

1 **Abundance, diversity, and host assignment of total, intracellular,**
2 **and extracellular antibiotic resistance genes in riverbed sediments**

3 **AUTHORS:** A.S. Deshpande,^a N.L. Fahrenfeld^{b*}

4 ^a Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901

5 ^b Civil and Environmental Engineering, Rutgers University, 500 Bartholomew Rd., Piscataway,
6 NJ 08854; nfahrenf@rutgers.edu

7 **Abstract**

8 Human health risk assessment for environmental antibiotic resistant microbes requires not only
9 quantifying the abundance of antibiotic resistance genes (ARGs) in environmental matrices, but
10 also understanding their hosts and genetic context. Further, differentiating ARGs in intracellular
11 and extracellular DNA (iDNA and eDNA) fractions may help refine our understanding of ARG
12 transferability. The objectives of this study were to understand the (O1) abundance and diversity
13 of extracellular, intracellular, and total ARGs along a land use gradient and (O2) impact of
14 bioinformatics pipeline on the assignment of putative hosts for the ARGs observed in the
15 different DNA fractions. Sediment samples were collected along a land use gradient in the
16 Raritan River, New Jersey, USA. DNA was extracted to separate eDNA and iDNA and qPCR
17 was performed for select ARGs and the 16S rRNA gene. Shotgun metagenomic sequencing was
18 performed on DNA extracts for the different DNA fractions. ARG hosts were assigned via two
19 different bioinformatic pipelines: network analysis of raw reads versus assembly. Results of the
20 two pipelines were compared to evaluate their performance in terms of number and diversity of
21 linkages and accuracy of *in silico* matrix spike host assignments. No differences were observed

22 in the 16S rRNA gene normalized *sul1* concentration between the DNA fractions. The overall
23 microbial community structure was more similar for iDNA and total DNA compared to eDNA
24 and generally clustered by sampling site. ARGs associated with mobile genetic elements
25 increased in iDNA for the downstream sites. Regarding host assignment, the raw reads pipeline
26 via network analysis identified 247 ARG hosts as compared to 53 hosts identified by assembly
27 pipeline. Other comparisons between the pipelines were made including ARG assignment to taxa
28 with pathogens and practical considerations regarding processing time.

29 **Keywords:** ARG, *sul1*, metagenomic sequencing, assembly, network analysis, eDNA, iDNA

30 **1. Introduction**

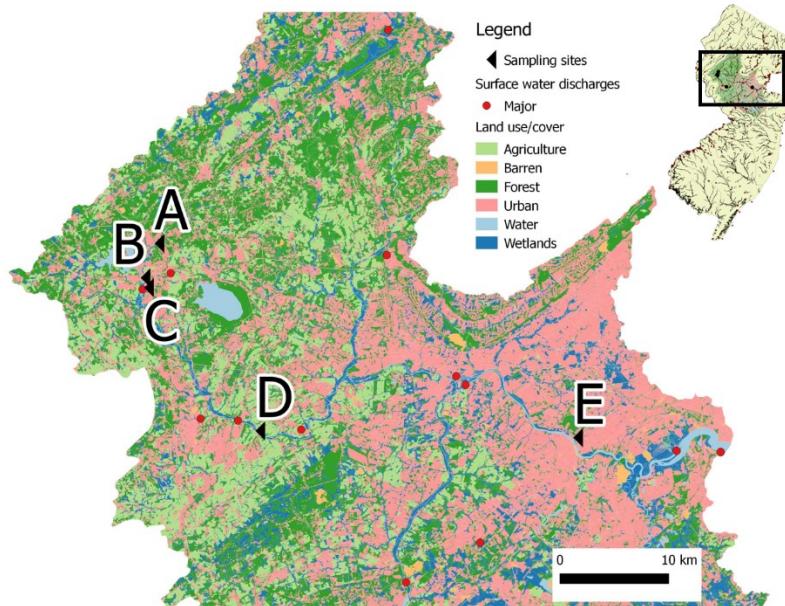
31 Increasing rates of antibiotic resistant infections, including some community-acquired (CDC,
32 2019), have raised concerns about environmental sources of antibiotic resistant microbes. The
33 abundance of environmental antibiotic resistance genes (ARGs) is well-documented [e.g., (Hong
34 et al., 2013)] in comparison to our understanding of their hosts and genetic contexts.
35 Understanding the genetic context of an ARG can provide insight into (1) the hazard posed by
36 the host organism and (2) the potential mechanisms and rates of gene transfer (Ashbolt et al.,
37 2013; Martinez et al., 2015; Vikesland et al., 2017). For example, a chromosomally encoded
38 ARG is expected to transfer less readily than a plasmid encoded ARG (Mazel and Davies, 1999;
39 Rowe-Magnus and Mazel, 2002). Further, extracellular ARGs propagate by transformation
40 whereas intracellular ARGs can propagate by transduction or conjugation, indicating a
41 fundamental difference in the fate and transmissivity of these two fractions of DNA (Mao et al.,
42 2014; Zhang et al., 2013). However, there is no consensus for how to perform host assignment

43 for ARGs in environmental metagenomic studies and it is not clear how extracellular DNA
44 (eDNA) in environmental samples can impact the results.

45 A growing body of literature reports ARG relative abundances and diversity through
46 metagenomic sequencing of riverbed sediments (Chen et al., 2019; Chen et al., 2020; Jiang et al.,
47 2018). Given that DNA can persist in sediment for months to millennia due to adsorption to
48 sediment particles (Deere et al., 1996; Lorenz and Wackernagel, 1987; Turner et al., 2015;
49 Willerslev et al., 2014), there is motivation for understanding the extracellular ARG loads in this
50 matrix (Alawi et al., 2014; Chen et al., 2018; Corinaldesi et al., 2005; Guo et al., 2018; Mao et
51 al., 2014; Zhang et al., 2018). A potentially important source of extracellular ARGs to the water
52 environment is wastewater effluents from facilities using disinfectants that disrupt cell
53 membranes but not destroy the released DNA (Dodd, 2012). While there are reports of eDNA
54 metagenomes from sewage sludge (Calderon-Franco et al., 2021; Zhou et al., 2019) and
55 aquaculture farm sediment (Chen et al., 2018), there is a paucity of data differentiating DNA
56 fractions in riverbed sediments towards identifying ARGs and assigning their hosts. Of particular
57 interest is how the potentially spatially variable concentrations of eDNA may affect ARG
58 profiles and host assignments in environmental metagenomes.

59 Assigning a gene to a putative host in environmental metagenomic studies can be done by
60 read- or assembly-based pipelines (Scholz et al., 2012). Read-based pipelines often apply
61 network analysis, relying upon correlation between ARG and host 16S rRNA gene abundances.
62 Assembly of raw reads increases the confidence in gene prediction (Loman et al., 2013) and
63 allows for the construction of novel genomes and genomic elements (Howe et al., 2014).
64 However, non-uniform sequencing depths for different organisms in a sample or high
65 community complexity can cause the assembly to be highly fragmented (Breitwieser et al., 2019;

66 Xie et al., 2010) or result in low mapping percentage of reads to the assembly (Vollmers et al.,
67 2017).


68 The objectives of this study were to understand the (O1) spatial variability in abundance and
69 diversity of extracellular, intracellular, and total ARGs along a land use gradient and (O2) impact
70 of bioinformatics pipeline on the assignment of putative hosts for the ARGs observed in different
71 DNA fractions. For (O1), qPCR for select ARGs and shotgun metagenomic sequencing was
72 performed on eDNA, intracellular DNA (iDNA), and total DNA from riverbed sediments. For
73 (O2), host assignments based on network analysis of raw reads and assembly were compared to
74 understand their performance in terms of number and diversity of ARG-host linkages. *In silico*
75 matrix spikes were performed to provide a measure of the accuracy of host assignments. Overall,
76 these results can help inform the choice of methods applied in future studies of antibiotic
77 resistance in riverbed sediments towards better defining the potential hazard posed by this matrix
78 for environmental antibiotic resistance.

79 **2. Material and Methods**

80 **2.1 Sampling**

81 Riverbed sediment samples were collected from five public access sites along the Raritan River
82 in New Jersey, USA (Fig. 1, Table S1), coinciding with long term civic science monitoring for
83 macroinvertebrates and/or pathogens. The sites have varying influence by wastewater effluent,
84 urban activities, agricultural activities, and tides (Table S2). Composite sediment core samples (5
85 cores/site) were collected using a soil probe (JMC, Clements Associates Inc., Newton, IA) from
86 the upper 8-9 cm of riverbed sediment. Field blanks, which consisted of autoclaved deionized
87 water, were left open for the duration of the sampling. All the samples were stored and

88 transported to lab in coolers on ice and then immediately stored at 4°C until processing. All
89 processing occurred within one week of sample collection. Water and sediment quality
90 parameters were measured for each site and details are provided in *SI 1*.

92 **Fig. 1:** Land use map of study catchment with sampling sites (black triangles) and major (red)
93 surface water discharges. Insert map shows location of the study area within the state of New
94 Jersey, USA.

