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ABSTRACT

Tolerancing began with the notion of limits imposed on the
dimensions of realized parts both to maintain functional geomet-
ric dimensionality and to enable cost-effective part fabrication
and inspection. Increasingly however, component fabrication de-
pends on more than part geometry as many parts are fabricated
as a result of a “recipe” rather than dimensional instructions for
material addition or removal. Referred to as process tolerancing,
this is the case, for example, with IC chips. In the case of toler-
ance optimization, a typical objective is cost minimization while
achieving required functionality or “quality.” This paper takes
a different look at tolerances, suggesting that rather than ensur-
ing merely that parts achieve a desired functionality at minimum
cost, the underlying goal of product design is to make money,
more is better and tolerances comprise additional design vari-
ables amenable to optimization in a decision theoretic frame-
work. We further recognize that tolerances introduce additional
product attributes that relate to product characteristics such as
consistency, quality, reliability and durability. These important
attributes complicate the computation of the expected utility of
candidate designs, requiring additional computational steps for
their determination. The resulting theory of tolerancing illumi-
nates the assumptions and limitations inherent to Taguchi’s loss
function. We illustrate the theory using the example of toleranc-
ing for an apple pie, which conveniently demands consideration
of tolerances on both quantities and processes, and the interac-
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tion among these tolerances.

NOMENCLATURE
M A set of statements describing a particular design configura-
tion

x A set of statements such as dimensions describing the mea-
surable and differentiable variables that determine a basic
design

T A set of real numbers describing tolerances on the variables

X

A set of attributes related to tolerances that affect demand for

a product

A set of attributes that determine the demand for a product

Demand for a product

Price at which a product is sold

Revenue generated by the sale of a product

Costs associated with the production of a product

A set of statements that describe uncertainties on other vari-

ables

u Utility

E{u} Expected utility

Hessian matrix

Eigenvalues of the Hessian matrix

Eigenvectors of the Hessian matrix

Net present value of profit

Loss incurred because variables x do not achieve their target

values
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1 Introduction

It is likely that the modern concepts of tolerancing have
their origins in the notion of interchangeability of parts [1,2].
Such concepts date back over half a millennium as Gutenberg’s
press (1450’s) relied on interchangeable letters. Over the ensuing
years, it became clear that making parts interchangeable is not as
easy as one might expect. Nonetheless, the emergence of steam
power in the 1780’s demanded that parts be made with challeng-
ing accuracy. Benjamin Franklin reported, in 1785, of a French
gunsmith making muskets with interchangeable parts. And, 100
years later with emergence of the Industrial Age, mass manufac-
turing on an assembly line required part interchangeability.

Parker [3,4], working at the Royal Torpedo Factory in Scot-
land, is credited by Liggett [5] with being the first to formally ad-
dress “position tolerance theory.” Since that time, tolerance the-
ory has emerged as a major sub-discipline of engineering design
and manufacturing. In the earlier years, tolerances were mainly
associated with part geometry resulting in the discipline of geo-
metric tolerancing. The need to properly interpret part specifica-
tions led to standards for dimensional tolerancing [6] and, with
the emergence of computers, Requicha and Voelcker [7-10] de-
veloped a theory of geometric modeling that enabled computer-
aided design (CAD).

A key problem in the setting of tolerances is referred to as
the problem of “stack-up” [11]. This problem occurs when a
series of parts must fit or work together within an overall toler-
ance. Problems of this sort led to the notion of optimizing the
allocation of the individual part tolerances to achieve the overall
desired tolerance at minimum cost [12—14].

A major contributor to a theory of tolerancing is Taguchi
[15]. His philosophy may be summarized in four statements:
“It is better to be precise and inaccurate than being accurate and
imprecise; Quality should be designed into the product and not
inspected; Quality is achieved by minimizing the deviation from
the target; [and] The cost of quality should be measured as a
function of the deviation from target.” [16] This philosophy re-
sulted in the concept of the Taguchi loss function.

