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ABSTRACT
Supersingular Isogeny Graphs were introduced as a source of hard problems in cryptography by Charles,
Goren, and Lauter [5] for the construction of cryptographic hash functions and have been used for key
exchange SIKE. The security of such systems depends on the difficulty of finding a path between two random
vertices. In this article, we study several aspects of the structure of these graphs. First, we study the subgraph
given by j-invariants inFp, using the related isogeny graph consisting of onlyFp-rational curves and isogenies.
We prove theorems on how the connected components thereof attach, stack, and fold when mapped into
the full graph. The Fp-rational vertices are fixed by the Frobenius involution on the graph, and we call the
induced graph the spine. Finding paths to the spine is relevant in cryptanalysis. Second, we present numerous
computational experiments and heuristics relating to the position of the spine within the whole graph. These
include studying the distance of random vertices to the spine, estimates of the diameter of the graph, how
often paths are preserved under the Frobenius involution, and what proportion of vertices are conjugate. We
compare some of the heuristics with known results on other Ramanujan graphs.

KEYWORDS
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supersingular isogeny graphs

1. Introduction

Supersingular Isogeny Graphs have been the subject of recent study due to their significance in recently proposed post-quantum
cryptographic protocols. In 2006, Charles, Goren, and Lauter proposed a hash function based on the hardness of finding paths
(routing) in Supersingular Isogeny Graphs [5]. A few years later, De Feo, Jao, and Plût proposed a key exchange based on Supersingular
Isogeny Graphs [15]. The security of most currently deployed cryptographic systems relies on either the hardness of factoring large
integers of a certain form or the hardness of computing discrete logarithms in certain cyclic groups. Both problems can be efficiently
solved using Shor’s algorithm [23] on a large-scale quantum computer once it exists. In 2015, NIST announced a contest to standardize
cryptographic algorithms that are not known to be broken by quantum computers. Now in its third round, SIKE (https://sike.org/,
based on Supersingular Isogeny Graphs) has been shortlisted as an alternate candidate.

To date, there are no known classical or quantum attacks that break the cryptographic protocols that use Supersingular Isogeny
Graphs. But the graphs themselves have been relatively unstudied until recently. More study is needed before we can confidently
recommend protocols which rely on the difficulty of the hard problem of finding paths in Supersingular Isogeny Graphs. There have
been several approaches tried so far to attack cryptographic protocols based on Supersingular Isogeny Graphs. One of them uses the
quaternion analogue of the graph and presents an efficient algorithm for navigating between maximal orders [17]. This approach
leads to the results presented in [11] showing that the hardness of the path finding problem is essentially equivalent to the hardness
of computing endomorphism rings of supersingular elliptic curves.

For distinct primes p and �, let G�(Fp) denote the graph whose vertices are isomorphism classes of supersingular elliptic curves
over Fp and whose edges correspond to isogenies of degree � defined over Fp. The vertices can be labeled with the j-invariant of
the curve, which is an Fp-isomorphism invariant. For p ≡ 1 mod 12 the graph G�(Fp) is known to be a (� + 1)-regular Ramanujan
graph, and is one of two known families of Ramanujan graphs.

In this article, we study two related graphs to help understand the structure of G�(Fp). First, the full subgraph of G�(Fp) consisting
of only vertices j ∈ Fp: We denote this subgraph by S and call it the spine, which is new terminology. Second, we look at the graph
G�(Fp) whose vertices are elliptic curves up to Fp-isomorphism and edges are Fp-isogenies of degree �, already studied by Delfs and
Galbraith [10].

We were motivated to continue the study of the graph G�(Fp) for several reasons. First, subexponential quantum algorithms are
known for navigating between Fp-vertices [3], so paths to these vertices are of particular interest. Second, the graph G�(Fp) maps
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into the full G�(Fp) to become the spine in a surprising way, which we study in detail. Third, the Frobenius map acts on the full graph
by sending each j-invariant in Fp2 to its Fp conjugate jp, and the vertices in the spine are the fixed points of this involution. If we have
a path from a random j-invariant to a j-invariant j′ in Fp, then applying the involution to the vertices in the path we obtain a mirror
path from j′ to jp.

In Section 3 of this article, we compare G�(Fp) with the spine S. The main results of Section 3 show how the components of G�(Fp)

(which look like volcanoes) fit together to form the spine when passing to the full graph G�(Fp). We define the notions of stacking,
folding, and attaching to describe how G�(Fp) becomes the spine, when isogenies defined over Fp are added and j-invariants which
are twists are identified. We achieve this by comparing the possible neighbors of the vertices in G�(Fp) that have the same j-invariant.
We prove that the only vertices that do not have the same neighbors are those with j = 1728 (Lemma 3.17 and Proposition 3.22).

For � > 2, for odd class numbers, we show that the number of edges in S that do not come from isogenies defined over Fp is
bounded by 4�2 and for any p, this bound can be sharpened for any �, based on congruence conditions on p. Further, we show that the
components containing j = 1728 are “symmetric” and the opposite vertices of j = 1728 form a pair of �-isogenous quadratic twists,
whereas all other components admit a “twist twin”: a component that is isomorphic to it as labeled graphs if we label the vertices by
the j-invariants of the curves (Theorem 3.18).

For � = 2, we provide a similar analysis. Again, the component containing 1728 is “symmetric” and all other components admit a
“twist twin,” except for the case of one edge [8000, 8000]. Moreover, in this case, at most 2 new edges are added that do not correspond
to loops and we identify at which vertices these can occur.

We conclude that for any fixed � and p, the resulting shape of the spine depends on the congruence class of p, the structure of
the class group cl(OK), where K = Q(

√−p), and the behavior of the prime above � in the class group of K, and we show how
to determine it explicitly. In Section 3.5, we generate experimental data to study how the components of the spine are distributed
throughout the graph and we estimate how many components there are in the spine.

In Section 4.1, we study the distance between Galois conjugate pairs of vertices, that is, pairs of j-invariants of the form j, jp.
Our data suggest these vertices are closer to each other than a random pair of vertices in G2(Fp). In Section 4.2 we test how often
the shortest path between two conjugate vertices goes through the spine S, or equivalently, contains a j-invariant in Fp. We find
conjugate vertices are more likely than a random pair of vertices to be connected by a shortest path through the spine. Finally, we
examine the distance between arbitrary vertices and the spine S in Section 4.3. Section 5 provides heuristics on how often conjugate
j-invariants are �-isogenous for � = 2, 3, a question motivated by the study of mirror paths provided in Section 4.

Another family of Ramanujan graphs are certain Cayley graphs constructed by Lubotzky, Philips, and Sarnak (LPS graphs [20]).
The relationship between LPS graphs and Supersingular Isogeny Graphs is studied in [4]. Sardari [22] provides an analysis of the
diameters of LPS graphs, and in Section 6 of this article, we provide heuristics and a discussion of the diameters of supersingular
2-isogeny graphs.

Our experiments and data suggest a noticeable difference in the Supersingular Isogeny Graphs G�(Fp) depending on the congru-
ence class of the prime p mod 12. It has been known since the introduction of Supersingular Isogeny Graphs into cryptography [5]
that the congruence class of the prime p has an important role to play in the properties of the graph. In particular, it was shown there
how the existence of short cycles in the graph depends explicitly on the congruence conditions on p. In this article, we extend this
observation and find significant differences in the graphs depending on the congruence class of p. In summary, the data seem to
suggest the following:

• p ≡ 1 mod 12:

– smaller 2-isogeny graph diameters (Section 6.1),
– larger number of spinal components (Section 3.6), and
– larger proportion of 2-isogenous conjugate pairs (Section 5.2.1),

• p ≡ 11 mod 12:

– larger 2-isogeny graph diameters,
– smaller number of spinal components, and
– smaller proportion of 2-isogenous conjugate pairs.

To accompany the experimental results of this article, we have made the Sage code for all the computations available, along with
a short discussion of the different algorithms included. The code is posted at

https://github.com/krstnmnlsn/Adventures-in-Supersingularland-Data.

1.1. Related work

Adj, Ahmadi, and Menezes [1] were the first to study the fine structure of the graph G�(Fp). In particular, they studied G�(Fp2 , t),
which is the graph whose vertices are elliptic curves with fixed trace of Frobenius t and whose edges are Fp2 -isogenies. They showed
that the graph G�(Fp2 , −2p) is isomorphic as a graph to G�(Fp). Our approach in the current article also studies a subclass of curves

https://github.com/krstnmnlsn/Adventures-in-Supersingularland-Data
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and the paths passing through these curves. After our preprint appeared [2], a related approach was introduced by Boneh and Love
[19] to study a subgraph which contains supersingular curves with small non-integer endomorphisms. Such small endomorphisms
can be used to efficiently compute isogenies between the special curves.

Shortly after our work was first posted [2], Castryck, Panny, and Vercauteren posted a article on rational isogenies [9]. Their
work gives an algorithm for computing an ideal to connect two supersingular elliptic curves over Fp which have the same Fp-
endomorphism ring. Their focus on Fp-curves is parallel to our results regarding the structure of the Fp isogeny graph G�(Fp)
and the spine S.

More recently, Eisentraeger et al. [12] gave a cycle finding algorithm to compute endomorphism rings of supersingular elliptic
curves. A key part of their algorithm involves finding j-invariants that are �-isogenous to their conjugates. Since this is done by
performing random walks, they determine a lower bound for the size of the set of such j-invariants. This gives a partial answer to
our Question 3 in Section 5.

2. Definitions

Let k be a finite field of characteristic p > 3 and let E be an elliptic curve over k. We may assume that is given by an equation
y2 = x3 + ax + b for some a, b ∈ k (and such that x3 + ax + b does not have a multiple root). A point on E is simply given by
its coordinates (xP, yP) for xP, yP ∈ k. Elliptic curves have a group law given by algebraic formulas that can be efficiently computed.
Moreover, the number of points in these groups can be counted fast, which makes them both particularly rich objects to work with
and very handy objects for cryptographic constructions.

We focus on supersingular elliptic curves: Curves E/k with endomorphism ring EndFp
(E) a maximal order in a quaternion

algebra. Equivalent definitions can be found in [24, Theorem V.3.1]. Endomorphism rings of elliptic curves with j-invariant in Fp are
characterized in [10, Prop. 2.4]: for p > 3, a supersingular elliptic curve E/Fp can be defined overFp if and only ifZ[√−p] ⊂ End(E).

Supersingular elliptic curves can all be identified with a j-invariant in Fp2 . We will use the notation Ej to fix an elliptic curve
with j-invariant j. The j-invariants classify the Fp-isomorphism classes of supersingular elliptic curves. When we instead consider
supersingular elliptic curves with j(E) ∈ Fp up to Fp-isomorphism, two Fp-isomorphism classes share the same j-invariant [10,
Prop. 2.3]. One can distinguish between the two classes by the Weierstrass models of the elliptic curves.

2.1. Isogeny graphs

To introduce the graphs, we borrow the following notions from Sutherland [25, Section 2.2]. We denote by ��(X, Y) the �-modular
polynomial. We let Ej denote an elliptic curve of j-invariant j, up to Fp isomorphism. This is a polynomial of degree � + 1 in both X
and Y , symmetric in X and Y , and such that there exists a cyclic �-isogeny φ : Ej1 → Ej2 if and only if ��(j1, j2) = 0.

In principle, the modular polynomials can be computed and they are accessible via tables for small values of �. However, their
coefficients are rather large, as we see already for �2(X, Y):

�2(X, Y) = − X2Y2 + X3 + 1488X2Y + 1488XY2 + Y3 − 162000X2

+ 40773375XY − 162000Y2 + 8748000000X + 8748000000Y
− 157464000000000

(1)

A separable isogeny is determined by its kernel [24]. In addition, we will need the notion of equivalence of isogenies:

Definition 2.1 (Equivalent isogenies). Let k be a field. We say two separable isogenies ϕ, ϕ′ between k-isomorphism classes of elliptic
curves are equivalent if ϕ′ = ψ ◦ ϕ, for some automorphism ψ of the codomain.

