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Abstract

The ongoing Arctic warming has been pronounced in winter and has been associated with an
increase in downward longwave radiation. While previous studies have demonstrated that
poleward moisture flux into the Arctic strengthens downward longwave radiation, less attention
has been given to the impact of the accompanying increase in snowfall. Here, utilizing state-
of-the art sea ice models, we show that typical winter snowfall (snow water equivalent)
anomalies of around 1.0 cm, accompanied by positive downward longwave radiation anomalies
of ~5 W m™2 can cause basin-wide sea ice thinning by around 5 c¢m in the following spring over
the Eurasian-Pacific Seas. In extreme cases, this is followed by a shrinking of summer ice
extent. In the winter of 2016—17, anomalously strong warm/moist air transport combined with
~2.5 cm increase in snowfall (snow water equivalent) decreased spring ice thickness by ~10
cm and decreased the following summer sea ice extent by 5-30%. This study suggests that
small changes in the pattern and volume of winter snowfall can strongly impact the sea ice

thickness and extent in the following seasons.
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1. Introduction

The multi-decadal retreat in Arctic sea ice has been superposed upon pronounced
interannual variability, which has motivated efforts to understand year-to-variability in the
winter sea ice growth season (Ricker et al. 2017; Stroeve et al. 2018; Petty et al. 2018a). For
example, previous studies have shown that the initial sea ice thickness in late autumn—early
winter preconditions the heat conductivity of the sea ice, and thereby strongly influences sea
ice growth through the winter (Maykut 1978; Stroeve et al. 2018; Petty et al. 2018a). Autumn-
winter variations in poleward moisture transport also modulate winter sea ice growth via
changes in downward longwave radiation (Park et al. 2015; Woods and Caballero 2016; Hegyi
and Taylor 2018), and are predicted to become increasingly influential during the coming

decades (Petty et al. 2018a).

This study considers an additional direct effect of interannual variations in moisture
transport into the Arctic on sea ice growth: increased winter snowfall. Over the Eurasian-
Pacific Seas, such as the Laptev, East Siberian, and Chukchi Seas, snowfall makes up more
than 60% of the annual precipitation (Bintanja and Andry 2017). Because the thermal
conductivity of snow is about 7 times lower than ice, it may be expected to insulate the sea ice
in these sectors from the atmosphere, and thus suppress winter ice growth (Sturm et al. 2002;
Persson et al. 2017). This insulation should be particularly effective in the Eurasian-Pacific
Seas, where relatively thin first-year ice is becoming increasingly dominant (Petty et al. 2018b).
This raises the possibility that a small increase in snowfall associated with atmospheric
moisture flux convergence may suppress sea ice growth throughout the winter. While previous
studies have pointed out the close linkage between poleward moisture flux into the Arctic and

increased downward longwave radiation (Park et al. 2015; Woods and Caballero 2016; Hegyi
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and Taylor 2018), relatively little attention has been given to the accompanying increase in

snowfall and its potential suppression of sea ice growth.

In this study, the impact of winter snowfall on the wintertime seasonal cycle of sea ice thickness

is investigated using a state-of-the-art sea ice model, the Los Alamos sea-ice model CICE
version 6.0 (hereafter CICE6) (Craig et al. 2018). The model is forced by an atmospheric
state reconstructed from the European Center for Medium-Range Weather Forecasts
version 5 (ERAS) reanalysis dataset (Hersbach et al. 2020). An interim version of ERAS,
ERA-interim (Dee et al. 2011) has shown the best performance in simulating the Arctic
surface radiative fluxes (Zib et al. 2012) among various reanalysis products. ERA-interim
also exhibits good performance in simulating total precipitation in the Arctic (Lindsay et
al. 2014), although rainfall (liquid precipitation) is about 5 times more frequent than in
satellite observations (Boisvert et al. 2018). By performing idealized perturbations
experiments using CICE6, we demonstrate that typical positive winter snowfall anomalies
of 1.0 cm in snow water equivalent (SWE), which is approximately 3.0 cm of snow depth,
averaged over the Eurasian-Pacific Seas (60°E—240°E; 69°N—-90°N) suppress the sea ice
growth in the winter and early spring and cause substantial ice thinning in the following
late spring and summer. We further demonstrate that the snowfall-driven sea ice thinning
is doubled by the accompanying strengthening of downward radiation and surface air
warming/moistening that this combination is often sufficient to reduce summer sea ice

extent.

2. Data and methods

In order to assess the interannual variations of winter snowfall of ERAS, we examined
4
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the Japanese 55-year reanalysis (JRASS5) (Kobayashi et al. 2015), the modern-era retrospective
analysis for research and applications version 2 (MERRA2) (Gelaro et al. 2017), and the
climate forecast system reanalysis (CFSR) (Saha et al. 2014). We use these four reanalysis
products because they provide estimates of the atmospheric state beyond 2019, and because
their performances in simulating the Arctic precipitation variability have been evaluated
(Barrett et al. 2020). To validate the CICE6-simulated sea ice extent, we utilized the satellite-
observed sea ice extent version 3 provided by the National Snow and Ice Data Center (NSIDC)
(Fetterer et al. 2017). To systematically evaluate our model’s simulated sea ice thickness and
snow depth, we examined the coupled Pan-Arctic Ice-Ocean Modeling and Assimilation
System (PIOMAS) (Zhang and Rothrock 2003) and the NASA Eulerian Snow on Sea Ice
Model (NESOSIM) (Petty et al. 2018b). While PIOMAS spans 1979—present, NESOSIM spans
2000-2015. The February—March average Arctic sea ice thickness simulated by PIOMAS is
similar to that derived from satellite observations (Collow et al. 2015), although the satellite-
observed Arctic sea ice thickness has large uncertainty (Lindsay and Schweiger 2015).
PIOMAS evolves the snow depth over sea ice via a snow thickness distribution equation that
conserves snow mass (Flato and Hibler 1995). NESOSIM uses the median snowfall from
multiple reanalysis products (ERA-I, MERRA2, JRASS, and the Arctic System Reanalysis
version 1 (Bromwich et al. 2016)) to drive its ocean-sea ice model. The seasonal cycle and
regional distribution of the NESOSIM snow depth match well with in situ station data (Petty

et al. 2018b).

a) Sea ice—slab ocean model configuration

To investigate the impact of snowfall on the seasonal ice thickness, we utilized a state-of-

5
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the-art model, the Los Alamos sea-ice model CICE6 (Craig et al. 2018). The material and
thermal characteristics of sea ice are represented using an elastic-anisotropic-plastic rheology
(Wilchinsky and Feltham 2006; Tsamados et al. 2013) and using mushy layer thermodynamics
(Feltham et al. 2006; Turner et al. 2013), respectively. The model has five ice categories with
seven vertical layers and calculates energy fluxes between snow and each ice category. We use
a displaced pole grid with 320%384 grid points, corresponding to a horizontal grid spacing of
approximately 1 degree. Solar radiation within the sea ice and overlying snow cover is

computed via the delta-Eddington method (Briegleb and Light 2007).

The sea ice model is coupled to a slab ocean model to simplify the ocean dynamics. The
mixed layer depth in the Arctic Ocean has a seasonal cycle, ranging from depths greater than
20 m in winter to depths of 5-30 m in summer (Cole et al. 2014; Peralta-Ferriz and Woodgate
2015). In this study, we imposed a spatially-uniform and seasonally-varying mixed layer depth
based on the CMCC Global Ocean Physical Reanalysis System (C-GLORS) version 5 (Storto
and Masina 2016), a global ocean reanalysis combined with in situ and satellite observations.
We slightly reduced the C-GLORS mixed layer depth in summer to better track hydrographic

observations (see Supplementary Fig. 1).

