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Abstract—With the development of the Internet of Things,
millions of sensors are being deployed in cities to collect real-
time data. This leads to a need for checking city states against
city requirements at runtime. In this article, we develop a novel
spatial–temporal specification-based monitoring system for smart
cities. We first describe a study of over 1000 smart city require-
ments, some of which cannot be specified using the existing logic,
such as the signal temporal logic (STL) and its variants. To tackle
this limitation, we develop spatial aggregation STL (SaSTL)—a
novel spatial aggregation STL—for the efficient runtime monitor-
ing of safety and performance requirements in smart cities. We
develop two new logical operators in SaSTL to augment STL for
expressing spatial aggregation and spatial counting characteris-
tics that are commonly found in real city requirements. We define
the Boolean and quantitative semantics for SaSTL in support of
the analysis of city performance across different periods and
locations. We also develop efficient monitoring algorithms that
can check the SaSTL requirement in parallel over multiple data
streams (e.g., generated by multiple sensors distributed spatially
in a city). Additionally, we build an SaSTL-based monitoring tool
to support decision making of different stakeholders to specify
and runtime monitor their requirements in smart cities. We eval-
uate our SaSTL monitor by applying it to three case studies with
large-scale real city sensing data (e.g., up to 10 000 sensors in one
study). The results show that SaSTL has a much higher cover-
age expressiveness than other spatial–temporal logics, and with a
significant reduction of computation time for monitoring require-
ments. We also demonstrate that the SaSTL monitor improves the
safety and performance of smart cities via simulated experiments.

Index Terms—Runtime verification, signal temporal logic
(STL), smart cities.

I. INTRODUCTION

SMART cities are emerging around the world. Examples
include Chicago’s Array of Things project [1], IBM’s

Rio de Janeiro Operations Center [2], and Cisco’s
Smart+Connected Operations Center [3], just to name
a few. Smart cities utilize a vast amount of data and smart
services to enhance the safety, efficiency, and performance
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of city operations [4]. There is a need for monitoring
city states in real time to ensure safety and performance
requirements [5]. If a requirement violation is detected by the
monitor, the city operators and smart service providers can
take actions to change the states, such as improving traffic
performance, rejecting unsafe actions, sending alarms to
police, etc. The key challenges of developing such a monitor
include how to use an expressive machine-understandable
language to specify smart city requirements, and how to
efficiently monitor requirements that may involve multiple
sensor data streams (e.g., some requirements are concerned
with thousands of sensors in a smart city).

Previous works [6]–[9] have proposed solutions to monitor
smart cities using formal specification languages and their mon-
itoring machinery. One of the latest works, CityResolver [10]
uses the signal temporal logic (STL) [11] to support the
specification-based monitoring of safety and performance
requirements of smart cities. However, STL is not expressive
enough to specify smart city requirements concerning spatial
information such as “the average noise level within 1 km of all
elementary schools should always be less than 50 dB.” There
are some existing spatial extensions of STL (e.g., SSTL [12],
SpaTeL [9], and STREL [13], [14], see [15] for a recent tuto-
rial), which can express requirements such as “there should be
no traffic congestion on all the roads in the northeast direction.”
But they are not expressive enough to specify requirements
like “there should be no traffic congestion on all the roads on
average,” or “on 90% of the roads,” which require the aggre-
gation and counting of signals in the spatial domain. To tackle
these challenges and limitations, we develop a novel spatial
aggregation STL (SaSTL), which extends STL with two new
logical operators for expressing spatial aggregation and spatial
counting characteristics, which we demonstrate are commonly
found in real city requirements. More specifically, this article
has the following major contributions.

1) To the best of our knowledge, this is the first work
studying and annotating over 1000 real smart city
requirements across different service domains to iden-
tify the gap of expressing smart city requirements with
existing formal specification languages. As a result, we
found that aggregation and counting signals in the spatial
domain (e.g., for representing sensor signals distributed
spatially in a smart city) are extremely important for
specifying and monitoring city requirements.

2) Drawing on the insights from our requirements study,
we develop a new specification language SaSTL, which
extends STL with a spatial aggregation operator and a
spatial counting operator. SaSTL can be used to specify
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Fig. 1. Framework for runtime monitoring of real-time city requirements.

the Point of Interests (PoIs), physical distance, spatial
relations of the PoIs and sensors, aggregation of signals
over locations, degree/percentage of satisfaction, and the
temporal elements in a very flexible spatial–temporal
scale. We define the Boolean and quantitative semantics
with theoretical proofs.

3) We compare SaSTL with some existing specification
languages and show that SaSTL has a much higher cov-
erage expressiveness (95%) than STL (18.4%), SSTL
(43.1%) or STREL (43.1%) over 1000 real city require-
ments.

4) We develop novel and efficient monitoring algorithms
for SaSTL. In particular, we present two new methods
to speed up the monitoring performance: a) dynami-
cally prioritizing the monitoring based on cost functions
assigned to nodes of the syntax tree and b) paralleliz-
ing the monitoring of spatial operators among multiple
locations and/or sensors.

5) We evaluate the SaSTL monitor by applying it to moni-
toring real city data collected from Chicago and Aarhus.
The results show that SaSTL monitor has the potential
to help identify safety violations and support the city
managers and citizens to make decisions. We also eval-
uate the SaSTL monitor on a third case study of conflict
detection and resolution among smart services in simu-
lated New York City with large-scale real sensing data
(e.g., up to 10 000 sensors used in one requirement).
Results of our simulated experiments show that SaSTL
monitor can help improve the city’s performance
(e.g., 21.1% on the environment and 16.6% on public
safety), with a significant reduction of computation time
compared with previous approaches.

6) We develop an SaSTL monitoring tool that can sup-
port decision making of different stakeholders in smart
cities. The tool allows users (e.g., the city decision maker
and citizens) without any formal method background to
specify city requirements and monitor city performance
easily.

This article is an extended version of [16]. We extend with
the following new contributions. First, we add new quantitative
semantics and monitoring algorithms, with new theorems
of soundness and correctness in Section III. Compared to
the conference version (the Boolean semantics), the new
quantitative semantics presents the monitoring results with

real values, and better supports decision makers to compare
the satisfaction/violation degrees between different options.
Second, we develop new monitoring algorithms for the
proposed quantitative semantics and improve the monitoring
algorithms for the new spatial operators in Section IV. Third,
we develop a monitoring tool to support monitoring and deci-
sion making using SaSTL in smart cities in Section VI. The
tool also provides a way for nonexpert users to input require-
ments in the English language. Then, the tool translates the
requirements to the SaSTL formal specification automatically
for monitoring. Fourth, we extend the evaluation with a new
city scenario using real data from Aarhus, Denmark in Section
VII. The results show that the SaSTL monitor has the poten-
tial to help identify safety violations and support city managers
and citizens to make decisions. Finally, we elaborate with more
discussions on how to apply the SaSTL monitor in smart cities
and extend the related work.