More recently, it is noted that several products are described
not so much by their dimensions as by a “recipe” according to
which they are manufactured. This is the case of IC chips and
food products such as an apple pie. In these cases, tolerances
largely determine the quality, lifetime or reliability of the prod-
uct. These are important attributes not often captured by prod-
uct descriptions as they can significantly impact the proclivity of
consumers to purchase a product. Again, recognizing that de-
manding narrower tolerances results in higher costs, several re-
searchers have sought to meet a set of performance requirements
at minimum cost [17,18].

The problem with minimizing manufacturing cost is that this
objective results in the trivial solution of manufacturing none of
the product. If the manufacturer manufactures no product, the
manufacturing cost is $0.00. This, obviously, is not a helpful so-
lution. To render the solution helpful, it is then necessary either
to impose constraints on the optimization problem or to change
the objective. Constraints typically take the form of a set of prod-
uct requirements, whereas an alternative objective may seek min-
imum cost per item produced. Hazelrigg and Saari [19] note that
constraints only remove alternatives from the allowable set of de-
sign choices and, if they remove the optimal point, that is, if the
constraints are active, they always penalize performance. Thus,
for optimal design, constraints should be avoided to the extent
possible. A way to avoid constraints is to change the objective
function to one that more accurately reflects the preference of the
responsible decision maker. Noting that the underlying objective
of a profit-making organization is to make money, Hazelrigg [20]
presents a framework for product design optimization with this
objective that also accounts for uncertainty.

The purpose of this paper is to show that the basic logic of
Hazelrigg’s framework, with minor modification, can be applied
to the optimization of both geometric and process tolerances sep-
arately or concurrently with the product design, with the objec-
tive being the maximization of a measure of net revenue or profit.
The medium used to illustrate this application is the toleranc-
ing of an apple pie. Although the optimization framework is de-
signed to an objective of profit maximization, it is conveniently
adaptable to other valid preferences.

2 A General Framework for Tolerancing

The underlying tenet of this paper is that the purpose of tol-
erancing is to increase the value of a product to the producer of
the product. This is a sensible tenet for a number of reasons.
First, it is the producer of the product who decides what the tol-
erances should be and, for rationality, this choice must be based
on a preference of the decision maker. Second, for a product that
has multiple consumers, it is, in general, not possible to express
a joint consumer preference that would enable rational choice
of tolerances [21]. Third, for most products, the consumers are
too far removed from the technical aspects of a product to care
about tolerances or even understand them. Fourth, vendors or
parts suppliers have conflicting interests with the producer and,
for this and other reasons, cannot be left to select the tolerances
on the parts they produce.

With this in mind, the framework that shall be used here
is a modification of Hazelrigg’s framework as shown in Fig. 1.
There are three entry points in this framework: description of a
baseline design, specification of a set of beliefs defined as “ex-
ogenous” variables that define the extant uncertainty, and the ex-
pression of a preference from which we will be able to determine
a utility measure. A design configuration is given by a set of
statements, M, that provide a detailed description of the product
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FIGURE 1. A framework for optimal tolerance design.

or system such as “the airplane has two engines.” The variables x
comprise a set of continuous and differentiable numerical values
providing specifications such as dimensions, weights, volumes
and other quantities. Together, M and x complete the specifi-
cation of the basic design (including manufacture, distribution
and sales, warranty, buy-back and disposal, etc.). Tolerances are
typically applied to the continuous and differentiable variables
X, and not to the descriptive statements M. In order to analyze
tolerances, we separate out their description, T, and their result-
ing attributes, 7, from the basic design performance attributes,
a. Because the tolerances, T, must be nonzero, the achieved val-
ues of x are random variables, deviating from their target values,
xo. The complete specification of the design enables computa-
tion of the performance attributes of the product, and those at-
tributes and price, P, which is set by the manufacturer, determine
demand, ¢ as a function of time, ¢. Then, demand and price deter-
mine revenue, R. The design specification also enables determi-
nation of all costs, C. Then revenue minus cost equals profit and
thus, given a risk preference, utility, u. Expected utility, E{u},
namely the quantity that we wish to maximize, is determined via
a Monte Carlo simulation. We now maximize expected utility
with respect to price before comparing this design alternative to
other alternatives. Next, we choose the numerical values of the
design specification to maximize expected utility for the given
configuration, and finally we can compare alternative configura-
tions. With this simple overview, we’ll now look at the elements
of this framework in more detail.