Over the sub-Arctic seas, where the sea ice concentration is generally less than 15%
throughout the season (since year 2000), we restored the sea surface temperatures to monthly
historical SSTs. The rationale for this restoring is that the marginal seas, especially the Nordic
Sea surface temperatures, have continuously increased over the last decades (Supplementary
Fig. 2), and the slab ocean model of CICE6 underestimates this warming trend if the model is
integrated without the restoring. Other than imposing the SSTs in the marginal seas, we used

default parameter values for the slab ocean, with zero ‘deep ocean heat flux’ (qdp=0). The sea
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surface salinity (SSS) is set to 31 PSU throughout the year, which is close to the observed
salinity over the Arctic Ocean (Steele et al. 2001). Thus, the modeled sea surface salinity does

not respond to changes in ice growth and melt.

1) Historical simulation (Hist)

Our simulations run for 40 years, from 1979 to 2018, during which satellite-observed Arctic
sea ice concentration and reanalysis data are available. For the atmospheric forcing of CICE®6,
we utilized ERAS (Hersbach et al. 2020). Specifically, we imposed 6-hourly meteorological
fields (temperature, specific humidity, and zonal and meridional winds), 6-hourly radiative
fluxes (downward shortwave and longwave radiation at the surface), and 6-hourly precipitation
(rainfall and snowfall) in each model grid cell. CICE6 was integrated over 80 years to “spin
up”, during which we repeated the 19791988 atmospheric forcing eight times. The historical
simulations were then initialized from the end of this spin-up simulation, starting from year

1979.

2) Climatological winter snowfall experiment (cSnow)

To identify the impact of anomalous snowfall on Arctic sea ice growth on interannual time
scales, we configured a CICE6 simulation in which the winter (November to March) snowfall
in each year was replaced by climatological snowfall. Specifically, each year’s November of
historical simulation (Hist) was used for the initial condition of the climatological winter
snowfall experiment (cSnow), in which the winter (November to March) snowfall was replaced
by climatological snowfall. Each cSnow experiment was integrated 12 months, starting from

7
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November of the year in which the experiment was initiated and ending in October of the
following year. Because the Arctic winter snowfall shows an increasing trend in ERAS,
accumulated snowfalls in recent years are substantially larger than 1980-90s. To remove this
long-term trend, which is possibly unreliable, the snowfall climatology is defined via the linear
regression line of the winter snowfall at each grid point. Therefore, the snowfall anomalies
correspond to interannual variability. We then compared winter ice thicknesses between this
simulation (cSnow) and our historical simulation (Hist) to quantify the impact of anomalous
winter snowfall. Again, these idealized experiments were conducted until the following
October to identify the impact of the winter snowfall on the subsequent spring and summer sea

ice.

3) Combination of parameters: the net effect of increased snowfall and accompanying

atmospheric forcings (cSnow+cDLW+cT+cq)

This experiment is designed to identify the combined effects of snowfall and downward
longwave radiation, which is also accompanied by surface air warming and moistening. Similar
to experiment cSnow, we configured CICE6 with historical atmospheric forcing, but replaced
the downward longwave radiation, surface air temperature, surface specific humidity, and
snowfall with their climatological counterparts from November to March in each year.
Specifically, for each year (1979/80 to 2017/18) we initiated an experiment
(cSnow+cDLW+cT+cq) using the model state at the start of November in our historical
simulation (Hist). In this experiment we replaced the winter (November to March) downward
longwave radiation, surface air temperature, surface specific humidity, and snowfall by their

respective climatological means. We integrated each experiment until the end of October in the
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following year.

b. CESM?2: Sea ice—full ocean model simulations

To verify the robustness of CICE6—slab ocean model simulations, we also performed an
ocean—ice couple model experiment using the Community Earth System Model version 2
(CESM2) (Danabasoglu et al. 2020). The ocean and ice components of CESM?2 are the second
version of the Parallel Ocean Program (POP2) (Smith et al. 2010) and Community Ice Code
version 5 (CICES) (Hunke et al. 2015). POP2 has a displaced North Pole horizontal grid with
gx1v7 grid resolution, which is the same as the CICE6—slab ocean model used in this study,
and 60 vertical levels whose thicknesses monotonically increase from 10 m in the upper ocean
to 250 m in the deep ocean. The ocean-ice coupled model simulation is forced by a 3-hourly
atmospheric state (temperature, sea level pressure, humidity, winds), radiative fluxes
(downward longwave and shortwave), and precipitation from JRAS55-do (Tsujino et al. 2018),
a surface dataset designed for driving ocean-sea ice models. Specifically, surface fields of
JRASS are adjusted using satellite observations and other reanalysis data to better simulate sea
surface temperatures and sea ice in the polar regions (Tsujino et al. 2018). The historical
CESM2 ocean—sea ice simulations driven by JRAS55-do comprises one of the standard

component sets of CESM2.

We performed additional historical CESM2 ocean—sea ice simulations using ERAS forcing,
which is not listed as a standard component set of CESM2. CESM2 ocean—sea ice forced by
ERAS simulates excessively small summer sea ice extent. To reduce this bias, the base ice and
snow tuning parameters are increased to 40 and 15 respectively (r_ice = 40 and r_snw = 15)

when ERAS data are used for driving CESM2. Increasing the ice and snow tuning parameters
9
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(r_ice and r_snw) increases the surface albedo and decreases the transmissivity into sea ice

layers, respectively (Briegleb and Light 2007).

1) Historical simulation (Hist)

For CESM2 with JRAS55-do forcing, we integrated the model for 61 years from 1958 to
2018, then used the first 21 years (from 1958 to 1978) as a spin-up simulation and the remaining
40 years (from 1979 to 2018) as a historical simulation. For CESM2 with ERAS forcing, the
model was integrated over 20 years to “spin up”, during which we repeated the 1979—1988
atmospheric forcing two times. The historical simulations were then initialized from the end of
this spin-up simulation, starting from year 1979. In both model configurations (JRA55-do and
ERAS forcings), four different ensemble historical runs were simulated by using 4 different

initial conditions (perturbations in high latitude SSTs) in January 1979.

2) Combination of parameters: the net effect of increased snowfall and accompanying

atmospheric forcings (cSnow+cDLW+cT+cq)

To identify the combined effects of snowfall and downward longwave radiation, which is
also accompanied by surface air warming and moistening, we followed a similar procedure as
in our CICE6-slab ocean model experiments. We configured CESM2 with historical
atmospheric forcing, but replaced the downward longwave radiation, surface air temperature,
surface specific humidity, and snowfall with their climatological counterparts from November
to March for 1998-99 and 2016-17. Specifically, we conducted two experiments
(cSnow+cDLW+cT+cq) starting from the state of the historical simulation (Hist) at the
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beginning of November 1998 and November 2016, respectively, in which the winter
(November to March) downward longwave radiation, surface air temperature, surface specific
humidity, and snowfall were replaced by climatological means. We integrated each experiment
until the subsequent Octobers (until October 1999 and October 2017, respectively). For each
of these experiments, we ran an ensemble of 4 simulations with SST perturbations. Each
ensemble member shows very similar sea ice thickness and concentration anomalies
throughout the season, probably because atmospheric boundary conditions are prescribed and

the model is integrated only for 12 months.

c. A simple one-dimensional (1D) sea ice model with snow

The insulating effect of snow may be understood with the aid of a one-dimensional
conceptual model of the sea ice/snow heat budget. Assuming that the sea ice is composed of a
single homogeneous layer of ice for simplicity, and that the sea ice temperature instantaneously
equilibrates to the heat fluxes at its base and to the atmospheric conditions above the ice and

snow, the heat balance at the ice-atmosphere interface can be written as
F'=F,," —Fu' +SHF" + LHF'. (1)