Notice that equivalent isogenies share the same kernel, and inequivalent isogenies from E correspond to distinct roots of
��(j(E), Y) = 0.

Definition 2.2 (Supersingular �-isogeny graph over Fp: G�(Fp)). The graph G�(Fp) has vertex set Fp-isomorphism classes of
supersingular elliptic curves over Fp, labeled by their j-invariants in Fp2 . There is a directed edge from vertex j to j′ for every root j′
of the modular polynomial ��(j, Y), considered with multiplicity.

We label the vertices of G�(Fp) with j-invariants but sometimes it is more convenient to talk about elliptic curves. By definition,
every edge [j, j′] corresponds to an �-isogeny Ej → Ej′ for any choice of Ej and Ej′ .

Remark 2.3. Every vertex in this graph has outgoing degree � + 1, however, vertices with j-invariant j = 0 or 1728 have fewer
incoming edges (due to automorphisms). Identifying isogenies with their dual isogenies makes this graph undirected and (� + 1)-
regular except at those vertices or their neighbors. The graphs displayed in this article are pictured as undirected, so we expect
irregularities in these figures at j = 0, 1728.
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The isogeny graphs G�(Fp) are Ramanujan graphs for p ≡ 1 mod 12 (see [6]). Kohel [18, Ch. 7] proved that every pair of
supersingular elliptic curves are connected by a chain of �-isogenies, which implies that the graph is connected. If p > 3, the number
of vertices of G�(Fp) is ≈ p

12 , depending on the congruence class of p mod 12 [24, Section V.4].
If j is a supersingular j-invariant, then so is its Fp2 -conjugate jp. Moreover, because modular polynomials have integer coefficients,

if j and j′ satisfy ��(j, j′) = 0 then also (in F̄p)

��(jp, (j′)p) = (��(j, j′))p = 0.

This means that for any edge [j, j′] ∈ G�(Fp), there is a mirror edge [jp, (j′)p].
This leads to the idea of a mirror involution on G�(Fp):

Definition 2.4. The mirror involution on G�(Fp) is the map defined by sending the vertex represented by j ∈ Fp2 to the vertex
represented by jp.

A vertex j ∈ G�(Fp) is fixed under the mirror involution if and only if j ∈ Fp. We are interested in the subgraph of G�(Fp) induced
by these vertices:

Definition 2.5 (Spine). The spine is the induced subgraph S of G�(Fp) consisting of all vertices whose j-invariants lie in Fp and all
edges between them in G�(Fp).

Note that many of the edges do correspond to isogenies defined overFp but there can be edges coming from isogenies only defined
over Fp. In Section 3, we determine all possible such edges.

The number of vertices in the spine S depends on the class number of the imaginary quadratic fieldQ(
√−p) and is of size Õ(

√p).
The size, shape and number of connected components of the spine S will be studied in Section 3.

To study the spine, we introduce some notation that will help keep track of whether the j-invariants we are studying are defined
over Fp or not: Whenever we want to stress that a j-invariant of an elliptic curve lies in Fp, we use bold letters (such as j). If we want
to stress that a particular j-invariant lies in Fp2 \ Fp, we will use the more curly bold j.

We were motivated to study the spine because the Fp vertices may play a role in attacks on Supersingular Isogeny Graph-based
cryptosystems. In [10], Delfs and Galbraith construct an isogeny between two supersingular elliptic curves by first finding an isogeny
from each curve to a curves whose j-invariant lies in Fp, and then constructing an isogeny between the curves in Fp. They argue that
while taking random walks in G�(Fp), one can find elements in S with probability given (roughly) by the size of the subgraph divided
by the size of the full isogeny graph. However, we will see in Section 3 that there is still a lot of structure in S that cannot be discounted.

In Sections 4 and 5, we then investigate other questions relating to whether the spine S is close to a random subgraph or whether
the bountiful structure of the spine S is visible inside the Supersingular Isogeny Graph G�(Fp).

To explain the terminology ‘spine’: Starting from S, we can construct G�(Fp) by adding j-invariants in conjugate pairs: starting
with j in S, if there is an isogeny from Ej to Ej , there is a conjugate isogeny from Ej to the conjugate Ej(p) . Hence we imagine the
‘spine’ as being the backbone of the Supersingular Isogeny Graph G�(Fp).

Definition 2.6. We say that a path P with vertices {j0, j1, j2, . . . , jn−1, jn} (considered as an undirected path) is a mirror path if it is
invariant under the mirror involution.

There exists at least one mirror path between any two conjugate j-invariants: it suffices to find a path from one j-invariant, say j0,
to an Fp j-invariant and then conjugate this path.

In general, mirror paths have either the form

j0 → j1 → · · · → jn → j → j
p
n → · · · → j

p
1 → j

p
0 ,

passing through an Fp-vertex, or

j0 → j1 → · · · → jn → j
p
n → · · · → j

p
1 → j

p
0 ,

passing through a pair of conjugate j-invariants.

2.2. Special j-invariants

In this section, we discuss j-invariants with special properties which require attention in the discussions to follow, focusing on j-
invariants with extra automorphisms and then on j-invariants that are contained in very short cycles in G�(Fp): self-loops and cycles
of length 2 (double edges).
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Automorphisms
First, j = 1728 and j = 0 correspond to curves with extra automorphisms, which make the graph G�(Fp) undirected (see Remark 2.3).
The j-invariant j = 1728 is supersingular if and only if p ≡ 3 mod 4 and j = 0 is supersingular if and only if p ≡ 2 mod 3 (see [24,
Chapter V]).

Loops
Loops in the graph G�(Fp) are easily read off from the factorization of ��(X, X): a vertex represented by a j-invariant j admits a loop
if and only if ��(j, j) = 0. For � = 2, factoring over Z the polynomial �2(X, X) from (1) we get:

�2(X, X) = −(X + 3375)2(X − 1728)(X − 8000). (2)

Therefore, loops in G2(Fp) are only possible at the vertices j = −3375 (two loops), j = 1728 (one loop, explained in Example 3.8)
and j = 8000 (one loop). These j-invariants need not be supersingular for a particular prime p, so they do not always appear in
G2(Fp).

Double edges
The following lemma describes double edges in the �-isogeny graph. This lemma applies mutatis mutandis for ordinary curves,
replacing G�(Fp) by the �-isogeny graph of ordinary elliptic curves.

Lemma 2.7 (Double edge lemma). If two j-invariants j1, j2 in the �-isogeny graph G�(Fp) have a double-edge between them, then j1
and j2 are both roots of the polynomial

Res�(X) := Res
(

��(X, Y),
d

dY
��(X, Y); Y

)
. (3)

The degree of Res�(X) is bounded by 2� · (2� − 1).

Proof. Suppose that j1 and j2 are two vertices in the �-isogeny graph connected with a double edge. Considered as a polynomial in
Y , the polynomial ��(j1, Y) = (Y − j2)2 · g(j1, Y) for some g(j1, Y) ∈ Fp[Y]. The derivative d

dY ��(j1, Y) with respect to Y then also
vanishes at Y = j2. The polynomials ��(X, Y) and d

dY ��(X, Y) share the root X = j1, and so by definition j1 is a root of the resultant
Res�(X). This argument is also true for j2, so j2 is also a root of Res�(X).

The total degree of ��(X, Y) is 2� and the total degree of d
dY ��(X, Y) is 2�−1. Since the resultant of two polynomials P(X, Y) and

Q(X, Y) of total degrees d and e generically has degree d·e, we obtain the bound #{j : there is a double edge from j} ≤ 2�·(2�−1).

Example 2.8 (Double edges for � = 2). For � = 2, we can factor the resultant over Z as follows:

Res2(X) = −22 · X2 · (X − 1728) · (X + 3375)2 · (X2 + 191025X − 121287375)2 (4)

Therefore, any double edge in G2(Fp) can only appear between j-invariants from this list: 0, 1728, −3375 or a root of X2 +191025X−
121287375.

By factoring �2(j, X) for these values, we can for instance see that j = 0 is the only j-invariant that admits a triple edge in G2(Fp).

Remark 2.9 (Short cycles and tightness of the bound). Note that the bound on the degree in Lemma 2.7 is not tight. For example
for � = 2, the bound is 12 whereas the polynomial has degree 9. A sharper estimate could be obtained as a sum of class numbers
using an approach from [5] as follows. A double edge in G�(Fp) gives a cycle of length 2 in the same graph. Short cycles were already
studied in [5], where it was shown that for a fixed �, the existence of short cycles depends on congruence conditions on p. A short
cycle of length n corresponds to an element of norm �n in the endomorphism rings of the curves whose j-invariants form this cycle.
For instance, a double edge in G2(Fp) gives a non-trivial quadratic element of norm 4 in EndFp

(Ej). Elliptic curves defined over a
number field with CM by an imaginary quadratic field K reduce to supersingular elliptic curves modulo p if p is inert in K. The
only imaginary quadratic fields that contain an element of norm 4 are Q(

√−3),Q(
√−1),Q(

√−7) and Q(
√−15) and the factors of

Res2(X) are the Hilbert class polynomials for these fields. So it is not surprising that the resultants Res� factor as a product of Hilbert
class polynomials for imaginary quadratic fields, and thus the degree of Res2(X) can be bounded by the sum of the class numbers of
these imaginary quadratic fields. For any given �, there are at most 2� such imaginary quadratic fields possible, all with discriminant
bounded by 4�2. So to get a sharper bound on the degree, we only need to sum the class numbers of these quadratic fields.

3. Structure of the Fp-subgraph: the spine S

In this section, we investigate the shape of the spine S, which was introduced in Definition 2.5 as the subgraph of G�(Fp) consisting of
the vertices defined over Fp. The motivation for studying the structure of this subgraph is the existence of attacks on SIDH that work
by finding Fp j-invariants. This idea was presented in [10], and a quantum attack based on it was given by Biasse, Jao and Sankar [3].
See also [13] for an overview of the security considerations for SIDH.
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In Section 3.1, we start with the graph G�(Fp), the structure of which is understood well. We base our investigations on the study
of G�(Fp) done by Delfs and Galbraith in [10].

Moreover, a version of the Fp-graph (allowing edges corresponding to �-isogenies for multiple primes) has also been proposed
for post-quantum cryptography in [7]. We recall the results of [10] in some detail and give a few explicit examples of their results
about endomorphisms of certain elliptic curves.

In Section 3.2, we discuss how the spine S can be obtained from G�(Fp) in two steps: first vertices corresponding to the same
j-invariant are identified and then a few new edges are added. The possible ways the connected components can identify are given
by Definition 1 and we call them stacking, folding, attaching along a j-invariant and attaching by a new edge.

In Section 3.3 we study stacking, folding and attaching for � > 2 and give an example of the theory we develop for � = 3 in
Section 3.3.1. In this section we also give a complete description of stacking, folding and attaching in Theorem 3.21. We return to
the case � = 2 in Section 3.4, giving a similar complete description in Theorem 3.29 and some data on how often attachment of
distinct components happens. Section 3.5 contains some experimental data on the distances between the connected components of
S ⊂ G2(Fp).

In this section, we assume that all elliptic curves are supersingular.

3.1. Structure of the Fp-Graph G�(Fp)

To study the spine S, we will use the following isogeny graph G�(Fp) defined over Fp, first studied by Delfs and Galbraith [10].

Definition 3.1 (Supersingular �-isogeny graph over Fp). The graph G�(Fp) has vertex set the Fp-isomorphism classes of supersin-
gular elliptic curves defined over Fp. The edges correspond to Fp-equivalence classes (in the sense of Definition 2.1) of �-isogenies
defined over Fp.

For p > 3, each supersingular j-invariant corresponds to exactly two Fp-isomorphism classes of curves. These curves can be
distinguished by other invariants (such as the c4 and c6 values from [24, III.1]). We will use notation such as va and wa to denote the
vertices corresponding to the two twists with j-invariant a. For visualization, we will label the vertices of the graph G�(Fp) only by
j-invariants.