II. APPROACH OVERVIEW

Fig. 1 shows an overview of our SaSTL runtime monitoring
framework for smart cities. We envision that such a frame-
work would operate in a smart city’s central control center
(e.g., IBM’s Rio de Janeiro Operations Center [2] or Cisco’s
Smart+Connected Operations Center [3]) where sensor data
about city states across various locations are available in real
time. The framework would monitor city states and check them
against a set of smart city requirements at runtime. The mon-
itoring results would be presented to city managers to support
decision making. The framework makes abstractions of city
states in the following way. The framework formalizes a set
of smart city requirements (see Section III) to some machine
checkable SaSTL formulas (see Section IV). Different data
streams (e.g., CO emission and noise level) over temporal and
spatial domains can be viewed as a 3-D matrix. For any sig-
nal sj in signal domain S, each row is a time-series data at
one location and each column is a set of data streams from
all locations at one time. Next, the efficient real-time mon-
itoring for SaSTL verifies the states with the requirements
and outputs the Boolean satisfaction to the decision makers,
who would take actions to resolve the violation. To support
decision making in real time, we improve the efficiency of
the monitoring algorithm in Section V. We implement the
SaSTL runtime monitoring tool following this framework for
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TABLE I
EXAMPLES OF CITY REQUIREMENTS FROM DIFFERENT DOMAINS (THE KEY ELEMENTS OF A REQUIREMENT ARE HIGHLIGHTED AS, TEMPORAL,

SPATIAL, AGGREGATION, ENTITY, CONDITION, AND COMPARISON)

TABLE II
KEY ELEMENTS OF CITY REQUIREMENTS AND STATISTICAL RESULTS

FROM 1000 REAL CITY REQUIREMENTS

city experts without any formal methods background (see
Section VI). We describe more details of the framework in
the following sections.

III. ANALYSIS OF REAL CITY REQUIREMENTS

To better understand real city requirements, we conduct a
requirement study. We collect and statistically analyze 1000
quantitatively specified city requirements (e.g., standards, reg-
ulations, city codes, and laws) across different application
domains, including energy, environment, transportation, emer-
gency, and public safety from over 70 cities (e.g., New York
City, San Francisco, Chicago, Washington D.C., Beijing, etc.)
around the world. Some examples of these city requirements
are highlighted in Table I. We identify the key required fea-
tures to have in a specification language and its associated use
in a city runtime monitor. The summarized statistical results of
the study and key elements we identified (i.e., temporal, spa-
tial, aggregation, entity, comparison, and condition) are shown
in Table II.

Temporal: Most of the requirements include a variety of
temporal constraints, e.g., a static deadline, a dynamic dead-
line, or time intervals. In many cases (65.7%), the temporal
information is not explicitly written in the requirement, which
usually means it should be “always” satisfied. In addition, city
requirements are highly real-time driven. In over 80% require-
ments, cities are required to detect requirement violations at
runtime. It indicates a high demand for runtime monitoring.

Spatial: A requirement usually specifies its spatial range
explicitly using the PoIs (80.1%), such as “park,” “xx school,”
along with a distance range (65%). One requirement usually
points to a set of places (e.g., all the schools). Therefore, it
is very important for a formal language to be able to specify
the spatial elements across many locations within the formula,
rather than one formula for each location.

We also found that the city requirements specify a very large
spatial scale. Different from the requirements of many other
CPS, requirements from smart cities are highly spatial-specific
and usually involve a very large number of locations/sensors.
For example, the first requirement in Table I specifies a vehicle
idling time “adjacent to any school, pre-K to 12th grade in
the City of New York.” There are about 2000 pre-K to 12th
schools, even counting 20 street segments nearby each school,
there are 40 000 data streams to be monitored synchronously.
An efficient monitoring is highly demanded.

Aggregation: In 51.9% of cases, requirements are speci-
fied on the aggregated signal over an area, such as “the total
amount,” “average· · · per 100 square feet,” “up to four vend-
ing vehicles in any given city block,” “at least 20% of travelers
from all entrances should· · · ,” etc. Therefore, aggregation is a
key feature for the specification language.

IV. FORMALIZING TEMPORAL–SPATIAL REQUIREMENTS

SaSTL extends STL with two spatial operators: 1) a spatial
aggregation operator and 2) a neighborhood counting operator.
Spatial aggregation enables combining (according to a chosen
operation) measurements of the same type (e.g., environmen-
tal temperature), but taken from different locations. The use
of this operator can be suitable in requirements, where it is
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necessary to evaluate the average, best, or worst value of a sig-
nal measurement in an area close to the desired location. The
neighborhood counting operator allows measuring the num-
ber/percentage of neighbors of a location that satisfies a certain
requirement.

A. SaSTL Syntax

We define a multidimensional spatial–temporal signal as
ω : T × L → {R ∪ {⊥}}n, where T = R≥0 represents the
continuous time and L is the set of locations. We define
X = {x1, . . . , xn} as the set of variables for each loca-
tion. Each variable can assume a real value v ∈ R or is
undefined for a particular location (xi = ⊥). We denote
by πxi(ω) as the projection of ω on its component variable
xi ∈ X. We define P = {p1, . . . , pm} a set of propositions
(e.g., {School, Street, Hospital, . . .}) and L a labeling func-
tion L : L→ 2P that assigns for each location the set of the
propositions that are true in that location.

A weighted undirected graph is a tuple G = (L, E, η), where
L is a finite nonempty set of nodes representing locations, E ⊆
L× L is the set of edges connecting nodes, and η : E→ R≥0
is a cost function over edges. We define the weighted distance
between two locations l, l′ ∈ L as

d(l, l′) := min

{
∑

e∈σ
η(e)|σ is a path between l and l′

}

.

Then, we define the spatial domain D as

D := ([d1, d2],ψ)

ψ := *|p|¬ ψ |ψ ∨ ψ

where [d1, d2] defines a spatial interval with d1 < d2 and
d1, d2 ∈ R, and ψ specifies the property over the set of
propositions that must hold in each location. Intuitively, it
draws two circles with radius r1 = d1 and r2 = d2, and
the locations l |= ψ between these two circles are selected.
In particular, D = ([0,+∞),*) indicates the whole spatial
domain. We denote Ll

([d1,d2],ψ)
:= {l′ ∈ L|0 ≤ d1 ≤ d(l, l′) ≤

d2 and L(l′) |= ψ} as the set of locations at a distance between
d1 and d2 from l for which L(l′) satisfies ψ . We denote the set
of nonnull values for signal variable x at time point t location
l over locations in Ll

D by

αx
D(ω, t, l) := {πx(ω)[t, l′]|l′ ∈ Ll

D and πx(ω)[t, l′] .= ⊥}.
We define a set of operations op(αx

D(ω, t, l)) for op ∈
{max, min, sum, avg} when αx

D(ω, t, l) .= ∅ that computes the
maximum, minimum, summation, and average of values in
the set αx

D(ω, t, l), respectively. To be noted, Graph G and its
weights between nodes are constructed flexibly based on the
property of the system. For example, we can build a graph with
fully connected sensor nodes and their Euclidean distance as
the weights when monitoring the air quality in a city; or we
can also build a graph that only connects the street nodes when
the two streets are contiguous and apply Manhattan distance.
It does not affect the syntax and semantics of SaSTL.