Without denying the possibility of a producer having alter-
native preferences, the following is based on the notion that the
underlying preference of a producer is to make money, and more

is better. A full preference consists of three parts [22], the funda-
mental preference, taken here to be for money, a time preference
and a risk preference. A time preference is generally expressed
through discounting, and the risk preference is expressed through
the curve of utility versus money. The net value derived from a
product, corrected for its time value (discounted), is given by

ey

where V is the net present value of profits, ¢ is time per period
and r is the discount rate per time interval (r = 0 infers that equal
sums of money have equal value independent of when they are
received). Revenues are generated by selling things, costs are
generated by buying things. Normally, one sells the product pro-
duced, and the revenue generated at time ¢ by the sale of the
product is R(z) = g;(¢)P;(t), where g,(¢) is the quantity sold at
time ¢ and P(¢) is the price at which it is sold. It is possible,
however, that production of the product produces other salable
items (things that may appear to be “waste”), and the revenue
generated by their sale should be included.

Risk preferences derive from a decision-maker’s willingness
to wager on an uncertain return. Generally this is calculated as a
function of utility and presented as an Arrow-Pratt [23,24] mea-
sure of absolute risk aversion (ARA).

d*u(V)/dv?

du(V)/dvV @

p(V) =~

where u(V) denotes the “utility” of V and p (V) is a measure of
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ARA. Thus, if p(V) is positive the individual is risk averse, if it
is negative the individual is risk proverse, and if it is zero the in-
dividual is risk neutral. Ultility is a cardinal measure commonly
determined via a decision-maker’s response to a von Neumann-
Morgenstern lottery [25]. Utility is typically a random variable,
whereas expected utility is a deterministic ordinal variable. Thus,
the use of expected utility as an objective for optimization con-
verts a non-deterministic optimization function into a determin-
istic objective function as is mathematically required for its exis-
tence [26].

The quantity of product sold at each point in time depends on
the demand for the product, which is a function of its attributes
and its price. The attributes of the product are a result of its de-
sign and its tolerances. Variability in products is the result of
nonzero tolerances. The more nearly identical that each indi-
vidual product is to a nominal product, the more predictable it
will be, and predictability of a product may itself be an attribute
of concern to customers, frequently referred to as the product’s
“quality” [27-29]. For example, customers are often concerned
about getting a “lemon,” particularly in the purchase of a car, and
they show this preference by paying more for cars that have good
reliability reports.

3 The Mathematics of Tolerances

Referring again to Fig. 1, the elements of M describe the
configuration of a product or system. These elements typically
are not differentiable nor are tolerances applied to them. The
variables, x, on the other hand, are differentiable and typically
are assigned tolerances. This differentiation between M and x,
together with the notion that variations in x because of nonzero
tolerances will be small, enables us to write the expected util-
ity of a design in the form of a Taylor series in a region near a
reference design Xg.

E{uto)} — Efutso)} = 2o g Lor B g

X0 X0

3)
Ox = (x —Xp), including deviations in x resulting from nonzero
tolerances. Note that we write the Taylor series in terms of the
performance variable E{u}. This differs from the work of Zhang
et. al. [30] and Tarcolea [27], for example, who write the series
in terms of the Taguchi loss function. While these authors then
assume that the first order term is zero since the loss function
achieves a minimum at the target value, when viewed as written
in Eq. 3, this would not appear to be the case in general. In
order that the first order term in Eq. 3 be zero, it is necessary
that the expected utility of the design be maximized with respect
to X, as the condition of design optimality for the variables x is
dE{u}/dx = 0. This assures that the second order term, which
is, in fact, a negative loss (that is, a benefit) term, dominates and
that the loss is axisymmetric and quadratic about the optimum

point Xo. Thus, it would appear that, in order that tolerances be
sensibly set, the design must first be optimized with respect to x.
If this were not the case, it could lead to solutions that encourage
tolerances that essentially change the design, that is, that would
result in very large values of x. That this phenomenon does not
occur when writing the Taylor series in terms of the loss function
is likely because this expansion misrepresents the true loss. We
now write Eq. 3 in a slightly different form:

