10

11

12

13

14

15

16

17

18

19

20

21

Abundance, diversity, and host assignment of total, intracellular,

and extracellular antibiotic resistance genes in riverbed sediments
AUTHORS: A.S. Deshpande,® N.L. Fahrenfeld®

 Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901

® Civil and Environmental Engineering, Rutgers University, 500 Bartholomew Rd., Piscataway,

NJ 08854; nfahrenf(@rutgers.edu

Abstract

Human health risk assessment for environmental antibiotic resistant microbes requires not only
quantifying the abundance of antibiotic resistance genes (ARGs) in environmental matrices, but
also understanding their hosts and genetic context. Further, differentiating ARGs in intracellular
and extracellular DNA (iDNA and eDNA) fractions may help refine our understanding of ARG
transferability. The objectives of this study were to understand the (O1) abundance and diversity
of extracellular, intracellular, and total ARGs along a land use gradient and (O2) impact of
bioinformatics pipeline on the assignment of putative hosts for the ARGs observed in the
different DNA fractions. Sediment samples were collected along a land use gradient in the
Raritan River, New Jersey, USA. DNA was extracted to separate eDNA and iDNA and qPCR
was performed for select ARGs and the 16S rRNA gene. Shotgun metagenomic sequencing was
performed on DNA extracts for the different DNA fractions. ARG hosts were assigned via two
different bioinformatic pipelines: network analysis of raw reads versus assembly. Results of the
two pipelines were compared to evaluate their performance in terms of number and diversity of

linkages and accuracy of in silico matrix spike host assignments. No differences were observed
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in the 16S rRNA gene normalized su/l concentration between the DNA fractions. The overall
microbial community structure was more similar for iDNA and total DNA compared to eDNA
and generally clustered by sampling site. ARGs associated with mobile genetic elements
increased in iDNA for the downstream sites. Regarding host assignment, the raw reads pipeline
via network analysis identified 247 ARG hosts as compared to 53 hosts identified by assembly
pipeline. Other comparisons between the pipelines were made including ARG assignment to taxa

with pathogens and practical considerations regarding processing time.

Keywords: ARG, su/l, metagenomic sequencing, assembly, network analysis, eDNA, iDNA

1. Introduction

Increasing rates of antibiotic resistant infections, including some community-acquired (CDC,
2019), have raised concerns about environmental sources of antibiotic resistant microbes. The
abundance of environmental antibiotic resistance genes (ARGs) is well-documented [e.g., (Hong
et al., 2013)] in comparison to our understanding of their hosts and genetic contexts.
Understanding the genetic context of an ARG can provide insight into (1) the hazard posed by
the host organism and (2) the potential mechanisms and rates of gene transfer (Ashbolt et al.,
2013; Martinez et al., 2015; Vikesland et al., 2017). For example, a chromosomally encoded
ARG is expected to transfer less readily than a plasmid encoded ARG (Mazel and Davies, 1999;
Rowe-Magnus and Mazel, 2002). Further, extracellular ARGs propagate by transformation
whereas intracellular ARGs can propagate by transduction or conjugation, indicating a
fundamental difference in the fate and transmissivity of these two fractions of DNA (Mao et al.,

2014; Zhang et al., 2013). However, there is no consensus for how to perform host assignment
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for ARGs in environmental metagenomic studies and it is not clear how extracellular DNA

(eDNA) in environmental samples can impact the results.

A growing body of literature reports ARG relative abundances and diversity through
metagenomic sequencing of riverbed sediments (Chen et al., 2019; Chen et al., 2020; Jiang et al.,
2018). Given that DNA can persist in sediment for months to millennia due to adsorption to
sediment particles (Deere et al., 1996; Lorenz and Wackernagel, 1987; Turner et al., 2015;
Willerslev et al., 2014), there is motivation for understanding the extracellular ARG loads in this
matrix (Alawi et al., 2014; Chen et al., 2018; Corinaldesi et al., 2005; Guo et al., 2018; Mao et
al., 2014; Zhang et al., 2018). A potentially important source of extracellular ARGs to the water
environment is wastewater effluents from facilities using disinfectants that disrupt cell
membranes but not destroy the released DNA (Dodd, 2012). While there are reports of eDNA
metagenomes from sewage sludge (Calderon-Franco et al., 2021; Zhou et al., 2019) and
aquaculture farm sediment (Chen et al., 2018), there is a paucity of data differentiating DNA
fractions in riverbed sediments towards identifying ARGs and assigning their hosts. Of particular
interest is how the potentially spatially variable concentrations of eDNA may affect ARG

profiles and host assignments in environmental metagenomes.

