations of snow 544 

depth averaged over the entire Arctic are similar to those of PIOMAS and NESOSIM, the 545 

wintertime snow depth is about 30% smaller than those of PIOMAS and NESOSIM (Fig. 1b). 546 

Using CESM2 with JRA55 atmospheric boundary conditions, we performed the same 547 

perturbation experiments for the two extreme cases: the winters of 1998–99 and 2016–17. 548 

Consistent with the CICE6–slab ocean model simulations, CESM2 simulations show that the 549 

anomalously large snowfall (Figs. 9d and 9g), combined with other thermodynamic forcings, 550 

during the winter of 2016–17 suppressed the winter sea ice growth and decreased the spring 551 

and early summer sea ice thickness by ~10 cm (Figs. 9f and 9i). These sea ice thickness 552 

anomalies are similar to those simulated in our CICE6–slab ocean model (compare Figs. 9c 553 

and 9f). This seasonally persistent ice thinning is followed by a reduction of ice cover in August 554 

and September in CESM2 simulations forced by ERA5 (Fig. 9e) and JRA55 (Fig. 9h). Note 555 

that the response of summer sea ice cover is much larger when ERA5 data are used to drive the 556 
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CESM2 ocean–sea ice model. We caution that direct comparisons of summer sea ice 557 

concentration anomalies between the CICE6–slab ocean model and the CESM2–full ocean 558 

model outputs should be interpreted carefully because CESM2–full ocean model simulates a 559 

~10% smaller summer sea ice extent than is simulated by the CICE6–slab ocean model (Fig. 560 

1a).  561 

Consistent with our CICE6–slab ocean model simulations, the anomalously small snowfall 562 

(Fig. 10d and 10g) and the accompanying forcings (weak downward longwave radiation, 563 

surface cooling and drying) during the winter of 1998–99 substantially increased sea ice 564 

thickness throughout the seasons (Figs. 10f and 10i). The sea ice thickening was followed by 565 

an increase in sea ice concentration in the summer of 1999 over wide areas of the Arctic Ocean 566 

(Fig. 10e). It can be concluded that the simulation results from the CESM2–full ocean model, 567 

both with ERA5 and JRA55 atmospheric boundary conditions, generally corroborate those of 568 

the CICE6–slab ocean model with ERA5 atmospheric boundary conditions.  569 

 570 

4. Summary and discussion  571 

In summary, our model simulations demonstrate that small changes in winter snowfall over 572 

the Eurasian-Pacific Seas can strongly impact not only the winter sea ice growth, but also the 573 

extent and thickness of sea ice in the following seasons. A key finding of this study is that a 574 

small increase in winter snowfall accompanied by an increase in downward longwave radiation 575 

and surface warming/moistening drives anomalous sea ice thinning that persists into summer, 576 

although increased spring snow depth might increase surface albedo, which was not 577 

investigated in this study. In extreme cases, the basin-wide ice thinning is followed by a 578 

shrinking of summer ice extent. This indicates that winter snowfall anomalies, along with 579 
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accompanying anomalies in downward longwave radiation and surface air 580 

warming/moistening over the Eurasian-Pacific Seas, may serve as a useful predictor of the 581 

following summer sea ice extent. However, our study also highlights the sensitivity of Arctic 582 

sea ice growth to snowfall pattern: increased snowfall over the Atlantic sector accompanied by 583 

decreased snowfall over the Pacific sector (Fig. 6b) can cause basin-wide sea ice thickening 584 

(Figs. 6c – d).  585 

Arctic sea ice is projected to become thinner with future climate change, and snow depth 586 

is likely to decline (Hezel et al. 2012; Webster et al. 2018), partly because of reduced snow 587 

accumulation in summer and autumn (Webster et al. 2021). As the idealized 1D model 588 

demonstrates, snow is more effective in suppressing the winter sea ice growth when the snow 589 

depth and sea ice thickness are relatively thin (Fig. 11), suggesting that snowfall will more 590 

strongly influence the seasonal sea ice growth and thickness in coming decades (e.g., Maykut 591 