Remark 3.2. We highlight the differences between S and G�(Fp):

• S has half as many vertices as G�(Fp), since the vertices in the spine S are considered up to Fp-isomorphism and up to Fp-
isomorphism in the graph G�(Fp).

• S can have edges between j-invariants previously not connected in G�(Fp). However, we will show in Lemma 3.14 that this is a
fairly rare occurrence.

We will use the equivalent definition of supersingularity for elliptic curves over Fp pointed out by [10]: an elliptic curve E/Fp
is supersingular if and only if Z[√−p] ⊂ EndFp(E). If p ≡ 3 mod 4, the order Z[√−p] is strictly contained in the maximal order
Z

[
1+√−p

2

]
. It is convenient to distinguish these two cases:

Definition 3.3 (Surface and Floor). Let E be a supersingular elliptic curve over Fp. We say E is on the surface (resp. E is on the floor)
if EndFp(E) = OK (resp. EndFp(E) = Z[√−p]).

Note that for p ≡ 1 mod 4, surface and floor coincide.

Definition 3.4 (Horizontal and Vertical Isogenies.). Let ϕ be an �-isogeny between supersingular elliptic curves E and E′ over Fp. If
EndFp(E) ∼= EndFp(E′) then ϕ is called horizontal. Otherwise, ϕ is called vertical.

The following is Theorem 2.7 of [10].

Theorem 3.5 (Structure of G�(Fp)). Let p > 3 and � be primes.

1. For � > 2, there are no vertical isogenies. If
(−p

�

)
= 1, then there are two horizontal �-isogenies from each vertex and beyond this

no other �-isogenies. Hence every connected component of G�(Fp) is a cycle.
2. Case p ≡ 1 mod 4. There is one level in G�(Fp): all elliptic curves E have EndFp(E) = Z[√−p]. For � = 2: from each vertex there is

one outgoing 2-isogeny.
There are h(−4p) vertices on the surface (which coincides with the floor).

3. Case p ≡ 3 mod 4. There are two levels in G�(Fp): surface and floor. For � = 2:

(a) If p ≡ 7 mod 8, there is exactly one vertical isogeny from any vertex on the surface to a vertex on the floor, every vertex on the
surface admits two horizontal isogenies and there are no horizontal isogenies between the curves on the floor.
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Figure 1. The graph G2(Fp) for p = 431 (case 3.a of Theorem 3.5). The vertices are labeled by j-invariants of each curve. Each component is a volcano, with an inner ring of
surface curves and the outer vertices all being curves on the floor. The class number of Q(

√−431) is 3 · 7 = 21 and the orders of the two primes above 2 are 7.

There are h(−p) vertices on the floor and h(−p) vertices on the surface.
(b) If p ≡ 3 mod 8, from every vertex on the surface, there are exactly three vertical isogenies to the floor, and there are no horizontal

isogenies between any vertices.
There are 3 · h(−p) vertices on the floor and h(−p) vertices on the surface.

This implies that every connected component of G2(Fp) is an isogeny volcano, first studied by Kohel [18]. For a reference on the
name and basic properties we refer to [25].

Let K = Q(
√−p) and p be a prime above � = 2 in OK , and h = #cl(OK) the class number of K. Let n be the order of p in cl(OK).

The surface of any volcano in G2(Fp) is a cycle of precisely n vertices. There are h/n connected components (volcanoes) in G2(Fp),
the index of 〈p〉 in cl(OK).

The following lemma is due to [10].

Lemma 3.6. Let p > 5. Let E be a supersingular elliptic curve defined over Fp. Then

EndFp(E) = Z

[
1 + √−p

2

]
if and only if E[2] ⊂ E(Fp).

Note that for p ≡ 1 mod 4, the ring Z
[

1+√−p
2

]
is not an order of OK , so no supersingular elliptic curves in Fp have their full

2-torsion defined over Fp.
We recall the following definition from [24]: a twist of an elliptic curve E over a field K is a curve E′ which is isomorphic to E over

K̄. Two twists are considered equivalent if they are isomorphic over K. The group of twists of a given elliptic curve is given by the
standard formula in [24, Proposition X.5.4]. For the field Fp, every supersingular j-invariant will have precisely two isomorphism
classes of twists: Curves with j-invariant not equal to 1728 have two isomorphism classes of quadratic twists, and j = 1728 has two
isomorphism classes of quartic twists.

The following corollary of Lemma 3.6 will be essential in our discussion in Section 3.4.

Corollary 3.7 (Endomorphism rings of quadratic twists). Let p > 3 be a prime, let E be an elliptic curve defined over Fp and let Et

denote its quadratic twist. Then

EndFp(E) ∼= EndFp(Et).

Proof. Suppose E : y2 = x3 + ax + b. Then the quadratic twist is Et : y2 = x3 + d2ax + d3b, where d is a quadratic non-residue and
the isomorphism over Fp is given as (x, y) �→

(
x
d , y

d
√

d

)
. So E[2] ⊂ E(Fp) if and only if Et[2] ⊂ Et(Fp).

Example 3.8 (The j-invariant 1728 is both on the surface and on the floor). Suppose p ≡ 3 mod 4. The isogeny φ : y2 = x3 − x →
y2 = x3 + 4x given as

(x, y) �→
(

x2 + x + 2
x + 1

,
x2y + 2xy − y
x2 + 2x + 1

)

is a vertical 2-isogeny with kernel (0, 0) of non-Fp-isomorphic elliptic curves with j-invariant 1728.

Note that the curves in Example 3.8 are quartic, not quadratic twists, so this example does not contradict Corollary 3.7. The
example is, up to equivalence, the only vertical isogeny between two supersingular elliptic curves with the same j-invariant.
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Corollary 3.9. If j �= 1728, then the two distinct vertices corresponding to the j-invariant j ∈ Fp are either both on the floor or on the
surface of G�(Fp).

Another proof of this statement can be found in the appendix of [16] and is obtained by a careful examination of Hilbert
polynomials of discriminant −p and −4p, considered modulo p.

3.2. Passing from the graph G�(Fp) to the spine S ⊂ G�(Fp)

To understand the graph S, we will describe it as a certain quotient of the graph G�(Fp) under an equivalence relation which identifies
some vertices and some edges. This will allow us to identify which edges in S do not come from isogenies already defined over Fp
and describe the shape of the spine S using the easily visualized graph G�(Fp).

We can obtain the spine S from the graph G�(Fp) in the following two steps:

1. Identify the vertices with the same j-invariant: these two vertices of G�(Fp) glue to a single vertex on G�(Fp). Identify equivalent
edges.

2. Add the edges from G�(Fp) between vertices in Fp corresponding to isogenies which are defined over Fp \ Fp.

Recall the notation that for a j-invariant a, the two vertices in G�(Fp) corresponding to this j-invariant will be labeled va, wa. We
extend this notation as follows: the vertex va, resp. wa will lie on the connected component V , resp. W, of G�(Fp). Note that V and
W are not necessarily distinct. The vertex correspoding to a in S will be simply denoted by a.

Remember that G�(Fp) is not a subgraph of S since both the vertices and edges of G�(Fp) may be merged in S. However, distinct
edges from the same vertex in G�(Fp) correspond to distinct edges in G�(Fp).

Lemma 3.10 (Fp-edges from one vertex). Let E be an elliptic curve with j(E) /∈ {0, 1728} defined over Fp (with p ≥ 5). Suppose that
there are two �-isogenies from E defined over Fp. Then they are equivalent over Fp if and only if they are equivalent over Fp.

Proof. If the isogenies are equivalent over Fp via a pair of Fp-isomorphisms, then they are equivalent over Fp as well.
The reverse direction is easiest to see from the kernel definition of equivalence. If the kernels of φ1 : E → E′ and φ2 : E → E′ are

equal over Fp they are certainly equal over Fp.
One can see the isogeny definition implies the kernel definition as follows. Let φ1 : E → E′ and φ2 : E → E′ be two isogenies that

are equivalent over Fp. We want to show that they are equivalent over Fp. By hypothesis, there exist (Fp-)isomorphisms ϕ : E → E
and ψ : E′ → E′ such ψ ◦ φ1 = φ2 ◦ ϕ. We know that the kernel of the map ψ ◦ φ1 is ker φ1. Therefore, the kernel of the map φ2 ◦ ϕ

is also ker φ1. This means that ϕ(ker(φ1)) = ker φ2. By the hypothesis on j(E), we have AutFp(E) = AutFp
(E) = {±1}, and since

[±1] ker φ1 = ker φ1, it follows that ker φ1 = ker φ2.

Lemma 3.10 for � = 2 gives the following corollary.

Corollary 3.11. If an elliptic curve E with j-invariant j in Fp has 3 neighbors with j-invariants j1, j2 and j3 (not necessarily distinct),
then the 3 neighbors of j in G2(Fp) have j-invariants j1, j2 and j3.

Example 3.12. (� = 2) If the vertex va has neighbors vb, vc, vd in G2(Fp) (with b, c, d not necessarily distinct), then the three neighbors
of vertex a in G2(Fp) are b, c, d.

Since there are at most 2 neighbors of any vertex in G�(Fp) for � > 2, the above corollary does not generalize. However, it is true
that if the neighbors of va, wa have j-invariants b, c, d, e, then there are (not necessarily distinct) edges [a, b], [a, c], [a, d] and [a, e] in
G�(Fp). In Lemma 3.17, we will show that typically {b, c} = {d, e} and explain how to find j-invariants a for which this property fails.

Let V and W be two components of G�(Fp). Passing from G�(Fp) to the spine S, the following can happen (and we will show that
the list of events is complete):

Definition 3.13 (Stacking, folding and attaching).

1. We say that the components V and W stack if, when we relabel the vertices va by the j-invariant a, they are the same graph.
2. We say that the component V folds if V contains vertices corresponding to both quadratic twists of every j-invariant on V . The

term is meant to invoke what happens to this component when the quadratic twists are identified in G�(Fp).
3. Two connected components V and W of G�(Fp) become attached by a new edge in G�(Fp) if there is a new edge [a, b] ∈ G�(Fp)

corresponding to an isogeny between vertices va ∈ V and wb ∈ W that is not defined over Fp.
4. (for � > 2) We say that components V and W attach along the j-invariant a if they both contain a vertex with j-invariant a and

the j-invariants of neighbors of va in V and the neighbors of wa in W do not give the same (multi)sets.
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Figure 2. Stacking, folding and attaching by an edge for p = 431 and � = 2. The leftmost component of G2(Fp) folds, the other two components stack, and the vertices
189 and 150 get attached by a double edge.

Figure 3. Attachment along a j-invariant for p = 83 and � = 3. The two connected components of G3(Fp) are attached along the j-invariant 68 = 1728 mod 83. There are
two outgoing double edges from j = 1728 but because of the extra automorphisms, these edges are identified in the undirected graph.

Figure 4. Attachment by an edge that does not attach two distinct components. This component folds and the vertices with j-invariants 68 and 107 are joined by a double
edge.

Examples of the first three of the four above are given by Figure 2. An example of attachment along a j-invariant can be seen in
Figure 3. It can happen that an attachment is actually attaching the component V to itself. See Figure 4. We will show that attachment
along the j-invariant for � = 2 cannot happen in Corollary 3.24, however, the j-invariant 1728 is the only possible j-invariant for
which the two vertices in G2(Fp) do not have the same neighbor set (Proposition 3.22), but in this case these vertices are already
connected by an edge.

We now begin analyzing the ‘new’ edges in S: the edges that do not come from isogenies defined over Fp. For an elliptic curve E,
all �-isogenies are given by order � subgroups of the �-torsion subgroup E[�]. An �-isogeny is defined over Fp if and only if its kernel
is fixed by the Frobenius endomorphism. Note that this does not mean that all the points in the kernel need to be fixed by Frobenius.