95 **2.2 Total, eDNA, and iDNA extraction**

96 Field samples were prepared for DNA extraction by combining composite samples in the
97 laboratory. Composite sediment samples were sieved (2000 µm) and homogenized for each site.
98 Total DNA extraction was performed on the homogenized sediment (0.5 g) using a FastDNA®
99 Spin kit for soil (MP Biomedicals, Solon, OH, USA) following the manufacturer's instructions.
100 DNA extracts were resuspended in 100 µL of DES buffer and stored at -20°C until analysis.

101 eDNA was separated from iDNA according to previously developed protocols (Corinaldesi et al.,
102 2005; Mao et al., 2014) with few minor modifications. Based on previously developed protocols,
103 sodium phosphate buffer and polyvinyl polypyrrolidone (PVPP) was added to 1.5 g of sediment
104 (wet weight). The mixture was mixed on a shaker table (250 rpm, 5 min) followed by
105 centrifugation at $7100 \times g$ for 25 minutes. The supernatant containing eDNA was removed from
106 the tubes with care to not disturb the pellet containing iDNA. Sodium phosphate buffer was
107 again added to the pellet, and the process was repeated, as above. Following separation, the
108 pellets were stored at -20°C until iDNA extraction. The supernatants were combined and filtered
109 (Cyclopore, Whatman). eDNA concentration was performed on the filtrate using cetyl trimethyl
110 ammonium bromide (CTAB, 1% w/v) buffer. A phenol chloroform isoamyl alcohol extraction
111 was performed followed by an alcohol precipitation during which GlycoBlue™ coprecipitant
112 (Invitrogen™, Thermo Fischer Scientific) was added during the alcohol precipitation steps to
113 enhance precipitation and make the pellet visible (details in *SI 2*). iDNA extraction was
114 performed on preserved pellets using FastDNA® Spin kit for soil (MP Biomedicals, Solon, OH,
115 USA) following the manufacturer's instructions.

116 Matrix spikes were performed using positive controls for eDNA and iDNA on sample splits to
117 estimate the extraction recovery for each DNA fraction. For the eDNA positive control, pUC19
118 plasmids containing the *vanZ* gene were used. *Escherichia coli* (*E. coli*) DH5a cells were used as
119 positive control for the iDNA extraction. The pre-quantified plasmids carrying the *vanZ* gene
120 and *E. coli* cells were spiked into the samples prior to eDNA extraction for each sampling site
121 (details in *SI 3*).

122 **2.3 qPCR and shotgun metagenomic sequencing**

123 qPCR was performed to quantify ARGs encoding for sulfonamide resistance (*sul1*, *sul2*) (Pei et
124 al., 2006), tetracycline resistance (*tet(G)*) (Aminov et al., 2002), and the 16S rRNA gene
125 (Muyzer et al., 1993) in all samples, matrix spikes, and field blanks. These genes were selected
126 because tetracycline and sulfonamide are the most widely used antibiotics (Luo et al., 2010).
127 Also, *sul1* is detected frequently in the environment (Deng et al., 2022; Jiang et al., 2021; Miao
128 et al., 2021; Munir et al., 2011) and it is included in the list of genetic determinants that act as
129 indicators of antibiotic resistance in the environment (Berendonk et al., 2015). Additionally,
130 qPCR was performed for *vanZ* (Jensen et al., 1998), which served as the eDNA matrix spike.
131 Reaction recipes, thermocycling conditions, controls, and calibration curves are described in *SI 4*
132 and *Table S5*.

133 To understand the diversity of ARGs and their hosts in different DNA fractions, DNA extracts of
134 sediment samples from each site (eDNA, iDNA and total DNA) in addition to one replicate each
135 of iDNA and total DNA from Site E were submitted for shotgun metagenomic sequencing for
136 QA/QC at a commercial laboratory (DNA link USA, Inc., Los Angeles, CA) using
137 NovaSeq6000 platform (150 bp, paired end). Prior to sequencing, DNA quality and purity was
138 confirmed via Nanodrop by measuring the A260:A280 ratio and by analysis on 1% agarose gel
139 and quantity was measured with Qubit by the sequencing lab. TruSeq DNA library preparation
140 kit (Illumina, San Diego, CA) was used for DNA library construction. Sequences are available in
141 the National Center for Biotechnology Information Sequence Read Archive under accession
142 number PRJNA802588.

143 **2.4 Processing of raw reads and network analysis, assembly, and binning**

144 To understand the impact of different bioinformatics approaches on host assignments, two types
145 of pipelines were tested: (P1) raw reads processing by network analysis and (P2) assembly.

146 Details of all bioinformatics processing can be found in *SI 5- SI 8*. Briefly, (P1) raw reads were
147 trimmed and ARGs identified from predicted proteins then Spearman correlations were
148 generated between ARGs and hosts at the family level. Next, (P2) trimmed reads were
149 assembled, contigs were used for predicting open reading frames (ORF), BLASTP was
150 performed against the CARD database to identify ARGs and mobile genetic elements (MGEs)
151 were identified in the ARG containing contigs (ACCs) by BLASTP against the ACLAME
152 database. Bacterial families which could contain NIAID's priority pathogens
153 (<https://www.niaid.nih.gov/research/emerging-infectious-diseases-pathogens>) were identified in
154 both the pipelines. For binning, contigs obtained after assembly were binned and classified.

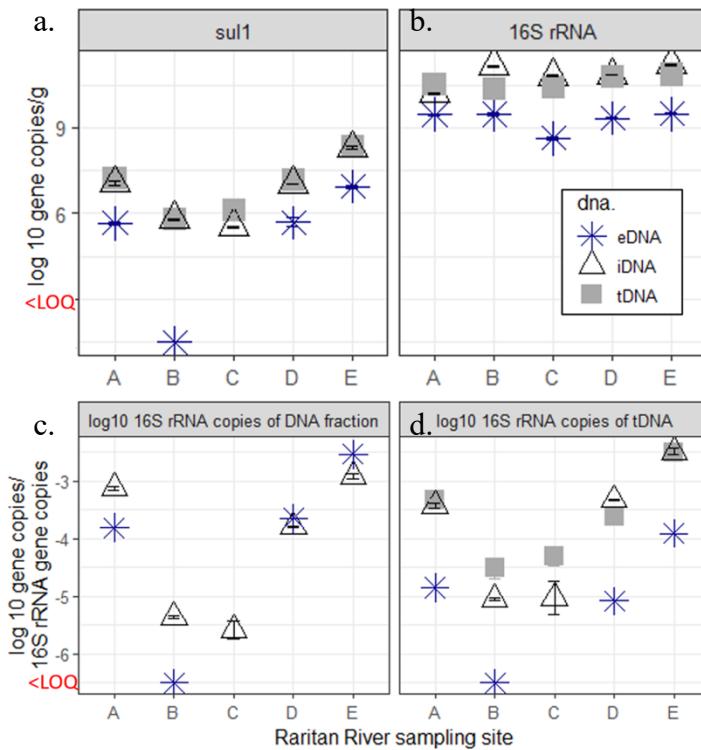
155 For quality control, reads were generated from an assembled genome of a methicillin resistant
156 *Staphylococcus aureus* (strain MRSA252, NCBI Accession BX571856) (Holden et al., 2004) at
157 genome coverage of 50X, 20X, and 1X. These reads were added to the environmental
158 metagenomes as an *in silico* matrix spike and the samples re-analyzed to assess the performance
159 of the pipelines. The detection and host assignment of three methicillin resistance ARGs, *mecA*,
160 *mecI* and *mecR1*, to the host-family for *S. auerus* (*Staphylococcaceae*) were tabulated for each
161 pipeline. These three genes were present in the chromosomal genome of MRSA but not observed
162 in the metagenomes of the riverbed sediments.

163 **2.5 Statistical tests**

164 All statistical tests were performed in Rstudio version 3.6.2 (www.r-project.org). Data
165 visualization, filtering, sorting and grouping was done in Excel or R. Random Forest was

166 performed to understand the factors potentially impacting iDNA and eDNA recovery
167 (randomForest package) (Liaw and Wiener, 2002). Censored statistical analyses were performed
168 for qPCR data using regression on order statistics in NADA package (Lee, 2020). ANOVA was
169 performed to identify any significant differences for the qPCR results. A binomial test was
170 performed for presence/absence of the other ARGs analyzed by qPCR. Linear discriminant
171 analysis effect size (LEfSe) test (Segata et al., 2011) was performed for total microbial
172 community and hosts of ARGs (obtained by both pipelines) to identify the biomarkers of each
173 DNA fraction and pipeline. Cluster analysis was performed on total microbial community of all
174 samples using the SIMPROF test (PrimerE, Auckland, NZ). Finally, Jaccard indices were
175 calculated for the adjacency matrices of networks to understand the degree of similarity of the
176 networks (Tantardini et al., 2019).

177 For the bioinformatics outputs, Bray-Curtis dissimilarity matrices were created for the family
178 level bacterial community and ARGs obtained through the two pipelines. Non-metric
179 multidimensional scaling (nMDS) was performed for ordination to visualize the bacterial, ARG,
180 or ARG-host community structures by spatial and/or DNA fraction factors. Shannon, Simpson
181 and Inverse Simpson diversity indices were calculated for total microbial community and ARGs
182 and their values were compared across different sites and DNA fractions using 2-way ANOVA
183 with a posthoc TukeyHSD test. For the ANOVA, normality of data was confirmed using a
184 Shapiro-Wilk normality test, equal variances confirmed with Bartlett test. Heatmaps were made
185 using the ggplot2 (Wickham, 2016) and reshape (Wickham, 2007) packages to represent the
186 ARG relative abundances in the metagenomes. Chord diagrams were drawn to represent ARGs
187 and their host assignments in the metagenomes using the circlize package (Gu et al., 2014).