1978). This effect may be compounded by the tendency for a warmer Arctic to be accompanied 592 

by increasing snowfall from autumn to early spring (Webster et al. 2021) and decreasing spring-593 

summer snowfall (a majority of spring-summer snowfall becomes rainfall) (Vihma et al. 2016) 594 

in the coming decades. By the end of the 21st century, the autumn freeze-up of sea ice and the 595 

associated snowfall accumulation are likely to be delayed by about 2~3 months (Hezel et al. 596 

2012), possibly weakening the influence of the early winter snowfall on sea ice. Until then, the 597 

winter snowfall and the accompanying atmospheric forcings are likely to be increasingly 598 

influential. As noted in a recent study (Petty et al. 2018a), the Arctic may be already 599 

transitioning to a state where the sea ice growth is more controlled by the autumn-winter 600 

atmosphere/ocean forcing variations than the autumn sea ice thickness. 601 

 602 
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 603 

APPENDIX 604 

Given parameters: 605 

𝑐) specific heat capacity of air, 1005 J	𝑘𝑔01	𝐾01 606 

𝐶* turbulent transfer coefficient over sea ice, 0.0013  607 

𝑘- thermal conductivity of ice, 2.04 W	𝑚01	𝐾01 608 

𝑘+ thermal conductivity of snow, 0.31 W	𝑚01	𝐾01 609 

𝐿. latent heat of fusion at 0 K , 3.340×105 J		𝑘𝑔01 610 

𝑇. freezing temperature of sea water, 271.3 K  611 

𝜌- density of ice, 930 Kg	𝑚02 612 

𝜌( density of air, 1.275 Kg	𝑚02 613 

𝜎 Stefan-Boltzmann constant, 5.67×10-8 W	𝑚03	𝐾0' 614 

𝑼 wind speed at 10 m, 2.56 𝑚	𝑠01 615 

ℎ-  sea ice thickness, 1.38 𝑚 616 

𝑇( 2 m air temperature, 249.85 𝐾  617 

𝑞( 2 m specific humidity, 0.57 𝑔	𝑘𝑔01  618 

𝐹#$
↓ downward longwave radiation at the surface, 182.1 W	𝑚03 619 

 620 

Because of its simplicity, the simple 1D model yields further physical insight into the effect of 621 

snow depth on ice growth. The intuition is that thicker snow produces lower snow surface 622 

temperature by decreasing the average conductivity of the snow/ice layer, which subsequently 623 

decrease upward longwave radiation (𝐹#$
↑) and sensible heat flux (𝑆𝐻𝐹↑). 624 
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Figure captions 831 

Figure 1: Sea ice model simulation vs Observations  832 

The year-to-year variations of (a) late summer (Aug–Sep) Arctic sea ice extent simulated by 833 

our CICE6–slab ocean model forced by ERA5 (blue), CESM2 forced by ERA5 (sky blue) and 834 

by JRA55 (magenta) and from NSIDC observations (black), and (b) the wintertime (NDJFM) 835 

mean snow depth, averaged over the entire Arctic, simulated by our CICE6–slab ocean model 836 

forced by ERA5 (blue), CESM2 forced by ERA5 (sky blue) and by JRA55 (magenta), from 837 

PIOMAS (black) and NESOSIM (red). The climatological mean seasonal (monthly) variations 838 

of (c) sea ice extent and (d) sea ice volume. In (c, d), blue shadings indicate the 839 

minimum/maximum ranges of sea ice extent and volume simulated by our CICE6–slab ocean 840 

model forced by ERA5, and gray shadings indicate the minimum/maximum ranges of (c) 841 

NSIDC observed sea ice extent and (d) PIOMAS sea ice volume. 842 

 843 

Figure 2: Interannual relationship between snow depth and ice growth.  844 

Interannual variation of the wintertime (NDJFM) mean snow depth (abscissa; cm) and ice 845 

growth rate (ordinate; cm month-1) from 1979–80 to 2017–18 averaged over (a) the entire 846 

Arctic and (b) the Eurasian-Pacific sector. The long-term trends of snow depth and ice growth 847 

rate have been removed. Red-dashed lines in (a, b) are from the 1D model calculation with 848 

fixed downward longwave radiation and surface air temperature (see Methods for details). The 849 

regression map of the wintertime (c) snow depth and (d) ice growth rate anomalies associated 850 

with area-averaged snow depth anomalies (per one standard deviation anomaly) in the 851 