Assigning a gene to a putative host in environmental metagenomic studies can been done by
read- or assembly-based pipelines (Scholz et al., 2012). Read-based pipelines often apply
network analysis, relying upon correlation between ARG and host 16S rRNA gene abundances.
Assembly of raw reads increases the confidence in gene prediction (Loman et al., 2013) and
allows for the construction of novel genomes and genomic elements (Howe et al., 2014).
However, non-uniform sequencing depths for different organisms in a sample or high

community complexity can cause the assembly to be highly fragmented (Breitwieser et al., 2019;
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Xie et al., 2010) or result in low mapping percentage of reads to the assembly (Vollmers et al.,

2017).

The objectives of this study were to understand the (O1) spatial variability in abundance and
diversity of extracellular, intracellular, and total ARGs along a land use gradient and (O2) impact
of bioinformatics pipeline on the assignment of putative hosts for the ARGs observed in different
DNA fractions. For (O1), qPCR for select ARGs and shotgun metagenomic sequencing was
performed on eDNA, intracellular DNA (iDNA), and total DNA from riverbed sediments. For
(02), host assignments based on network analysis of raw reads and assembly were compared to
understand their performance in terms of number and diversity of ARG-host linkages. In silico
matrix spikes were performed to provide a measure of the accuracy of host assignments. Overall,
these results can help inform the choice of methods applied in future studies of antibiotic
resistance in riverbed sediments towards better defining the potential hazard posed by this matrix

for environmental antibiotic resistance.

2. Material and Methods

2.1 Sampling

Riverbed sediment samples were collected from five public access sites along the Raritan River
in New Jersey, USA (Fig. 1, Table S1), coinciding with long term civic science monitoring for
macroinvertebrates and/or pathogens. The sites have varying influence by wastewater effluent,
urban activities, agricultural activities, and tides (Table S2). Composite sediment core samples (5
cores/site) were collected using a soil probe (JMC, Clements Associates Inc., Newton, IA) from
the upper 8-9 cm of riverbed sediment. Field blanks, which consisted of autoclaved deionized

water, were left open for the duration of the sampling. All the samples were stored and



88  transported to lab in coolers on ice and then immediately stored at 4°C until processing. All
89  processing occurred within one week of sample collection. Water and sediment quality

90  parameters were measured for each site and details are provided in S7 /.
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91

92 Fig. 1: Land use map of study catchment with sampling sites (black triangles) and major (red)
93 surface water discharges. Insert map shows location of the study area within the state of New

94 Jersey, USA.

95 2.2 Total, eDNA, and iDNA extraction

96  Field samples were prepared for DNA extraction by combining composite samples in the

97  laboratory. Composite sediment samples were sieved (2000 um) and homogenized for each site.
98  Total DNA extraction was performed on the homogenized sediment (0.5 g) using a FastDNA®

99  Spin kit for soil (MP Biomedicals, Solon, OH, USA) following the manufacturer’s instructions.

100  DNA extracts were resuspended in 100 pL of DES buffer and stored at -20°C until analysis.
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eDNA was separated from iDNA according to previously developed protocols (Corinaldesi et al.,
2005; Mao et al., 2014) with few minor modifications. Based on previously developed protocols,
sodium phosphate buffer and polyvinyl polypyrrolidone (PVPP) was added to 1.5 g of sediment
(wet weight). The mixture was mixed on a shaker table (250 rpm, 5 min) followed by
centrifugation at 7100 x g for 25 minutes. The supernatant containing eDNA was removed from
the tubes with care to not disturb the pellet containing iDNA. Sodium phosphate buffer was
again added to the pellet, and the process was repeated, as above. Following separation, the
pellets were stored at -20°C until iDNA extraction. The supernatants were combined and filtered
(Cyclopore, Whatman). eDNA concentration was performed on the filtrate using cetyl trimethyl
ammonium bromide (CTAB, 1% w/v) buffer. A phenol chloroform isoamyl alcohol extraction
was performed followed by an alcohol precipitation during which GlycoBlue™ coprecipitant
(Invitrogen™, Thermo Fischer Scientific) was added during the alcohol precipitation steps to
enhance precipitation and make the pellet visible (details in S7 2). iDNA extraction was
performed on preserved pellets using FastDNA® Spin kit for soil (MP Biomedicals, Solon, OH,

USA) following the manufacturer’s instructions.

Matrix spikes were performed using positive controls for eDNA and iDNA on sample splits to
estimate the extraction recovery for each DNA fraction. For the eDNA positive control, pUC19
plasmids containing the vanZ gene were used. Escherichia coli (E. coli) DH5a cells were used as
positive control for the iDNA extraction. The pre-quantified plasmids carrying the vanZ gene
and E. coli cells were spiked into the samples prior to eDNA extraction for each sampling site

(details in ST 3).