Let us look at Figure 2 again: the edges in the spine S between vertices corresponding to j-invariants 150 and 189 in G2(Fp) do
not correspond to isogenies defined over Fp. Also, the vertex 4 (and note 4 ≡ 1728 mod 431) on the floor of G2(Fp) has no edge
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to a curve with j-invariant 19, but there is an edge [4, 19] ∈ G2(Fp) coming from the two isogenies from vertex 4 on the surface.
Lemma 3.10 gives us that there is a double edge [4, 19] ∈ G2(Fp). This not a coincidence, as we explain in Lemma 3.14.

Lemma 3.14 (One new isogeny implies two new isogenies). Let va, vb ∈ G�(Fp) correspond to Fp-elliptic curves Ea and Eb with j-
invariants a, b respectively with a �= 1728, 0. Assume that there is no edge [va, vb] ∈ G�(Fp), but there is an edge [a, b] ∈ G�(Fp). Then
there are two isogenies defined between Ea → Eb which are inequivalent over Fp and hence a double edge [a, b] ∈ G�(Fp).

Proof. We know that there is an �-isogeny φ : Ea → E to some elliptic curve E with j-invariant b. Since j(E) = b, then E is isomorphic
to Eb over Fp2 . Composing with this isomorphism, we obtain an �-isogeny ψ : Ea → Eb. However, ψ cannot be defined over Fp,
since we assumed there was no edge [va, vb] ∈ G�(Fp).

The kernel of ψ is not defined over Fp (otherwise ψ would be defined over Fp), so the p-power Frobenius map Frob : Fp → Fp
does not preserve ker ψ . There is an isogeny from Ea with kernel ψFrob. This isogeny has degree � since ψFrob has order � and it is
not equivalent to ψ . Using the construction of isogenies from Vélu’s formulae [27], we obtain the rational maps for defining ψFrob.
In particular, the j-invariant of the target of ψFrob is necessarily Frob(b) = b. Hence, there are two inequivalent isogenies between
Ea and Eb and hence two edges [a, b] ∈ G�(Fp).

The corollary below explains why for both attachment by a new edge (cf. Figures 2 and 4) and attachment along a j-invariant (cf.
Figure 3), we always see double edges.

Corollary 3.15. Attachment of components by a new edge from va to wb forces a double edge [a, b] in G�(Fp). Attachment along the
j-invariant j implies a double edge from j in G�(Fp).

Proof. In the first case, we are adding an edge between va and wb that is not defined over Fp and we can directly apply Lemma 3.14.
In the second case, assume there is a neighbor vb of vj such that wb is not a neighbor of wj. Apply the Lemma 3.14 to the Fp isogeny
from wj to vb.

Because we take the isogeny graphs undirected, we need to make choices at j = 1728 or j = 0. In this case, double edges might
get identified because of the choices for the undirectedness of the graph.

3.3. The spine for � > 2

For this section, we consider the spine S for � > 2. In this case, there are no vertical isogenies, hence the graph G�(Fp) is a union
of disjoint cycles: the cycles of vertices corresponding to curves either only with endomorphism ring Z

[
1+√−p

2

]
, or only with

endomorphism ring Z[√−p]. The main tool for understanding the spine will be the Neighbor Lemma 3.17, in which we show
that the vertices va and wa have neighbors with the same j-invariants, provided a �= 1728. If the neighbors have different j-invariants,
then we would get attachment along a vertex and this situation we solve in Proposition 3.16. Using the information about the shape
of the graph G�(Fp) and the neighbor lemma, we can completely describe the spine S in Theorem 3.18.

We will avoid the case when the graph G�(Fp) is just a disjoint union of vertices (i.e., when there are no isogenies defined over Fp)
by assuming � is split in Z[√−p]. If one assumes that p ≡ −1 mod �, then �|#E(Fp) = p + 1 and there are Fp-rational points of
order �. We will also assume that the class number cl(Z[√−p]) is odd, which is equivalent to p ≡ 3 mod 4.

Proposition 3.16 (Attachment along a vertex can only happen at a vertex with automorphisms). Let p and � be primes satisfying
�4 < 1

4 p. Let j be a j-invariant such that attachment along a vertex happens. Then j = 1728, the two neighbors in G�(Fp) of v1728 have
the same j-invariant and the neighbors of w1728 have the same j-invariant.

The proof below uses the properties of the Fp-endomorphism ring End(E) as a maximal order in a quaternion algebra. For
references see Kohel’s thesis [18], the work of Kaneko [16] and Ibukiyama [14].

Proof. We first show that j corresponds to an elliptic curve with automorphism group larger than {±1}, so j = 1728 or 0. Then, we
show that j = 0 cannot happen.

Let E be a supersingular elliptic curve and let End(E) be its endomorphism ring. Recall that End(E) is a maximal order in a
quaternion algebra. Every element α ∈ End(E) \ Q is quadratic, meaning α generates a quadratic number field Q(α).

From Kaneko’s Theorem 2’ [16], we know that If O, O′ are maximal quadratic orders lying in different imaginary quadratic fields
that embed to End(E) then disc(O) · disc(O′) ≥ 4p.

Suppose now that we have attachment at a vertex j. Let va, vb be the neighbors of vj and let wc, wd be the neighbors of wj, with
a �∈ {c, d}. Then, by Corollary 3.15, there is a double edge from [a, j] ∈ G�(Fp) and, by symmetry, there is a double edge from either
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c or d, assume without loss of generality that it is from c. Any double edge gives a non-trivial element of norm �2 in End(E). Let α

denote the cycle arising from the double edge at a, and γ the cycle arising from the double edge at c.
Suppose that α and γ generate different quadratic number fields. Then, we observe that

�2 = nrd(α) ≥ 1
4

disc(Z)[α] ≥ 1
4

disc(Q(α))

and we obtain a similar statement for γ . Using Kaneko’s theorem we deduce that

�2 · �2 = nrd(α) · nrd(β) ≥ 1
16

disc(Q(α)) · disc(Q(γ )) ≥ 1
4

p,

which is impossible for �4 < 1
4 p. We conclude that α and γ generate the same quadratic field, say K. Let OK be the ring of integers

in K. By uniqueness of ideal factorization:

(α)(α) = (�2) = (γ )(γ ) = (�)2 =

⎧⎪⎨
⎪⎩

(�)2 if � is inert,
l4 if � is ramified,
(ll)2 if � splits.

Since α �∈ Q, � cannot be inert. If � is ramified, we see:

(α) = (γ ) = l2 −→ α = uγ

for some unit u ∈ OK . It is not possible that α = ±γ , so {±1} � Aut(E).
If � splits, suppose without loss of generality that (α) = l2. Then either

(γ ) = l2 −→ γ = u · α

or (γ ) = l
2 −→ γ = u · α

for some unit u ∈ OK . Again implies that OK has non-trivial units and {±1} � Aut(E).
Curves with automorphism group larger than {±1} correspond to j = 0, 1728. Suppose j(E0) = 0. If there is an isogeny from an

elliptic curve E0 to an elliptic curve Ea with j-invariant a, there have to be at least three distinct isogenies from E0 to Ea: precompose
the first one with ζ3, ζ 2

3 ∈ End(E0). However, suppose that there were three edges from 0 to a. By symmetry, there would be three
edges from 0 to c in G�(Fp). By combining these edges, we would have 6 cycles from 0 of length 2. But even in Z[ζ3], up to sign (±),
there are not enough different elements of norm �2.

Hence attachment along a vertex can only happen for j = 1728.

Lemma 3.17 (The neighbor lemma). Suppose � > 2. Let a �= 1728 and suppose that va, wa are the two vertices in G�(Fp) corresponding
to elliptic curves with j-invariant a. If the neighbors of va have j-invariants b, c, then then neighbors of wa have j-invariants b, c.

Proof. Let wd, we be the neighbors of wa in G�(Fp). If {d, e} �= {b, c}, then there is attachment along the j-invariant a, which is only
possible for j = 1728. Hence the neighbors of va and wa have the same j-invariants.

Recall that the attachment of components by a new edge implies a double edge by Corollary 3.15. The main result of this section
is the following one.

Theorem 3.18 (Stacking, folding and attaching for � > 2). Let p be a prime and let � be such that the order of the prime l above � in
the class group cl(−p) of Q(

√−p) is odd. While passing from G�(Fp) to S, the following happens:

1. the components containing 1728 fold and get attached along the j-invariant 1728 (this only happens if p ≡ 3 mod 4),
2. all other components stack,
3. the number of new edges is bounded by deg Res�(X) and there are at most n vertices at which a new edge is added, where n is the

number of distinct roots of Res�(X).

Note that the conditions on p and � are always satisfied when p ≡ 3 mod 4 and p ≡ −1 mod �, which is the most cryptographically
relevant application.

Proof. We will pass from G�(Fp) to S in two steps: first, we identify the j-invariants and equivalent edges in G�(Fp), and after
discussing what happens with the components of G�(Fp), we add the new edges in G�(Fp).

We showed in Lemma 3.17 that for a �= 1728, the vertices va and wa have the same neighbors.
Suppose there is a component V that does not stack. This either means that there is a vertex va whose neighbors are different than

those of wa. But in this case a is an attaching j-invariant and so a = 1728 and we will treat this case later.
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Or, there is a j-invariant a such that both the vertices va, wa are in the component V . We know that V is a cycle with odd number
of vertices. The vertices va, wa divide the cycle in two halves. Choose either half H. Look at the neighbors of va and wa. If they have
the same j-invariant b, replace a with b and continue moving along the halves of the cycle, until either of the following happens:

(i) the vertices va and wa are neighbors in G�(Fp) and hence will induce a loop in G�(Fp). Note that in this case, the number of
vertices in H is necessarily even.

(ii) The only neighbor of va and wa is a vertex vj with j-invariant j. This is necessarily an attaching j-invariant because the neighbors
of wj cannot have j-invariants a. Hence j = 1728. This also means that H has an odd number of vertices.

(iii) The neighbor vb of va has j-invariant b and the neighbor wc of wa has j-invariant c, for b �= c. Then either the other neighbor
of wa is wb or a is an attaching j-invariant (and a = 1728). Suppose a is not an attaching j-invariant. Continuing along the
whole cycle V in the direction of the edge [va, vb], and symmetrically in the direction of [wa, wb], we will reach a point when
the neighbor of some vc is not a neighbor of the wc. This happens when the cycle has an odd number of vertices because two
identical paths would give us a cycle of even length. Here we also obtain an attaching j-invariant.

The cases above actually cover every possibility: if we are in case (3.3), the half H has an even number of vertices, and then V \ H ∪
{va, wa} necessarily has an odd number of vertices and since the neighbors of va, wa have to have the same j-invariant, we are in case
(3.3).

Let us remark that the last case (3.3) shows that the isogenies between twists go ‘in the other direction’: if one walks on the cycle
V in the direction of the edge [va, vb], one will encounter an edge [wb, wa], not an edge [wa, wb].

We now discuss what happens with the components that contain 1728. We know that there are two components V and W
containing curves with j-invariant 1728. Let va ∈ V be on the surface (with curves having EndFp(E) ∼= OK) and let wa ∈ W
be on the floor (with curves having EndFp(E) ∼= Z[√−p]). We have shown in 3.16 that both v1728 and w1728 have two neighbors
neighbors with the same j-invariant. We will show that both the components fold.

Starting at the vertex v1728 ∈ V , we know that its neighbors va, wa have the same j-invariant by Lemma 3.16. Start walking away
from v1728. By the Neighbor Lemma 3.17, the neighbors of the vertices va, wa that are different from v1728 have the same j-invariants.
Continuing this reasoning, since the cycle contains an odd number of vertices, one finally arrives at a pair of vertices vb, wb with same
j-invariant b, which are connected by an �-isogeny. The same proofs holds for the component W containing w1728.

Finally, adding new edges that are only defined over Fp, some components can get attached. However, we have proved in
Corollary 3.15 that an attachment by a new edge from j to double j′ means a double edge [j, j′] ∈ G�(Fp). Hence j and j′ are both
roots of Res�(X) by Lemma 2.7, which has degree bounded by 2� · (2� − 1).