Eurasian-Pacific sector of the Arctic (red lines). Snow depth, and sea ice thickness are from 852 

our CICE6–slab ocean model with ERA5 historical forcing. 853 

 854 

Figure 3: Climatology and variability of snowfall and snow-ice formation  855 

The wintertime (NDJFM) climatological mean accumulated (a) snowfall (SWE; cm), (b) 856 

snow-ice formation (cm), and one standard deviations of (c) snowfall (SWE; cm) and (d) snow-857 

ice formation (cm) on interannual time scales. The long-term trends of snowfall and snow-ice 858 

formation have been removed. Snowfall and snow-ice formation are from our CICE6–slab 859 
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ocean model with ERA5 historical forcing. The Eurasian-Pacific sector (Atlantic) of the Arctic 860 

denotes red (blue) lines in (c), (d).  861 

 862 

Figure 4: Relationship between accumulated winter snowfall and snow depth over first-863 

year sea ice 864 

(a) The interannual relationship between wintertime (NDJFM) snowfall accumulation 865 

(abscissa; SWE; cm) and snow depth (ordinate; cm) from 1979–80 to 2017–18, averaged over 866 

the first-year sea ice of the Eurasian-Pacific sector of the Arctic. The red line is a linear 867 

regression line. (b) October sea ice concentration (shadings) averaged from 1979 to 2018 and 868 

the estimated first-year sea ice region (hatches). If the October sea ice concentration of a grid 869 

point is smaller than 15% in a specific year, the grid point is defined as a region of first-year 870 

sea ice, and the grids satisfying this condition for at least for one year are hatched in (b). 871 

Snowfall, snow depth, and sea ice concentration are from our CICE6–slab ocean model with 872 

ERA5 historical forcing. 873 

 874 

Figure 5: The impact of winter snowfall on seasonal ice thickness  875 

(a) The interannual variations of wintertime (NDJFM) accumulated snowfall (SWE; cm) from 876 

ERA5, JRA55, MERRA2 and CFSR, averaged over the Eurasian-Pacific sector (red line in 877 

(b)). The red-dashed line in (a) is a linear regression line for the winter snowfall in ERA5. (b) 878 

The regression map of snowfall anomalies in winter, per one standard deviation of winter 879 

snowfall anomaly averaged over the Eurasian-Pacific sector. The seasonal (c, d, e) snow depth 880 

and (f, g, h) sea ice thickness responses in (c, f) Dec–Feb, (d, g) Mar–May, and (e, h) Jun–Aug 881 

to the anomalously large winter snowfall. In (c)–(h), statistically significant values (p < 0.05) 882 

are stippled. Snowfall, snow depth, and sea ice thickness are from our CICE6–slab ocean model 883 

with ERA5 historical forcing. 884 

 885 

Figure 6: The impact of the anomalously large winter snowfall over the Atlantic sector of 886 

the Arctic on seasonal ice thickness  887 
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(a) The interannual variations of wintertime (NDJFM) snowfall (cm) from ERA5, JRA55, 888 

MERRA2 and CFSR, averaged over the Atlantic sector of the Arctic (red line in (b)). The red-889 

dashed line in (a) is a linear regression line for the ERA5 winter snowfall. (b) Composite map 890 

of winter snowfall anomalies and the composite map of (c, d, e) seasonal ice thickness 891 

responses in (c) Dec–Feb, (d) Mar–May, and (e) Jun–Aug to anomalously large winter snowfall 892 

(above one standard deviation anomaly) over the Atlantic sector, during the winters of 1982/83, 893 

1992/93, 1994/95, 1999/00, 2004/05, 2005/06, 2007/08, 2011/12 (red circles in (a)). Snowfall 894 

and sea ice thickness are from our CICE6–slab ocean model with ERA5 historical forcing. 895 

 896 

Figure 7: Covariance between winter clouds, snowfall, and downward longwave radiation 897 