2.3 qPCR and shotgun metagenomic sequencing
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qPCR was performed to quantify ARGs encoding for sulfonamide resistance (su/1, sul2) (Pei et
al., 2000), tetracycline resistance (zef#(G)) (Aminov et al., 2002), and the 16S rRNA gene
(Muyzer et al., 1993) in all samples, matrix spikes, and field blanks. These genes were selected
because tetracycline and sulfonamide are the most widely used antibiotics (Luo et al., 2010).
Also, sull is detected frequently in the environment (Deng et al., 2022; Jiang et al., 2021; Miao
etal., 2021; Munir et al., 2011) and it is included in the list of genetic determinants that act as
indicators of antibiotic resistance in the environment (Berendonk et al., 2015). Additionally,
qPCR was performed for vanZ (Jensen et al., 1998), which served as the eDNA matrix spike.
Reaction recipes, thermocycling conditions, controls, and calibration curves are described in S7 4

and Table S5.

To understand the diversity of ARGs and their hosts in different DNA fractions, DNA extracts of
sediment samples from each site (¢eDNA, iDNA and total DNA) in addition to one replicate each
of iDNA and total DNA from Site E were submitted for shotgun metagenomic sequencing for
QA/QC at a commercial laboratory (DNA link USA, Inc., Los Angeles, CA) using
NovaSeq6000 platform (150 bp, paired end). Prior to sequencing, DNA quality and purity was
confirmed via Nanodrop by measuring the A260:A280 ratio and by analysis on 1% agarose gel
and quantity was measured with Qubit by the sequencing lab. TruSeq DNA library preparation
kit (Illumina, San Diego, CA) was used for DNA library construction. Sequences are available in
the National Center for Biotechnology Information Sequence Read Archive under accession

number PRJINAS802588.

2.4 Processing of raw reads and network analysis, assembly, and binning
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To understand the impact of different bioinformatics approaches on host assignments, two types
of pipelines were tested: (P1) raw reads processing by network analysis and (P2) assembly.
Details of all bioinformatics processing can be found in S/ 5- ST 8. Briefly, (P1) raw reads were
trimmed and ARGs identified from predicted proteins then Spearman correlations were
generated between ARGs and hosts at the family level. Next, (P2) trimmed reads were
assembled, contigs were used for predicting open reading frames (ORF), BLASTP was
performed against the CARD database to identify ARGs and mobile genetic elements (MGEs)
were identified in the ARG containing contigs (ACCs) by BLASTP against the ACLAME
database. Bacterial families which could contain NIAID’s priority pathogens
(https://www.niaid.nih.gov/research/emerging-infectious-diseases-pathogens) were identified in

both the pipelines. For binning, contigs obtained after assembly were binned and classified.

For quality control, reads were generated from an assembled genome of a methicillin resistant
Staphylococcus aureus (strain MRSA252, NCBI Accession BX571856) (Holden et al., 2004) at
genome coverage of 50X, 20X, and 1X. These reads were added to the environmental
metagenomes as an in silico matrix spike and the samples re-analyzed to assess the performance
of the pipelines. The detection and host assignment of three methicillin resistance ARGs, mecA,
mecl and mecR1, to the host-family for S. auerus (Staphylococcaceae) were tabulated for each
pipeline. These three genes were present in the chromosomal genome of MRSA but not observed

in the metagenomes of the riverbed sediments.

2.5 Statistical tests

All statistical tests were performed in Rstudio version 3.6.2 (www.r-project.org). Data

visualization, filtering, sorting and grouping was done in Excel or R. Random Forest was
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performed to understand the factors potentially impacting iDNA and eDNA recovery
(randomForest package) (Liaw and Wiener, 2002). Censored statistical analyses were performed
for qPCR data using regression on order statistics in NADA package (Lee, 2020). ANOVA was
performed to identify any significant differences for the qPCR results. A binomial test was
performed for presence/absence of the other ARGs analyzed by qPCR. Linear discriminant
analysis effect size (LEfSe) test (Segata et al., 2011) was performed for total microbial
community and hosts of ARGs (obtained by both pipelines) to identify the biomarkers of each
DNA fraction and pipeline. Cluster analysis was performed on total microbial community of all
samples using the SIMPROF test (PrimerE, Auckland, NZ). Finally, Jaccard indices were
calculated for the adjacency matrices of networks to understand the degree of similarity of the

networks (Tantardini et al., 2019).