The syntax of SaSTL is given by

ϕ := x ∼ c|¬ϕ|ϕ1 ∧ ϕ2|ϕ1UIϕ2|Aop
D x ∼ c|Cop

D ϕ ∼ c

where x ∈ X, ∼∈ {<,≤}, c ∈ R is a constant, I ⊆ R>0 is a
real positive dense time interval, and UI is the bounded until

temporal operators from STL. The always (denoted !) and
eventually (denoted ♦) temporal operators can be derived the
same way as in STL, where ♦ϕ ≡ true UIϕ and !ϕ ≡ ¬♦¬ϕ.

In SaSTL, we define a set of spatial aggregation opera-
tors Aop

D x ∼ c for op ∈ {max, min, sum, avg} that evaluate
the aggregated product of traces op(αx

D(ω, t, l)) over a set of
locations l ∈ Ll

D. We also define a set of new spatial count-
ing operators Cop

D ϕ ∼ c for op ∈ {max, min, sum, avg} that
counts the satisfaction of traces over a set of locations. More
precisely, we define Cop

D ϕ = op({g((ω, t, l′) |= ϕ)|l′ ∈ Ll
D}),

where g((ω, t, l) |= ϕ)) = 1 if (ω, t, l) |= ϕ; otherwise,
g((ω, t, l) |= ϕ)) = 0. From the new counting operators, we
also derive the everywhere operator as Dϕ ≡ Cmin

D ϕ > 0,
and somewhere operator as Dϕ ≡ Cmax

D ϕ > 0. In addition,
Csum
D ϕ specifies the total number of locations that satisfy ϕ

and Cavg
D ϕ specifies the percentage of locations satisfying ϕ.

We now illustrate how to use SaSTL to specify various city
requirements, especially for the spatial aggregation and spatial
counting, and how important these operators are for the smart
city requirements using examples below.

Example 1 (Spatial Aggregation): Assume that we have a
requirement, “the average noise level in the school area (within
1 km) in New York City should always be less than 50 dB
and the worst should be less than 80 dB in the next 3 h” is
formalized as, ([0,+∞),School)![0,3]((Aavg

([0,1],*)xNoise < 50)∧
(Amax

([0,1],*)xNoise < 80)). ([0,+∞), School) selects all the
locations labeled as “school” within the whole New York city
([0,+∞)) (predefined by users). ![0,3] indicates this require-
ment is valid for the next three hours. (Aavg

([0,1],*)xNoise <

50)∧ (Amax
([0,1],*)xNoise < 80) calculates the average and max-

imal values in 1 km for each “school,” and compares them
with the requirements, i.e., 50 dB and 80 dB.

Without the spatial aggregation operators, STL and its
extended languages cannot specify this requirement. First, they
are not able to first dynamically find all the locations labeled as
“school.” To monitor the same spatial range, users have manu-
ally get all traces from schools, and then repeatedly apply this
requirement to each located sensor within 1 km of a school
and do the same for all schools. More importantly, STL and
its extended languages could not specify “average” or “worst”
noise level. Instead, it only monitors each single value, which
is prone to noises and outliers and thereby causes inaccurate
results.

Example 2 (Spatial Counting): A requirement that “at least
90% of the streets, the particulate matter (PMx) emis-
sion should not exceed Moderate in 2 h” is formal-
ized as Cavg

([0,+∞),Street)(![0,2](xPMx < Moderate)) > 0.9.
Cavg

([0,+∞),Street)ϕ > 0.9 represents the percentage of sat-
isfaction is larger than 90%. Specifying the percentage
of satisfaction is very common and important among city
requirements.

B. SaSTL Semantics

We define the SaSTL semantics as the satisfiability rela-
tion (ω, t, l) |= ϕ, indicating that the spatiotemporal signal
ω satisfies a formula ϕ at the time point t in location l
when πv(ω)[t, l] .= ⊥ and αx

D(ω, t, l) .= ∅. We define that
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(ω, t, l) |= ϕ if πv(ω)[t, l] = ⊥

(ω, t, l) |= x ∼ ⇔ πx(ω)[t, l] ∼ c

(ω, t, l) |= ¬ϕ ⇔ (ω, t, l) .|= ϕ

(ω, t, l) |= ϕ1 ∧ ϕ2 ⇔ (ω, t, l) |= ϕ1 and (ω, t, l) |= ϕ2

(ω, t, l) |= ϕ1UIϕ2 ⇔ ∃t′ ∈ (t + I) ∩ T : (ω, t′, l) |= ϕ2

and ∀t′′ ∈ (t, t′), (ω, t′′, l) |= ϕ1

(ω, t, l) |= Aop
D x ∼ c ⇔ op(αx

D(ω, t, l)) ∼ c

(ω, t, l) |= Cop
D ϕ ∼ c ⇔ op({g((ω, t, l′) |= ϕ)|l′ ∈ Ll

D}) ∼ c

where, for counting operator (ω, t, l) |= Cop
D ϕ ∼ c, the valid

ranges for c are c ∈ [0, 1) when op = sum/min, and c ∈ [0, N]
when op = sum/min. Otherwise, (e.g., c < 0), the requirement
is trivially satisfied or violated.

Example 3: Following Example 1, checking the city states
with a requirement ([0,+∞),Hospital)![0,5]((Aavg

([0,500],*)xAQI <

50) ∧ (Amax
([0,500],*)xAQI < 80)), to start with, assuming we

have the AQI level data from a number of sensors within
500 m of one of the hospital, the sensor readings in 5
h as, {[51, . . . , 11], [80, . . . , 30], . . . , [40, . . . , 30]},
ϕt = (Aavg

([0,500],*)]xAQI < 50) ∧ (Amax
([0,500],*)xAQI < 80),

then, we check ϕt for this hospital at each time, at t = 1,
avg(51, . . . , 40) > 50∧ max(51, . . . , 40) < 80, thus, ϕt1 =
False, at t = 2, avg(49, . . . , 20) < 50∧ max(49, . . . , 20) >
80, thus, ϕt1 = False, . . . , at t = 5, avg(11, . . . , 30) < 50∧
max(11, . . . , 30) < 80, thus, ϕt1 = True.