188 **3. Results**

189 **3.1 Recovery and abundance of ARGs in different DNA fractions across sites**

190 To compare extracellular and intracellular DNA using qPCR and metagenomics, first an
191 assessment of recovery from a series of matrix spikes was evaluated. High recoveries were
192 observed for sediment samples (Table S6). The average recoveries for sediment samples were
193 $72.6 \pm 14.6\%$ for eDNA and $81.8 \pm 21.4\%$ for iDNA. Random forest analysis indicated that pH
194 (7.9% increase in mean square error) followed by clay content (5.5%), silt content (5.0%), sand
195 content (4.5%), moisture (4.0%), site (3.5%), and conductivity (2.4%) explained 31.3% of the
196 variance in the recovery. DNA fraction was not an important factor as indicated by the negative
197 increase in mean square error prior to that variable's removal from the Random Forest model.

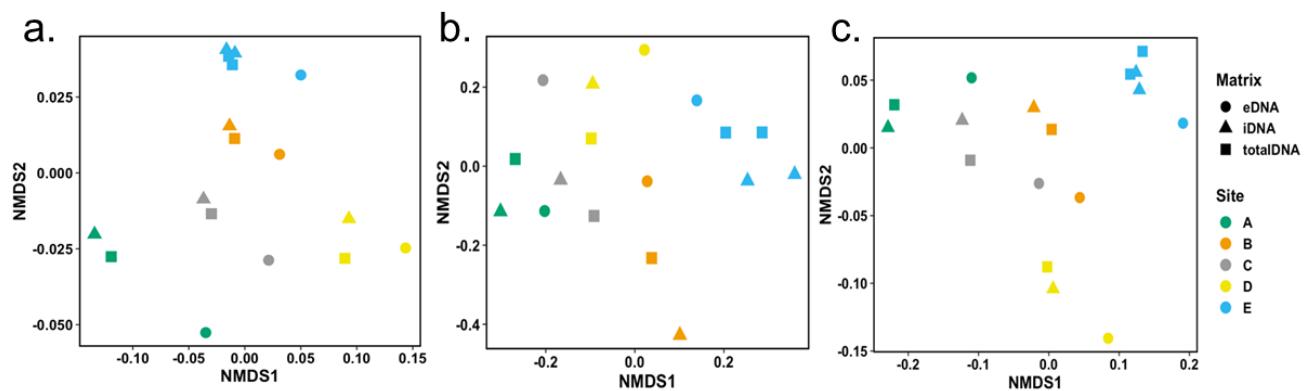
198 Gene copy balances between the different DNA fractions were tested with the expectation that in
199 cases of similar recovery across DNA fractions that the sum of iDNA plus eDNA should be
200 similar to the total DNA extracted. The sum of eDNA and iDNA was similar to the total DNA
201 (paired t-test, all $p > 0.18$) with respect to DNA concentration as measured via nanodrop (Table
202 S7) and *sul1* and 16S rRNA gene copies analyzed by qPCR.

203 The sulfonamide resistance gene *sul1* was the only ARG of the ARGs tested that was
204 quantifiable via qPCR in all DNA fractions (Fig. 2). *sul1* absolute gene copy concentrations in
205 iDNA, total DNA and eDNA were similar (ANOVA, $p=0.11$). No significant differences were
206 observed between the 16S rRNA gene normalized *sul1* copies across river matrices for total
207 DNA, iDNA and eDNA (ANOVA, $p =0.5$). *tet(G)* was observed in four of the total DNA, two of
208 the iDNA, and one of the eDNA samples from the five sites sampled ($p=0.15$, prop.test). *sul2*
209 was detected in all total and iDNA samples but only one eDNA sample ($p=0.004$, prop.test)
210 (Table S8).

211

212

213 **Fig. 2 (a, b)** Abundance of *sul1* and 16S rRNA gene copies per gram (wet weight) in sediment
 214 samples (of eDNA, iDNA and total DNA ("tDNA")) and (c, d) normalized to 16S rRNA gene
 215 copies from the respective DNA fraction and tDNA. Error bars represent standard deviation of
 216 technical replicates (N=3). Data shown on the lowest line marked <LOQ was detected but not
 217 quantifiable in samples.


218

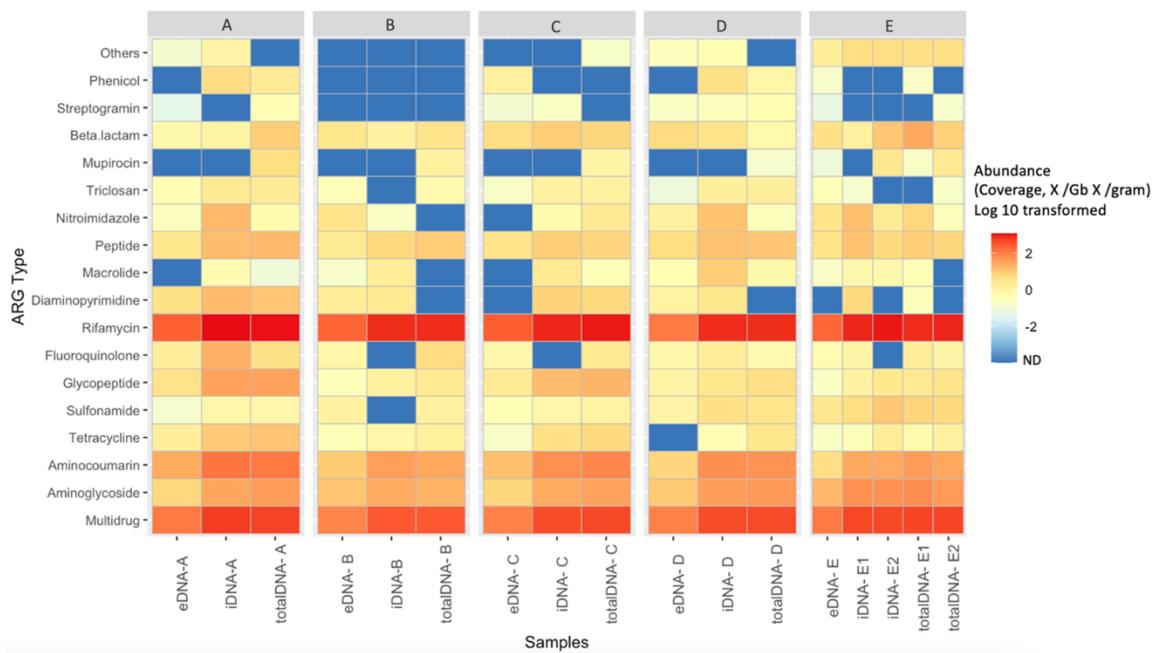
219 **3.2 Classification of metagenomics reads reveals differences in total microbial community**
 220 **Gel electrophoresis of samples showed that a DNA band was present for each sample. The**
 221 **A260/ 280 ratios of all DNA extracts ranged from 1.6-1.9 and A260/230 < 2.2.** Metagenomic
 222 data were generated for each sampling site and DNA fraction for the riverbed sediment samples

223 to study the diversity of ARGs and their hosts (Fig. S1). The microbial communities generated
 224 from trimmed reads obtained from iDNA and total DNA clustered more closely (up to 99%
 225 similarity) than eDNA (at most 89% similarity, Fig. 3a) for a given sampling site. Replicates for
 226 the tidally influenced sites were seen close to each other in nDMS ($> 97\%$ similarity). Significant
 227 differences were observed between DNA fractions (eDNA-iDNA and eDNA-total DNA) for
 228 Shannon, Simpson and Inverse Simpson diversity indices (TukeyHSD, all $p < 0.05$) (Table S9).
 229 Generally, eDNA had lower diversity than iDNA or total DNA (Table S9).

230 LEfSe analysis on the data revealed that there were 48 OTUs that served as biomarkers for the
 231 eDNA microbial community, while there was only one iDNA and two total DNA biomarkers
 232 (Fig. S2). The phylum Proteobacteria was the biomarker in iDNA fraction while the families
 233 *Methylocystaceae* and *Kaistiaceae* were biomarkers in total DNA. For eDNA, the biomarkers
 234 included the phyla Planctomycetes, Lentisphaerae and Nanoarchaeota in addition to other orders,
 235 classes and families (Fig. S2).

236

237


238 **Fig. 3:** *nMDS* of (a) total microbial community at all sites identified by Kaiju software (stress= 0.05) (b) ARGs at all sites identified by the Assembly pipeline (stress= 0.16), (c) ARGs in raw 239 reads pipeline (stress= 0.09).