For the bioinformatics outputs, Bray-Curtis dissimilarity matrices were created for the family
level bacterial community and ARGs obtained through the two pipelines. Non-metric
multidimensional scaling (nMDS) was performed for ordination to visualize the bacterial, ARG,
or ARG-host community structures by spatial and/or DNA fraction factors. Shannon, Simpson
and Inverse Simpson diversity indices were calculated for total microbial community and ARGs
and their values were compared across different sites and DNA fractions using 2-way ANOVA
with a posthoc TukeyHSD test. For the ANOVA, normality of data was confirmed using a
Shapiro-Wilk normality test, equal variances confirmed with Bartlett test. Heatmaps were made
using the ggplot2 (Wickham, 2016) and reshape (Wickham, 2007) packages to represent the
ARG relative abundances in the metagenomes. Chord diagrams were drawn to represent ARGs

and their host assignments in the metagenomes using the circlize package (Gu et al., 2014).

3. Results
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3.1 Recovery and abundance of ARGs in different DNA fractions across sites

To compare extracellular and intracellular DNA using qPCR and metagenomics, first an
assessment of recovery from a series of matrix spikes was evaluated. High recoveries were
observed for sediment samples (Table S6). The average recoveries for sediment samples were
72.6+14.6 % for eDNA and 81.8+21.4 % for iDNA. Random forest analysis indicated that pH
(7.9% increase in mean square error) followed by clay content (5.5%), silt content (5.0%), sand
content (4.5%), moisture (4.0%), site (3.5%), and conductivity (2.4%) explained 31.3% of the
variance in the recovery. DNA fraction was not an important factor as indicated by the negative

increase in mean square error prior to that variable’s removal from the Random Forest model.

Gene copy balances between the different DNA fractions were tested with the expectation that in
cases of similar recovery across DNA fractions that the sum of iDNA plus eDNA should be
similar to the total DNA extracted. The sum of eDNA and iDNA was similar to the total DNA
(paired t-test, all p > 0.18) with respect to DNA concentration as measured via nanodrop (Table

S7) and sul/l and 16S rRNA gene copies analyzed by qPCR.

The sulfonamide resistance gene su/l was the only ARG of the ARGs tested that was
quantifiable via qPCR in all DNA fractions (Fig. 2). su/l absolute gene copy concentrations in
iDNA, total DNA and eDNA were similar (ANOVA, p=0.11). No significant differences were
observed between the 16S rRNA gene normalized su/l copies across river matrices for total
DNA, iDNA and eDNA (ANOVA, p =0.5). tet(G) was observed in four of the total DNA, two of
the iDNA, and one of the eDNA samples from the five sites sampled (p=0.15, prop.test). su/2
was detected in all total and iDNA samples but only one eDNA sample (p=0.004, prop.test)

(Table S8).



211

212

213

214

215

216

217

218

219

220

221

222

o

sult b. 16S rRNA
JAY

s 2 A A
allF* kX
_>|é dna.

ﬁ eDNA
iDNA

tDNA

FA)
£ A

(Y=}
L

* B
D2
[is
e =

log 10 gene copiesig

A
-
@]
jo]

A B C D E A B c D E

log10 165 rRNA copies of DNA fraction d log10 16S rRNA copies of tDNA

e A
A A
* X 0 *

o
)

'S
f

&n
1

* A
X A ¥

K =K
B c D E A B C D E
Raritan River sampling site

log 10 gene copies/
16S rRNA gene copies ©

&»
i

A
[AY
o
o)

A

Fig. 2 (a, b) Abundance of sull and 16S rRNA gene copies per gram (wet weight) in sediment
samples (of eDNA, iDNA and total DNA (“tDNA”)) and (c, d) normalized to 16S rRNA gene
copies from the respective DNA fraction and tDNA. Error bars represent standard deviation of
technical replicates (N=3). Data shown on the lowest line marked <LOQ was detected but not

quantifiable in samples.

3.2 Classification of metagenomics reads reveals differences in total microbial community
Gel electrophoresis of samples showed that a DNA band was present for each sample. The
A260/ 280 ratios of all DNA extracts ranged from 1.6-1.9 and A260/230 < 2.2. Metagenomic

data were generated for each sampling site and DNA fraction for the riverbed sediment samples



223 to study the diversity of ARGs and their hosts (Fig. S1). The microbial communities generated
224  from trimmed reads obtained from iDNA and total DNA clustered more closely (up to 99%

225  similarity) than eDNA (at most 89% similarity, Fig. 3a) for a given sampling site. Replicates for
226  the tidally influenced sites were seen close to each other in nDMS (> 97% similarity). Significant
227  differences were observed between DNA fractions (¢eDNA-iDNA and eDNA-total DNA) for