Thus, we have ![0,5]ϕt = False.
Next, the monitor checks all qualified hospitals the same

way and reaches the final results ([0,+∞),Hospital)![0,5]
((Aavg

([0,500],*)xAQI < 50) ∧(Amax
([0,500],*) xAQI < 80)) = False.

In a real scenario, the monitor algorithm can also decide
to terminate the monitor and return the False result when at
t = 1, because the always operator returns False as long as
a one-time violation occurs. Similarly, the everywhere opera-
tor will also return False when the first hospital violates the
requirement.

Definition 1 (Quantitative Semantics): Let x > c be a
numerical predicate, we then define the robustness degree
(i.e., the quantitative satisfaction) function ρ(ϕ,ω, t, l)
for an SaSTL formula over a spatial–temporal signal
ω as

ρ(x ∼ c,ω, t, l) = πx(ω)[t, l]− c

ρ(¬ϕ,ω, t, l) = −ρ(ϕ,ω, t, l)

ρ(ϕ1 ∨ ϕ2,ω, t, l) = max{ρ(ϕ1,ω, t, l), ρ(ϕ2,ω, t, l)}
ρ(ϕ1UIϕ2,ω, t, l) = sup

t′∈(t+I)∩T
(min{ρ(ϕ2,ω, t′, l),

inf
t′′∈[t,t′]

(ρ(ϕ1,ω, t′′, l))})

ρ(Aop
D x∼c,ω, t, l)=

{ sum(αx
D(ω,t,l))−c

|αx
D(ω,t,l)| , op= sum

op(αx
D(ω, t, l))− c, op ∈ {max, min, avg}

ρ(Cop
D ϕ ∼ c,ω, t, l)

=






maxl′∈Ll
D

{ρ(ϕ,ω, t, l′)}, op = max

minl′∈Ll
D

{ρ(ϕ,ω, t, l′)}, op = min

δ(8c9, {ρ(ϕ,ω, t, l′)|l′ ∈ Ll
D}), op = sum

δ(8c× |Ll
D|9, {ρ(ϕ,ω, t, l′)|l′ ∈ Ll

D}), op = avg

where we define function(k, S) as a function that returns the
kth smallest number of set S, |S| > 0, and 0 ≤ k ≤ |S|. For
Cop
D ϕ ∼ c, when op = sum, it requires that there are at least
8c9 locations that satisfy ϕ; thus, we denote the 8c9th smallest
robustness value from {ρ(ϕ,ω, t, l′)|l′ ∈ Ll

D} as the robustness
value of this formula. [c] indicates the smallest integer that is
larger than or equal to c. Similarly, when op = avg, the for-
mula is converted as there are at least 8c× |Ll

D|9 locations that
satisfy ϕ; thus, we denote the 8c× |Ll

D|9th smallest robustness
value from {ρ(ϕ,ω, t, l′)|l′ ∈ Ll

D} as the robustness value of
this formula. Same as the Boolean semantics, the valid ranges
for c are c ∈ [0, 1) when op = sum/min, and c ∈ [0, N] when
op = sum/min. Otherwise (e.g., c < 0), the requirement is
trivially satisfied or violated.

Example 4: Assuming we have data (1, 2, 3), (2, 3, 4),
(4, 5, 7) from three locations satisfying D, thus:

1) ρ(Cmax
D (![0,2](x > 5)) > 0) = ρ(Cmax

D ({−4,−3, 2}) > 0) = 2;
2) ρ(Cmin

D (![0,2](x > 5)) > 0) = ρ(Cmin
D ({−4,−3, 2}) > 0) = −4;

3) ρ(Csum
D (![0,2](x > 5)) > 1) = ρ(Csum

D ({−4,−3, 2}) > 1)=− 3;
4) ρ(Cavg

D (![0,2](x > 5)) > 0.2) = ρ(Cavg
D ({−4,−3, 2}) > 0.2)=2.

The quantitative semantics of SaSTL inherit the two funda-
mental properties of STL, i.e., soundness and correctness. We
give the formal definitions below.

Theorem 1 (Soundness): Let ϕ be an STL formula, ω a
trace and t a time

ρ(ϕ,ω, t, l) > 0 ⇒ (ω, t, l) |= ϕ

ρ(ϕ,ω, t, l) < 0 ⇒ (ω, t, l) .|= ϕ.

Second, if ω satisfies ϕ at time t, any other trace ω′ whose
point-wise distance from ω is smaller than ρ(ϕ,ω, t, l) also
satisfies ϕ at time t.

Theorem 2 (Correctness): Let ϕ be an STL formula, ω and
ω′ traces over the same time and spatial domains, and t, l ∈
dom(ϕ,ω), then

(ω, t, l) |= ϕ and ||ω − ω′||∞ < ρ(ϕ,ω, t, l)⇒ (ω′, t, l) |= ϕ.

In summary, the qualitative value indicates if the signal
(i.e., city data) satisfies the requirement. The quantitative value
indicates the satisfaction or dissatisfaction degree. If it is larger
than or equal to 0, it means that the requirement is satisfied.
The larger the value, the more the requirement is satisfied.
On the contrary, if the value is smaller than 0, it means the
requirement is not satisfied. The smaller the value, the more
the requirement is dissatisfied.

V. EFFICIENT MONITORING FOR SASTL

In this section, we first present both Boolean and quan-
titative monitoring algorithms for SaSTL, then describe two
optimization methods to speed up the monitoring performance.

A. Monitoring Algorithms for SaSTL

The inputs of the monitor are the SaSTL requirements
ϕ (including time t and location l), a weighted undi-
rected graph G, and the temporal-spatial data ω. In smart
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Algorithm 1: SaSTL Quantitative Monitoring Algorithm
MonitorQ(ϕ,ω, t, l, G)

Input: SaSTL Requirement ϕ, Signal ω, Time t, Location l, weighted
undirected graph G

Output: Satisfaction Value ρ
begin

switch ϕ do
Case x ∼ c

return πx(ω)[t, l]− c;
Case ¬ϕ

return- MonitorQ(ϕ,ω, t, l, G);
Case ϕ1 ∧ ϕ2

return min(MonitorQ(ϕ1,ω, t, l, G),
MonitorQ(ϕ2,ω, t, l, G));

Case ϕ1UIϕ2
Real v := −∞
for t′ ∈ (t + I) ∩ T do

v′ := MonitorQ(ϕ2,ω, t′, l, G)
for t′′ ∈ [t, t′] do

v′ := min{v′,MonitorQ(ϕ2,ω, t′′, l, G)}
end
v = max{v, v′}

end
return v;

Case Aop
D x ∼ c ; ; See Alg. 2.

return AggregateQ(x, c, op,D, t, l, G);
Case Cop

D ϕ ∼ c ; ; See Alg. 3.
return CountingNeighboursQ(ϕ, c, op,D,
t, l, G);

end
end

cities, the data on city states are collected continuously or
periodically.