Remark 3.19 (The ‘other side’ of 1728). We showed that the only component for which attachment by a vertex can happen are the
two components containing 1728, moreover these components fold. This means that the neighbors of v1728 have the same j-invariant,
their neighbors as well and if we continue walking along both sides, we will ultimately meet ‘opposite of ’ v1728 at a pair of conjugate
j-invariants. See Figure 4(a). Conversely, any such pair of conjugate j-invariants needs to be ‘opposite’ of a vertex with j-invariant
1728.

Since posting the first version of our article which did not fully explain these ideas, Castryck, Panny and Vercauteren posted a
preprint [9] that arrives at the same conclusion using more highbrow tools. Their approach identifies the ‘opposite’ j-invariant as a
certain CM j-invariant.

As noted Corollary 3.15, attachments imply double edges. To find vertices with attachment, we can use Lemma 2.7. Conversely,
if we want a prime p with no attachments, we can find a congruence condition on p such that none of the roots if Res�(X) are
supersingular j-invariants.

3.3.1. Example: the spine for � = 3
In this section, we decsribe the spine S for � = 3 by means of stacking, folding and attaching behavior for � = 3. The case � = 3 is
interesting, because of the use of G3(Fp) in SIDH and SIKE (and analogously, the case � = 2 will be discussed in Section 3.4). Since
the starting vertex for these protocols is typically taken in Fp, understanding the spine is important for understanding where the Fp
j-invariants are located in the graph Fp.

We start with factoring over Z the polynomial Res3(x) introduced in (3):

Res3(x) = (−1) · 33 · x2 · (x − 8000)2 · (x − 1728)2 · (x + 32768)2

· (x2 − 52250000x + 12167000000)2 · (x2 − 1264000x − 681472000)2

· (x2 + 117964800x − 134217728000)2.

The irreducible factors are Hilbert class polynomials of discriminants −3, −8, −4, −11, −32, −20 and −35, respectively. Removing
the repeated factors, we see that there are at most 10 vertices at which a double edge can occur.
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Figure 5. The graph G3(Fp) for p = 179. We see that the neighbors of vertices with j-invariant 0 both have j-invariant −12288000 mod 179 = 171.

Double-edges also arise in loops (double self-3-isogenies), which accounts for some of the factors of Res3(x). We find the self
loops by factoring the modular 3-isogeny polynomial:

�3(x, x) = (−1) · x · (x − 54000) · (x − 8000)2 · (x + 32768)2.

At j = 8000 and j = −32768, there are two self-3-isogenies and no attachment at these vertices.

Example 3.20 (Vertices with loops). In this example, we determine the G3(Fp) neighbors of j = 0, 8000, 54000 and −32768. This is
done by factoring �3(j, x):

1. j = 0: Factor �3(0, x) = (x + 12288000)3 · x. The isogeny v0, w0 is defined over Fp: the factor x has multiplicity 1, so it is not a
double-edge and cannot appear only over Fp2 . Moreover, the neighbors of v0 are w0 and v−12288000 and the neighbors of w0 are
w−12288000 and v0. Hence there cannot be attaching edges.

2. j = 54000: There is one self-3-isogeny which arises from a 3-isogeny ψ between (non-isomorphic) quadratic twists with j = 54000
and that can be written explicitly. Factoring φ3(54000, x) we can check that the j-invariant 54000 does not admit a double edge.

3. j = 8000: we have (x − 8000)2|�3(8000, x) and so there is a double loop [8000, 8000] ∈ G3(Fp). Neither of the loops occur over
Fp: both cannot occur over Fp because there are no double edges in G3(Fp). If only one of them came from an isogeny over Fp,
then we could use Lemma 3.14 to get a third loop, which is not possible (for large p).

4. j = −32768: again, (x + 32768)2|�3(−32768, x). Repeating the argument we gave above for j = 8000, the self loops cannot come
from isogenies over Fp.

To conclude: For j = 0 and 54000, the self-3-isogeny comes from an isogeny between the twists in G3(Fp), and for j = 8000, −32768,
the double self-3-isogenies are not defined over Fp.

The following theorem is a specialization of Proposition 3.18. We are mainly interested in the cryptographic applications, so we
restrict to the case p ≡ 3 mod 4. Then, the class numbers h(−p) and h(−4p) = 3 · h(−p) are both odd. With our assumption
p ≡ 2 mod 3, we have p ≡ 11 mod 12.

Theorem 3.21 (Stacking, folding and attaching for � = 3). Let p be prime, p ≡ 11 mod 12. When passing from G3(Fp) to the spine
S ⊂ G3(Fp),

1. all components that do not contain 0 or 54000 stack,
2. there are two distinct connected components V and W that contain a j-invariant 1728, one of them contains both vertices with j-

invariant 0 and the other one both vertices with j-invariant 54000. V and W fold and get attached at the j-invariant 1728.
3. At most 8 vertices admit new edges, attaching at most 4 pairs of components by a new edge.

Proof. This follows from Theorem 3.18. In Example 3.20, we showed that the only possible opposite vertices have j-invariants 0 and
54000. For p ≡ 3 mod 4, there are two components containing 1728: by Example 3.8, one of the vertices corresponding to 1728 is
on the floor and the other one is on the surface, so they are on different components of G3(Fp). One of these vertices is on the same
component of G3(Fp) as the vertices with j-invariant 0 and the other one will contain both vertices with j-invariant 54000. The rest
comes from looking at the factors of Res3(x).

3.4. The spine for � = 2

In this section, we describe the spine S for � = 2. The added difficulty are vertical isogenies (see Definition 3.4). We describe how
the components of G2(Fp) come together in S ⊂ G2(Fp) in a way analogous to � > 2 (see Theorem 3.29). We determine whether
attachment can happen for p ≡ 1 mod 4 and p ≡ 3 mod 8 (see Corollary 3.30) and we give experimental data on p ≡ 7 mod 8.

Delfs and Galbraith [10] described the possible shapes for G2(Fp), which we will extensively use in this section:
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Residue class of p Endomorphism rings Shape of G2(Fp)

p ≡ 1 mod 4 Z[√−p] Each connected component is two ver-
tices connected by one edge, corre-
sponding to a horizontal isogeny (see
Figure 6(a)).

p ≡ 3 mod 8 Z[√−p],Z
[

1+√−p
2

]
Each connected component is “claw”:
one vertex on the surface connected to
three vertices on the floor by vertical
isogenies (see Figure 6(b).)

p ≡ 7 mod 8 Z[√−p],Z
[

1+√−p
2

]
Each connected component is a 2-level
“volcano” with surface a cycle of size ≥
1. From any vertex on the surface there
is exactly one vertical isogeny. There are
no horizontal isogenies on the floor (see
Figure 1.)

Recall that we form the graph S from G2(Fp) in two steps: first merge vertices corresponding to the same j-invariant and their
edges, then add new edges. We will show that:

1. Two vertices with the same j-invariant also have the same j-invariants as neighbors (Proposition 3.22). This will imply that only
stacking and folding is possible in Theorem 3.29.

2. At most one component folds, and for p ≡ 3 mod 4 this is the component containing j = 1728 (Proposition 3.26).
3. Attaching of components by a new edge happens between at most one pair of vertices, and those vertices are roots of the Hilbert

class polynomial of Q(
√−15) (Proposition 3.25).

We begin with some results on the neighbors of vertices with the same j-invariant. From Corollary 3.7, we know that (except for
1728) twists have isomorphic endomorphism rings and hence lie on the same level in the volcano. More is true:

Proposition 3.22. Let j be a supersingular j-invariant and let vj and wj be two distinct vertices in G2(Fp) corresponding to elliptic curves
with j-invariant j. If j �= 1728, then two vertices with the same j-invariants have the same neighbors, that is:

1. If p ≡ 1 mod 4 and the neighbor of vj is vj′ , then the neighbor of wj is wj′ .
2. If p ≡ 3 mod 4 and if

(a) the vertices vj and wj are both on the floor, then vj and wj are each connected to a vertex with j-invariant j′,
(b) the vertices vj and wj are both on the surface, then vj has 3 neighbors with distinct j-invariants a, b, c and wj has three neighbors

with the same distinct j-invariants a, b, c.

Proof. 1. For p ≡ 1 mod 4, any connected component of G2(Fp) is an edge. If vj and wj lie on the same component, then the result
follows. Otherwise, the result can be obtained by contradiction and an application of Lemma 3.14.

2. If p ≡ 3 mod 4, Corollary 3.9 gives vj, wj are either both on the surface and on the floor of their respective components.
If they are both on the surfaces of their respective components, then they each have three neighbors: one on the floor and two

on the surface. The j-invariants of the neighbors of vj match the j-invariants of the neighbors of wj. Any coincidences of these
j-invariants would contradict the fact that there can be no cycles of length 2: for p ≡ 3 mod 4, the class number h(−p) is odd.

If they are both on the floors of their respective components, then they each have one neighbor on the surface. The j-invariants
of these neighbors must be the same, otherwise we arrive at a contradiction via Lemma 3.14 as in 1.

Corollary 3.23 (Isogenies for twists). Let φ : E → E′ be an Fp-isogeny of degree 2 and assume j(E), j(E′) �= 1728. Then, there is an
2-isogeny over Fp between the quadratic twists Et → (E′)t .

Corollary 3.24 (Attachment along a j-invariant for � = 2). Attachment along a j-invariant cannot happen for � = 2.

We already know that attaching two components by a new edge would imply a double edge (Corollary 3.15).

Proposition 3.25 (Possible attachment by a double edge). Attachment by an edge can only happen between vertices whose j-invariants
correspond to the roots of

f (X) = X2 + 191025X − 121287375

in Fp, provided these are supersingular Fp j-invariants not equal to −3375, 1728 or 0.
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Figure 6. Possible shapes for G2(Fp) for p ≡ 1 mod 4 (left) and p ≡ 3 mod 8.

Proof. By Lemma 2.7 and Corollary 3.15, any such attaching j-invariants need to be roots of Res2(X). By examining the neighbors of
the j-invariants 0, 1728 and −3375, we can easily see that they do not admit new edges coming from isogenies not defined overFp.

Proposition 3.26 (The component of j = 1728 folds). Let p ≡ 3 mod 4 be prime. The connected component V ∈ G2(Fp) containing
the vertices corresponding to j = 1728 is symmetric over a reflection passing through the vertices v1728 lying on the surface of V and
w1728 lying on the floor of V. In particular, the component V folds when we pass from G2(Fp) to S.

To understand this symmetry, picture the surface of the component V as a perfect circle with equidistant vertices and all the edges
to the floor are perpendicular to the surface. Then V is symmetric with respect to the line extending the edge [v1728, w1728]. See the
leftmost component in Figure 1. This symmetry has already mentioned in Remark 5 of [7], albeit without proof or reference.

Proof. 1. Case p ≡ 3 mod 8. V is a claw (see Figure 6(a)) and the proof of Proposition 3.25 shows that there is one 2-isogeny down
from the surface vertex corresponding to j = 1728 to each vertex with j-invariant 287496 and the other vertex corresponding to
j-invariant 1728. The claw V is clearly symmetric and folds as described.

2. Case p ≡ 7 mod 8. In this case, h(−p) is odd. We may assume that h(−p) > 1 (otherwise we are in the claw situation discussed
above).

Then v = v287,496 and w = vt
287,496 are both on the surface. By Proposition 3.22, their neighbors have the same j-invariants,

say: 1728, a, b. Say the neighbors of v are va, vb and the neighbors of w are wa, wb. Assume that va is on the floor. Since a �= 1728,
Lemma 3.9 tells us wa is also on the floor. Thus, both vb and wb are on the surface and the symmetry is preserved.

Continuing in this manner, because h(−p) is odd, we will arrive at a pair of vertices vc, wc that share an edge, accounting for
all of the vertices in the component. The symmetry holds.

Remark 3.27. In Proposition 3.26 for p ≡ 7 mod 8, the opposite vertices vc, wc from j = 1728 necessarily induce a loop in G2(Fp).
Since vc, wc are on the surface of G2(Fp), we conclude that c = 8000 (see Section 2.2). So there always is an Fp-rational 2-power
isogeny between any two supersingular elliptic curves with j-invariants 1728 and 8000.