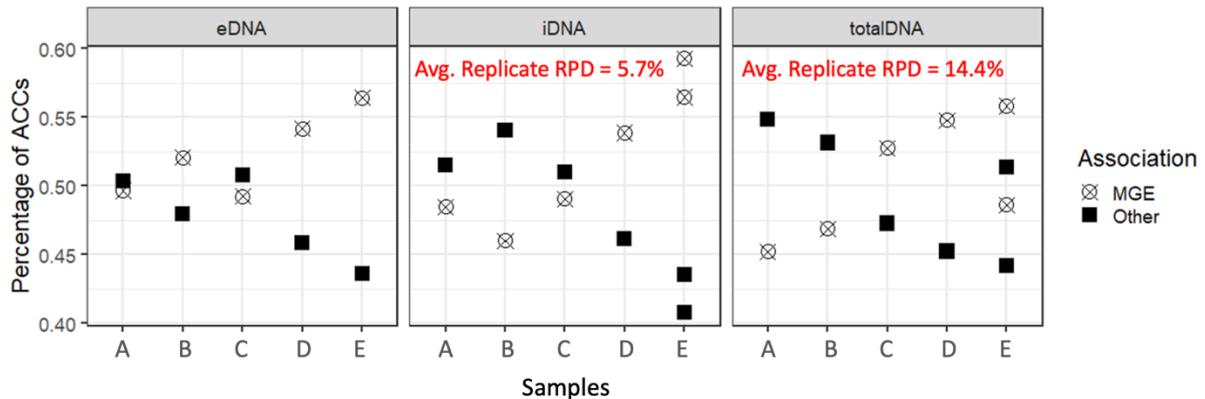
240

241 3.3 eDNA, iDNA and total DNA ARG diversity and MGES

242 After assembly, 7871 ARG carrying contigs (ACCs) were identified in the 17 samples which 243 contained 392 ARGs in total. Across all sampling sites, 221, 267 and 313 different ARGs were 244 observed in eDNA, iDNA and total DNA fractions, respectively. These ARGs were grouped into 245 18 major drug classes (Fig. 4) and eight different resistance mechanisms (Fig. S3). The rifamycin 246 drug class constituted 60.8 ± 5.2 % of total abundance, followed by multidrug resistance ($29.1 \pm 247 3.7$ % of total abundance). The ARG types detected in all samples and at all the sites were 248 rifamycin, multidrug, glycopeptide, peptide, beta-lactam, aminoglycoside, and aminocoumarin.

249

250


251 **Fig. 4** Heatmap of ARG relative abundance according to drug class by sampling site and DNA
252 fraction in the bed sediment metagenomes. Field replicates are shown for iDNA and total DNA
253 for Site E. “ND” stands for not detected

254 Comparing ARGs in the different DNA fractions, the total normalized abundance (Eq.1) of
255 ARGs in eDNA, iDNA, and total DNA was significantly different (Kruskall-Wallis test, p=
256 0.0067) (Fig. S4). The average ARG abundance was 349 ± 66 for eDNA which was significantly
257 less than the 1542 ± 315 for iDNA and 1509 ± 246 for total DNA (p= 0.0065, pairwise.t.test, Fig.
258 S4). There were no differences in ARG diversity indices for the ARGs between different DNA
259 fractions (2-way ANOVA, all p>0.05, Table S10).

260 A total of 2879 ACCs were identified to be associated with MGes through the assembly
261 pipeline. The percentage of ARGs associated with MGes from the different DNA fractions and
262 sites was similar (two-way ANOVA, p > 0.2). However, moving downstream, the percent of
263 ARGs associated with MGes increased with an increase in the percent of flow constituted by
264 wastewater discharge for the iDNA (Spearman rho 0.91, p=0.01) but not for other DNA fractions
265 (both p>0.13) (Fig. 5).

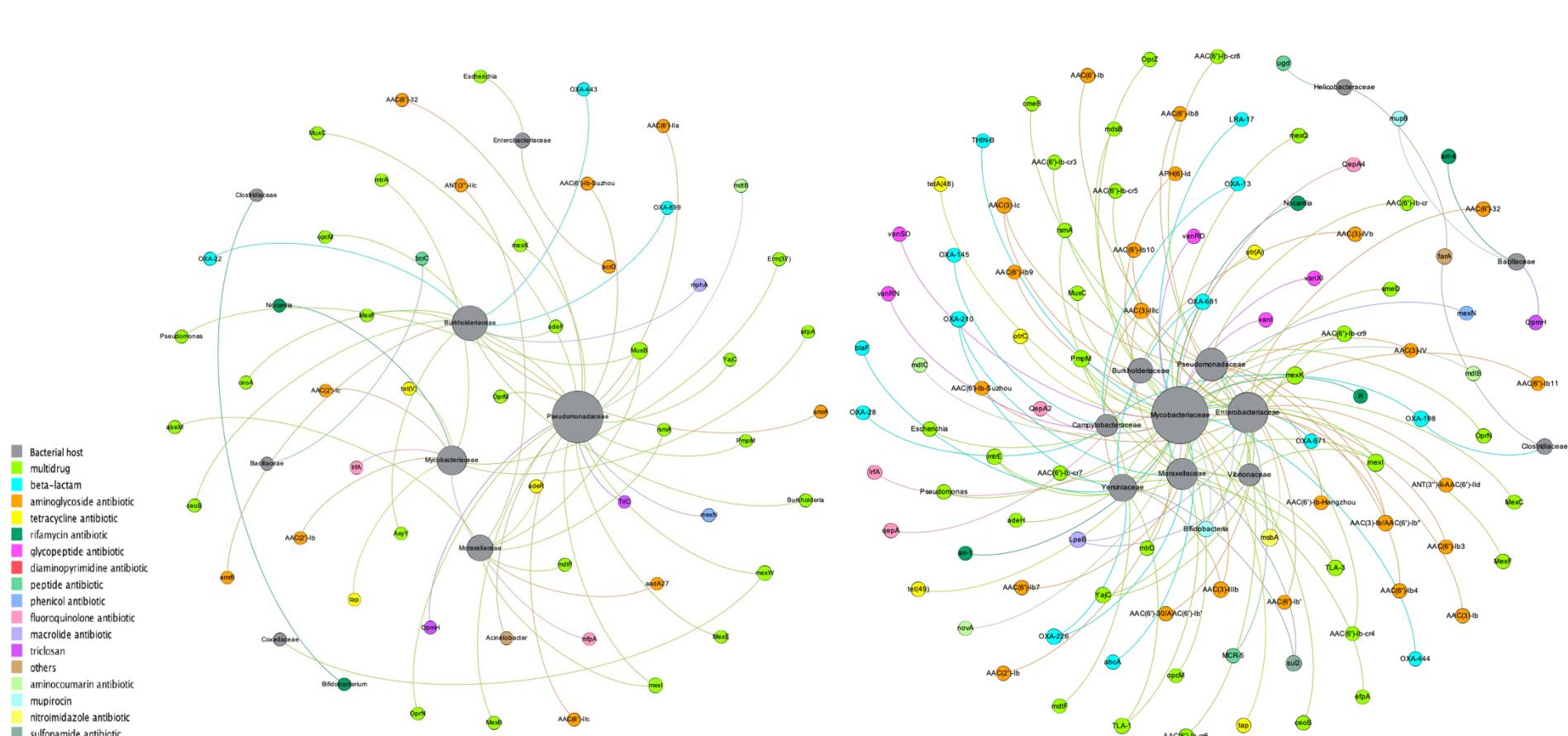
266 ARGs obtained through the raw-reads pipeline were also grouped into 18 drug classes (Fig. S5).
267 Rifamycin and multidrug drug classes constituted 38.3 ± 2.9 % and 43.6 ± 2.8 % of total
268 abundance respectively. Unlike the assembly pipeline, all ARG drug classes were present in all
269 the samples.

270

271

272 **Fig. 5** Percentage of ACCs identified with the assembly pipeline associated with MGEs or
 273 chromosomal/unclassified (“other”) by DNA fraction and site. The average relative percent
 274 difference (RPD) is listed for Site E iDNA and total DNA replicate samples.

275 3.4 ARGs hosts and diversity identified through two pipelines


276 In total, 1443 ARGs (11.5% of total ARGs) were assigned to hosts at least at the phylum level
 277 after assembly and classification by CAT. At the family level, 23, 30 and 33 ARG hosts were
 278 identified for eDNA, iDNA and tDNA respectively. The most commonly observed hosts were
 279 *Aeromonadaceae* representing 24% of tDNA, 46.3% of eDNA, and 17.5% of iDNA hosts,
 280 *Mycbacteriaceae* representing 26% of tDNA and 17.5% of iDNA hosts and *Pseudomonadaceae*
 281 representing 15.1% of eDNA hosts (Fig.S6). In all the three fractions of DNA, most of the
 282 tetracycline resistance genes were assigned to *Mycbacteriaceae* family while *Aeromonadaceae*
 283 were the hosts of most of beta-lactam group of ARGs. Host-ARG associations are shown site by
 284 site in Fig. S7. Significant differences were observed in the diversity of ARG host assignments
 285 with generally the greatest Shannon diversity observed for the iDNA or total DNA followed by
 286 eDNA (all $p < 0.025$, TukeyHSD) (Table S11).