For the Boolean monitoring algorithm, the output for each
requirement is a Boolean value indicating whether the require-
ment is satisfied or not. For the quantitative monitoring
algorithm (Algorithm 1), the output for each requirement is
a number indicating the satisfaction degree of the require-
ment. To start with, the monitoring algorithm parses ϕ to
subformulas and calculates the satisfaction for each operation
recursively. We derived operators ! and ♦ from UI , and oper-
ators and from Cop

D ∼ c, so we only show the algorithms
for UI and Cop

D ∼ c.
We present the quantitative monitoring algorithms of the

operators Aop
D and Cop

D in Algorithm 2 and Algorithm 3,
respectively. We apply distributed parallel algorithm
deScan() [27] to accelerate the process of searching
locations that satisfy D. As we can tell from the algorithms,
essentially, Aop

D calculates the aggregated values on the signal
over a spatial domain, while Cop

D calculates the aggregated
results over spatial domain. For the quantitative monitoring
algorithm (as presented in Algorithm 1), the output for each
requirement is a robustness value indicating its satisfaction
degree. Similar to the Boolean monitoring algorithm, the
quantitative monitoring algorithm also parses ϕ to subfor-
mulas and calculates the satisfaction for each operation
recursively.

The time complexity of monitoring the logical and tempo-
ral operators of SaSTL is the same as STL [28]. The time
complexity to monitor classical logical operators or basic
propositions, such as ¬x, ∧, and x ∼ c is O(1). The time
complexity to monitor temporal operators, such as !I , ♦I ,
and UI is O(T), where T is the total number of samples

Algorithm 2: AggregateQ(x, op,D,ω, t, l, G)

begin
Real v := 0; n := 0;
if op == “min” then v :=∞;
if op == “max” then v := −∞;
Ll
D := deScan(l, G,D)

for l′ ∈ Ll
D do

if op ∈ {min, max, sum} then
v := op(v,πx(ω)[t, l′]);

end
if op ==“avg” then

v := sum(v,πx(ω)[t, l′]);
end
n := n + 1

end
if n == 0 then return ∞;
if op == “avg” ∧n .= 0 then return v/n− c ;
if op == "sum" ∧n .= 0 then return (v− c)/n ;
else return v− c;

end

Algorithm 3: CountingNeighboursQ(x, op,D,ω, t, l, G)

begin
Real n := 0, List s := Null;
Ll
D := deScan(l, G,D)

for l′ ∈ Ll
D do

s.add(Monitor(ϕ,ω, t, l′, G))
n := n + 1

end
if n == 0 then return ∞;
else

switch op do
Case max

return s. max()
Case min

return s. min()
Case sum

return s. max(round(c))
Case avg

return s. max(round(c× n))
end

end
end

within time interval I. In this article, we present the time
complexity analysis for the spatial operators (Lemma 1) and
the new SaSTL monitoring algorithm (Theorem 3). The total
number of locations is denoted by n. We assume that the posi-
tions of the locations cannot change in time (a fixed grid).
We can precompute all the distances between locations and
store them in an array of range trees [29] (one range tree for
each location). We further denote the monitored formula as φ,
which can be represented by a syntax tree, and let |φ| denote
the total number of nodes in the syntax tree (the number of
operators).

Lemma 1 (Complexity of Spatial Operators): The time
complexity to monitor at each location l at time t the
satisfaction of a spatial operator, such as D, D, Aop

D , and
Cop
D is O(log(n) + |L|) where L is the set of locations at

distance within the range D from l.
Theorem 3: The time complexity of the SaSTL monitor-

ing algorithm is upper bounded by O(|φ|× Tmax × (log(n) +
|L|max)), where Tmax is the largest number of samples of the
intervals considered in the temporal operators of φ and |L|max
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Fig. 2. Example of city abstracted graph. A requirement is

([0,+∞),School)![a,b](A
op
([0,d],*)ϕ ∼ c). (The large nodes represent the

locations of PoIs, among which the red ones represent the schools, and blue
ones represent other PoIs. The small black nodes represent the locations of
data sources.)

is the maximum number of locations defined by the spatial
temporal operators of φ.

B. Performance Improvement of SaSTL Parsing

To monitor a requirement, the first step is parsing the
requirement to a set of sub formulas with their correspond-
ing spatial–temporal ranges. Then, we calculate the results
for the subformulas. The traditional parsing process of STL
builds and calculates the syntax tree on the sequential order
of the formula. It does not consider the complexity of each
subformula. However, in many cases, especially with the PoIs
specified in smart cities, checking the simpler propositional
variable to quantify the spatial domain first can significantly
reduce the number of temporal signals to check in a com-
plicated formula. For example, the city abstracted graph in
Fig. 2, the large nodes represent the locations of PoIs, among
which the red ones represent the schools, and blue ones
represent other PoIs. The small black nodes represent the loca-
tions of data sources (e.g., sensors). Assuming a requirement

([0,+∞],School)![a,b](Aop
([0,d],*])ϕ ∼ c) requires to aggregate

and check ϕ only nearby schools (i.e., the red circles), but it
will actually check data sources of all nearby 12 nodes if one
is following the traditional parsing algorithm. In New York
City, there are about 2000 primary schools, but hundreds of
thousands of PoIs in total. A very large amount of computing
time would be wasted in this way.

To deal with this problem, we now introduce a monitoring
cost function cost : +×L×GL → R+, where + is the set of
all the possible SaSTL formulas, L is the set of locations, GL
is the set of all the possible undirected graphs with L locations.
The cost function for ϕ is defined as

cost(ϕ, l, G)

=






1, if ϕ := p ∨ ϕ := x ∼ c∨
ϕ := True

1 + cost(ϕ1, l, G), if ϕ := ¬ϕ1
cost(ϕ1, l, G) + cost(ϕ2, l, G), if ϕ := ϕ1 ∗ ϕ2, ∗ ∈ {∧,UI}
|Ll
D|, if ϕ := Aop

D x ∼ c
|Ll
D|cost(ϕ1, l, G), if ϕ := Cop

D ϕ1 ∼ c.