Here, F LWT and F, LWl denote upward and downward longwave radiative fluxes, respectively,
and SHF'" and LHF' denote upward sensible and latent heat fluxes, respectively. We have

neglected net shortwave radiation FSWl + FSWT, which is much weaker than other heat fluxes

in winter. Increased snowfall suppresses the ice growth by reducing the upward conductive
heat flux (E."), leading to a lower snow surface temperature and decreased sensible heat flux

SHF") and upward longwave radiation (F, LWT).
p g
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To aid conceptual understanding of snow insulator effect on sea ice thickness, we construct
a minimal 1D column model of the Arctic snow/sea ice heat budget following Maykut (1982)
and Petty et al. (2013), assuming a steady balance between upward conductive heat flux
through the snow/ice layer and the net surface heat loss. Utilizing bulk formulas for sensible

and latent heat fluxes, equation (1) can be re-written as:

F(To)" = oTs* — Fuy'* + pacyCoU(Ts—To) + palsCpU(Gsac(Ts) — qa),  (2)

where Ts and T, are snow-covered ice surface temperature and 2 m air temperature,
respectively. U is wind speed at 10 m and q, 1is the specific air humidity at 2 m. qg,; is the
saturation specific humidity. ¢ is Stefan-Boltzmann constant and Cp is turbulent transfer

coefficient over sea ice.

Following Semtner (1976), we assume a linear temperature gradient through snow and sea

ice, so the conductive heat flux F.(Ts)" may be written as:

kiks(T;—Ts)

F.(T)' = Goh. + kb)Y (3)

Here T is the freezing temperature of sea water, h; and hg are the thicknesses of ice and
snow, respectively, and k; and kg are the thermal conductivities of ice and snow, respectively.
Note that snow is an effective thermal insulator: kg is about seven times smaller than k;. In
winter, sea ice grows by conducting heat upward from the bottom of the ice to the surface.
Assuming that the ocean surface is at the freezing temperature, the freezing rate at the bottom

ofice is simplified as:

@, =F,' /(piLs) (4)
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where p; is the density of ice and Ly is latent heat of fusion. Here, we calculate Tg and FCT

by solving equations (2) and (3) with prescribed thicknesses of ice and snow, h; and hg. Then,
the ice growth rate @, can be estimated from equation (4). Because there is no ice-ocean heat
exchange, the ice growth rate of this simple model is entirely controlled by surface heat

exchange.

In this study, we estimated typical values of these parameters from ERAS, specifically
wintertime (NDJFM) mean values, over the Arctic Ocean averaged from 1979 to 2018. We
used entire—Arctic (above 69°N) averages and the Eurasian-Pacific sector (60°E—240°E; 69°N—
90°N) averages. The parameters we used for the Eurasian-Pacific sector of the Arctic Ocean

are given in the Appendix.

3. Results
a. CICE6—slab ocean model simulation of sea ice thickness and extent

The satellite-observed August-September sea ice extent exhibits a rapid decline from 2001
to 2012, during which the sea ice extent has decreased by around 35% (black line of Fig. 1a).
Our CICE6 simulation with ERAS5 atmospheric boundary conditions (Hist) simulates the
observed variability and trend of summer sea ice extent well (blue line in Fig. la): the
correlation coefficient between the August-September average sea ice extent in CICE6 and in
observations is 0.95, although there are substantial differences in regional sea ice
concentrations between CICE6 and observations (Supplementary Fig. 3). Specifically, the
CICE6-simulated SICs are generally smaller than those derived from satellite observations

(Supplementary Fig. 3). This suggests that CICE6 simulates a larger marginal ice zone than
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typically exists in nature, and therefore that summer SICs are likely to be more sensitive to the

recent increase in downward longwave radiation and surface air warming.

The seasonal cycles of sea ice extent and volume are also captured by CICEG6 (Figs. 1¢ and 1d).
Figure 1b shows that the CICE6-simulated interannual variations of the wintertime snow depth
over sea ice, averaged over the entire Arctic, are well correlated with those of the coupled
PIOMAS (Zhang and Rothrock 2003) (correlation coefficient is 0.73) and NESOSIM (Petty et
al. 2018b). However, the mean snow depths and the amplitudes of interannual variability
simulated by PIOMAS and NESOSIM are about 30% larger than those of CICE®6.
Reconstruction of snow depth over Arctic sea ice is challenging because in-situ observations
of snow on sea ice have been sparse and methods of retrieving snow depth from satellite
measurements have only recently been developed (Kwok et al. 2020). Moreover, validating the
snow depth over the eastern Arctic is more difficult than other regions (Blanchard-
Wrigglesworth et al. 2018) because of sparse observations. CICE6 includes more sophisticated
schemes for snow sinks than PIOMAS and NESOSIM, such as snow lost during ridging
(Roberts et al. 2019) (Roberts et al. 2019), snow-ice formation, and sublimation (Pomeroy et
al. 1997), which could partly explain the relatively thin snow depth. However, the snow sinks
associated with snow-ice formation and sublimation are an order of magnitude smaller than
accumulation and melting (Webster et al. 2021). While September snow is almost entirely
melted away in CICE6, snow in NESOSIM persists over perennial sea ice (Supplementary Fig.
3). Also, September sea ice concentrations in CICE6 are smaller than those of derived from
satellite observations (Supplementary Fig. 3), implying that CICE6 receives less snowfall in
September. Note that NESOSIM directly assimilates the satellite-observed sea ice

concentration.
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b. Snow depth and ice growth rate in winter

To what extent is the wintertime sea ice growth controlled by snow? Snow is a relatively

poor conductor of heat, compared with sea ice, because a substantial fraction of its volume is

trapped air. In winter, the insulating effect of snow decreases the conductive heat flux E.',
through the sea ice and snow, and thus decreases the rate at which seawater freezes to the base

of the sea ice.

In this study, we examined the basin-scale sea ice growth rate from November, during
which the Arctic Ocean basin above is mostly covered by sea ice. Because the delayed freeze-
up in recent decades has substantially decreased sea ice cover, it is difficult to quantify the
basin-scale snowfall forcing on the first-year sea ice in October. Moreover, the sea ice growth
rate is more closely related to the late summer sea ice thickness than to the atmospheric state
in October (Petty et al. 2018a). A recent study (Stroeve et al. 2018) defined the wintertime
Arctic sea ice growth as the difference between November and April sea ice thickness. In our
CICES6 simulations, the interannual variability of the ice growth rate from November to March
is strongly correlated with snow depth in winter, when averaged over the entire Arctic (Fig. 2a).
This is consistent with our expectation that the decreased conductivity of the sea ice/snow layer
should suppress ice growth, but this high correlation is also contributed by the negative
correlation between sea ice thickness and growth rate, i.e., thin sea ice grows faster by energy

exchange over young sea ice in the central Arctic (Maykut 1978; Stroeve et al. 2018).

It is important to note that the insulating effect of snow on sea ice is geographically

dependent. Over the Atlantic sector of the Arctic, the accumulated winter snowfall often
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exceeds 25 cm (SWE) (Fig. 3a) and snow-ice formation is generally larger than 15 cm (SWE)
(Fig. 3b). Anomalously large winter snowfall over the Atlantic Seas tends to produce
anomalously thick ice, rather than anomalously thin ice (Granskog et al. 2017; Merkouriadi et
al. 2017, 2020). In this study, we focus on the snow effect on sea ice in the Eurasian-Pacific
Seas, where first-year sea ice is becoming increasingly dominant (Petty et al. 2018b) and the
snow-ice formation is relatively small. Over the Eurasian-Pacific Seas, the correlation
coefficient between the areally-averaged detrended snow depth and the detrended ice growth
rate is —0.80 (Fig. 2b), indicating that the insulation effect of snow cover is probably dominant

over the snow-ice formation.