287 Bins (624) were identified across the 17 samples, of which, 40 were high quality bins. Of these,
288 three bins carrying ARGs were recovered from eDNA and iDNA. The bin from eDNA fraction
289 contained the ARG *rsmA* and was assigned to phylum Nitrospirae. One of bins from the iDNA
290 fraction carrying multiple ARGs (*sull*, *rsmA*, *qacE* and *qacEdelta1*) belonged to phylum
291 Nitrospirae and the other belonged to Class Gammaproteobacteria and carried a single ARG
292 *rsmA*.

293 Network analysis revealed a wide diversity of potential ARG hosts for eDNA, iDNA and total
294 DNA (Shannon diversity 4.91 ± 0.01). For eDNA, 207 bacterial families correlated strongly with
295 182 ARGs (Fig. S8). Five families showed strong correlations with more than 15 ARGs
296 including *Enterobacteriaceae*, *Neisseriaceae*, and *Shewanellaceae*. ARGs linked with more than
297 10 families included genes harboring resistance to multiple drugs (multidrug), beta-lactam,
298 rifamycin, fluoroquinolone, streptogramin and other antibiotics. For the iDNA, strong
299 correlations were observed between 220 bacterial families and 189 ARGs (Fig. S9). Fourteen
300 families including *Sphingomonadaceae*, showed strong correlations with more than 15 ARGs. At
301 least 47 ARGs were assigned to more than 10 bacterial hosts. For total DNA, 221 bacterial
302 families showed high correlation with 182 ARGs (Fig. S10). Ten families including
303 *Legionellaceae*, and *Mycobacteriaceae* were identified as the potential hosts of more than 15
304 ARGs. The majority (65%) of the ARGs showing strong correlations with more than 10 bacterial
305 families had mechanisms of antibiotic efflux.

306 The Jaccard index for the network pairs of eDNA-iDNA was 0.455, iDNA-total DNA was 0.457,
307 total DNA-eDNA was 0.47. Jaccard index of 0 indicates that there is no overlap while index of
308 one indicates that there is perfect overlap between networks (Yang et al., 2016). The Jaccard

309 indices indicate ~50% overlap in the network pairs, (statistical comparison of these indices is
310 not possible with the present experiment design).

Fig 6: Linkage of hosts (bacterial families) which contain pathogens in NIAID's list of priority pathogens to ARGs obtained from the a) Assembly and b) Raw reads pipeline

316 **3.5 Comparison of the Network and Assembly pipeline**

317 The ARG-host linkages identified by network and assembly pipelines were compared first by
318 identifying common hosts (Table S13- S15). For all DNA fractions, most of the hosts identified
319 by the assembly pipeline were also identified by the network analysis pipeline (average
320 $85.3\pm5.5\%$) with more hosts identified by the network pipeline (247 hosts) compared to
321 assembly (53 total hosts). nMDS plots of ARGs generally showed clustering by sampling site
322 and less similarity for iDNA and total DNA than seen for the total community nMDS (Fig.3 b,c).
323 LEfSe was performed to determine the biomarkers for each pipeline and compare the host-ARG
324 assignments (i.e., input was hosts as a function of number of ARGs). A total of eight families
325 were identified as biomarkers of the ARG hosts for the assembly pipeline compared to 132
326 families for the network pipeline. Of the ARG hosts, seven bacterial families for the assembly
327 pipeline and 12 for the network analysis were identified as putative hosts of ARGs that could
328 contain NIAID's priority pathogens (Fig. 6).

329 **3.6 Quality assurance *in silico* matrix spikes**

330 *In silico* matrix spikes of a control genome to the field sample metagenomes (Table S12)
331 demonstrated the expected host-ARG correlation was observed for the network analysis when
332 the environmental metagenome was spiked with 50X and 20X MRSA genome coverage. The
333 assembly pipeline and binning for samples spiked with 50X of the *S. aureus* genome resulted in
334 the correct host assignment of the selected methicillin resistant ARGs (*mecA*, *mecI*, *mecR1*) at
335 least at family level. At 20X depth, two out of the three tested samples had successful association
336 of host to ARGs at family level for the assembly pipeline, while binning was successful in
337 linking the correct host to these ARGs at genus level.

338 Adding 1X of the MRSA genome, the raw-reads pipeline failed to assign the correct host to the
339 ARGs. Potential mis-associations of the ARGs *meca*, *mecI*, *mecR1* to hosts (*Silvanigrellaceae*,
340 *Gomontiellaceae*) with abundance less than 0.02 (less than 1X depth) were observed for the
341 network analyses. These are considered potential mis-linkages given that these *mec* genes were
342 below detection in the field metagenomes and therefore were only expected to link with *S.*
343 *aureus*. Multiple ARG hits for *meca*, *mecI* and *mecR1*(up to 681 hits) were observed for the
344 raw-reads pipeline for 1X, 20X and 50X coverages.

345 As expected, a single ARG hit for *meca*, *mecI*, and *mecR1* was observed in the samples that had
346 20X and 50X *S. aureus* genome addition for the assembly pipeline. With 1X genome coverage of
347 *S. aureus* the assembly pipeline resulted in no hits for *mecI* and multiple hits for *meca* and
348 *mecR1*. *meca* was assigned to the host *Staphylococcaceae* (family level) in two out of the three
349 samples at 1X depth. At a depth of 1X, binning also failed to associate the host to the expected
350 ARGs.

351 **4 Discussion**

352 **4.1 Quantitative comparisons of ARGs in different DNA fractions**

353 Raritan River bed sediment had lower concentrations of 16S rRNA gene copies in eDNA
354 compared to iDNA and total DNA fractions across the sampling sites. This result is in
355 accordance with previous studies on terrestrial sludge and sediment samples (Dong et al., 2019;
356 Zhang et al., 2013). The ARGs were either less frequently detected (*sul2*, *tet(G)*) or had similar
357 concentration (*sul1*) in eDNA than the iDNA fraction. This is in contrast to *sul1*, *sul2*, and other
358 ARG observations in aquatic sediment samples (Mao et al., 2014; Zhang et al., 2018).

359 Interestingly, the eDNA concentrations for the targeted genes were not necessarily highest at
360 Sites C through E that were influenced by WWTP effluent. Extracellular ARGs have been
361 detected in oxidant disinfected WWTP effluent (Oliveira et al., 2020) and in river water
362 downstream of WWTP effluent discharge (Liu et al., 2020). Here the accumulation of eDNA
363 ARGs in sediments may also be a function of settling/deposition rates, eDNA loss rates in the
364 sediments and the water column prior to settling, sediment type and sorption, etc. For example,
365 while environmental eDNA is subject to enzymatic degradation, the eDNA that adsorbs to soil
366 particles is protected from such degradation with clay particles providing more protection to
367 bound eDNA (Barnes et al., 2014; Lopatkin et al., 2017; Nielsen et al., 2007; Ogram et al.,
368 1994). This may explain why the highest recovery for eDNA matrix spikes was observed at Site
369 D which also had the lowest sand content and the highest fractions of both clay and silt. Further,
370 a previous study on riverbed sediments with a higher clay percentage (7% -22%) reported a
371 higher concentration of eDNA than iDNA (Mao et al., 2014).

372 The matrix spike recoveries of eDNA and iDNA were similar to or greater than those previously
373 reported for sediment samples using the same eDNA extraction method as here. eDNA recovery
374 was 37-68% for cloned CESA9 gene and $80.2 \pm 9.4\%$ for *E. coli* DNA as internal standard while
375 recovery was 57-94% for plant pathogen bacterial cells and $102.2 \pm 4.1\%$ for *E. coli* cells as
376 iDNA internal standards (Chen et al., 2018; Mao et al., 2014; Zhang et al., 2018).

377 **4.2 Microbial community structure and ARG diversity**

378 The eDNA microbial community generally had lower diversity and a different structure
379 compared to the iDNA and total DNA. This observation was somewhat different from a
380 previously published study on wastewater where community structures were conserved between

381 eDNA and iDNA at the family level using a cutoff criterion of 0.5% abundance (Calderon-
382 Franco et al., 2021). The loading of eDNA appears environment specific as eDNA was >40% of
383 the total DNA (as calculated by comparing DNase treated samples representing intracellular
384 DNA only to non-DNAase treated samples representing total DNA) reduced the alpha diversity
385 in drinking water samples disinfected by monochloramine (Sakcham et al., 2019). Here, eDNA
386 measured by nanodrop was ~13% of total DNA. As expected, the greatest relative abundance
387 and diversity of ARGs was observed in the iDNA and total DNA rather than eDNA.

388 Through the assembly pipeline, rifamycin resistance genes were ubiquitous and abundant ($60.8 \pm$
389 5.2 %) in the sediment samples, similar to a previous metagenomic study (Ma et al., 2014).
390 Rifamycin is naturally produced by soil bacteria (Li et al., 2020) and was isolated from bacteria
391 in the family *Pseudonocardiaceae* (Sensi, 1983). This family was detected in all the samples
392 through the raw reads pipeline. Multidrug resistance was the second most abundant category
393 ($29.1 \pm 3.7\%$), which has been found to be abundant in river sediments (Chen et al., 2019; Jiang
394 et al., 2018; Li et al., 2021). Notably, vancomycin resistance genes were observed in all samples.
395 Vancomycin is a last resort drug used for treating antibiotic resistant infections (Moellering,
396 1998) with vancomycin resistant *Enterococci* considered a “serious threat” (CDC, 2019).