0E{u} ) {u}
Efu(o)} ~ E{u(x)} = ~ 22 |ox— Joxt T2
X0 X0
“
where, if xo is a maximizing solution for E{u}, then the loss
function for small dx becomes

L=~ ;5XT{82[;§2{M}] }5X

where the 6x are the result of non-zero tolerances. Note
that 92[—E{u}]/dx> = H is a positive definite Hessian matrix.
Therefore, a surface of constant loss forms an n-dimensional hy-
perellipsoid, with the value of the loss dependent on the eigen-
values and eigenvectors of the Hessian matrix. Furthermore,
whereas typical formulations of loss functions in the case of tol-
erances on multiple elements of x tend to treat the losses as in-
dependent of each other, this formulation shows that, in general,
they are not independent.

So far, we have recognized that non-zero tolerances, T, im-
part losses to the value of a system or product. This alone would
prompt a selection of T = 0. However, countering this, toler-
ances come with a cost, and the smaller the tolerance, the higher
the cost. Accordingly, the total loss is the sum of the loss func-
tion, Eq. 5, and the cost of the tolerance CT(T),1

®

X0

1 J*[-E
Ltot ~ 25XT{[ aXQ{uH

where the row vector i = [I,1,...,1]. As noted in Section 5, it
should be expected that the distribution of dx would be corre-
lated with Cp(T). At this point, one might be inclined to mini-
mize L,,;. But this would fail to account for the risk preference
of the decision maker. Instead, one should maximize E{u}. This
is a simple task only if the decision maker is risk neutral, that
is, if utility equals profit, or if the variation in u because of the
non-zero tolerances is sufficiently small that this is a reasonable
approximation. Unfortunately, the latter is not always the case

}5x +iCp(T) (6)

X0

'L;,: may contain additional terms relating to expenses such as warranty costs
and liability costs.
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as the quality attributes of a product have the potential to signifi-
cantly affect demand. Hence, the selection of optimal tolerances
is not as easy as the Taguchi method would have us believe.

Before proceeding further, it is appropriate to consider the
terms that comprise the Hessian matrix in Eq. 6. This matrix
provides an estimate of the revenue loss because of a degrada-
tion (real or perceived) in product quality, reflected as a shift in
the demand curve. Taking the variation in demand to be a con-
tinuous, differentiable function of the quality attributes, we can
write the demand function in the form of a Taylor series,

_ dq 90
q(T)—(10+%3T—eFO5P+~- @)

where e = —(P/q)(0q/SP) is the price elasticity. To minimize
the loss from reduced demand, depicted as the shaded area in
Fig. 2, we must re-optimize the price.
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FIGURE 2. Profit loss resulting from a quality loss.

Let Ag = (dq/d7)d7 denote the shift in the demand curve
resulting from a nonzero tolerance specification, ¢ be the in-
crease in marginal production cost per unit, that is, it is slope of
the marginal supply cost curve, and Sp be the marginal supply
cost at a production rate of go. Then, the loss is given by

L= —qo8P—(Py—So+8P)8q+ %5& ®)
where

6q = —e@SP—Aq 9)
Py

Thus, L is a quadratic function of P. Solving for the minimum
loss, the optimum value of 8P is given by

Aq(Py + aseqo) — Pogo(1 —e) — eqoSo

OP = —P,
0 eqo(2Py + aseqo)

(10)

This yields the interesting, albeit intuitive, result that, for
high demand elasticity (somewhat greater than unity), increas-
ing tolerances results in lower optimal product prices, whereas
for inelastic demand, increasing tolerances results in higher op-
timal prices. Examples show that optimal adjustment of product
price to match the selected tolerances can significantly improve
profitability.