This statistical relationship between the wintertime snow depth and ice growth is consistent
with a simple 1D ice-snow model, indicated via red-dotted lines in Figs. 2a and 2b. This 1D
model indicates that increasing the wintertime mean snow depth from 13 cm to 18 cm can
suppress the ice growth rate by 2 cm month'!, in average, or approximately 10 cm over a five-
month period (NDJFM). Note that our 1D model assumes a constant sea ice thickness (1.38 m)
and does not account for the seasonally increasing sea ice thickness from November to March.
In reality, the sea ice growth may be expected to be more sensitive to snow depth anomalies in
early winter than in late winter. The ice growth rate variations predicted by snow depth changes
alone in this 1D model (red-dotted lines) generally underestimate the sensitivity estimated from
the interannual relationship between snow depth and ice growth rate (green scatter plots), both
when averaged over the entire Arctic and over the Eurasian-Pacific Seas (Figs. 2a and 2b). This
suggests that there may be other factors that co-vary with snow depth (or snowfall) and

suppress sea ice growth, as will be explored in the following sections.

To identify the spatial pattern of snow depth and ice growth rate on interannual time scales,
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we construct composite maps of snow depth and ice growth rate anomalies, as shown in Figs.
2c¢ and 2d. In this study, we applied a simple linear regression analysis: the linear relationship
between the winter snow depth anomaly and the ice growth from November to March is
calculated. Specifically, the ice growth rate at each grid point is regressed on the winter
(NDJFM) snow depth anomaly averaged over the Eurasian-Pacific Seas, including the Lapteyv,
East Siberian, and Chukchi Seas (60°E—240°E; 69°N-90°N). We then present the winter ice
growth (cm) at each geographical location per one standard deviation (1 s.d.) of areally-

averaged (Eurasian-Pacific sector averaged) snow depth anomaly.

The regression map exhibits a basin-wide increase in snow depth (Fig. 2¢) and a basin-wide
decrease of the ice growth rate (Fig. 2d), corroborating our earlier finding of a link between
snow depth and ice growth over the Eurasian-Pacific sector of the Arctic. On sub-basin scales,
however, the spatial pattern of the reduced ice growth (Fig. 2d) does not visibly correspond to
that of the snow depth (Fig. 2c). This may be due to other factors, such as atmospheric
circulations, wind-driven ice drift and initial (autumn—early winter) sea ice thickness, that
modify the spatial patterns of both snow depth and ice thickness. In order to overcome this
limitation, we designed idealized experiments that modulate snowfall in our sea ice model (see
Sec. 2). Unlike snow depth, which is a diagnostic variable of the sea ice model, snowfall is
unambiguously a forcing for ice thickness and is an input variable for our sea ice model. Over
the first-year sea ice region, which we define as locations where the October-average sea ice
concentration is less than 15%, the areally-averaged interannual correlation between the winter
(NDJFM) snowfall accumulation and the snow depth is about 0.80 (Fig. 4). This high
correlation indicates that snowfall is a key factor controlling the snow depth variations,

although there are various other factors affecting snow depth on regional scales, such as
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wind-blown snow (Pomeroy et al. 1997; Pomeroy and Li 2000), densification (Herron and
Langway 1980), ridging (Roberts et al. 2019), and wind-driven sea ice flux

convergence/divergence (Sturm and Stuefer 2013).

c. The impact of winter snowfall on seasonal sea ice thickness

To quantitatively assess the impact of anomalously large winter snowfall on sea ice, we
performed idealized perturbation experiments using CICE6. Specifically, we imposed
climatological-mean 6-hourly snowfall (the five-month (NDJFM) climatological mean
snowfall is shown in Fig. 3a) in the model from November to March for each of the 39 winters
in the simulated period (see Sec. 2). Because of the increasing trend of winter snowfall over
the recent 40 years (Fig. 5a), we increased the snowfall climatology linearly from 1979-80 to
2017-18 following the linear regression line (red-dashed line in Fig. 5a for ERAS) for each
month. It is unclear whether the increasing winter snowfall trends in these reanalysis products
are reliable or not (Boisvert et al. 2018) because non-climatic factors such as replacements of
satellite sensors can affect the trend (Barrett et al. 2020). In these experiments, the same
historical atmospheric boundary conditions are used to force the model. In summary, there are
two experimental configurations: historical atmospheric boundary conditions (Histi), and
historical atmospheric boundary conditions with climatological snowfall from November to
March (cSnow;). These model simulations have been integrated through the winter and the
following summer of each year and these two simulation outputs are subtracted (Hist; — cSnow;).
The resulting differences quantify the impact of the winter snowfall anomalies on winter sea
ice growth and the following season’s snow—albedo feedbacks that eventually affect the

seasonal sea ice thickness and summer sea ice extent.
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In Figures Sb—h, we plot 39-year regression maps, showing the model-simulated seasonal
snow depth (Figs. 5c — e) and sea ice thickness (Figs. 5f — h) responses to the winter snowfall
anomalies (Fig. 5b) on interannual time scales. Here, the winter accumulated snowfall, the
seasonal snow depth and the seasonal ice thickness anomalies at each grid point are regressed
on the winter accumulated snowfall anomaly averaged over the Eurasian-Pacific Seas. Again,
the long-term increasing trend of snowfall at each grid point was removed prior to calculating
the winter accumulated snowfall anomaly averaged over the Eurasian-Pacific Seas. The
regression slopes are multiplied by one standard deviation of the snowfall anomaly averaged
over the Eurasian-Pacific Seas, which is approximately 1.0 cm (SWE) in ERAS. The resulting
snowfall map exhibits positive anomalies over wide areas of the Eurasian-Pacific Seas,
especially over the Chukchi Sea and the Kara Sea (Fig. 5b). A very similar pattern appears in
other reanalysis datasets: JRAS5, MERRA2, and CFSR (see Supplementary Fig. 4). This
geographic concentration may occur because a majority of Arctic snowfall is associated with
cyclone activity (Webster et al. 2019) and many of these cyclones pass through the Chukchi
Sea and the Barents-Kara Seas. The snowfall in MERRA?2 is about 20-25% larger than in the
other reanalysis products (Fig. 5a) and using MERRAZ2 to force sea ice models is known to
simulate thicker snow depth over sea ice (Blanchard-Wrigglesworth et al. 2018). Recent studies
found that reanalysis products capture the satellite-observed and in situ-observed interannual

variability in Arctic snowfall reasonably well (Barrett et al. 2020; Cabaj et al. 2020).

Because of the snowfall accumulation throughout the winter, the snow depth anomalies
peak in late winter and spring, from March to May (Fig. 5d). This regression map of ice
thickness anomalies exhibits a basin-wide ice thinning throughout the winter and spring in

response to increased snow depth (Figs. 5f—h). The ice thickness anomaly is largest in the late
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winter and spring (Fig. 5g) and persists into the summer (Fig. 5h), although the increased snow
depth in the spring (Fig. 5d) would increase surface albedo as fresh snowfall accumulates on
older snowpacks. From Figure 5, we conclude that positive winter snowfall (SWE) anomalies,
which typically deviate from the climatology by 1.0 cm (one standard deviation of the winter
snowfall averaged over the Eurasian-Pacific Seas), suppress the winter ice growth and can

cause basin-wide ice thinning through the following spring and summer.

On the contrary, idealized experiments also indicate that anomalously large winter snowfall
over the Atlantic Seas, defined as larger than one standard deviation on interannual time scales,
rather causes ice thickening (Fig. 6). Here, the sea ice thickening to the anomalously large
snowfall appears only in the extreme snowfall years. The simple linear regression between the
winter snowfall anomalies over the Atlantic sector of the Arctic and the seasonal sea ice
thickness does not produce any statistically significant sea ice thickness responses, probably
because of the compensation between the snow insulation effect and the snow-ice formation.
As shown in previous studies (Granskog et al. 2017; Merkouriadi et al. 2017, 2020), extreme
snowfall events over the Atlantic sector of the Arctic substantially increase snow-ice formation

and thereby can increase ice thickness.