228  Shannon, Simpson and Inverse Simpson diversity indices (TukeyHSD, all p<0.05) (Table S9).

229  Generally, eDNA had lower diversity than iDNA or total DNA (Table S9).

230  LEfSe analysis on the data revealed that there were 48 OTUs that served as biomarkers for the
231  eDNA microbial community, while there was only one iDNA and two total DNA biomarkers
232 (Fig. S2). The phylum Proteobacteria was the biomarker in iDNA fraction while the families

233 Methylocystaceae and Kaistiaceae were biomarkers in total DNA. For eDNA, the biomarkers
234  included the phyla Planctomycetes, Lentisphaerae and Nanoarchaeota in addition to other orders,

235  classes and families (Fig. S2).
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Fig. 3: nMDS of (a) total microbial community at all sites identified by Kaiju software (stress=
0.05) (b) ARGs at all sites identified by the Assembly pipeline (stress= 0.16), (c) ARGs in raw

reads pipeline (stress= 0.09).
3.3 eDNA, iDNA and total DNA ARG diversity and MGEs

After assembly, 7871 ARG carrying contigs (ACCs) were identified in the 17 samples which
contained 392 ARGs in total. Across all sampling sites, 221, 267 and 313 different ARGs were
observed in eDNA, iDNA and total DNA fractions, respectively. These ARGs were grouped into
18 major drug classes (Fig. 4) and eight different resistance mechanisms (Fig. S3). The rifamycin
drug class constituted 60.8+ 5.2 % of total abundance, followed by multidrug resistance (29.1+
3.7% of total abundance). The ARG types detected in all samples and at all the sites were

rifamycin, multidrug, glycopeptide, peptide, beta-lactam, aminoglycoside, and aminocoumarin.
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Fig. 4 Heatmap of ARG relative abundance according to drug class by sampling site and DNA
fraction in the bed sediment metagenomes. Field replicates are shown for iDNA and total DNA

for Site E. “ND” stands for not detected

Comparing ARGs in the different DNA fractions, the total normalized abundance (Eq.1) of
ARGs in eDNA, iDNA, and total DNA was significantly different (Kruskall-Wallis test, p=
0.0067) (Fig. S4). The average ARG abundance was 349+66 for eDNA which was significantly
less than the 15424315 for iDNA and 1509+246 for total DNA (p= 0.0065, pairwise.t.test, Fig.
S4). There were no differences in ARG diversity indices for the ARGs between different DNA

fractions (2-way ANOVA, all p>0.05, Table S10).

A total of 2879 ACCs were identified to be associated with MGEs through the assembly
pipeline. The percentage of ARGs associated with MGEs from the different DNA fractions and
sites was similar (two-way ANOVA, p > 0.2). However, moving downstream, the percent of
ARGs associated with MGEs increased with an increase in the percent of flow constituted by
wastewater discharge for the iDNA (Spearman rho 0.91, p=0.01) but not for other DNA fractions

(both p>0.13) (Fig. 5).

ARGs obtained through the raw-reads pipeline were also grouped into 18 drug classes (Fig. S5).
Rifamycin and multidrug drug classes constituted 38.3+ 2.9 % and 43.6+ 2.8 % of total
abundance respectively. Unlike the assembly pipeline, all ARG drug classes were present in all

the samples.
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Fig. 5 Percentage of ACCs identified with the assembly pipeline associated with MGEs or
chromosomal/unclassified (“other”) by DNA fraction and site. The average relative percent

difference (RPD) is listed for Site E iDNA and total DNA replicate samples.

3.4 ARGs hosts and diversity identified through two pipelines

In total, 1443 ARGs (11.5% of total ARGs) were assigned to hosts at least at the phylum level
after assembly and classification by CAT. At the family level, 23, 30 and 33 ARG hosts were
identified for eDNA, iDNA and tDNA respectively. The most commonly observed hosts were
Aeromonadaceae representing 24% of tDNA, 46.3% of eDNA, and 17.5% of iDNA hosts,
Mpycbacteriaceae representing 26% of tDNA and 17.5% of iDNA hosts and Pseudomonadaceae
representing 15.1% of eDNA hosts (Fig.S6). In all the three fractions of DNA, most of the
tetracycline resistance genes were assigned to Mycobacteriaceae family while Aeromonadaceae
were the hosts of most of beta-lactam group of ARGs. Host-ARG associations are shown site by
site in Fig. S7. Significant differences were observed in the diversity of ARG host assignments
with generally the greatest Shannon diversity observed for the iDNA or total DNA followed by

eDNA (all p<0.025, TukeyHSD) (Table S11).
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Bins (624) were identified across the 17 samples, of which, 40 were high quality bins. Of these,
three bins carrying ARGs were recovered from eDNA and iDNA. The bin from eDNA fraction
contained the ARG rsmA and was assigned to phylum Nitrospirae. One of bins from the iDNA
fraction carrying multiple ARGs (su/l, rsmA, gacE and gacEdeltal) belonged to phylum
Nitrospirae and the other belonged to Class Gammaproteobacteria and carried a single ARG

rsmA.