4 Computational Procedure

The computational framework follows the logic flow shown
in Fig. 1, which outlines a procedure for the optimization of the
product design, including tolerances, as a unified process. Un-
fortunately, for most products, this can lead to a highly complex
and time-consuming set of computations. The complexity of the
problem makes it desirable to resort to Monte Carlo methods,
which sacrifice computational efficiency to achieve a more sim-
plified and less-prone-to-error mathematical formulation. How-
ever, even this may leave the problem intractable. As a result, it
is desirable to separate the dimensional optimization of the prod-
uct from the tolerance optimization. The assumptions leading to
Eq. 5 enable this separation. Thus, in practice, it is convenient
to apply the framework in two steps, first the optimization of the
“dimensions” (target values of x) of the product and then, based
upon these optimized values, the optimization of the tolerances
placed on the target values.

We shall begin our outline of the computational procedure
under the assumption that the basic product design has already
been optimized. Keep in mind that the validity of Eq. 5 depends
on this being the case. Tolerances place “constraints” on the vari-
ability of the outcomes of the decisions, x, with a concomitant
cost. The goal of the computational procedure is to enable a se-
lection of these constraints such that they maximize the value,
measured as the expected utility, of the product to the producer.
Under the condition that the basic product design, assuming all x
values achieve their nominal value, is optimized to achieve max-
imum expected utility, Egs. 8, 9 and 10 afford some degree of
independence from the basic design in the consideration of toler-
ances. Indeed, in the case that the decision maker is risk neutral,
that is, for whom utility equals profit, minimizing the expected
loss is a solution. However, minimization of the loss does not
assure maximization of expected utility for decision makers who
are not risk neutral. Because of this, we are forced to compute a
utility difference in the context of the expected value of the basic
design. This requires evaluation of the expected utility of the ba-
sic design and evaluation of the total loss function as a deviation
from the expected utility of the basic design.

Copyright © 2021 by ASME



The first issue, which would appear to be overlooked in
many applications of the Taguchi loss function, is the need to
take product price into account as a variable of choice to the man-
ufacturer that also must be optimized. The thing that makes the
determination of the optimal price shift tricky is that the quality
loss is not realized on a product-by-product basis one-by-one as
products come off the production line, but rather on consumer
perceptions based on a history of many products produced under
the design variables and tolerances of the product. Thus, in order
to simulate the demand shift, for each product outcome (achieved
values of x on a product-by-product basis) we must compute the
product loss function. This requires the inner Monte Carlo simu-
lation shown in Fig. 1 between the selection of tolerances, T, and
their resulting quality measure, 7. This nesting of Monte Carlo
loops can result in substantial increases in computational time.
One approach to this problem is to assume that there is no sig-
nificant variability in the outcome of x on a product-by-product
basis, that is, a change large enough to alter the attributes, a, and
analyze only the impact of tolerance on one particular product in-
stantiation. This provides an approximate result that can be later
checked against a limited number of full simulations around the
optimal tolerance design point.

The next problem we encounter is the appropriate expression
for the cost of achieving a specific tolerance level. One way to
achieve a given tolerance is to test to assure that all tolerances are
met, and to discard any parts of or products that fail to meet the
tolerance. This results in a cost of wastage. The wastage costs
result from the costs of manufacturing unsalable product. It is
obviously desirable to keep wastage small. But this means main-
taining tolerances with a high per-product probability, and this
often demands more sophisticated and concurrently more expen-
sive manufacturing equipment. Ergo, as a tolerance is reduced,
the manufacturer must consider the purchase of more expensive
manufacturing equipment. The tolerance cost model must reflect
these costs.