Using the above function, the cost of each operation is cal-
culated before “switch ϕ” (refer to Algorithm 1). The cost
function measures how complex it is to monitor a particular
SaSTL formula. This can be used when the algorithm eval-
uates the ∧ operator and it establishes the order in which

Algorithm 4: Satisfaction of (ϕ1 ∧ ϕ2,ω)

case ϕ1 ∧ ϕ2 do
return Monitor(ϕ1,ω, t, l, G) ∧ Monitor(ϕ2,ω, t, l, G);
if cost(ϕ1, l, G) ≤ cost(ϕ2, l, G) then

if ¬ Monitor(ϕ1,ω, t, l, G) then
return Monitor(ϕ2,ω, t, l, G);

end
return True;

end
if ¬ Monitor(ϕ2,ω, t, l, G) then

return Monitor(ϕ1,ω, t, l, G);
end
return True;

end

Algorithm 5: Parallelization of Counting of
(x, op,D,ω, t, l, G)

Function
CountingNeighbours(ϕ, op,D,
ω, t, l, G):

begin
paratasks = Queue();
for l′ ∈ Ll

D do
paratasks.add(l);

end
results = Queue();
for i in 1..NumThreads do

Threadi ←
worker(ϕ,ω, t, G);

end
Wait();
return op(results);

end

Function worker (ϕ,ω, t, G):
begin

Real v := 0;
if op == “min” then

v :=∞; ;
if op == “max” then

v := −∞; ;
while Num(tasks)>0 do

l = paratasks.pop();
moni =

Monitor(ϕ,ω, t, l, G);

v = op(v, moni);
end
results.add(v)

end

the subformulas should be evaluated. The simpler subfor-
mula is the first to be monitored, while the more complex
one is monitored only when the other subformula is satis-
fied. We update monitor(ϕ1 ∧ ϕ2,ω) in Algorithm 4. With
this cost function, the time complexity of the monitoring
algorithm is reduced to O(|φ| × Tmax × (log(n) + |L′|max)),
where |L′| is the maximal number of locations that an
operation is executed with the improved parsing method.
The improvement is significant for city requirements, where
|L′|max < 100× |L|max.

C. Parallelization

In the traditional STL monitor algorithm, the signals are
checked sequentially. For example, to see if the data streams
from all locations satisfy D![a,b]ϕ in Fig. 2, usually, it would
first check the signal from location 1 with ![a,b]ϕ, then loca-
tion 2, and so on. Finally, it calculates the result from all
locations with D. In this example, checking all locations
sequentially is the most time-consuming part, and it could
reach over 100 locations in the field.

To reduce the computing time, we parallelize the mon-
itoring algorithm in the spatial domain. To briefly explain
the idea: instead of calculating a subformula (![a,b]ϕ) at all
locations sequentially, we distribute the tasks of monitoring
independent locations to different threads and check them in
parallel. (Algorithm 5 presents the parallel version of the spa-
tial counting operator CD.) To start with, all satisfied locations
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Fig. 3. Interface of the SaSTL monitoring tool.

l′ ∈ Ll
D are added to a task pool (a queue). In the map-

ping process, each thread retrieves monitoring tasks (i.e., for
li,![a,b]ϕ) from the queue and executes them in parallel. All
threads only execute one task at one time and is assigned a
new one from the pool when it finishes the last one, until
all tasks are executed. Each task obtains the satisfaction of
Monitor(ϕ,ω, t, l, G) function and calculates the local result
vi of operation op(). The reduce step sums all the parallel
results and calculates a final result of op().

Lemma 2: The time complexity of the parallelized algo-
rithm Monitor(φ, ω) is upper bounded by O(|φ|Tmax(log(n)+
[|L|max/P])) when distributed to P threads.

In general, the parallel monitor on the spatial domain
reduces the computational time significantly. It is very helpful
to support runtime monitoring and decision making, espe-
cially for a large number of requirements to be monitored
in a short time. In practice, the computing time also depends
on the complexity of temporal and spatial domains, as well
as the amount of data to be monitored. A comprehensive
experimental analysis of the time complexity is presented in
Section VII.

VI. TOOL FOR THE SASTL MONITOR

We develop a user-friendly prototype tool for the SaSTL
monitor that can support decision making of different stake-
holders in smart cities. The interface and flowchart of the tool
are shown in Fig. 3. The tool allows users (e.g., city decision
maker, citizens) without any formal method background to
check the city performance (data) with their own requirements
easily in four steps.

Step 1 (Selecting the Monitoring City and PoI): To start
with, users select the areas (such as a city or a particular area
of the city) to monitor, then choose the important labels that a
requirement is involved with, such as schools, parks, theaters,
etc. Once selected, the important PoIs are shown on the map.

Fig. 4. Templates to specify city requirements.

This helps users define and verify the monitoring locations.
If a location or label is not included, users are also able to
add them with their GPS coordinates. The map displays the
locations of the specified labels and sensors. Users can enlarge
the map to check the distribution of sensors and PoIs and
revise the requirements accordingly.

Step 2 (Setting Up the City Data Interface): The data of
the city states collected from sensors across temporal and
spatial domains are introduced to the monitor in the Data
section. For the offline monitoring, users can specify the
data location of each variable on the computer. For run-
time monitoring, the sensing data continuously come into the
computer, the data interface of which can be set up in this
section.

Step 3 (Specifying the City Safety Requirements): As the
next important step, users specify all requirements in the
requirement section. Users first select the template and then
choose/fill in the essential part using the structured template
language. To be noted, the entities and spatial ranges corre-
spond to the available data variables and PoIs inputs from the
areas and data sections.

We define a series of templates using structured language
learning from the existing city requirements, as shown in
Fig. 4. The goal of these templates is to help and inspire
users to specify requirements precisely. These templates are
adequate to represent all the example requirements given in
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Fig. 5. Display of the monitoring results on the maps (the green circle
represents the location satisfied the requirement and the red circle represents
the location violates the requirement; the size of the circle represents the
degree of satisfaction or violation).

Table I as well as the total set of 1000 quantitatively defined
requirements. We define the templates in a recursive way. T
is a template, and T1 and T2 are instances of T . The ele-
ments in T are optional, i.e., < > can be defined as blank,
indicating this element is not applicable or default in this
requirement. For example, an environmental requirement is
written as, “The <average> <air quality> within <1> mile
of all <parks> should <always> be <above> <good>.” The
duration is interpreted as always (default) and there is no con-
dition element. To convert a structured requirement to SaSTL,
we extract the predefined key elements and translate them
to the SaSTL formula following the rules. Meanwhile, users
are also able to use the advanced features to input the city
requirements in the format of the SaSTL formal formulas
directly.

Step 4 (Runtime Monitoring): With all the data and require-
ments well defined, users can start the monitor in order to
check if the incoming data from the smart city satisfies the
requirements. The results are displayed with a Boolean value
indicating if the requirement is satisfied and a robustness value
indicating how much the requirement is satisfied or violated.
In addition, the map also displays the monitor results visually.
Two examples are shown in Fig. 5. The first one is monitor-
ing an air quality requirements of high schools in Chicago,
and the second one is monitoring a traffic requirement in New
York City. The green circle represents the location satisfied the
requirement and the red circle represents the location violates
the requirement; the size of the circle represents the degree of
satisfaction or violation. Users can zoom in and out the map
to focus on a specific area or check the overall performance
as needed [see Fig. 5(b)].