397 The bed sediment microbial community structure and ARG diversity were similar between
398 iDNA and total DNA for a given site. Thus, measuring only total DNA for these riverbed
399 samples would not overestimate the ARGs or drastically shift the microbial community in iDNA.
400 Likewise, separation of eDNA did not cause a significant shift in microbial community structure
401 of iDNA. A recent review highlighted that significant differences in microbial community were
402 reported after the removal of eDNA in environments such as drinking water and soil with the
403 effect more apparent at lower taxonomic levels such as genus or amplicon sequence variant

404 (ASV) level (Bairoliya et al., 2021). However, some studies have also reported no change in
405 richness and evenness in community after eDNA removal in sediment samples (Bairoliya et al.,
406 2021).

407 **4.3 ARG host assignment in bed sediment by assembly**

408 Assembly of the bed sediment metagenomes resulted in low percentage of ACCs that were
409 classified by CAT. This is consistent with a recent study on pig farms also using CAT for
410 taxonomic classification of contigs (~19% contigs classified at phylum level) (Zhang et al.,
411 2021). Likewise, there was a low number of high-quality bins carrying ARGs. Other studies that
412 reported a higher number of ARG carrying bins (up to 635 bins) used activated sludge samples
413 (Liu et al., 2019; Zhao et al., 2020). Microbial community complexity or other differences in
414 studies (e.g., geography) could explain these differences.

415 In this study, most of tetracycline and beta- lactam resistance genes were linked to
416 *Mycobacteriaceae* and *Aeromonadaceae* respectively through the assembly pipeline.
417 Tetracycline resistance has been linked to *Mycobacterium* genus frequently through network
418 analysis in metagenomic sequencing studies on sludge samples (Fan et al., 2018; Xia et al.,
419 2019). *Aeromonadaceae* has also been identified as the host of beta-lactam genes through
420 assembly of metagenomics sequences from pig farms (Zhang et al., 2021).

421 **4.4 Comparison of raw reads and assembly**

422 The host-ARG associations obtained through both pipelines were compared with the raw reads
423 analysis pipeline identifying more ARGs than the assembly pipeline, likely due to the low
424 mapping percentage of assembly (39-55%), and/or due to repeat resolution by assembler (Nurk

425 et al., 2017). Comparison of this observation to the present literature is complicated by the
426 application of different cutoff criteria by different researchers as explained in *SI 5*.

427 Taxonomic families that could contain NIAID's priority pathogens were identified as ARG hosts
428 through both pipelines. ARGs in pathogenic bacteria pose a greater concern because they can
429 directly infect humans and resist the antibiotic treatment for treating serious infections (WHO,
430 2014). The number of ARGs linked to the families containing putative pathogenic hosts varied
431 by pipeline, with more such hosts identified by the raw-reads pipeline than the assembly pipeline
432 (Fig. 6). The ability to link ARGs to hosts at deeper taxonomic levels will be needed to best
433 understand the hazard, as these families will also contain many commensal organisms. Although,
434 if gene transfer is most likely from hosts that are most closely related, this may be a reasonable
435 first approximation. More targeted methods such as qPCR would be desirable to confirm the
436 presence of the pathogens.

437 A benefit of the assembly pipeline is that it provides genetic context, allowing for the
438 observation that the percentage of ARGs associated with MGEs increased moving downstream,
439 potentially due to the increase in wastewater influence (Table S2). Wastewater treatment plants
440 discharge extracellular ARGs due to lysing during disinfection (e.g., (Eramo et al., 2019; Yuan et
441 al., 2019)). Other sources of eDNA in the environment include active DNA release from live
442 cells, DNA released due to cell lysis and viruses (Ibáñez de Aldecoa et al., 2017).

443 The assembly pipeline used more memory and took ~4 times longer to run, making the raw-reads
444 pipeline more practical to perform. A drawback of the network analysis, which is based on
445 Spearman's correlations and required multiple samples for predicting host-ARG linkages, is that
446 with the present study design only linkages for ARGs and hosts across the sampling sites was

447 possible, rather than for a given sampling site. In contrast, geospatial comparisons were feasible
448 with assembly. The diversity of the ARG hosts was lower for the assembly pipeline, which may
449 indicate that the assembly pipeline was more conservative than the network analysis, assuming
450 both provided assignments with similar accuracy.

451 The *in silico* spike-in study confirmed that poor genome coverage of some organisms in
452 metagenome can lead to failure in host-assignments, either by not capturing the assignments or
453 by providing potentially incorrect assignments to hosts. Removal of low abundance taxa may
454 help in resolving this issue. It also confirmed that accurate host-ARG assignments for the MRSA
455 spike were observed in the reads-based pipeline as well as assembly pipeline at 20X, 50X depth.

456 **5. Conclusion**

457 ARGs in riverbed sediments were either more commonly observed via qPCR in iDNA and total
458 DNA compared to eDNA or similar between DNA fractions. In contrast, metagenomics clearly
459 demonstrated the eDNA fraction had less total ARG abundance compared to iDNA and total
460 DNA. Removing eDNA resulted in shifts in total microbial community structure but iDNA and
461 total DNA communities were generally closely clustered, indicating that total DNA was
462 reasonable representation of the iDNA for this system. Comparing pipelines for ARG host
463 assignment, most of the ARG hosts identified by the assembly pipeline were also identified by
464 the raw reads pipeline (which provided many more ARG-host linkages) and potential pathogenic
465 hosts were identified in both the pipelines. A benefit of assembly pipeline was demonstrated
466 through the observation that ARGs assigned to mobile genetic units increased for iDNA moving
467 downstream, useful information for understanding the potential for ARG propagation. The
468 pipeline comparisons provided here can inform how to compare studies that applied different

469 methods for ARG-host assignment. Further work is needed to confirm that pathogenic hosts were
470 present in our samples, for example via qPCR or longer read sequencing or emerging techniques
471 for high throughput ARG-host identification (Gallego et al., 2020).

472 **Declaration of Competing interest**

473 The authors declare that they have no known competing financial interests or personal
474 relationships that could have appeared to influence the work reported in this paper.

475 **Acknowledgements**

476 The research was supported by a grant from the National Science Foundation (# 1846815).
477 Thanks to Will Boni for assistance with field sampling and Genevieve Ehasz for help with
478 qPCR.

479 **Contributors**

480 Conceptualization, Methodology, Formal analysis: ASD, NLF; Investigation, Writing-original
481 draft: ASD; Writing – review & editing, project administration, funding acquisition: NLF.

482

483 **References**

484 Alawi, M., Schneider, B. and Kallmeyer, J. 2014. A procedure for separate recovery of extra-
485 and intracellular DNA from a single marine sediment sample. J Microbiol Methods 104,

486 36-42.

487 Aminov, R.I., Chee-Sanford, J.C., Garrigues, N., Teferedegne, B., Krapac, I.J., White, B.A. and
488 Mackie, R.I. 2002. Development, validation, and application of PCR primers for

489 detection of tetracycline efflux genes of gram-negative bacteria. *Appl Environ Microbiol*
490 68(4), 1786-1793.

491 Ashbolt, N.J., Heberer, T., van den Eede, C., Schönfeld, J., Krone, S., Backhaus, T., Li, X.-Y.,
492 Borriello, P., Amezquita, A., Larsson, D.G.J., Brandt, K., Smalla, K., Silley, P.,
493 Lawrence, J. and Ryan, J. 2013. Human Health Risk Assessment (HHRA) for
494 environmental development and transfer of antibiotic resistance. *Environ. Health
495 Perspect.* 121(9), 993-1001.

496 Bairoliya, S., Koh Zhi Xiang, J. and Cao, B. 2021. Extracellular DNA in environmental
497 samples: Occurrence, extraction, quantification, and impact on microbial biodiversity
498 assessment. *Appl Environ Microbiol*, AEM0184521.

499 Barnes, M.A., Turner, C.R., Jerde, C.L., Renshaw, M.A., Chadderton, W.L. and Lodge, D.M.
500 2014. Environmental conditions influence eDNA persistence in aquatic systems. *Environ
501 Sci Technol* 48(3), 1819-1827.

502 Berendonk, T.U., Manaia, C.M., Merlin, C., Fatta-Kassinos, D., Cytryn, E., Walsh, F.,
503 Burgmann, H., Sorum, H., Norstrom, M., Pons, M.N., Kreuzinger, N., Huovinen, P.,
504 Stefani, S., Schwartz, T., Kisand, V., Baquero, F. and Martinez, J.L. 2015. Tackling
505 antibiotic resistance: the environmental framework. *Nat Rev Microbiol* 13(5), 310-317.

506 Breitwieser, F.P., Lu, J. and Salzberg, S.L. 2019. A review of methods and databases for
507 metagenomic classification and assembly. *Brief Bioinform* 20(4), 1125-1136.

508 Calderon-Franco, D., van Loosdrecht, M.C.M., Abeel, T. and Weissbrodt, D.G. 2021. Free-
509 floating extracellular DNA: Systematic profiling of mobile genetic elements and
510 antibiotic resistance from wastewater. *Water Res* 189, 116592.