While tolerances denote the limits of acceptable outcomes
of x, they do not describe distribution of these outcomes. Yet,
this distribution is needed in order to compute the loss function.
While it might seem natural to describe the distributions of out-
comes as Gaussian with a mean and standard deviation, the Gaus-
sian distribution has the property that it extends infinitely in both
positive and negative directions. This causes problems for two
key reasons. First, actual parts don’t have negative dimensions,
and secondly, actual parts don’t get infinitely large. One might
think that, for a Gaussian distribution, these are extremely rare
occurrences that can be neglected. The problem is, however, that
a Monte Carlo analysis will interrogate the distribution hundreds
of millions, perhaps even billions, of times, and rare events that
will cause errors are bound to occur. Thus, we have chosen to
represent tolerances for the analyses presented here as beta dis-
tributions, although other distributions can be used within the
context of the theory presented here. Beta distributions have fi-

nite limits, can be skewed, and they can be shaped based on the
distribution parameters ¢ and 3.

Lastly, we need to discuss the formulation and determination
of the loss function. As noted above, the mathematics of the loss
function confirm that it should take the form of an n-dimensional
hyperellipsoid. Let the orthogonal unit vectors X correspond to
the elements of x to form a Cartesian coordinate system. Note
that the critical point or center of a hyperellipsoid denoting a sur-
face of constant loss is located at the design point x¢, with its
axes aligned with the orthogonal eigenvectors, v, of the Hessian
matrix H. Denote by X the coordinates of a point x in the rotated
and translated coordinate system defined by v. The critical point
of the hyperellipsoid is at the center of this coordinate system.
Then, the loss function corresponding to Eq. 5 is given by the
equation of a hyperellipsiod in the rotated and translated coordi-
nate system,

L= }/Zv,-f% (11)

where Vv; are the eigenvalues of H and 7 is a proportionality con-
stant. The coordinates of x in the translated system are given by
O0x = (x —xp). Rotating the axes to the eigenvector system gives
the coordinates, X, in the eigenvector system.

£ =06x'V (12)
where
b= (13)
V. V;

are unit vectors comprising a coordinate system where the loss
function hyperellipsoids are centered on the coordinate system
with their axes aligned with the eigenvectors of the Hessian ma-
trix.

5 Apple Pie

As an illustration of the decision theoretic formulation of
the tolerancing problem, we have chosen the tolerancing of an
apple pie. The detailed geometric tolerancing of an apple pie
would be a formidable task and, in the end, rather futile. No two
pies are exactly alike nor would anyone want that they would
be. So, geometric tolerancing is not appropriate for a pie, save
for, perhaps, the diameter of the pie as it has to fit in a box for
marketing purposes. Instead of describing an apple pie by its de-
tailed dimensions, which would involve volumes of numbers, we
describe and tolerance an apple pie by its recipe. Accordingly,
tolerances are placed on the measurable parameters of the recipe,
including amounts of ingredients and processing parameters such
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as baking time and temperature. The apple pie recipe used in this
example is given below.

APPLE PIE

Ingredients
Y, cup sugar, more to taste
Y cup packed brown sugar
3 tablespoons all-purpose flour
1 teaspoon ground cinnamon
Y4 teaspoon ground ginger
Y4 teaspoon ground nutmeg
6-7 cups peeled & sliced tart apples
1 tablespoon lemon juice
dough for double-crust pie
1 tablespoon butter
1 large egg white
Process
Preheat oven, 375 deg.
Toss apples with lemon juice, add sugar, toss to coat
Combine sugars, flour and spices
Roll half of dough to %-in.-thick circle,
transfer to 9-in. pie plate,
trim even with rim
Add filling, dot with butter
Roll remaining dough to Y-in.-thick circle
Place over filling, trim even with rim, seal and flute edge
Cut slits in top
Beat egg white until foamy, brush over crust
Sprinkle with sugar
Cover with foil, bake 25 minutes
Remove foil and bake another 25 minutes
Cool on wire rack