Network analysis revealed a wide diversity of potential ARG hosts for eDNA, iDNA and total
DNA (Shannon diversity 4.91+0.01). For eDNA, 207 bacterial families correlated strongly with
182 ARGs (Fig. S8). Five families showed strong correlations with more than 15 ARGs
including Enterobacteriaceae, Neisseriaceae, and Shewanellaceae. ARGs linked with more than
10 families included genes harboring resistance to multiple drugs (multidrug), beta-lactam,
rifamycin, fluoroquinolone, streptogramin and other antibiotics. For the iDNA, strong
correlations were observed between 220 bacterial families and 189 ARGs (Fig. S9). Fourteen
families including Sphingomonadaceae, showed strong correlations with more than 15 ARGs. At
least 47 ARGs were assigned to more than 10 bacterial hosts. For total DNA, 221 bacterial
families showed high correlation with 182 ARGs (Fig. S10). Ten families including
Legionellaceae, and Mycobacteriaceae were identified as the potential hosts of more than 15
ARGs. The majority (65%) of the ARGs showing strong correlations with more than 10 bacterial

families had mechanisms of antibiotic efflux.

The Jaccard index for the network pairs of eDNA-iDNA was 0.455, iDNA-total DNA was 0.457,
total DNA-eDNA was 0.47. Jaccard index of 0 indicates that there is no overlap while index of

one indicates that there is perfect overlap between networks (Yang et al., 2016). The Jaccard



309 indices indicate ~50% overlap in the network pairs, (statistical comparison of these indices is

310  not possible with the present experiment design).
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313 Fig 6: Linkage of hosts (bacterial families) which contain pathogens in NIAID's list of priority pathogens to ARGs obtained from the a) Assembly

314  and b) Raw reads pipeline
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3.5 Comparison of the Network and Assembly pipeline

The ARG-host linkages identified by network and assembly pipelines were compared first by
identifying common hosts (Table S13- S15). For all DNA fractions, most of the hosts identified
by the assembly pipeline were also identified by the network analysis pipeline (average
85.3+5.5%) with more hosts identified by the network pipeline (247 hosts) compared to
assembly (53 total hosts). nMDS plots of ARGs generally showed clustering by sampling site
and less similarity for iDNA and total DNA than seen for the total community nMDS (Fig.3 b,c).
LEfSe was performed to determine the biomarkers for each pipeline and compare the host-ARG
assignments (i.e., input was hosts as a function of number of ARGs). A total of eight families
were identified as biomarkers of the ARG hosts for the assembly pipeline compared to 132
families for the network pipeline. Of the ARG hosts, seven bacterial families for the assembly
pipeline and 12 for the network analysis were identified as putative hosts of ARGs that could

contain NIAID’s priority pathogens (Fig. 6).

3.6 Quality assurance in silico matrix spikes

In silico matrix spikes of a control genome to the field sample metagenomes (Table S12)
demonstrated the expected host-ARG correlation was observed for the network analysis when
the environmental metagenome was spiked with 50X and 20X MRSA genome coverage. The
assembly pipeline and binning for samples spiked with 50X of the S. aureus genome resulted in
the correct host assignment of the selected methicillin resistant ARGs (mecA, mecl, mecR1) at
least at family level. At 20X depth, two out of the three tested samples had successful association
of host to ARGs at family level for the assembly pipeline, while binning was successful in

linking the correct host to these ARGs at genus level.
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Adding 1X of the MRSA genome, the raw-reads pipeline failed to assign the correct host to the
ARGs. Potential mis-associations of the ARGs mecA, mecl, mecR1 to hosts (Silvanigrellaceae,
Gomontiellaceae) with abundance less than 0.02 (less than 1X depth) were observed for the
network analyses. These are considered potential mis-linkages given that these mec genes were
below detection in the field metagenomes and therefore were only expected to link with S.
aureus. Multiple ARG hits for mecA, mecl and mecR1(up to 681 hits) were observed for the

raw-reads pipeline for 1X, 20X and 50X coverages.

As expected, a single ARG hit for mecA, mecl, and mecR1 was observed in the samples that had
20X and 50X S. aureus genome addition for the assembly pipeline. With 1X genome coverage of
S. aureus the assembly pipeline resulted in no hits for mecl and multiple hits for mecA and
mecR1. mecA was assigned to the host Staphylococcaceae (family level) in two out of the three
samples at 1X depth. At a depth of 1X, binning also failed to associate the host to the expected

ARGs.