Corollary 3.28 (Folding). Suppose V ⊂ G2(Fp) is a component which folds when passing from G2(Fp) to S ⊂ G2(Fp).

1. If p ≡ 1 mod 4, then V is a single edge between vertices with j = 8000.
2. If p ≡ 3 mod 4, then V contains both the vertices corresponding to j = 1728.

Proof. 1. If p ≡ 1 mod 4, then V is an edge: [va, vb]. Folding happens if and only if a = b, resulting in a self-2-isogeny in G�(Fp).
For p ≡ 1 mod 4, the only vertices with self-2-isogenies are j = −3375, 8000, when these j-invariants are supersingular (see
Section 2.2).

For j = 8000, there is a 2-isogeny from the curve with j-invariant 8000 given by the equation E : y2 = x3 − 4320x − 96768
to its twist y2 = x3 − 17280x − 774144. The latter is a twist of E by 2, and 8000 is only supersingular for p ≡ 5 mod 8, so 2 is a
nonsquare modulo p.

For j = −3375, there are two self-loops in G2(Fp), and at least one of them is not defined over Fp. Applying Lemma 3.14 to
this loop, we conclude that neither of these loops are defined over Fp and folding does not happen for the edge containing −3375.
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2. If p ≡ 3 mod 4, then let V be a component that folds. The surface has h(−p) vertices and this class number is odd. We assume
that V folds, so every vertex in it gets identified with the vertex corresponding to its twist. By Corollary 3.9, for j �= 1728, the two
vertices are either both on the surface or both on the floor. Since there are odd number of vertices on the surface, there cannot
only be pairs of twists on the surface, so V must contain the two vertices corresponding to j = 1728, one on the floor and the
other on the surface.

We are now ready to prove the main theorem describing the spine S:

Theorem 3.29 (Stacking, folding and attaching). Only stacking, folding or at most 1 attachment by a new edge are possible. No
attachments at a j-invariant are possible.

Proof. First, let p ≡ 1 mod 4. The components of G2(Fp) are edges. Corollary 3.28 shows that the edge containing the two vertices
with j-invariant 8000 folds (if 8000 is a supersingular j-invariant for p, i.e., p ≡ 5 mod 8). For the other edges, Proposition 3.22 says
that for any edge [va, vb] ∈ G2(Fp) the twists wa, wb also give an edge [wa, wb] ∈ G2(Fp). Moreover, Proposition 3.25 gives that there
is at most 1 attachment among these edges.

For p ≡ 3 mod 4, take any component V of G2(Fp) and any vertex va on the surface of V , a �= 1728. Choose a neighbor vb of va.
Continue along the surface in the direction of the edge [va, vb] and consider the sequence j-invariants of neighbors V = {ai} until we
reach a vertex with j-invariant a. Similarly, on the component W containing the edge wa, wb, consider the sequence of j-invariants of
the neighbors W = {bi} until we reach a vertex with j-invariant a (every surface is a cycle, so this will happen in finitely many steps).
We have the following possible outcomes:

1. For some i, we find that ai �= bi. This means that the curve i away from va on V has a different neighbor than its twist, which is i
away from wa. But this can only happen for bi = 1728 and hence the component folds by Proposition 3.26.

2. The sequences are equal, but V stops at the twist wa and W stopped at the curve va. Then va, wa are on the same component V
and the cycle on the surface has length 2 · length(V). As h(−p) is odd, this is not possible.

3. The sequences V and W are the same: the components V and W are isomorphic as graphs upon replacing the labels of vertices by
their j-invariants. The components V and W stack.

Finally, in Proposition 3.25, we showed that at most one attachment is possible.

To conclude this section, we study the possible attachments given by the roots of the polynomial f (X) = X2 + 191025X −
121287375. Because the polynomial f (X) is the Hilbert class polynomial of Q(

√−15), roots of f (X) in Fp give a supersingular
j-invariant if and only if

(−15
p

)
= −1. By factoring the discriminant of f (X) as 36 · 53 · 74 · 132, we see that there is a root in Fp if and

only if p ≡ ±1 mod 5. Combining these, we obtain that the roots of f (X) are j-invariants of a supersingular elliptic curves defined
over Fp if and only if p ≡ 1, 11, 24 or 59 mod 60.

We have an additional result about when attachment occurs, as a corollary to Proposition 3.25:

Corollary 3.30 (Attachment happens for p �≡ 7 mod 8.). Suppose that p �≡ 7 mod 8 and suppose that j and j′ are two distinct Fp-roots
of f (X) = X2 + 191025X − 121287375 (it suffices to assume p > 101). Then, the new edge [j, j′] ∈ G�(Fp) is an attaching edge.

This means that attachment happens whenever it can happen (i.e., when the roots of f (X) are in Fp) for p �≡ 7 mod 8. This is not
true for p ≡ 7 mod 8 (See Section 3.5).

Proof. First, let p ≡ 1 mod 4. The G2(Fp) components are horizontal edges. Suppose that the j-invariant j admits a double edge
[j, j′] ∈ G�(Fp) that it is not an attaching edge, i.e., there is an edge [vj, vj′ ] in G2(Fp). By Lemma 3.14, there is then a triple edge [j, j′].
This is only possible if j = 0. For j or j′ to be equal to 0, we would need X to be a factor of f (X). Since 121287375 = 36 · 53 · 113, for
p > 11 attachment happens whenever it can.

Next, let p ≡ 3 mod 8. The components of G2(Fp) are claws. If the double edge is not between two different components, then vj
and vj′ are on the same claw (for some choice of the twists). Assuming, j �= 1728, they both lie on the floor.

Let va be the unique surface vertex of V (see Figure 7). This gives us two distinct loops in G2(Fp) of length 3 corresponding to
endomorphisms of norm 8 in EndFp

(Ej).
To check for the existence of such an endomorphism, we need to check whether the roots of f (X) can simultaneously be the roots

of the modular polynomial �8(X, X). Taking the resultant Res(f (X), �8(X, X)) we get

(−1) · 372 · 536 · 748 · 1134 · 1324 · 3710 · 412 · 438 · 592 · 71 · 892 · 1012.

For primes p > 101, this will be nonzero, and there is no such a loop in G2(Fp); hence, attachment happens. In the factorization of
the resultant, there are two primes satisfying p ≡ 11, 59 mod 60 and 3 mod 8. For p = 11, we only have one connected component
of G2(Fp), for p = 59, attachment happens.
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Figure 7. The double edge from j to j′ .

Figure 8. Comparing average distances between random vertices in G2(Fp) and between connected components of S ⊂ G2(Fp). On the horizontal axis, we have primes
p ≡ 1 mod 4. The height of each point represents (avg. distance between Fp-components) - (avg. distance between 100 random points of G2(Fp)).

In the case p ≡ 7 mod 8, not all attachments that can happen necessarily do. We checked this for all primes p ≡ 7 mod 8 between
50, 000 and 100, 000 such that the primes above 2 do not generate the class group (in this case, there is clearly only one connected
component of S). There are 217 such primes, and for 41 of them the attachment happens. However, there are 12 primes p for which
the attachment can happen (p ≡ 11 or 59 mod 60) but there is no attachment. For instance, for p = 53639, the two roots of f (X) are
j = 30505 and j = 46665. There are two elliptic curves with these j-invariants on the same component of G2(Fp) which are 48 edges
apart.

3.5. Distances between the components of the S ⊂ G2(Fp)

In 3.3 and 3.4, we described how the spine S is formed by passing from G�(Fp) to G�(Fp). In principle, one can then describe the
shape and connectedness of S based on the knowledge of G�(Fp) and congruence conditions on p. A natural and important question
is how the spine S sits inside the graph G�(Fp). We study this question for � = 2.

For primes p ≡ 1 mod 4, the subgraph is given by single edges (with a possibility of an isolated vertex and one component of
size 4), as we showed in Section 3.2. We expect the distances between components of the graph to behave like the distances between
random vertices of the graph. To investigate if the Fp-components are somehow distinguished, we compare the distances between
Fp-components with the distances between random vertices of the graph: In Figure 8, we compare these distances for 254 primes
with p ≡ 1 mod 4 from 10253 to 65437. The primes were chosen to be spaced with a gap of at least 200. To approximate the distance
between random points, we sample the distances between 100 pairs of random points on the graph. The vertical axis of this figure
represents the difference [(average distance of Fp-components) − (average distance between 100 random pairs of points)]. For this
range of primes, the average distances between Fp-components ranged between 8.20 and 10.95. The average distances between pairs
of randomly chosen vertices ranged between 7.82 and 10.85. Notice that these differences are mostly positive: The average distances
between components is slightly larger than distance between two random points in G2(Fp) (around 3.6% larger).

We now consider the case where p ≡ 7 mod 8. In this case, the graph G2(Fp) is a union of 2-level volcanoes, each with h(−p)

vertices on the surface and h(−p) vertices on the floor. The size of the surface of any volcano is the order of the prime above 2 in
the class group cl(OK). If a prime above 2 generates the class group, G2(Fp) is connected and so is S. The converse is not true, as
it is possible for S to become connected via attaching. In this case, we again compare the distances between Fp-components and
the distances between random vertices. In the range 50000 < p < 100000, there are 217 primes for which a prime p2 above 2 does
not generate the class group. For these 217 primes, we observed that for 12 primes, the spine S is nonetheless connected. For 57 of
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Table 1. Size and shape of the spine, depending on primes modulo 8, the
integer n denotes the order of any prime above 2 in cl(OK ).

prime mod 8 shape of G2(Fp) #S ≈ #(S-Components)

1 mod 4 edges 1
2 h(−4p) 1

4 h(−4p)

3 mod 8 claw 2h(−p) 1
4 · 2h(−p) = 1

2 h(−p)

7 mod 8 volcanoes h(−p) 1
2n · h(−p)

those primes, there were exactly two connected components. The distances between these connected components was less than or
equal to 6.

The graphs have between 5400 and 8300 vertices and diameters of length between 14 and 16. For 2-isogeny graphs of this size, the
average distance between two random vertices is around 9 (∼ 0.6× diameter). This number grows slowly (for primes p ≈ 500000, the
average distance between two random vertices is ∼ 0.7× diameter) and we expect it to converge to the diameter. We also computed
the average of the mean distances between connected components of S ⊂ G2(Fp) for these primes. The mean is 4.3395, with standard
deviation 1.1092. The maximum is 7.000 and the minimum 2.333, which indicates that the components tend to be close to each other.

3.6. The number of components in the spine for � = 2

In this section, we briefly comment on the number of connected components of S and relatedly, on the number of connected
components in G2(Fp). By Theorem 3.29, we know at most one component of S folds, and at most two components are attached
by a new edge. It is therefore easy to determine the approximate number of components depending on the size of the spine and the
shape of the connected components in G2(Fp).

The number of vertices in S can be determined from [8]

#S =

⎧⎪⎨
⎪⎩

1
2 h(−4p) if p ≡ 1 mod 4,
h(−p) if p ≡ 7 mod 8,
2h(−p) if p ≡ 3 mod 8.

where h(d) is the class number of the imaginary quadratic field Q(
√

d). Using standard estimates for class numbers, one typically
approximates h(d) ≈ √|d|.

4. Conjugate vertices, distances, and the spine

The existence of mirror paths (see Definition 2.6) in G�(Fp) motivates us to question their length in relation to the diameter of the
graph. Delfs and Galbraith [10] show that if one navigates to the spine S, one can solve the path finding problem in subexponential
time using the quantum algorithm in [3]. This leads naturally to the question of how the spine S sits in the full �-isogeny graph. We
consider these questions from three perspectives in this chapter. In Section 4.1 we study the distance between Galois conjugate pairs
of vertices, that is, pairs of j-invariants of the form j, jp. Our data suggest these vertices are closer to each other than a random pair
of vertices in G2(Fp). In Section 4.2, we test how often the shortest path between two conjugate vertices goes through the spine S

(contains a j-invariant in Fp). We find conjugate vertices are more likely than a random pair of vertices to be connected by a shortest
path through the spine. Finally, we continue to examine the question of navigating to the spine S by considering the distance between
arbitrary vertices and the spine S in Section 4.3.