We assume that these ingredient amounts and process vari-
ables have been duly optimized and will now examine tolerances
on the baking time and temperature. Note that these variables
are measurable, continuous and differentiable. To begin, we con-
struct an elliptical penalty function, taking into account the cor-
relation between these variables. Obviously, if the oven temper-
ature is a bit low, a longer cooking time will compensate at least
partly for this deviation. Fig. 3 shows an elliptical loss func-
tion indicating that an increase in baking time of approximately
6 minutes will compensate optimally for a decrease in baking
temperature of 10 degrees. The dashed-line box in Fig. 3 de-
notes example tolerance limits of +5 degrees on temperature and
+5 minutes on baking time. If these tolerances were held, pies
baked in conditions that exceed these tolerances would be dis-
carded as a loss. However, we see that pies baked in conditions
just outside the upper left and lower right corners of this box are
classified as waste while they are considerably more acceptable
than those being sold that are baked in conditions corresponding
to the lower left and upper right corners. Intuitively, a multi-

parameter tolerance criteria could enable the tolerances to be re-
laxed while reducing waste and maintaining or even improving
quality. Multi-tolerance criteria can be easily implemented in the
context of this tolerance-evaluation framework.

60

L

()}
(3}

Actual baking time, min.
()]
o

N
(6]

365 370 375 380 385
Actual baking temperature, deg.

N

FIGURE 3. Loss as a function of actual baking temperature and time,
with target values of 375 degrees and 50 minutes.

Fig 4. shows a commercially baked apple pie that failed to
meet reasonable time and temperature baking conditions. The
crust is rather burnt and bears the taste of burnt pastry. Clearly,
were this the norm, demand for this producer’s pie would be sig-
nificantly reduced. One might be inclined to think that we have
been a bit facetious in choosing to go to so much detail to ana-
lyze production tolerances on an apple pie. Be assured, however,
that this is taken quite seriously in the apple pie baking industry
[31-34]. Indeed, detailed studies have been conducted to iden-
tify the attributes of importance to apple pie customers, and to
estimate how variations in these attributes might effect demand
for the product. However, we did not choose variables for our
example from the literature. Rather we chose them, while not en-
tirely unreasonable, to emphasize aspects of tolerance optimiza-
tion that one might encounter in typical manufacturing situations.

For our example, we assumed that the producer expected
to be able to sell 10,000 pies per production period, with a de-
mand elasticity of e = 2.0, a fixed investment cost (amortization
of manufacturing equipment, rent, insurance, etc.) of $5,000 per
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FIGURE 4. A burnt apple pie. It did not taste very good.

production period, a marginal cost of production per pie of $2.50
at a production rate of 10,000 pies per production period and in-
creasing at a rate of $0.001 per 1,000 pies. Tolerances around
the target values of baking time and temperature were consid-
ered from near zero to £7.8 minutes and +29 degrees respec-
tively. The distributions of times and temperatures were mod-
eled as symmetrical beta distributions with parameters @ =4 and
B = 4, and with minimum and maximum limits of 25 percent be-
low and above the tolerance limits. This leads to a rejection rate
or wastage of about 12 pies per 1,000. These pies are discarded,
incurring production costs but producing no revenue. Given this
description of the tolerances and with time and temperature dis-
tributions dependent on the tolerance limits, it seemed reasonable
to model a fixed, per-period cost of maintaining the specified tol-
erance as a hyperbolic function of the tolerance.

Cr={(T¢ (14)

where T is the tolerance (minutes or +degrees), and { and &
are constants. The functions used are shown in Figs. 5 and 6.
As time is an easier tolerance to maintain than temperature, we
modeled its cost as significantly lower than that for temperature,
as the latter would likely demand more expensive ovens.
Finally, we took producer utility to be the log of the net rev-
enue per production period. A simulation was coded that has the
ability to take into account uncertainties in all major variables
associated with the determination of performance (profit) as a
function of tolerances. However, simulations of enough cases
to map out expected utilities for even two tolerances, including
all uncertainties, can be quite time consuming, as much as days
of run time or longer. Thus, for the example provided here, we
chose to assume that the demand, demand elasticity, and produc-
tion costs are known deterministically. With these assumptions,
Fig. 7 was produced by computing results for combinations of
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FIGURE 5. Per production period cost of maintaining a time toler-
ance.