Because the anomalously large snowfall over the Atlantic sector of the Arctic is often
accompanied by anomalously less snowfall over the Pacific sector of the Arctic (Fig. 6b),
reduced snowfall over the Eurasian-Pacific sector causes sea ice thickening in winter and spring
(Figs. 6c¢, d) that can persist into the summer (Fig. 6¢). Figs. 5 and 6 indicate that small changes
in winter snowfall pattern can cause basin-wide sea ice thickness changes. However, this ice
thickness pattern associated with snowfall anomalies may be difficult to discern in observations

because these snowfall anomalies are accompanied by atmospheric circulation changes (Cohen

20



442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

et al. 2017), which can also change sea ice thickness via wind-driven ice flux divergence

(Jakobson et al. 2019).

d. Covariance between winter snowfall and downward longwave radiation

Because precipitation is dynamically tied to clouds and water vapor, anomalously large
wintertime snowfall is accompanied by stronger downward longwave radiation. On interannual
time scales, the winter snowfall is strongly correlated with downward longwave radiation over
the Eurasian-Pacific Seas, and both exhibit increasing trends since early 2000’s (Fig. 7a). In
addition, downward longwave radiation is closely coupled to surface air temperature during
the winter (Woods et al. 2013; Park et al. 2015) and is often accompanied by surface air
moistening. The interannual variabilities of 2m air temperature and near-surface specific
humidity, averaged over the Eurasian-Pacific Seas, are very similar to each other (Fig. 7b), and
are strongly correlated with those of snowfall / downward longwave radiation (compare Figs.
7a and 7b). The correlation coefficient between snowfall and downward longwave radiation
(2m air temperature and near-surface specific humidity), averaged over the Eurasian-Pacific
seas, is 0.66 (0.64 and 0.64) and these values are statistically significant (p<0.05). The spatial
patterns of snowfall (Fig. 7c), downward longwave radiation (Fig. 7f), 2m air temperature and
near-surface specific humidity (Figs. 7d and 7e¢) anomalies are also similar to one another.
Because precipitation and downward longwave radiation are strongly tied to clouds, it is not
surprising to see that the spatial pattern of cloud liquid water anomaly (Fig. 7g) is also very

similar to those of snowfall and downward longwave radiation.

The surface air warming is often associated with the development of low pressure with

cyclonic circulation (Fig. 7h) via hydrostatic balance (Kim et al. 2019). Because the wintertime
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cyclonic sea ice drift can decrease sea ice thickness over the Eurasian seas (Williams et al.
2016; Park and Stewart 2018), the snowfall-induced negative sea ice thickness anomalies (Fig.
5f) are likely to further decrease. These air temperature and humidity anomalies are in fact
directly linked to the poleward moisture flux anomalies: the development of south-westerlies
over the Barents-Kara Seas and the Chukchi Sea (vectors in Fig. 7h) contributes to the increased
poleward moisture flux that strengthens downward longwave radiation (Park et al. 2015; Hegyi
and Taylor 2018), and likely increases precipitation (snowfall) over the Eurasian-Pacific Seas

as well.

e. The net effect of increased snowfall and the accompanying atmospheric forcings

To quantitatively assess the combined impact of snowfall, longwave radiation, air
temperature and humidity anomalies on sea ice, we performed additional idealized perturbation
experiments for all of the 39 winters in our sea ice model simulation. Similar to the cSnow
experiments described above, we created a model configuration in which the NDJFM
downward longwave radiation, surface air temperature, specific humidity and snowfall are
replaced by their respective climatological means. We refer to this idealized experiment as
“cSnow+cDLW-+cT+cq” (see Sec. 2). The combined impact of the increased snowfall, stronger
downward longwave radiation, and the associated surface air warming/moistening can be
estimated from the difference between the historical simulation and the idealized experiment,
i.e. Hist — (cSnow+cDLW-+cT+cq). Here the climatological mean values of downward
longwave radiation, surface air temperature and specific humidity are defined via linear

regression lines, shown in Figs. 7a and 7b.

The response of seasonal snow depth anomalies (Figs. 8a — ¢) to the combined forcings are
22
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qualitatively similar to those of the snowfall forcing alone (Figs. 5S¢ — e), which we attribute to
the surface air moistening keeping the surface relative humidity and the associated snow
sublimation almost unchanged. With the snow depth approximately unchanged, the increased
downward longwave radiation and surface air warming serve to further decrease the ice
thickness. Consequently, the sea ice thickness anomalies show a larger thinning in these
experiments (Fig. 8d) than in response to snowfall forcing alone (Fig. 5f) in Dec-Jan-Feb. The
suppression of winter ice growth is followed by the ice thinning in the ensuing spring and
summer. In Mar-Apr-May, sea ice thickness decreases by around 4-8 cm (Fig. 8e), doubling
the ice thickness anomalies driven by the snowfall anomalies alone (compare Figs. 8e and 5g).
The spatial patterns of the ice thickness anomalies exhibit a pronounced ice thinning throughout
the season, not only over the Eurasian-Pacific Seas, but also over the entire Arctic (Figs. 8d —
f), and the majority these ice thickness anomalies are statistically significant, exceeding 95%

confidence interval derived from the interannual ice thickness variations (stipples in Fig. 8).

Because the basin-wide ice thinning persists into the summer (Fig. 8f), the summer sea ice
extent is likely to be affected. Indeed, our model simulates a non-negligible dependence of the
summer sea ice extent on the preceding winter’s snowfall and downward longwave radiation
anomalies. Several years exhibited a notable reduction of the summer sea ice extent,
particularly in recent years, during which the multi-decadal trend toward thinner sea ice might
have increased the sensitivity of ice thickness to winter clouds and snowfall. In the winter of
2016-17, warm and moist air transported from lower latitudes by atmospheric rivers caused
unprecedently warm Arctic, suppressing sea ice growth (Hegyi and Taylor 2018). The
wintertime snowfall was also large in the winter of 2016—17 not only over the Eurasian-Pacific

Seas but also over the wide areas of the Arctic, including the Barents and Kara Seas (Figs. 9a
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and 9g). CICE6 simulations show that the large snowfall combined with positive downward
longwave and air temperature anomalies in the winter of 2016—17 suppressed the winter sea
ice growth and decreased the spring and early summer sea ice thickness by ~10 cm over the
Eurasian-Pacific Seas (Fig. 9¢). This seasonally persistent ice thinning was followed by a
notable reduction of ice cover in August-September (Fig. 9b), corresponding to an

approximately 30% reduction in sea ice extent.

Similarly, our CICE6 simulations also indicate that anomalously small snowfall during the
winter of 1998-99 (Figs. 10a and 10g) accelerated the winter sea ice growth and increased the
spring and summer sea ice thickness up to 17 cm (Fig. 10c). This was followed by a large
increase in summer sea ice concentration — more than 15% over wide areas of the Arctic Ocean
in August—September (Fig. 10b). These results are consistent with previous studies (Liu and
Key 2014; Park et al. 2015; Letterly et al. 2016) finding that downward longwave radiation
anomalies in the Eurasian-Pacific Seas precondition sea ice thickness, which in turn has
nontrivial influence on summer sea ice extent. This study further presents that the
accompanying increase in snowfall can double the ice thinning and thereby suggests that winter
snowfall should be factored into quantifying the seasonal sea ice thickness and extent, although

summer weather often exerts a stronger influence on September sea ice extent.

1. Sea ice model coupled to a full ocean model

A caveat of our CICE6-slab ocean model is that the ocean mixed layer depth cannot respond
to changes in snowfall and downward longwave radiation. Such changes in the ocean mixed
layer could feed back on sea ice growth, and so excluding them in CICE6 might bias our results.