511 US Centers for Disease Control (CDC). 2019 Antibiotic Resistance Threats in the United States.

512 Chen, B., Lin, L., Fang, L., Yang, Y., Chen, E., Yuan, K., Zou, S., Wang, X. and Luan, T. 2018.
513 Complex pollution of antibiotic resistance genes due to beta-lactam and aminoglycoside
514 use in aquaculture farming. *Water Res* 134, 200-208.

515 Chen, H., Chen, R., Jing, L., Bai, X. and Teng, Y. 2019. A metagenomic analysis framework
516 for characterization of antibiotic resistomes in river environment: Application to an urban
517 river in Beijing. *Environ Pollut* 245, 398-407.

518 Chen, H., Li, Y., Sun, W., Song, L., Zuo, R. and Teng, Y. 2020. Characterization and source
519 identification of antibiotic resistance genes in the sediments of an interconnected river-
520 lake system. *Environ Int* 137, 105538.

521 Corinaldesi, C., Danovaro, R. and Dell'Anno, A. 2005. Simultaneous recovery of extracellular
522 and intracellular DNA suitable for molecular studies from marine sediments. *Appl
523 Environ Microbiol* 71(1), 46-50.

524 Deere, D., Porter, J., Pickup, R.W. and Edwards, C. 1996. Survival of cells and DNA of
525 *Aeromonas salmonicida* released into aquatic microcosms. *J Appl Bacteriol* 81(3), 309-
526 318.

527 Deng, Y., Mao, C., Lin, Z., Su, W., Cheng, C., Li, Y., Gu, Q., Gao, R., Su, Y. and Feng, J. 2022.
528 Nutrients, temperature, and oxygen mediate microbial antibiotic resistance in sea bass
529 (*Lateolabrax maculatus*) ponds. *Sci Total Environ* 819, 153120.

530 Dodd, M.C. 2012. Potential impacts of disinfection processes on elimination and deactivation
531 of antibiotic resistance genes during water and wastewater treatment. *Journal of
532 Environmental Monitoring* 14(7), 1754-1771.

533 Dong, P., Wang, H., Fang, T., Wang, Y. and Ye, Q. 2019. Assessment of extracellular
534 antibiotic resistance genes (eARGs) in typical environmental samples and the
535 transforming ability of eARG. Environ Int 125, 90-96.

536 Eramo, A., Morales Medina, W.R. and Fahrenfeld, N.L. 2019. Viability-based quantification of
537 antibiotic resistance genes and human fecal markers in wastewater effluent and receiving
538 waters. Sci Total Environ 656, 495-502.

539 Fan, X.Y., Gao, J.F., Pan, K.L., Li, D.C., Dai, H.H. and Li, X. 2018. Functional genera,
540 potential pathogens and predicted antibiotic resistance genes in 16 full-scale wastewater
541 treatment plants treating different types of wastewater. Bioresour Technol 268, 97-106.

542 Gallego, S., Barkay, T. and Fahrenfeld, N.L. 2020. Tagging the *vanA* gene in wastewater
543 microbial communities for cell sorting and taxonomy of *vanA* carrying cells. Sci. Total
544 Environ. 732, 138865.

545 Gu, Z.G., Gu, L., Eils, R., Schlesner, M. and Brors, B. 2014. circlize implements and enhances
546 circular visualization in R. Bioinformatics 30(19), 2811-2812.

547 Guo, X.P., Yang, Y., Lu, D.P., Niu, Z.S., Feng, J.N., Chen, Y.R., Tou, F.Y., Garner, E., Xu, J.,
548 Liu, M. and Hochella, M.F., Jr. 2018. Biofilms as a sink for antibiotic resistance genes
549 (ARGs) in the Yangtze Estuary. Water Res 129, 277-286.

550 Holden, M.T., Feil, E.J., Lindsay, J.A., Peacock, S.J., Day, N.P., Enright, M.C., Foster, T.J.,
551 Moore, C.E., Hurst, L., Atkin, R., Barron, A., Bason, N., Bentley, S.D., Chillingworth,
552 C., Chillingworth, T., Churcher, C., Clark, L., Corton, C., Cronin, A., Doggett, J., Dowd,
553 L., Feltwell, T., Hance, Z., Harris, B., Hauser, H., Holroyd, S., Jagels, K., James, K.D.,
554 Lennard, N., Line, A., Mayes, R., Moule, S., Mungall, K., Ormond, D., Quail, M.A.,
555 Rabinowitsch, E., Rutherford, K., Sanders, M., Sharp, S., Simmonds, M., Stevens, K.,

556 Whitehead, S., Barrell, B.G., Spratt, B.G. and Parkhill, J. 2004. Complete genomes of
557 two clinical *Staphylococcus aureus* strains: evidence for the rapid evolution of virulence
558 and drug resistance. Proc Natl Acad Sci U S A 101(26), 9786-9791.

559 Hong, P.-Y., Al-Jassim, N., Ansari, M. and Mackie, R. 2013. Environmental and public health
560 implications of water reuse: antibiotics, antibiotic resistant bacteria, and antibiotic
561 resistance genes. Antibiotics 2(3), 367-399.

562 Howe, A.C., Jansson, J.K., Malfatti, S.A., Tringe, S.G., Tiedje, J.M. and Brown, C.T. 2014.
563 Tackling soil diversity with the assembly of large, complex metagenomes. Proc Natl
564 Acad Sci U S A 111(13), 4904-4909.

565 Ibáñez de Aldecoa, A.L., Zafra, O. and González-Pastor, J.E. 2017. Mechanisms and regulation
566 of extracellular DNA release and its biological roles in microbial communities. Front
567 Microbiol 8, 1390.

568 Jensen, L.B., Ahrens, P., Dons, L., Jones, R.N., Hammerum, A.M. and Aarestrup, F.M. 1998.
569 Molecular analysis of Tn1546 in *Enterococcus faecium* isolated from animals and
570 humans. J Clin Microbiol 36(2), 437-442.

571 Jiang, H., Zhou, R., Zhang, M., Cheng, Z., Li, J., Zhang, G., Chen, B., Zou, S. and Yang, Y.
572 2018. Exploring the differences of antibiotic resistance genes profiles between river
573 surface water and sediments using metagenomic approach. Ecotoxicol Environ Saf 161,
574 64-69.

575 Jiang, X., Liu, L., Chen, J., Fan, X., Xie, S., Huang, J. and Yu, G. 2021. Antibiotic resistance
576 genes and mobile genetic elements in a rural river in Southeast China: Occurrence,
577 seasonal variation and association with the antibiotics. Sci Total Environ 778, 146131.

578 Lee, L. 2020. Nondetects and data analysis for environmental data. R package version 1.6-1.1.

579 Li, B., Chen, Z., Zhang, F., Liu, Y. and Yan, T. 2020. Abundance, diversity and mobility
580 potential of antibiotic resistance genes in pristine Tibetan Plateau soil as revealed by soil
581 metagenomics. *FEMS Microbiol Ecol* 96(10).

582 Li, Y., Chen, H., Song, L., Wu, J., Sun, W. and Teng, Y. 2021. Effects on microbiomes and
583 resistomes and the source-specific ecological risks of heavy metals in the sediments of an
584 urban river. *J Hazard Mater* 409, 124472.

585 Liaw, A. and Wiener, M. 2002. Classification and regression by randomForest. *R news* 2(3),
586 18-22.

587 Liu, M., Hata, A., Katayama, H. and Kasuga, I. 2020. Consecutive ultrafiltration and silica
588 adsorption for recovery of extracellular antibiotic resistance genes from an urban river.
589 *Environ Pollut* 260, 114062.

590 Liu, Z., Klumper, U., Liu, Y., Yang, Y., Wei, Q., Lin, J.G., Gu, J.D. and Li, M. 2019.
591 Metagenomic and metatranscriptomic analyses reveal activity and hosts of antibiotic
592 resistance genes in activated sludge. *Environ Int* 129, 208-220.

593 Loman, N.J., Constantnidou, C., Christner, M., Rohde, H., Chan, J.Z., Quick, J., Weir, J.C.,
594 Quince, C., Smith, G.P., Betley, J.R., Aepfelbacher, M. and Pallen, M.J. 2013. A
595 culture-independent sequence-based metagenomics approach to the investigation of an
596 outbreak of Shiga-toxigenic *Escherichia coli* O104:H4. *JAMA* 309(14), 1502-1510.

597 Lopatkin, A.J., Meredith, H.R., Srimani, J.K., Pfeiffer, C., Durrett, R. and You, L. 2017.
598 Persistence and reversal of plasmid-mediated antibiotic resistance. *Nat Commun* 8(1),
599 1689.

600 Lorenz, M.G. and Wackernagel, W. 1987. Adsorption of DNA to sand and variable degradation
601 rates of adsorbed DNA. *Appl Environ Microbiol* 53(12), 2948-2952.

602 Luo, Y., Mao, D., Rysz, M., Zhou, Q., Zhang, H., Xu, L. and P, J.J.A. 2010. Trends in
603 antibiotic resistance genes occurrence in the Haihe River, China. Environ Sci Technol
604 44(19), 7220-7225.

605 Ma, L., Li, B. and Zhang, T. 2014. Abundant rifampin resistance genes and significant
606 correlations of antibiotic resistance genes and plasmids in various environments revealed
607 by metagenomic analysis. Appl Microbiol Biotechnol 98(11), 5195-5204.