The interannual variations of ERA5’s wintertime (NDJFM) (a) snowfall (SWE; red), 898 

downward longwave radiation (orange), (b) surface air temperature (black) and surface specific 899 

humidity (blue) averaged over the Eurasian-Pacific sector of the Arctic. The dotted lines are 900 

linear regression lines. The regression maps of (c) snowfall (SWE), (d) 2m air temperature, (e) 901 

near-surface specific humidity, (f) downward longwave radiation, (g) cloud liquid water, and 902 

(h) sea level pressure (shadings) with winds (vectors) per one standard deviation of snowfall 903 

anomaly. The regression map of snowfall, (c) is identical to Fig. 5b.  904 

 905 

Figure 8: The net effect of the winter snowfall and accompanying atmospheric forcings 906 

on sea ice thickness  907 

The seasonal (a, b, c) snow depth and (d, e, f) sea ice thickness responses in (a, d) Dec–Feb, 908 

(b, e) Mar–May, and (c, f) Jun–Aug to the anomalously large winter snowfall combined with 909 

strong downward longwave radiation, which is also accompanied by the surface air warming 910 

and moistening. Statistically significant values (p < 0.05) are stippled. Snow depth and sea ice 911 

thickness are from our CICE6–slab ocean model with ERA5 historical forcing. 912 

 913 

Figure 9: 2016–17 sea ice responses simulated by our CICE6–slab ocean model and 914 

CESM2–full ocean models 915 
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(a, d, g) Accumulated snowfall anomalies (SWE; cm) during the winters of 2016-17 from 916 

ERA5 and JRA55. Simulated responses of (b, e, h) summer (Aug-Sep) sea ice concentration 917 

and (c, f, i) seasonal sea ice thickness to the combined effect of preceding winter snowfall and 918 

downward longwave radiation, which is also accompanied by the surface air warming and 919 

moistening. (a, d) is from ERA5 and (g) is from JRA55. (b, c) are derived from our CICE6–920 

slab ocean model with ERA5 forcing, (e, f) are derived from CESM2–full ocean model with 921 

ERA5 forcing and (h, i) are derived from CESM2–full ocean model with JRA55 forcing. (a) 922 

and (d) are identical. 923 

 924 

Figure 10: 1998–99 sea ice responses simulated by our CICE6–slab ocean model and 925 

CESM2–full ocean models 926 

(a, d, g) Accumulated snowfall anomalies (SWE; cm) during the winters of 1998-99 from 927 

ERA5 and JRA55. Simulated responses of (b, e, h) summer (Aug-Sep) sea ice concentration 928 

and (c, f, i) seasonal sea ice thickness to the combined effect of preceding winter snowfall and 929 

downward longwave radiation, which is also accompanied by the surface air warming and 930 

moistening. (a, d) is from ERA5 and (g) is from JRA55. (b, c) are derived from our CICE6–931 

slab ocean model with ERA5 forcing, (e, f) are derived from CESM2–full ocean model with 932 

ERA5 forcing and (h, i) are derived from CESM2–full ocean model with JRA55 forcing. (a) 933 

and (d) are identical. 934 

 935 

Figure 11: Sensitivity of ice growth rate to snow depth estimated by a simple 1D model  936 

Sensitivity of wintertime ice growth rate (ordinate; cm month-1) to snow depth (abscissa; cm) 937 

and ice thickness (red, black and blue lines), simulated by a simple 1D sea ice model. The 938 

red, black and blue lines correspond to sea ice thickness ℎ- = 1.0, 1.5 and 2.0 m respectively.  939 

  940 

 941 

 942 

  943 
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 944 

 945 

Figure 1: Sea ice model simulation vs Observations  946 

The year-to-year variations of (a) late summer (Aug–Sep) Arctic sea ice extent simulated by 947 

our CICE6–slab ocean model forced by ERA5 (blue), CESM2 forced by ERA5 (sky blue) and 948 

by JRA55 (magenta) and from NSIDC observations (black), and (b) the wintertime (NDJFM) 949 

mean snow depth, averaged over the entire Arctic, simulated by our CICE6–slab ocean model 950 

forced by ERA5 (blue), CESM2 forced by ERA5 (sky blue) and by JRA55 (magenta), from 951 