To test the robustness of our CICE6—slab ocean model simulations, we utilized the CESM2
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(Danabasoglu et al. 2020) forced by both ERAS and JRASS5 atmospheric boundary conditions

(see Sec. 2).

The interannual variability of winter snowfall over the Eurasian-Pacific Seas in JRASS is
very similar to that of ERAS (Fig. 5a), except that the wintertime mean snowfall is about 10%
smaller than that of ERAS. While using a full ocean model has merit in realistically simulating
the interaction between sea ice growth/melting and the ocean mixed layer, it is difficult to
control the SSTs over the marginal seas of the Arctic, which strongly influence sea ice extent
(Bitz et al. 2005). Consequently, CESM2 forced by JRA55 and ERAS atmospheric boundary
conditions underestimates the summer sea ice extent (Fig. la), although the observed
variability and trend of summer sea ice extent are reasonably well simulated by CESM2 (sky
blue and magenta lines of Fig. 1a). While the CESM2-simulated interannual variations of snow
depth averaged over the entire Arctic are similar to those of PIOMAS and NESOSIM, the

wintertime snow depth is about 30% smaller than those of PIOMAS and NESOSIM (Fig. 1b).

Using CESM2 with JRASS atmospheric boundary conditions, we performed the same
perturbation experiments for the two extreme cases: the winters of 1998-99 and 2016-17.
Consistent with the CICE6—slab ocean model simulations, CESM2 simulations show that the
anomalously large snowfall (Figs. 9d and 9g), combined with other thermodynamic forcings,
during the winter of 2016—17 suppressed the winter sea ice growth and decreased the spring
and early summer sea ice thickness by ~10 cm (Figs. 9f and 9i). These sea ice thickness
anomalies are similar to those simulated in our CICE6-slab ocean model (compare Figs. 9¢
and 9f). This seasonally persistent ice thinning is followed by a reduction of ice cover in August
and September in CESM2 simulations forced by ERAS (Fig. 9¢) and JRASS (Fig. 9h). Note

that the response of summer sea ice cover is much larger when ERAS data are used to drive the
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CESM2 ocean—sea ice model. We caution that direct comparisons of summer sea ice
concentration anomalies between the CICE6—slab ocean model and the CESM2-full ocean
model outputs should be interpreted carefully because CESM2—full ocean model simulates a
~10% smaller summer sea ice extent than is simulated by the CICE6—slab ocean model (Fig.

la).

Consistent with our CICE6—slab ocean model simulations, the anomalously small snowfall
(Fig. 10d and 10g) and the accompanying forcings (weak downward longwave radiation,
surface cooling and drying) during the winter of 1998-99 substantially increased sea ice
thickness throughout the seasons (Figs. 10f and 10i). The sea ice thickening was followed by
an increase in sea ice concentration in the summer of 1999 over wide areas of the Arctic Ocean
(Fig. 10e). It can be concluded that the simulation results from the CESM2—full ocean model,
both with ERAS5 and JRASS atmospheric boundary conditions, generally corroborate those of

the CICE6—slab ocean model with ERAS5 atmospheric boundary conditions.

4. Summary and discussion

In summary, our model simulations demonstrate that small changes in winter snowfall over
the Eurasian-Pacific Seas can strongly impact not only the winter sea ice growth, but also the
extent and thickness of sea ice in the following seasons. A key finding of this study is that a
small increase in winter snowfall accompanied by an increase in downward longwave radiation
and surface warming/moistening drives anomalous sea ice thinning that persists into summer,
although increased spring snow depth might increase surface albedo, which was not
investigated in this study. In extreme cases, the basin-wide ice thinning is followed by a

shrinking of summer ice extent. This indicates that winter snowfall anomalies, along with
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accompanying anomalies in downward longwave radiation and surface air
warming/moistening over the Eurasian-Pacific Seas, may serve as a useful predictor of the
following summer sea ice extent. However, our study also highlights the sensitivity of Arctic
sea ice growth to snowfall pattern: increased snowfall over the Atlantic sector accompanied by
decreased snowfall over the Pacific sector (Fig. 6b) can cause basin-wide sea ice thickening

(Figs. 6¢ — d).

Arctic sea ice is projected to become thinner with future climate change, and snow depth
is likely to decline (Hezel et al. 2012; Webster et al. 2018), partly because of reduced snow
accumulation in summer and autumn (Webster et al. 2021). As the idealized 1D model
demonstrates, snow is more effective in suppressing the winter sea ice growth when the snow
depth and sea ice thickness are relatively thin (Fig. 11), suggesting that snowfall will more
strongly influence the seasonal sea ice growth and thickness in coming decades (e.g., Maykut
1978). This effect may be compounded by the tendency for a warmer Arctic to be accompanied
by increasing snowfall from autumn to early spring (Webster et al. 2021) and decreasing spring-
summer snowfall (a majority of spring-summer snowfall becomes rainfall) (Vihma et al. 2016)
in the coming decades. By the end of the 21 century, the autumn freeze-up of sea ice and the
associated snowfall accumulation are likely to be delayed by about 2~3 months (Hezel et al.
2012), possibly weakening the influence of the early winter snowfall on sea ice. Until then, the
winter snowfall and the accompanying atmospheric forcings are likely to be increasingly
influential. As noted in a recent study (Petty et al. 2018a), the Arctic may be already
transitioning to a state where the sea ice growth is more controlled by the autumn-winter

atmosphere/ocean forcing variations than the autumn sea ice thickness.
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APPENDIX

Given parameters:

pi

Pa

specific heat capacity of air, 1005 J kg™t K1
turbulent transfer coefficient over sea ice, 0.0013
thermal conductivity of ice, 2.04 Wm™1 K1
thermal conductivity of snow, 0.31 Wm™1 K1
latent heat of fusion at 0 K , 3.340x10° ] kg~?!

freezing temperature of sea water, 271.3 K

density of ice, 930 Kgm™3

density of air, 1.275 Kgm™3

Stefan-Boltzmann constant, 5.67x10®% Wm™2 K~*
wind speed at 10 m, 2.56 m s~!
sea ice thickness, 1.38 m

2 m air temperature, 249.85 K

2 m specific humidity, 0.57 g kg™*

downward longwave radiation at the surface, 182.1 W m™2

Because of its simplicity, the simple 1D model yields further physical insight into the effect of

snow depth on ice growth. The intuition is that thicker snow produces lower snow surface

temperature by decreasing the average conductivity of the snow/ice layer, which subsequently

decrease upward longwave radiation (F w) and sensible heat flux (SHF).
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Figure captions
Figure 1: Sea ice model simulation vs Observations

The year-to-year variations of (a) late summer (Aug—Sep) Arctic sea ice extent simulated by
our CICE6-slab ocean model forced by ERAS (blue), CESM2 forced by ERAS (sky blue) and
by JRAS5 (magenta) and from NSIDC observations (black), and (b) the wintertime (NDJFM)
mean snow depth, averaged over the entire Arctic, simulated by our CICE6—slab ocean model
forced by ERAS5 (blue), CESM2 forced by ERAS (sky blue) and by JRAS5 (magenta), from
PIOMAS (black) and NESOSIM (red). The climatological mean seasonal (monthly) variations
of (c) sea ice extent and (d) sea ice volume. In (¢, d), blue shadings indicate the
minimum/maximum ranges of sea ice extent and volume simulated by our CICE6—slab ocean
model forced by ERAS, and gray shadings indicate the minimum/maximum ranges of (c)

NSIDC observed sea ice extent and (d) PIOMAS sea ice volume.

Figure 2: Interannual relationship between snow depth and ice growth.