4.1. Distance between conjugate pairs

Isogeny-based cryptosystems such as cryptographic hash functions and key exchange algorithms rely on the difficulty of computing
paths (routing) in the supersingular graph G�(Fp). Our experiments with � = 2 show that two random conjugate vertices are closer
than two random vertices. These shorter distances may indicate that it is computationally easier to find paths between conjugate
vertices, when compared with random graph vertices. We analyze the differences between these distances in this section, using the
following experimental practices: Given prime p, we constructed the graph G2(Fp). Then we computed the distances dist(j1, j2)

between all pairs of (Fp2 \ Fp)-vertices j1, j2 ∈ G2(Fp). These values were organized into two lists:

Cp = [dist(j, jp) : j ∈ Fp2 \ Fp],
Ap = [dist(j1, j2) : j1, j2 ∈ Fp2 \ Fp].

We call the pairs from Cp conjugate pairs and pairs from Ap arbitrary pairs.
The distributions Cp and Ap for p = 19489 are shown in Figure 9. For a larger prime, it is too costly to iterate over all vertices.

Instead, we took a random sample of 1000 conjugate and arbitrary pairs. The data collected for the prime p = 1000003 is shown in
Figure 10.
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Figure 9. Histogram of distances measured between conjugate pairs and arbitrary pairs of vertices not in Fp for the prime p = 19, 489.

Figure 10. Histogram of distances between 1000 randomly sampled pairs of arbitrary and conjugate vertices for the prime p = 1, 000, 003.

In these examples, we see different distributions for the conjugate pair distances compared with the arbitrary pair distances. For
both primes, conjugate pairs are more likely to be closer than arbitrary pairs. This indicates that conjugate pairs of vertices have a
somehow special position in the graph. This is likely related to the fact that the neighbors of curves with conjugate j-invariants are
also conjugate, as discussed in Section 2.

In Figure 10, we see a clear bias toward paths of odd length (that is, paths with an odd number of edges). This is due to the fact
that conjugate j-invariants often admit a shortest path that is a mirror path (Definition 2.6). These paths do not usually go through
the spine S, so they have an even number of vertices and an odd number of edges. This topic is studied further in Section 4.2.

Further studies on a broader sample of primes would be required to fully explore the differences between the distributions of
distances between conjugate and arbitrary vertices.

4.2. How often do shortest paths go through the spine S

Motivated by the work of Delfs and Galbraith [10], we consider the question of how easy it is to navigate to the spine S. In their work,
Delfs–Galbraith use L-isogenies to navigate to the spine S, where L is a set of small primes. We study the situation when L = {2}.
Any path from j to a vertex j in the spine S can then be mirrored to obtain a path of equal length from j to jp, and hence a path
between j and jp passing through the spine. This construction motivates the following definition:

Definition 4.1. A pair of vertices are opposite if there exists the shortest path between them that passes through the Fp spine.

4.2.1. Experimental methods
We used built-in functions of Sage [26] to perform our computations. We tested how often a shortest path between two conjugate
vertices went through the spine S. Shortest paths are not necessarily unique, so it is not enough to compute a shortest path and check
whether it passes through the spine. Instead, to verify whether a pair j1, j2 is opposite, we run over all vertices in j ∈ Fp and check
whether there is a j such that

dist(j1, j2) = dist(j1, j) + dist(j, j2).

For smaller primes (< 5000), we computed the proportions for all pairs of vertices in Fp2\Fp. For larger primes, we randomly
selected 1000 pairs of points j1, j2 in Fp2\Fp and checked whether each of the pairs (j1, j2), (j1, j

p
1 ) were opposite.

In the following two subsections, we present these data sorted in two ways: comparing conjugate pairs and arbitrary pairs, and
comparing differences in distances between arbitrary vertices for different congruence classes of p mod 8.
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4.2.2. Conjugate pairs vs. arbitrary pairs
For each prime p ranging between 50000 and 100000, we sampled data from 1000 random conjugate pairs of vertices and 1000 pairs
of arbitrary vertices. We computed the proportions of conjugate pairs which are opposite and the proportions of arbitrary pairs which
are opposite. This data is displayed in Figure 11.

Our data suggest conjugate vertices are more likely to be opposite than arbitrary vertices and that this bias increases with p. For
the primes displayed in Figure 11, conjugate pairs are more than four times as likely to be opposite, compared with arbitrary pairs.
For 1000 < p < 5000 (not displayed), conjugate pairs are approximately twice as likely to be opposite than random pairs.

The graph G�(Fp) can be symmetrically constructed from S by adding edges and mirror edges at once, leading one to suspect S

to be central to the graph. However, we have found the shortest paths between arbitrary pairs of vertices are less likely to pass through
the spine, contradicting that perspective.

4.2.3. Varying the residue class of p
In this section, we consider only arbitrary pairs of vertices, and we study the overall connectivity of the graph by looking at the
proportions of opposite arbitrary vertices, for primes p in different congruence classes modulo 8. See Figure 12.

In these data, we have computed for each prime p a random sample of 1000 arbitrary pairs of vertices and checked how many
are opposite. Then, we take this number and divide by 1000 · |S|, to account for differences in the numbers of Fp vertices for these
primes. We have sorted the data by primes p mod 8 and displayed it in the graphs in Figure 12. Our results suggest that the size and
connectedness of the spine S could be the key factor affecting the proportion of opposite pairs:

1. Size of S: Shortest paths are more likely to pass through S if it is larger. We account for this by dividing the proportions of opposite
arbitrary pairs of vertices by |S| in Figure 12. The normalized proportions still differ modulo 8, indicating another factor is at play,
possibly the connectedness of S.

2. Connectedness of S: When S is less connected, pairs are more likely to have shortest paths through it. From the table in Section 3.6,
the spine is the least connected when p ≡ 1 mod 4, and can be most connected when p ≡ 7 mod 8. This could explain the difference
in proportions when normalized by the size of S.

For example, consider p1 = 19991 (p1 ≡ 7 mod 8, S is connected, |S| = 199) and p2 = 19993 (p ≡ 1 mod 4, S is maximally
disconnected, |S| = 30). We would expect 199/30 > 6 times more opposite pairs in the p1 case. However, for 1000 arbitrary
pairs, only 266 pairs were opposite for p1 compared to 112 pairs for p2.

To further study whether differences occurring in the normalized proportions of vertices which are opposite for p mod 8 were
due to the connectedness of S, we took a random subgraph of the same size as S and obtained the proportion of pairs of
arbitrary vertices with a shortest path passing through the random subgraph. We took the average of these results over 10 random
subgraphs for each prime between 1000 and 5000. The data, in Figure 13, show less distinction mod 8 compared to the data in

Figure 11. Proportions of vertex pairs that are opposite; x-axis represents primes. The data are for a random sample of 1000 pairs of conjugate and arbitrary pairs.

Figure 12. The horizontal axes of these figures are primes. The heights are proportions of 1000 pairs of arbitrary vertices which are opposite, normalized by |S|.
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Figure 13. Normalized proportion of pairs with a shortest path through the specified subgraph, as p varies.

Figure 12. This suggests that the connectedness of S is a dominant factor affecting the normalized proportion of opposite pairs of
vertices.

4.3. Distance to spine

In this section, we investigate how connected the spine is to the rest of the graph, motivated by the path-finding algorithm of Delfs
and Galbraith [10].

4.3.1. Distance to the spine versus a random subgraph
For two fixed primes, we study how the spine fits into the graph, and compare this with a randomly selected subgraph. Specifically,
we compare a random vertex’s distance to the spine, with a random vertex’s distance to a random subgraph of the same size as the
spine. We observe that if the spine is connected, then the distance to the spine seems greater than the distance to a random subgraph.
This agrees with the intuition that a small connected subgraph (|S| ≈ O(

√p)) will be further from most vertices than a random
subgraph, which will have many connected components uniformly distributed throughout the graph.

We studied these distances for the primes, p = 19991 and p = 19993. For p = 19991, the subgraph S is connected, and for
p = 19993, S is maximally disconnected (see [10]). For each value of p, we constructed the graph G2(Fp), the spine S0 := S, and
chose several random subgraphs S1, . . . , Sn. We define the distance between a vertex j and a subgraph Si to be

dist(j, Si) = min{dist(j, j′) : j′ ∈ Si}.

We computed lists di = [dist(j, Si) : j ∈ G2(Fp)] in order to measure how dispersed Si is in G2(Fp). Histograms of the distributions
of the di are given in Figure 14.

The significant difference between the two primes shown in Figure 14 can also be explained by the number of vertices in S. Since
G2(Fp) is a 3-regular graph, for a random vertex j, there are at most 3 · 2d−1 vertices of distance d away from j (and this limit is
achieved if there are no collisions on the paths leaving j). If G2(Fp) has N vertices and H is a random subgraph with M vertices, then
the expected distance to H from a random vertex should be ≈ log2(N/M). For p = 19991, |S| = 199, so we expect the average
distance to S to be 3.06. For p = 19993, |S| = 30, so we expect the average distance to S to be 5.80.

When maximally disconnected, the distances to the spine were similar to that of a random subgraph. However, when the spine is
connected, the distances are slightly longer. This shows that modeling the spine as a random subgraph may lead to an underestimate
of the distances.

4.3.2. Comparison across primes p
In order to compare the distances to S across different primes and account for the expected average distance based on the size of S

we consider normalized distances as follows:

dp = (average distance to S for prime p)/ log2(|G2(Fp)|/|S|).
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Figure 14. Distances to the spineS contrasted with distances to a random subgraph R of the same size. The spineS is connected for p = 19, 991 and a union of disconnected
edges for p = 19, 993.

Figure 15. Normalized average distances dp to the spine S , as prime p varies on the horizontal axes.

Figure 16. Size of the spine as prime p varies on the horizontal axes.

Recall that log2(|G2(Fp)|/|S|) is the expected distance to the spine from a random vertex. We observed that the average distances
were lower than the expected distance based on the connectedness of S. There are also clear differences in the distributions of dp
when considering residue classes of p modulo 8. This is shown in Figure 15. In particular, the data mod 8 match our findings on the
proportion of opposite pairs, see Figure 12.

However, the different behavior of dp for the different congruence classes mod 8 can be explained by the size of the spine. If the size
of the spine |S| is large, we will need fewer steps to reach the spine from a random vertex v. Hence, when counting the paths of length
d from v, we will encounter less backtracking and the estimate is more precise. Looking at Figure 16, we see that for p ≡ 7 mod 8,
the size of the spine is the largest, and for p ≡ 1 mod 4, the size of the spine is the smallest.

We also tested this within a fixed congruence class: for primes p with p ≡ 7 mod 8 and 15000 < p < 20000, the mean distance to
the spine is 4.040 with standard deviation 0.413 if |S| < 100 and mean 3.007 with standard deviation 0.335 if |S| > 100.
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Figure 17. Proportion of 2-isogenous conjugate pairs in G2(Fp) for 10, 007 ≤ p ≤ 100, 193.

Table 2. Proportions of 2-isogenous conjugates, 10007 ≤
p ≤ 100193, sorted by p mod 12.

p ≡ 1 mod 12 p ≡ 5 mod 12

Total # of primes: 2079 2104
Mean: 0.043551 0.021969
Standard deviation: 0.019815 0.010206

p ≡ 7 mod 12 p ≡ 11 mod 12
Total # of primes: 2101 2094
Mean: 0.043375 0.022244
Standard deviation: 0.020140 0.010512

5. When are conjugate j-invariants �-isogenous?

5.1. Motivation

In Section 4.2, we studied paths between conjugate j-invariants in G2(Fp) that go through the spine S. If j and jp happen to be
2-isogenous, then the shortest path between them has length one and does not go through S. This leads us to the natural question:

Question 1. How often are conjugate Fp2 \ Fp j-invariants �-isogenous, for � = 2, 3?