PIOMAS (black) and from NESOSIM (red). The climatological mean seasonal (monthly) 952 

variations of (c) sea ice extent and (d) sea ice volume. In (c, d), blue shadings indicate the 953 

minimum/maximum ranges of sea ice extent and volume simulated by our CICE6–slab ocean 954 

model forced by ERA5, and gray shadings indicate the minimum/maximum ranges of (c) 955 

NSIDC observed sea ice extent and (d) PIOMAS sea ice volume. 956 

 957 

  958 
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 959 

 960 

Figure 2: Interannual relationship between snow depth and ice growth.  961 

Interannual variation of the wintertime (NDJFM) mean snow depth (abscissa; cm) and ice 962 

growth rate (ordinate; cm month-1) from 1979–80 to 2017–18 averaged over (a) the entire 963 

Arctic and (b) the Eurasian-Pacific sector. The long-term trends of snow depth and ice growth 964 

rate have been removed. Red-dashed lines in (a, b) are from the 1D model calculation with 965 

fixed downward longwave radiation and surface air temperature (see Methods for details). The 966 

regression map of the wintertime (c) snow depth and (d) ice growth rate anomalies associated 967 

with area-averaged snow depth anomalies (per one standard deviation anomaly) in the 968 

Eurasian-Pacific sector of the Arctic (red lines). Snow depth, and sea ice thickness are from 969 

our CICE6–slab ocean model with ERA5 historical forcing. 970 

  971 
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 972 

 973 

Figure 3: Climatology and variability of snowfall and snow-ice formation  974 

The wintertime (NDJFM) climatological mean accumulated (a) snowfall (SWE; cm), (b) 975 

snow-ice formation (cm), and one standard deviations of (c) snowfall (SWE; cm) and (d) snow-976 

ice formation (cm) on interannual time scales. The long-term trends of snowfall and snow-ice 977 

formation have been removed. Snowfall and snow-ice formation are from our CICE6–slab 978 

ocean model with ERA5 historical forcing. The Eurasian-Pacific sector (Atlantic) of the Arctic 979 

denotes red (blue) lines in (c), (d).  980 
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 981 

 982 

 983 

Figure 4: Relationship between accumulated winter snowfall and snow depth over first-984 

year sea ice 985 

(a) The interannual relationship between wintertime (NDJFM) snowfall accumulation 986 

(abscissa; SWE; cm) and snow depth (ordinate; cm) from 1979–80 to 2017–18, averaged over 987 

the first-year sea ice of the Eurasian-Pacific sector of the Arctic. The red line is a linear 988 

regression line. (b) October sea ice concentration (shadings) averaged from 1979 to 2018 and 989 

the estimated first-year sea ice region (hatches). If the October sea ice concentration of a grid 990 

point is smaller than 15% in a specific year, the grid point is defined as a region of first-year 991 

sea ice, and the grids satisfying this condition for at least for one year are hatched in (b). 992 

Snowfall, snow depth, and sea ice concentration are from our CICE6–slab ocean model with 993 

ERA5 historical forcing. 994 

 995 
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 996 

Figure 5: The impact of winter snowfall on seasonal ice thickness  997 

(a) The interannual variations of wintertime (NDJFM) accumulated snowfall (SWE; cm) from 998 

ERA5, JRA55, MERRA2 and CFSR, averaged over the Eurasian-Pacific sector (red line in 999 

(b)). The red-dashed line in (a) is a linear regression line for the winter snowfall in ERA5. (b) 1000 

The regression map of snowfall anomalies in winter, per one standard deviation of winter 1001 

snowfall anomaly averaged over the Eurasian-Pacific sector. The seasonal (c, d, e) snow depth 1002 

and (f, g, h) sea ice thickness responses in (c, f) Dec–Feb, (d, g) Mar–May, and (e, h) Jun–Aug 1003 

to the anomalously large winter snowfall. In (c)–(h), statistically significant values (p < 0.05) 1004 

are stippled. Snowfall, snow depth, and sea ice thickness are from our CICE6–slab ocean model 1005 
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with ERA5 historical forcing. 1006 

 1007 

 1008 

Figure 6: The impact of the anomalously large winter snowfall over the Atlantic sector of 1009 

the Arctic on seasonal ice thickness  1010 

(a) The interannual variations of wintertime (NDJFM) snowfall (cm) from ERA5, JRA55, 1011 