608 Mao, D., Luo, Y., Mathieu, J., Wang, Q., Feng, L., Mu, Q., Feng, C. and Alvarez, P.J. 2014.
609 Persistence of extracellular DNA in river sediment facilitates antibiotic resistance gene
610 propagation. Environ Sci Technol 48(1), 71-78.

611 Martinez, J.L., Coque, T.M. and Baquero, F. 2015. What is a resistance gene? Ranking risk in
612 resistomes. Nat Rev Microbiol 13(2), 116-123.

613 Mazel, D. and Davies, J. 1999. Antibiotic resistance in microbes. Cell Mol Life Sci 56(9-10),
614 742-754.

615 Miao, J., Yin, Z., Yang, Y., Liang, Y., Xu, X. and Shi, H. 2021. Abundance and Dynamic
616 Distribution of Antibiotic Resistance Genes in the Environment Surrounding a Veterinary
617 Antibiotic Manufacturing Site. Antibiotics (Basel) 10(11).

618 Moellering, R.C., Jr. 1998. The specter of glycopeptide resistance: current trends and future
619 considerations. Am J Med 104(5A), 3S-6S.

620 Munir, M., Wong, K. and Xagoraraki, I. 2011. Release of antibiotic resistant bacteria and genes
621 in the effluent and biosolids of five wastewater utilities in Michigan. Water Res 45(2),
622 681-693.

623 Muyzer, G., de Waal, E.C. and Uitterlinden, A.G. 1993. Profiling of complex microbial
624 populations by denaturing gradient gel electrophoresis analysis of polymerase chain
625 reaction-amplified genes coding for 16S rRNA. *Appl Environ Microbiol* 59(3), 695-700.

626 Nielsen, K.M., Johnsen, P.J., Bensasson, D. and Daffonchio, D. 2007. Release and persistence
627 of extracellular DNA in the environment. *Environ Biosafety Res* 6(1-2), 37-53.

628 Nurk, S., Meleshko, D., Korobeynikov, A. and Pevzner, P.A. 2017. metaSPAdes: a new
629 versatile metagenomic assembler. *Genome Res* 27(5), 824-834.

630 Ogram, A.V., Mathot, M.L., Harsh, J.B., Boyle, J. and Pettigrew, C.A. 1994. Effects of DNA
631 polymer length on its adsorption to soils. *Appl Environ Microbiol* 60(2), 393-396.

632 Oliveira, M., Nunes, M., Barreto Crespo, M.T. and Silva, A.F. 2020. The environmental
633 contribution to the dissemination of carbapenem and (fluoro)quinolone resistance genes
634 by discharged and reused wastewater effluents: The role of cellular and extracellular
635 DNA. *Water Res* 182, 116011.

636 Pei, R., Kim, S.C., Carlson, K.H. and Pruden, A. 2006. Effect of river landscape on the
637 sediment concentrations of antibiotics and corresponding antibiotic resistance genes
638 (ARG). *Water Res* 40(12), 2427-2435.

639 Rowe-Magnus, D.A. and Mazel, D. 2002. The role of integrons in antibiotic resistance gene
640 capture. *Int J Med Microbiol* 292(2), 115-125.

641 Sakcham, B., Kumar, A. and Cao, B. 2019. Extracellular DNA in monochloraminated drinking
642 water and its influence on DNA-based profiling of a microbial community. *Environ Sci
643 Technol Lett* 6(5), 306-312.

644 Scholz, M.B., Lo, C.C. and Chain, P.S. 2012. Next generation sequencing and bioinformatic
645 bottlenecks: the current state of metagenomic data analysis. *Curr Opin Biotechnol* 23(1),
646 9-15.

647 Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W.S. and Huttenhower, C.
648 2011. Metagenomic biomarker discovery and explanation. *Genome Biol* 12(6), R60.

649 Sensi, P. 1983. History of the development of rifampin. *Rev Infect Dis* 5 Suppl 3, S402-406.

650 Tantardini, M., Ieva, F., Tajoli, L. and Piccardi, C. 2019. Comparing methods for comparing
651 networks. *Sci Rep* 9(1), 17557.

652 Turner, C.R., Uy, K.L. and Everhart, R.C. 2015. Fish environmental DNA is more concentrated
653 in aquatic sediments than surface water. *Biological Conservation* 183, 93-102.

654 Vikesland, P.J., Pruden, A., Alvarez, P.J.J., Aga, D., Bürgmann, H., Li, X.-d., Manaia, C.M.,
655 Nambi, I., Wigginton, K., Zhang, T. and Zhu, Y.-G. 2017. Toward a comprehensive
656 strategy to mitigate dissemination of environmental sources of antibiotic resistance.
657 *Environ. Sci. Technol.* 51(22), 13061-13069.

658 Vollmers, J., Wiegand, S. and Kaster, A.K. 2017. Comparing and evaluating metagenome
659 assembly tools from a microbiologist's perspective - Not only size matters! *PLoS One*
660 12(1), e0169662.

661 World Health Organization (W.H.O.) (2014) Antimicrobial resistance: global report on
662 surveillance, World Health Organization.

663 Wickham, H. 2007. Reshaping data with the reshape package. *J Stat Software* 21(12), 1-20.

664 Wickham, H. 2016. *ggplot2-Elegant Graphics for Data Analysis*. Springer International
665 Publishing. Cham, Switzerland.

666 Willerslev, E., Davison, J., Moora, M., Zobel, M., Coissac, E., Edwards, M.E., Lorenzen, E.D.,
667 Vestergard, M., Gussarova, G., Haile, J., Craine, J., Gielly, L., Boessenkool, S., Epp,
668 L.S., Pearman, P.B., Cheddadi, R., Murray, D., Brathen, K.A., Yoccoz, N., Binney, H.,
669 Cruaud, C., Wincker, P., Goslar, T., Alsos, I.G., Bellemain, E., Brysting, A.K., Elven, R.,
670 Sonstebo, J.H., Murton, J., Sher, A., Rasmussen, M., Ronn, R., Mourier, T., Cooper, A.,
671 Austin, J., Moller, P., Froese, D., Zazula, G., Pompanon, F., Rioux, D., Niderkorn, V.,
672 Tikhonov, A., Savvinov, G., Roberts, R.G., MacPhee, R.D., Gilbert, M.T., Kjaer, K.H.,
673 Orlando, L., Brochmann, C. and Taberlet, P. 2014. Fifty thousand years of Arctic
674 vegetation and megafaunal diet. *Nature* 506(7486), 47-51.

675 Xia, H., Chen, J., Chen, X., Huang, K. and Wu, Y. 2019. Effects of tetracycline residuals on
676 humification, microbial profile and antibiotic resistance genes during vermicomposting of
677 dewatered sludge. *Environ Pollut* 252(Pt B), 1068-1077.

678 Xie, G., Chain, P.S., Lo, C.C., Liu, K.L., Gans, J., Merritt, J. and Qi, F. 2010. Community and
679 gene composition of a human dental plaque microbiota obtained by metagenomic
680 sequencing. *Mol Oral Microbiol* 25(6), 391-405.

681 Yang, J.J., Kwon, H. and Lee, J.M. 2016. Complementary characteristics of correlation patterns
682 in morphometric correlation networks of cortical thickness, surface area, and gray matter
683 volume. *Sci Rep* 6, 26682.

684 Yuan, Q.B., Huang, Y.M., Wu, W.B., Zuo, P., Hu, N., Zhou, Y.Z. and Alvarez, P.J.J. 2019.
685 Redistribution of intracellular and extracellular free & adsorbed antibiotic resistance
686 genes through a wastewater treatment plant by an enhanced extracellular DNA extraction
687 method with magnetic beads. *Environ Int* 131, 104986.

688 Zhang, R.M., Liu, X., Wang, S.L., Fang, L.X., Sun, J., Liu, Y.H. and Liao, X.P. 2021.

689 Distribution patterns of antibiotic resistance genes and their bacterial hosts in pig farm

690 wastewater treatment systems and soil fertilized with pig manure. *Sci Total Environ* 758,

691 143654.

692 Zhang, Y., Niu, Z., Zhang, Y. and Zhang, K. 2018. Occurrence of intracellular and extracellular

693 antibiotic resistance genes in coastal areas of Bohai Bay (China) and the factors affecting

694 them. *Environ Pollut* 236, 126-136.

695 Zhang, Y., Snow, D.D., Parker, D., Zhou, Z. and Li, X. 2013. Intracellular and extracellular

696 antimicrobial resistance genes in the sludge of livestock waste management structures.

697 *Environ Sci Technol* 47(18), 10206-10213.

698 Zhao, R., Yu, K., Zhang, J., Zhang, G., Huang, J., Ma, L., Deng, C., Li, X. and Li, B. 2020.

699 Deciphering the mobility and bacterial hosts of antibiotic resistance genes under

700 antibiotic selection pressure by metagenomic assembly and binning approaches. *Water*

701 *Res* 186, 116318.

702 Zhou, S., Zhu, Y.J., Yan, Y., Wang, W.G. and Wang, Y.Y. 2019. Deciphering extracellular

703 antibiotic resistance genes (eARGs) in activated sludge by metagenome. *Water Res* 161,

704 610-620.

705

706