6000 \
5000 \
B 4000
g \ Cr=16081.8 T~12
> 3000 \
2 2000 AN
@]
1000
\
0 s s s s s s s s s s s s s s s s
0 5 10 15 20

Baking temperature tolerance, +-deg.

FIGURE 6. Per production period of maintaining a temperature toler-
ance.

every combination of baking time and temperature correspond-
ing to the tick marks of this plot. This comprised a total of 600
time-temperature tolerance cases, with 1 million simulations per
case. The run time for this was about four hours.

Clearly, computer run times for cases that seek to optimize
multiple tolerances with full consideration of uncertainties can be
an impediment to application of this approach. Nonetheless, the
approach can be used in a “deterministic” mode to locate the re-
gions of optimal solutions, and these can be verified with limited
computations in the vicinity of the optimal solutions taking un-
certainties into account. The key factor driving high computing
time is the need for the solution of a nested Monte Carlo simula-
tion, which could require a total of a billion or more simulations
to achieve adequate accuracy.
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FIGURE 7. Expected utility as a function of baking temperature and
time tolerances showing the optimum tolerances.

6 Conclusions

The objective of this research was to cast the problem of
tolerancing in the framework of decision theory. It was found that
Hazelrigg’s design framework could provide a mathematically
rigorous basis for a theory of tolerancing with modification to
enable the analysis of so-called quality attributes emerging from
product-to-product variability. The resulting analysis provides
insights into the validity of the Taguchi loss function.

Taguchi defines a loss function that derives from a Taylor
series around “target values” of design variables, with arguments
that the first-order term of the series is zero because the loss is
minimized at the target value. But this argument holds only if
the design target values themselves are optimized with respect to
an overall system or product value function, and only in the case
that these variables are continuously differentiable in the vicinity
of these optima, thus validating the Taylor series. Otherwise, the
first-order terms do not vanish and, in fact, diminish the concept
of a tolerance by allowing larger tolerances to have the potential
to improve the product. Although Taguchi recognizes the need
for an optimization criterion, it does not appear that this require-
ment is clearly recognized in applications of the loss function for
tolerance optimization.

Secondly, the Taguchi method is most commonly applied
assuming that the tolerances themselves are independent of each
other. The decision theoretic formulation makes clear that this is
not the case.

Third, while the Taguchi loss function treats the cost of toler-
ancing to the manufacturer and the loss of value to the customers,
the decision theoretic formulation makes clear that the important
factor is profit or net benefit to the designer/manufacturer. It is
this entity that decides what the tolerances should be, reaps the
benefits of production, and owns the loss. This entity would
likely prefer to maintain a profitable level of demand for the
product, whereas nonzero tolerances reduce demand. Through
consideration of demand, the decision theoretic approach takes
consumer preferences into account, without the need to assess a
group preference [35].

Fourth, the loss attributed to diminished demand resulting
from non-zero tolerances can be mitigated by re-optimization of
the price at which the product is sold. Although this is required
for the optimization of tolerances, we see no evidence that it has
been considered in applications of the Taguchi loss function.

Fifth, the determination of tolerances in a decision-theoretic
framework enables consideration of uncertainties affecting the
optimal design of the entire product or system, and it accounts
for the risk preference of the design decision maker. In this re-
gard, it should be noted that, although the variation in the product
resulting from non-zero tolerances may be small, it still has the
potential to result in large losses in product value, thus invalidat-
ing the approximation of risk neutrality.

Lastly, we believe that the decision theoretic formulation of
the tolerancing problem provides significant new insight into the
mathematics of tolerancing and appears to encompass a range of
tolerancing problems that span geometric dimensional toleranc-
ing through process tolerancing.
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