4 Discussion

4.1 Quantitative comparisons of ARGs in different DNA fractions

Raritan River bed sediment had lower concentrations of 16S rRNA gene copies in eDNA
compared to iDNA and total DNA fractions across the sampling sites. This result is in
accordance with previous studies on terrestrial sludge and sediment samples (Dong et al., 2019;
Zhang et al., 2013). The ARGs were either less frequently detected (sul2, tet(G)) or had similar
concentration (su/1) in eDNA than the iDNA fraction. This is in contrast to su/l, su/2, and other

ARG observations in aquatic sediment samples (Mao et al., 2014; Zhang et al., 2018).
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Interestingly, the eDNA concentrations for the targeted genes were not necessarily highest at
Sites C through E that were influenced by WWTP effluent. Extracellular ARGs have been
detected in oxidant disinfected WWTP effluent (Oliveira et al., 2020) and in river water
downstream of WWTP effluent discharge (Liu et al., 2020). Here the accumulation of eDNA
ARGs in sediments may also be a function of settling/deposition rates, eDNA loss rates in the
sediments and the water column prior to settling, sediment type and sorption, etc. For example,
while environmental eDNA is subject to enzymatic degradation, the eDNA that adsorbs to soil
particles is protected from such degradation with clay particles providing more protection to
bound eDNA (Barnes et al., 2014; Lopatkin et al., 2017; Nielsen et al., 2007; Ogram et al.,
1994). This may explain why the highest recovery for eDNA matrix spikes was observed at Site
D which also had the lowest sand content and the highest fractions of both clay and silt. Further,
a previous study on riverbed sediments with a higher clay percentage (7% -22%) reported a

higher concentration of eDNA than iDNA (Mao et al., 2014).

The matrix spike recoveries of eDNA and iDNA were similar to or greater than those previously
reported for sediment samples using the same eDNA extraction method as here. eDNA recovery
was 37-68% for cloned CESA9 gene and 80.2 + 9.4% for E. coli DNA as internal standard while
recovery was 57-94% for plant pathogen bacterial cells and 102.2 +£4.1% for E. coli cells as

iDNA internal standards (Chen et al., 2018; Mao et al., 2014; Zhang et al., 2018).

4.2 Microbial community structure and ARG diversity

The eDNA microbial community generally had lower diversity and a different structure
compared to the iDNA and total DNA. This observation was somewhat different from a

previously published study on wastewater where community structures were conserved between
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eDNA and iDNA at the family level using a cutoff criterion of 0.5% abundance (Calderon-
Franco et al., 2021). The loading of eDNA appears environment specific as eDNA was >40% of
the total DNA (as calculated by comparing DNAse treated samples representing intracellular
DNA only to non-DNAase treated samples representing total DNA) reduced the alpha diversity
in drinking water samples disinfected by monochloramine (Sakcham et al., 2019). Here, eDNA
measured by nanodrop was ~13% of total DNA. As expected, the greatest relative abundance

and diversity of ARGs was observed in the iDNA and total DNA rather than eDNA.

Through the assembly pipeline, rifamycin resistance genes were ubiquitous and abundant (60.8+
5.2 %) in the sediment samples, similar to a previous metagenomic study (Ma et al., 2014).
Rifamycin is naturally produced by soil bacteria (Li et al., 2020) and was isolated from bacteria
in the family Pseudonocardiaceae (Sensi, 1983). This family was detected in all the samples
through the raw reads pipeline. Multidrug resistance was the second most abundant category
(29.1£ 3.7%), which has been found to be abundant in river sediments (Chen et al., 2019; Jiang
et al., 2018; Li et al., 2021). Notably, vancomycin resistance genes were observed in all samples.
Vancomycin is a last resort drug used for treating antibiotic resistant infections (Moellering,

1998) with vancomycin resistant Enterococci considered a “serious threat” (CDC, 2019).

The bed sediment microbial community structure and ARG diversity were similar between
iDNA and total DNA for a given site. Thus, measuring only total DNA for these riverbed
samples would not overestimate the ARGs or drastically shift the microbial community in iDNA.
Likewise, separation of eDNA did not cause a significant shift in microbial community structure
of iDNA. A recent review highlighted that significant differences in microbial community were
reported after the removal of eDNA in environments such as drinking water and soil with the

effect more apparent at lower taxonomic levels such as genus or amplicon sequence variant
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(ASV) level (Bairoliya et al., 2021). However, some studies have also reported no change in

richness and evenness in community after eEDNA removal in sediment samples (Bairoliya et al.,

2021).