In summary, we defined templates helping users to spec-
ify requirements to the SaSTL formal formulas. We believe
these templates can not only help users to convert the require-
ment from English to formal formulas, they are also helpful
for users to write the requirements much more specifically
and precisely. The templates defined in this article are not
sufficient to cover all the city requirements, especially the
new requirements coming with more and more smart services
being developed. However, the approach that using structured
language to specify requirements proposed in this article is
general and effective. Also, the templates are easily extended
to adapt to new requirements.

We envision this tool can be used by different stakeholders
in smart cities, including but not limited to the following.

City Managers and Decision Makers: In the city operating
center, with city data collected in real time, the Tool is able to
help city managers and decision makers to monitor the data
at runtime. It also helps the city center to detect conflicts, and
provide support for decision makers by showing the trade-offs
of satisfaction degrees among potential solutions.

City Planners: City planners, either from the government to
make long-term policies or from a company to make a short-
term event plan, they are able to use the Tool to verify the past
city data with their requirements and make plans to prevent
the violations.

Service Designers: Smart services are designed by different
stakeholders, including the government, companies, and private
parties, they are not aware of all the other services. However,
with the monitor, they can test the influence of their services
on the city and adjust the services to better serve the city.

Everyday Citizens: The tool can also provide a service to the
everyday citizens. Citizens without any technical background
are able to specify their own requirements and check them
with the city data to find out in which areas of the city and
period of the day their requirements are satisfied, and make
plans about their daily life. For example, a citizen can specify
an environmental requirement with his/her preferred air quality
index and traffic conditions, and check the city data with the
requirements and make up traveling agenda accordingly.

VII. EVALUATION

We evaluate the SaSTL monitor by applying it to three
big city application scenarios: 1) New York; 2) Chicago; and
3) Aarhus. The experiments are evaluated on a server machine
with 20 CPUs, each core is 2.2 GHz, and 4 Nvidia GeForce
RTX 2080Ti GPUs. The operating system is Centos 7.

A. Runtime Monitoring of Real-Time Requirements in
Chicago

1) Introduction: We apply SaSTL to monitor the real-time
requirements in Chicago. The framework is the same as shown
in Fig. 1, where we first formalize the city requirements to
SaSTL formulas and then monitor the city states with the for-
malized requirements. Chicago is collecting and publishing
city environment data (e.g., CO, NO, O3, and visible light)
every day since January, 2017 [1]. In our evaluation, we emu-
late the Chicago data as they arrive in real time, i.e., assuming
the city was operating with our SaSTL monitor. Specifically,
we monitor data from 118 locations between January, 2017
and May, 2019. In addition, we incorporate the Chicago crime
rate data published by the city of Chicago [30]. The sampling
rates of sensors vary by locations and variables (e.g., CO is
updated every few seconds, and the crime rate map is updated
by events), so we normalize the data frequency as 1 min. Then,
we specify 80 safety and performance requirements that are
generated from the real requirements, and apply the SaSTL
to monitor the data every 3 h continuously to identify the
requirement violations.

2) Chicago Performance: Valuable information is identified
from the monitor results of different periods during a day. We
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Fig. 6. Requirement satisfaction rate during different time periods in Chicago.
(a) CR1. (b) CR2.

Fig. 7. Number of requirements checked on different computing time.

randomly select 30 days of weekdays and 30 days of week-
ends. We divide the daytime of a day into four time periods
and 3 h per time period. We calculate the percentage of sat-
isfaction (i.e., number of satisfied requirement days divides
30 days) for each time period, respectively. The results of two
example requirements CR1 and CR2 are shown in Fig. 6. CR1
specifies “The average air quality within 5 km of all schools
should always be above Moderate in the next 3 h.” and is for-
malized as ([0,+∞),School)![0,3](Aavg

([0,5],*)xair > Moderate).
CR2 specifies “for the blocks with a high crime rate, the
average light level within 3 km should always be High”
and is formalized as ([0,+∞),*)![0,3](xCrime = High →
Aavg

([0,3],*)xLight >= High).
The SaSTL monitor results can be potentially used by

different stakeholders.
First, with proper requirements defined, the city decision

makers are able to identify the real problems and take actions
to resolve or even avoid the violations in time. For example,
from the two example requirements in Fig. 6, we could see
over 20% of the time the requirements are missed everyday.
Based on the monitoring results of requirement CR1, decision
makers can take actions to redirect the traffic near schools and
parks to improve the air quality. Another example of require-
ment CR2, the satisfaction is much higher (up to 33% higher
in CR2, 8 P.M.–11 P.M.) over weekends than workdays. There
are more people and vehicles on the street on weekends, which
as a result also increases the lighted areas. However, as shown
in the figure, the city lighting in the areas with high crime rate
is only 60%. An outcome of this result for city managers is
that they should pay attention to the illumination of workdays
or the areas without enough light to enhance public safety.

Second, it gives the citizens the ability to learn the city
conditions and map that to their own requirements. They can
make decisions on their daily living, such as the good time to
visit a park. For example, requirement CR1, 11 A.M.–2 P.M.
has the lowest satisfaction rate of the day. The instantaneous
air quality seems to be fine during the rush hour, but it has an

accumulative result that affects citizens’ (especially students
and elderly people) health. A potential suggestion for citizens
who visit or exercise in the park is to avoid 11 A.M.–2 P.M.

3) Algorithm Performance: We count the average monitor-
ing time taken by each requirement when monitoring for 3-h
data. Then, we divide the computing time into five categories,
i.e., less than 1 s, 1–10 s, 10–60 s, 60–120 s, and longer
than 120 s, and count the number of requirements under each
category under the conditions of standard parsing, improved
parsing with single thread, four threads, and eight threads.
The results are shown in Fig. 7. Comparing the 1st (standard
parsing) and 4th (eight threads) bar, without the improved
monitoring algorithms, for about 50% of the requirements,
each one takes more than 2 min to execute. The total time
of monitoring all 80 requirements is about 2 h, which means
that the city decision maker can only take actions to resolve
the violation at earliest 5 h later. However, with the improved
monitoring algorithms, for 49 out of 80 requirements, each
one of them is executed within 60 s, and each one of the rest
requirements is executed within 120 s. The total execution time
is reduced to 30 min, which is a reasonable time to handle as
many as 80 requirements. More importantly, it illustrates the
effectiveness of the parsing function and parallelization meth-
ods. Even if there are more requirements to be monitored in
a real city, it is doable with our approach by increasing the
number of processors.

B. Runtime Conflict Detection and Resolution in Simulated
New York City

1) Introduction: The framework of runtime conflict detec-
tion and resolution [10], [31] considers a scenario, where
smart services send action requests to the city center, and
where a simulator predicts how the requested actions change
the current city states over a finite future horizon of time.
Then, it checks the predicted states against city requirements.
If the requirements are satisfied, the requested actions will
be approved to execute in the city. If there exists a require-
ment violation within the future horizon, a conflict is detected.
CityResolver will be applied to resolve the conflicts. Details of
the resolution are not the main part of this article, please refer
to CityResolver [10]. Note that with the conflicts detected and
resolved, the city’s future states will be affected. In this arti-
cle, we apply the SaSTL monitor to specify requirements with
spatial aggregation and check the predicted spatial–temporal
data with the SaSTL formulas.