Interannual variation of the wintertime (NDJFM) mean snow depth (abscissa; cm) and ice
growth rate (ordinate; cm month™!) from 1979-80 to 2017-18 averaged over (a) the entire
Arctic and (b) the Eurasian-Pacific sector. The long-term trends of snow depth and ice growth
rate have been removed. Red-dashed lines in (a, b) are from the 1D model calculation with
fixed downward longwave radiation and surface air temperature (see Methods for details). The
regression map of the wintertime (¢) snow depth and (d) ice growth rate anomalies associated
with area-averaged snow depth anomalies (per one standard deviation anomaly) in the
Eurasian-Pacific sector of the Arctic (red lines). Snow depth, and sea ice thickness are from

our CICE6—slab ocean model with ERAS historical forcing.

Figure 3: Climatology and variability of snowfall and snow-ice formation

The wintertime (NDJFM) climatological mean accumulated (a) snowfall (SWE; cm), (b)
snow-ice formation (cm), and one standard deviations of (¢) snowfall (SWE; cm) and (d) snow-
ice formation (cm) on interannual time scales. The long-term trends of snowfall and snow-ice

formation have been removed. Snowfall and snow-ice formation are from our CICE6—slab
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ocean model with ERAS historical forcing. The Eurasian-Pacific sector (Atlantic) of the Arctic

denotes red (blue) lines in (¢), (d).

Figure 4: Relationship between accumulated winter snowfall and snow depth over first-

year sea ice

(a) The interannual relationship between wintertime (NDJFM) snowfall accumulation
(abscissa; SWE; cm) and snow depth (ordinate; cm) from 1979-80 to 201718, averaged over
the first-year sea ice of the Eurasian-Pacific sector of the Arctic. The red line is a linear
regression line. (b) October sea ice concentration (shadings) averaged from 1979 to 2018 and
the estimated first-year sea ice region (hatches). If the October sea ice concentration of a grid
point is smaller than 15% in a specific year, the grid point is defined as a region of first-year
sea ice, and the grids satisfying this condition for at least for one year are hatched in (b).
Snowfall, snow depth, and sea ice concentration are from our CICE6—slab ocean model with

ERAS historical forcing.

Figure 5: The impact of winter snowfall on seasonal ice thickness

(a) The interannual variations of wintertime (NDJFM) accumulated snowfall (SWE; cm) from
ERAS, JRAS55, MERRA?2 and CFSR, averaged over the Eurasian-Pacific sector (red line in
(b)). The red-dashed line in (a) is a linear regression line for the winter snowfall in ERAS. (b)
The regression map of snowfall anomalies in winter, per one standard deviation of winter
snowfall anomaly averaged over the Eurasian-Pacific sector. The seasonal (¢, d, €) snow depth
and (f, g, h) sea ice thickness responses in (¢, f) Dec—Feb, (d, g) Mar—May, and (e, h) Jun—Aug
to the anomalously large winter snowfall. In (¢)—(h), statistically significant values (p < 0.05)
are stippled. Snowfall, snow depth, and sea ice thickness are from our CICE6—slab ocean model

with ERAS historical forcing.

Figure 6: The impact of the anomalously large winter snowfall over the Atlantic sector of

the Arctic on seasonal ice thickness
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(a) The interannual variations of wintertime (NDJFM) snowfall (cm) from ERAS, JRASS,
MERRA?2 and CFSR, averaged over the Atlantic sector of the Arctic (red line in (b)). The red-
dashed line in (a) is a linear regression line for the ERAS winter snowfall. (b) Composite map
of winter snowfall anomalies and the composite map of (¢, d, e) seasonal ice thickness
responses in (¢) Dec—Feb, (d) Mar—May, and (e) Jun—Aug to anomalously large winter snowfall
(above one standard deviation anomaly) over the Atlantic sector, during the winters of 1982/83,
1992/93, 1994/95, 1999/00, 2004/05, 2005/06, 2007/08, 2011/12 (red circles in (a)). Snowfall

and sea ice thickness are from our CICE6—slab ocean model with ERAS historical forcing.

Figure 7: Covariance between winter clouds, snowfall, and downward longwave radiation

The interannual variations of ERAS5’s wintertime (NDJFM) (a) snowfall (SWE; red),
downward longwave radiation (orange), (b) surface air temperature (black) and surface specific
humidity (blue) averaged over the Eurasian-Pacific sector of the Arctic. The dotted lines are
linear regression lines. The regression maps of (c¢) snowfall (SWE), (d) 2m air temperature, (e)
near-surface specific humidity, (f) downward longwave radiation, (g) cloud liquid water, and
(h) sea level pressure (shadings) with winds (vectors) per one standard deviation of snowfall

anomaly. The regression map of snowfall, (¢) is identical to Fig. Sb.

Figure 8: The net effect of the winter snowfall and accompanying atmospheric forcings

on sea ice thickness

The seasonal (a, b, ¢) snow depth and (d, e, f) sea ice thickness responses in (a, d) Dec—Feb,
(b, €) Mar—May, and (¢, f) Jun—Aug to the anomalously large winter snowfall combined with
strong downward longwave radiation, which is also accompanied by the surface air warming
and moistening. Statistically significant values (p < 0.05) are stippled. Snow depth and sea ice

thickness are from our CICE6-slab ocean model with ERAS historical forcing.

Figure 9: 2016-17 sea ice responses simulated by our CICE6-slab ocean model and

CESM2—full ocean models
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(a, d, g) Accumulated snowfall anomalies (SWE; cm) during the winters of 2016-17 from
ERAS and JRASS. Simulated responses of (b, e, h) summer (Aug-Sep) sea ice concentration
and (c, f, i) seasonal sea ice thickness to the combined effect of preceding winter snowfall and
downward longwave radiation, which is also accompanied by the surface air warming and
moistening. (a, d) is from ERAS and (g) is from JRASS. (b, ¢) are derived from our CICE6—
slab ocean model with ERAS5 forcing, (e, f) are derived from CESM2—full ocean model with
ERAS forcing and (h, i) are derived from CESM2-full ocean model with JRAS5S forcing. (a)

and (d) are identical.

Figure 10: 1998-99 sea ice responses simulated by our CICE6-slab ocean model and

CESM2—full ocean models

(a, d, g) Accumulated snowfall anomalies (SWE; cm) during the winters of 1998-99 from
ERAS and JRASS. Simulated responses of (b, e, h) summer (Aug-Sep) sea ice concentration
and (c, f, i) seasonal sea ice thickness to the combined effect of preceding winter snowfall and
downward longwave radiation, which is also accompanied by the surface air warming and
moistening. (a, d) is from ERAS and (g) is from JRASS. (b, ¢) are derived from our CICE6—
slab ocean model with ERAS5 forcing, (e, f) are derived from CESM2—full ocean model with
ERAS forcing and (h, i) are derived from CESM2-full ocean model with JRAS5S forcing. (a)

and (d) are identical.

Figure 11: Sensitivity of ice growth rate to snow depth estimated by a simple 1D model
Sensitivity of wintertime ice growth rate (ordinate; cm month!) to snow depth (abscissa; cm)
and ice thickness (red, black and blue lines), simulated by a simple 1D sea ice model. The

red, black and blue lines correspond to sea ice thickness h; = 1.0, 1.5 and 2.0 m respectively.
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Figure 1: Sea ice model simulation vs Observations

The year-to-year variations of (a) late summer (Aug—Sep) Arctic sea ice extent simulated by
our CICE6-slab ocean model forced by ERAS (blue), CESM2 forced by ERAS (sky blue) and
by JRAS5 (magenta) and from NSIDC observations (black), and (b) the wintertime (NDJFM)
mean snow depth, averaged over the entire Arctic, simulated by our CICE6—slab ocean model
forced by ERAS (blue), CESM2 forced by ERAS (sky blue) and by JRAS5 (magenta), from
PIOMAS (black) and from NESOSIM (red). The climatological mean seasonal (monthly)
variations of (c) sea ice extent and (d) sea ice volume. In (¢, d), blue shadings indicate the
minimum/maximum ranges of sea ice extent and volume simulated by our CICE6—slab ocean
model forced by ERAS, and gray shadings indicate the minimum/maximum ranges of (c)

NSIDC observed sea ice extent and (d) PIOMAS sea ice volume.
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Figure 2: Interannual relationship between snow depth and ice growth.