4.3 ARG host assignment in bed sediment by assembly

Assembly of the bed sediment metagenomes resulted in low percentage of ACCs that were
classified by CAT. This is consistent with a recent study on pig farms also using CAT for
taxonomic classification of contigs (~19% contigs classified at phylum level) (Zhang et al.,
2021). Likewise, there was a low number of high-quality bins carrying ARGs. Other studies that
reported a higher number of ARG carrying bins (up to 635 bins) used activated sludge samples
(Liu et al., 2019; Zhao et al., 2020). Microbial community complexity or other differences in

studies (e.g., geography) could explain these differences.

In this study, most of tetracycline and beta- lactam resistance genes were linked to
Mpycobacteriaceae and Aeromonadaceae respectively through the assembly pipeline.
Tetracycline resistance has been linked to Mycobacterium genus frequently through network
analysis in metagenomic sequencing studies on sludge samples (Fan et al., 2018; Xia et al.,
2019). Aeromonadaceae has also been identified as the host of beta-lactam genes through

assembly of metagenomics sequences from pig farms (Zhang et al., 2021).

4.4 Comparison of raw reads and assembly

The host-ARG associations obtained through both pipelines were compared with the raw reads
analysis pipeline identifying more ARGs than the assembly pipeline, likely due to the low

mapping percentage of assembly (39-55%), and/or due to repeat resolution by assembler (Nurk



425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

et al., 2017). Comparison of this observation to the present literature is complicated by the

application of different cutoff criteria by different researchers as explained in S7 5.

Taxonomic families that could contain NIAID’s priority pathogens were identified as ARG hosts
through both pipelines. ARGs in pathogenic bacteria pose a greater concern because they can
directly infect humans and resist the antibiotic treatment for treating serious infections (WHO,
2014). The number of ARGs linked to the families containing putative pathogenic hosts varied
by pipeline, with more such hosts identified by the raw-reads pipeline than the assembly pipeline
(Fig. 6). The ability to link ARGs to hosts at deeper taxonomic levels will be needed to best
understand the hazard, as these families will also contain many commensal organisms. Although,
if gene transfer is most likely from hosts that are most closely related, this may be a reasonable
first approximation. More targeted methods such as qPCR would be desirable to confirm the

presence of the pathogens.

A benefit of the assembly pipeline is that it provides genetic context, allowing for the
observation that the percentage of ARGs associated with MGEs increased moving downstream,
potentially due to the increase in wastewater influence (Table S2). Wastewater treatment plants
discharge extracellular ARGs due to lysing during disinfection (e.g., (Eramo et al., 2019; Yuan et
al., 2019)). Other sources of eDNA in the environment include active DNA release from live

cells, DNA released due to cell lysis and viruses (Ibanez de Aldecoa et al., 2017).

The assembly pipeline used more memory and took ~4 times longer to run, making the raw-reads
pipeline more practical to perform. A drawback of the network analysis, which is based on
Spearman’s correlations and required multiple samples for predicting host-ARG linkages, is that

with the present study design only linkages for ARGs and hosts across the sampling sites was
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possible, rather than for a given sampling site. In contrast, geospatial comparisons were feasible
with assembly. The diversity of the ARG hosts was lower for the assembly pipeline, which may
indicate that the assembly pipeline was more conservative than the network analysis, assuming

both provided assignments with similar accuracy.

The in silico spike-in study confirmed that poor genome coverage of some organisms in
metagenome can lead to failure in host-assignments, either by not capturing the assignments or
by providing potentially incorrect assignments to hosts. Removal of low abundance taxa may
help in resolving this issue. It also confirmed that accurate host-ARG assignments for the MRSA

spike were observed in the reads-based pipeline as well as assembly pipeline at 20X, 50X depth.

5. Conclusion

ARGs in riverbed sediments were either more commonly observed via qPCR in iDNA and total
DNA compared to eDNA or similar between DNA fractions. In contrast, metagenomics clearly
demonstrated the eDNA fraction had less total ARG abundance compared to iDNA and total
DNA. Removing eDNA resulted in shifts in total microbial community structure but iDNA and
total DNA communities were generally closely clustered, indicating that total DNA was
reasonable representation of the iDNA for this system. Comparing pipelines for ARG host
assignment, most of the ARG hosts identified by the assembly pipeline were also identified by
the raw reads pipeline (which provided many more ARG-host linkages) and potential pathogenic
hosts were identified in both the pipelines. A benefit of assembly pipeline was demonstrated
through the observation that ARGs assigned to mobile genetic units increased for iDNA moving
downstream, useful information for understanding the potential for ARG propagation. The

pipeline comparisons provided here can inform how to compare studies that applied different
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methods for ARG-host assignment. Further work is needed to confirm that pathogenic hosts were
present in our samples, for example via qPCR or longer read sequencing or emerging techniques

for high throughput ARG-host identification (Gallego et al., 2020).
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