MERRA2 and CFSR, averaged over the Atlantic sector of the Arctic (red line in (b)). The red-1012 

dashed line in (a) is a linear regression line for the ERA5 winter snowfall. (b) Composite map 1013 

of winter snowfall anomalies and the composite map of (c, d, e) seasonal ice thickness 1014 

responses in (c) Dec–Feb, (d) Mar–May, and (e) Jun–Aug to anomalously large winter snowfall 1015 

(above one standard deviation anomaly) over the Atlantic sector, during the winters of 1982/83, 1016 

1992/93, 1994/95, 1999/00, 2004/05, 2005/06, 2007/08, 2011/12 (red circles in (a)). Snowfall 1017 

and sea ice thickness are from our CICE6–slab ocean model with ERA5 historical forcing. 1018 

 1019 
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 1020 

 1021 

Figure 7: Covariance between winter clouds, snowfall, and downward longwave radiation 1022 

The interannual variations of ERA5’s wintertime (NDJFM) (a) snowfall (SWE; red), 1023 

downward longwave radiation (orange), (b) surface air temperature (black) and surface specific 1024 

humidity (blue) averaged over the Eurasian-Pacific sector of the Arctic. The dotted lines are 1025 

linear regression lines. The regression maps of (c) snowfall (SWE), (d) 2m air temperature, (e) 1026 

near-surface specific humidity, (f) downward longwave radiation, (g) cloud liquid water, and 1027 

(h) sea level pressure (shadings) with winds (vectors) per one standard deviation of snowfall 1028 

anomaly. The regression map of snowfall, (c) is identical to Fig. 5b.  1029 

 1030 
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 1032 

Figure 8: The net effect of the winter snowfall and accompanying atmospheric forcings 1033 

on sea ice thickness  1034 

The seasonal (a, b, c) snow depth and (d, e, f) sea ice thickness responses in (a, d) Dec–Feb, 1035 

(b, e) Mar–May, and (c, f) Jun–Aug to the anomalously large winter snowfall combined with 1036 

strong downward longwave radiation, which is also accompanied by the surface air warming 1037 

and moistening. Statistically significant values (p < 0.05) are stippled. Snow depth and sea ice 1038 

thickness are from our CICE6–slab ocean model with ERA5 historical forcing. 1039 

 1040 

  1041 
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 1043 

Figure 9: 2016–17 sea ice responses simulated by our CICE6–slab ocean model and 1044 

CESM2–full ocean models 1045 

(a, d, g) Accumulated snowfall anomalies (SWE; cm) during the winters of 2016-17 from 1046 

ERA5 and JRA55. Simulated responses of (b, e, h) summer (Aug-Sep) sea ice concentration 1047 

and (c, f, i) seasonal sea ice thickness to the combined effect of preceding winter snowfall and 1048 

downward longwave radiation, which is also accompanied by the surface air warming and 1049 

moistening. (a, d) is from ERA5 and (g) is from JRA55. (b, c) are derived from our CICE6–1050 

slab ocean model with ERA5 forcing, (e, f) are derived from CESM2–full ocean model with 1051 

ERA5 forcing and (h, i) are derived from CESM2–full ocean model with JRA55 forcing. (a) 1052 

and (d) are identical. 1053 
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 1056 

Figure 10: 1998–99 sea ice responses simulated by our CICE6–slab ocean model and 1057 

CESM2–full ocean models 1058 

(a, d, g) Accumulated snowfall anomalies (SWE; cm) during the winters of 1998-99 from 1059 

ERA5 and JRA55. Simulated responses of (b, e, h) summer (Aug-Sep) sea ice concentration 1060 

and (c, f, i) seasonal sea ice thickness to the combined effect of preceding winter snowfall and 1061 

downward longwave radiation, which is also accompanied by the surface air warming and 1062 

moistening. (a, d) is from ERA5 and (g) is from JRA55. (b, c) are derived from our CICE6–1063 

slab ocean model with ERA5 forcing, (e, f) are derived from our CESM2–full ocean model 1064 

with ERA5 forcing and (h, i) are derived from our CESM2–full ocean model with JRA55 1065 

forcing. Note that panels (a) and (d) are identical. 1066 