Interannual variation of the wintertime (NDJFM) mean snow depth (abscissa; cm) and ice
growth rate (ordinate; cm month!) from 1979-80 to 2017-18 averaged over (a) the entire
Arctic and (b) the Eurasian-Pacific sector. The long-term trends of snow depth and ice growth
rate have been removed. Red-dashed lines in (a, b) are from the 1D model calculation with
fixed downward longwave radiation and surface air temperature (see Methods for details). The
regression map of the wintertime (¢) snow depth and (d) ice growth rate anomalies associated
with area-averaged snow depth anomalies (per one standard deviation anomaly) in the
Eurasian-Pacific sector of the Arctic (red lines). Snow depth, and sea ice thickness are from

our CICE6—slab ocean model with ERAS historical forcing.
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Figure 3: Climatology and variability of snowfall and snow-ice formation

The wintertime (NDJFM) climatological mean accumulated (a) snowfall (SWE; cm), (b)
snow-ice formation (cm), and one standard deviations of (¢) snowfall (SWE; cm) and (d) snow-
ice formation (cm) on interannual time scales. The long-term trends of snowfall and snow-ice
formation have been removed. Snowfall and snow-ice formation are from our CICE6-slab
ocean model with ERAS historical forcing. The Eurasian-Pacific sector (Atlantic) of the Arctic
denotes red (blue) lines in (¢), (d).
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Figure 4: Relationship between accumulated winter snowfall and snow depth over first-

year sea ice

(a) The interannual relationship between wintertime (NDJFM) snowfall accumulation
(abscissa; SWE; cm) and snow depth (ordinate; cm) from 1979-80 to 201718, averaged over
the first-year sea ice of the Eurasian-Pacific sector of the Arctic. The red line is a linear
regression line. (b) October sea ice concentration (shadings) averaged from 1979 to 2018 and
the estimated first-year sea ice region (hatches). If the October sea ice concentration of a grid
point is smaller than 15% in a specific year, the grid point is defined as a region of first-year
sea ice, and the grids satisfying this condition for at least for one year are hatched in (b).
Snowfall, snow depth, and sea ice concentration are from our CICE6—slab ocean model with

ERAS historical forcing.
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Figure 5: The impact of winter snowfall on seasonal ice thickness

(a) The interannual variations of wintertime (NDJFM) accumulated snowfall (SWE; cm) from
ERAS, JRAS55, MERRA2 and CFSR, averaged over the Eurasian-Pacific sector (red line in
(b)). The red-dashed line in (a) is a linear regression line for the winter snowfall in ERAS. (b)
The regression map of snowfall anomalies in winter, per one standard deviation of winter
snowfall anomaly averaged over the Eurasian-Pacific sector. The seasonal (¢, d, €) snow depth
and (f, g, h) sea ice thickness responses in (¢, f) Dec—Feb, (d, g) Mar—May, and (e, h) Jun—Aug
to the anomalously large winter snowfall. In (¢)—(h), statistically significant values (p < 0.05)

are stippled. Snowfall, snow depth, and sea ice thickness are from our CICE6—slab ocean model
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Figure 6: The impact of the anomalously large winter snowfall over the Atlantic sector of

the Arctic on seasonal ice thickness

(a) The interannual variations of wintertime (NDJFM) snowfall (cm) from ERAS, JRASS,
MERRA?2 and CFSR, averaged over the Atlantic sector of the Arctic (red line in (b)). The red-
dashed line in (a) is a linear regression line for the ERAS winter snowfall. (b) Composite map
of winter snowfall anomalies and the composite map of (¢, d, e) seasonal ice thickness
responses in (¢) Dec—Feb, (d) Mar—May, and (e) Jun—Aug to anomalously large winter snowfall
(above one standard deviation anomaly) over the Atlantic sector, during the winters of 1982/83,
1992/93, 1994/95, 1999/00, 2004/05, 2005/06, 2007/08, 2011/12 (red circles in (a)). Snowfall

and sea ice thickness are from our CICE6—slab ocean model with ERAS historical forcing.
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1022  Figure 7: Covariance between winter clouds, snowfall, and downward longwave radiation

1023  The interannual variations of ERAS5’s wintertime (NDJFM) (a) snowfall (SWE; red),
1024  downward longwave radiation (orange), (b) surface air temperature (black) and surface specific
1025  humidity (blue) averaged over the Eurasian-Pacific sector of the Arctic. The dotted lines are
1026  linear regression lines. The regression maps of (¢) snowfall (SWE), (d) 2m air temperature, (e)
1027  near-surface specific humidity, (f) downward longwave radiation, (g) cloud liquid water, and
1028  (h) sea level pressure (shadings) with winds (vectors) per one standard deviation of snowfall

1029  anomaly. The regression map of snowfall, (¢) is identical to Fig. Sb.
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Figure 8: The net effect of the winter snowfall and accompanying atmospheric forcings

on sea ice thickness

The seasonal (a, b, ¢) snow depth and (d, e, f) sea ice thickness responses in (a, d) Dec—Feb,
(b, €) Mar—May, and (¢, f) Jun—Aug to the anomalously large winter snowfall combined with
strong downward longwave radiation, which is also accompanied by the surface air warming
and moistening. Statistically significant values (p < 0.05) are stippled. Snow depth and sea ice

thickness are from our CICE6—slab ocean model with ERAS historical forcing.
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Figure 9: 2016-17 sea ice responses simulated by our CICE6-slab ocean model and

CESM2—full ocean models

(a, d, g) Accumulated snowfall anomalies (SWE; cm) during the winters of 2016-17 from
ERAS and JRASS. Simulated responses of (b, e, h) summer (Aug-Sep) sea ice concentration
and (c, f, i) seasonal sea ice thickness to the combined effect of preceding winter snowfall and
downward longwave radiation, which is also accompanied by the surface air warming and
moistening. (a, d) is from ERAS and (g) is from JRASS. (b, ¢) are derived from our CICE6—
slab ocean model with ERAS5 forcing, (e, f) are derived from CESM2—full ocean model with
ERAS forcing and (h, i) are derived from CESM2—full ocean model with JRAS5S5 forcing. (a)

and (d) are identical.
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Figure 10: 1998-99 sea ice responses simulated by our CICE6-slab ocean model and

CESM2—full ocean models

(a, d, g) Accumulated snowfall anomalies (SWE; cm) during the winters of 1998-99 from
ERAS and JRASS. Simulated responses of (b, e, h) summer (Aug-Sep) sea ice concentration
and (c, f, i) seasonal sea ice thickness to the combined effect of preceding winter snowfall and
downward longwave radiation, which is also accompanied by the surface air warming and
moistening. (a, d) is from ERAS and (g) is from JRASS. (b, ¢) are derived from our CICE6—
slab ocean model with ERAS forcing, (e, f) are derived from our CESM2—full ocean model
with ERAS forcing and (h, i) are derived from our CESM2—full ocean model with JRAS55

forcing. Note that panels (a) and (d) are identical.
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1070  Figure 11: Sensitivity of ice growth rate to snow depth estimated by a simple 1D model
1071 Sensitivity of wintertime ice growth rate (ordinate; cm month™') to snow depth (abscissa; cm)
1072 and ice thickness (red, black and blue lines), simulated by a simple 1D sea ice model. The
1073  red, black and blue lines correspond to sea ice thickness h; =1.0, 1.5 and 2.0 m respectively.
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