5.2. Experimental data: 2-isogenies

We collected data on supersingular j-invariants over Fp2 for all primes 5 ≤ p ≤ 100193 (a total of 9605 primes). For each p, we
determined all of the Fp2 \ Fp j-invariants and counted those that are also 2-isogenous to their conjugates.

With a few exceptions, all of the proportions computed are positive and strictly less than 1. The small primes (roughly p < 5000)
have a wide range of proportions, between 0 and 1. This is expected due to the small number of points on their G�(Fp) graphs. For
example: there are some primes p such that all of the pairs of conjugates are 2-isogenous. On the other hand, if G�(Fp) \ G�(Fp) = ∅
then the proportion will be trivially zero. This happens only for 15 small primes, namely those dividing the order of the Monster
group [21]. Notably, the only examples of p for which the proportion is zero, but not trivially zero, are p = 101, 131.

To avoid small prime phenomena, we focused on analyzing the data we collected for 10007 ≤ p ≤ 100, 193, a total of 8378 primes.
The graph of proportions for these data can be found in Figure 17. We found that the mean proportion in the data is 0.032780 with
a standard deviation of 0.019134.

We then sorted the data by congruence conditions to look for patterns. The biggest difference appeared when we re-sorted the data
according to the congruence class of the primes modulo 12. The primes in this range are fairly evenly distributed into the congruence
classes modulo 12, as one can see in Table 2.

5.2.1. Primes modulo 12
In Table 2, we summarize the differences between the congruence classes modulo 12. Note the similar, higher means for p ≡
1, 7 mod 12 and the similar, lower means for p ≡ 5, 11 mod 12. These distributions are skewed according to the congruence class,
as we can also see from the graph in Figure 17(b). There appears to be a correlation between primes p ≡ 1, 7 mod 12 and between
primes p ≡ 5, 11 mod 12. A two-sample t-test confirms these correlations at the 99.8% level.

5.3. Experimental data: 3-isogenies

We collected data on the supersingular j-invariants overFp2 for all the primes 5 ≤ p ≤ 100193 (a total of 9,605 primes) and computed
the proportion of conjugate pairs that are also 3-isogenous. We present these data in the same format as the 2-isogeny data presented
in Section 5.2.
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Figure 18. Proportion of 3-isogenous conjugate pairs in G2(Fp) for 10, 007 ≤ p ≤ 10, 0193.

Table 3. Proportions of 3-isogenous conjugates for
10007 ≤ p ≤ 100193, sorted by p mod 12.

p ≡ 1 mod 12 p ≡ 5 mod 12

Total # of primes: 2079 2104
Mean: 0.058526 0.059034
Standard deviation: 0.029488 0.029729

p ≡ 7 mod 12 p ≡ 11 mod 12
Total # of primes: 2101 2094
Mean: 0.035620 0.036107
Standard deviation: 0.016369 0.016706

Once again, we observe some small prime phenomena (proportions of 1 and 0 for p small). However, in the 3-isogeny case we
do not have nontrivial examples of primes p for which the proportion of 3-isogenous conjugates is 0. On the contrary, if there exist
conjugate j-invariants in Fp2 \ Fp, then there is at least one pair of 3-isogenous conjugates. (Recall that the two counterexamples to
this statement in the 2-isogeny case were p = 101131.)

To avoid small prime phenomena, we again focused on analyzing the data we collected for 10007 ≤ p ≤ 100193, a total of 8378
primes. The graph of proportions for these data can be found in Figure 18.

In this collection of data, for primes 10007 ≤ p ≤ 100193, we found there to be a mean proportion of 3-isogenous conjugate pairs
of 0.047306, with standard deviation of 0.026568.

As in the 2-isogeny case, we again sorted the data by congruence conditions to look for patterns. The biggest difference appeared
when we re-sorted the data according to the congruence class of the primes modulo 12.

5.3.1. Primes modulo 12
In Table 3, we summarize the differences between the different congruence classes modulo 12. Note the similar and higher means for
p ≡ 1, 5 mod 12 and the similar and lower means for p ≡ 7, 11 mod 12, as we can also observe in Figure 18(b). There appears to be a
correlation between primes p ≡ 1, 5 mod 12 and between primes p ≡ 7, 11 mod 12. A two-sample t-test confirms these correlations
at the 99.8% level.

5.4. Further Questions

Our experimental data suggest that, at least for � = 2, 3 and with the exception of a few small primes, the proportion of conjugate
pairs that are �-isogenous is a small positive number. In particular, all of the primes p �= 101, 131 with supersingular j-invariants in
Fp2 \ Fp observed have at least one such pair. This motivates the following two questions:

Question 2. For p > 131, is there always at least one pair of �-isogenous conjugate j-invariants on G�(Fp)?
Question 3. For large p, is there a nontrivial lower and/or upper bound for the proportion of �-isogenous conjugate j-invariants on

G�(Fp)?
A partial answer to Question 3 can be found in Lemma 6 of [5], which states that, in the case when p ≡ 1 mod 12, the set of

j-invariants that are adjacent to their conjugates in G�(Fp) is of size
√

�Õ(
√p), which yields an upper bound. [12] provided an

answer regarding the lower bound in Question 3, and thus also for Question 2. [12] is concerned with computing endomorphism
rings of supersingular elliptic curves over Fp2 by finding cycles in G2(Fp). The construction of these cycles involves finding j-invariants
that are adjacent to their Fp-conjugates. As part of the analysis of the algorithm, they proved that the cardinality of the set of such
j-invariants is larger than C

√p
log log p , for some constant C depending on � (assuming GRH). Both of these proofs assume that � < p/4.

However, these bounds do not seem to explain the significant difference in the average of the proportion of �-isogenous conjugate
pairs when we vary the congruence class of p modulo 12. This prompts us to formulate the question:

Question 4. How does the proportion of �-isogenous conjugate j-invariants on G�(Fp) relate to the conjugacy class of p mod 12?
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Remark 5.1. We can also consider �-isogenous conjugate pairs of j-invariants in the context of the modular curve X0(�). In [21],
Ogg defined X0(�)

+, the Atkin-Lehner quotient of X0(�) by the Fricke involution. If two conjugate Fp2 \ Fp j-invariants j, jp are �-
isogenous, then (j, jp) is a point of X0(�). The image of (j, jp) under the quotient map is an Fp-rational point of X0(�)

+. Conversely,
anyFp-rational point of X0(�)+ whose preimage in X0(�) contains a non-Fp point corresponds to an �-isogenous conjugate pair j, jp.
Intersecting with the supersingular locus, we have an alternative description of the set of Fp2 \ Fp �-isogenous conjugate pairs in the
Supersingular Isogeny Graph.

6. Diameter

Numerical experiments in [22] estimated the diameters of k-regular LPS Ramanujan graphs and random Cayley graphs to be
asymptotically 4

3 · logk−1(n) and logk−1(n) respectively, where n is the number of vertices. We present data on the diameters of
the supersingular 2-isogeny graphs, which are 3-regular on p/12 + ε vertices, with ε = 0, 1, or 2, depending on the congruence class
of p mod 12.

For p ≡ 3 mod 4, the j-invariant 1728 appears in a special place of the graph - it is only 2-isogenous to one other curve. This
isolated position in the graph may lead to longer diameters of G�(Fp) for p ≡ 3 mod 4.

We can see a lower bound

log2

(⌊ p
12

⌋)
− log2(3) + 1

on the diameter as follows. Starting from a random vertex and taking a walk of length n, the walk reaches at most 3 · 2n−1 vertices as
endpoints (exactly that number if there are no collisions). Since there are

⌊ p
12

⌋+ε vertices in the graph, with ε = 0, 1, 2, the diameter
cannot be less that the smallest n0 such that

3 · 2n0−1 + 1 ≥
⌊ p

12

⌋
+ ε.

We collected graph data for the diameters of the supersingular 2-isogeny graphs G2(Fp) for 4600 primes p. We used the built-in
Sage "diameter" function [26] on the graphs. The implementation can be found in the walk.sage worksheet available on our github
repository. We collected diameters of G2(Fp) in batches for ranges of primes. The smallest prime we have data for is p = 1009 and
the largest is p = 9501511. This data is displayed in Figure 19.

The shifted (4/3) log2(p/12) graph (in a solid line) seems to increase too steeply for larger prime values. This could suggest that
the 2-isogeny graph diameters may be more like random Cayley graphs, i.e. with distribution closer to log2(p/12). However, our
numerical data are inconclusive: diameters for larger primes would be needed to make a conclusion, but our algorithm would not be
able to find those in a reasonable amount of time.

For this reason, we adjusted our algorithm to find lower bounds on the diameter: We chose j = 0 as the starting vertex and in every
step, we added the neighbors of all the known vertices, and truncated the computation instead of computing the entire graph. This
gives a lower bound on the diameter. This algorithm allowed us to find lower bounds for the diameters of G�(Fp) for larger primes
p, shown in Figure 20. We see in Figure 20(b) that the dashed curve y = log2(p/12) + log2(12) + 1 no longer fits the data. We chose

Figure 19. Diameter of G2(Fp) for 4600 primes p with 1009 ≤ p ≤ 9, 501, 511 with y = log2(p/12) + 1 + log2(12) (dashed), y = 4/3 log2(p/12) + 1 (solid) and the
proven lower bound y = log2(p/12) − log2(3) + 1 (dotted).
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Figure 20. Lower bounds on the diameter ofG2(Fp) for 431 primes p ≡ 23 mod 24 with 1020431 < p < 15201671, along with the graphs of y = log2(p/12)+α (dashed),
y = 4/3 log2(p/12) + β (solid).

Figure 21. Diameters of 2-isogeny graph over Fp for different congruence classes of the prime p, shown with y = log2(p/12) + log2(12) + 1

Table 4. Average diameters sorted by primes modulo 12.

average diameter for 100, 000 < p < 300, 000

1 mod 12 17.2190476190476 5 mod 12 17.8761061946903
7 mod 12 17.7346938775510 11 mod 12 17.9919354838710

average diameter for 300, 000 < p < 500, 000
1 mod 12 18.4000000000000 5 mod 12 18.9230769230769
7 mod 12 18.8235294117647 11 mod 12 19.1000000000000

Note: The first dataset contains around 100 primes in each congruence
class, the latter between 10 and 17 primes.

primes p ≡ 23 mod 24. See Section 6.1 for discussion on the difference mod 12; we also chose p ≡ 7 mod 8 so that the spine S (see
Definition 2.5) has the same structure and approximate size (see Section 3.6).

We tried fitting the curves log2(p/12) + α and 4/3 log2(12) + β with the best constants α, β and as a first approximation we tried
minimizing the sum of squares of distances to these curves, yielding α ≈ 4.8168 and β ≈ −1.3356.

6.1. How does diameter vary for different congruence classes of primes modulo 12?

We investigated the behavior of the diameter as p varies modulo 12. We found a slight, but noticeable, bias: Primes p ≡ 5, 11 mod 12
tend to have a 2-isogeny graph of larger diameter compared with primes p ≡ 1, 7 mod 12. This is visible in Figures 21(a) and 21(b). In
Figure 21(b), the diameters tend to be slightly larger than the graph of y = log2(p/12) + log2(12) + 1, whereas those in Figure 21(a)
tend to be more evenly distributed above and below y = log2(p/12) + log2(12) + 1. Table 4 supports the visible bias.

7. Conclusions

We determined how the connected components of G�(Fp) merge together to give the spine S ⊂ G�(Fp). For any specific � and any
p, one can determine the resulting shape explicitly if one knows the structure of the class group cl(OK).

For � = 2, we summarize the biases we observed in our heuristic data, for the different congruence classes of p mod 12. The data
suggest the following, although more careful analysis is needed to confirm:

• p ≡ 1 mod 12:

– smaller 2-isogeny graph diameters,
– larger number of spinal components, and
– larger proportion of 2-isogenous conjugate pairs,

• p ≡ 11 mod 12:
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– larger 2-isogeny graph diameters,
– smaller number of spinal components, and
– smaller proportion of 2-isogenous conjugate pairs.
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