We set up a smart city simulation of New York City using
the simulation of urban mobility (SUMO) [32] with the traf-
fic pattern (vehicle in-coming rate of key streets) from real
city data [33], on top of which, we implement ten services
(S1: Traffic Service, S2: Emergency Service, S3: Accident
Service, S4: Infrastructure Service, S5: Pedestrian Service, S6:
Air Pollution Control Service, S7: PM2.5/PM10 Service, S8:
Parking Service, S9: Noise Control Service, and S10: Event
Service). The real-time states (including CO, NO, O3, PMx,
Noise, Traffic, Pedestrian Number, Signal Lights, Emergency
Vehicles, and Accident number) from the domains of envi-
ronment, transportation, events and emergencies are obtained
from about 10 000 simulated nodes. Then, we apply the STL

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on May 27,2022 at 17:20:14 UTC from IEEE Xplore.  Restrictions apply. 



MA et al.: NOVEL SPATIAL–TEMPORAL SPECIFICATION-BASED MONITORING SYSTEM FOR SMART CITIES 11803

TABLE III
SAFETY AND PERFORMANCE REQUIREMENTS FOR NEW YORK CITY

TABLE IV
COMPARISON OF THE CITY PERFORMANCE WITH THE STL MONITOR

AND THE SASTL MONITOR

Monitor as the baseline to compare the capability of require-
ment specification and the ability to improve city performance.
We simulate the city running for 30 days with sampling rate
as 10 s in two control sets, one without any monitor and one
with the SaSTL monitor. For the first set (no monitor), there
is no requirement monitor implemented. For the second one
(SaSTL monitor), five examples of different types of real-time
requirements and their formalized SaSTL formulas are given
in Table III.

2) NY City Performance: The results are shown in Table IV.
We measure the city performance from the domains of trans-
portation, environment, emergency and public safety using
the following metrics, the total number of violations detected
(i.e., the total number of safety requirements violated during
the whole simulation time), the average CO (mg) emission
per street, the average noise (dB) level per street, the emer-
gency vehicles waiting time per vehicle per intersection, the
average number and waiting time of vehicles waiting in an
intersection per street, and the average pedestrian waiting time
per intersection.

We make some observations by comparing and analyzing
the monitoring results.

First, the SaSTL monitor obtains a better city performance
with fewer number of violations detected under the same
scenario. As shown in Table IV, on average, the framework
of conflict detection and resolution with the SaSTL monitor
improves the air quality by 40.8%, and improves the pedes-
trian waiting time by 47.2% comparing to the one without a
monitor.

Second, the SaSTL monitor reveals the real city issues,
helps refine the safety requirements in real time and sup-
ports improving the design of smart services. We also
compare the number of violations on each requirement. The
results [Fig. 8(a)] help the city managers to measure city’s
performance with smart services for different aspects, and also
help policymakers to see if the requirements are too strict to be
satisfied by the city and make a more realistic requirement if

TABLE V
COMPUTING TIME OF REQUIREMENTS WITH STANDARD PARSING

FUNCTION, WITH IMPROVED PARSING FUNCTIONS AND DIFFERENT
NUMBER OF THREADS

Fig. 8. Distributions of the violations over (a) requirements and (b) smart
services.

necessary. For example, in our 30-day simulation, apparently,
NYR4 on air pollution is the one requirement that is vio-
lated by most of the smart services. Similarly, Fig. 8(b) shows
the number of violations caused by different smart services.
Most of the violations are caused by S1, S5, S6, S7, and S10.
The five major services in total cause 71.3% of the violations.
City service developers can also learn from these statistics to
adjust the requested actions, the inner logic and parameters of
the functions of the services, so that they can design a more
compatible service with more acceptable actions in the city.

3) Algorithm Performance: We compare the average com-
puting time for each requirement under four conditions:
1) using the standard parsing algorithm without the cost func-
tion; 2) improved parsing algorithm with a single thread;
3) improved parsing algorithm with spatial parallelization
using four threads; and 4) using eight threads. The results
are shown in Table V.

First, the improved parsing algorithm reduces the computing
time significantly for the requirement specified on PoIs, espe-
cially for NYR1 that computing time reduces from 2102.13 s
to 140.29 s (about 15 times). Second, the parallelization over
spatial operator further reduces the computing time in most
of the cases. For example, for NYR1, the computing time is
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TABLE VI
SAFETY AND PERFORMANCE REQUIREMENTS FOR AARHUS

reduced to 26.12 s with eight threads while 140.29 s with sin-
gle thread (about five times). When the amount of data is very
small (NYR2), the parallelization time is similar to the single
thread time, but still much efficient than the standard parsing.

The results demonstrate the effectiveness and importance
of the efficient monitoring algorithms. In the table, the total
time of monitoring five requirements is reduced from 2678.5
to 100.85 s. In the real world, when multiple requirements
are monitored simultaneously, the improvement is extremely
important for real-time monitoring.

C. Evaluation for Aarhus

1) Introduction: In this case study, we monitor the past
data of events and states from Aarhus to show how the SaSTL
monitor helps to understand the effects caused by events and,
therefore, aids in decision making for city events. We utilize
60 days (August 2014 to September 2014) of Aarhus city data
collected simultaneously across the domains of transportation
(e.g., traffic volume and parking), events (e.g., cultural events
and library events) and the environment (generated pollution
and weather). All the data were collected from 449 observation
points and published by CityPulse [34]. Data were collected
with different sampling rates (e.g., the traffic data were aggre-
gated by 5 min and events data were recorded by the event
time), thus for the monitoring purpose, we normalize the data
frequency as 5 min. Five safety and performance requirements
and their corresponding SaSTL statements are presented with a
high demand for aggregations specified for Aarhus in Table VI.
Basically, AR1–AR5 specify that when there is an event, there
is a different level of safety requirements on the traffic under
different circumstances. For example, AR2 focuses on the
areas nearby an event, AR3 focuses on the safety of school
with an event, and R4 considers the effects from extreme
weather conditions. AR5 has a big picture on all schools across
the city when a large cultural event is happening.

2) Performance: The monitoring results from Aarhus are
shown in Fig. 9. The percentage of satisfaction equals the
number of requirement satisfied days divided by 60 days. The
following are observations on the requirements and monitoring
results.

1) Comparing the monitoring results on AR1 and AR2,
AR1 has a much lower satisfaction rate. It also leads
to a higher and reliable satisfaction rate.

2) Compared to AR2, for the same events, AR3 moves its
focus on the area nearby schools. The results, however,
are lower than AR2. It means that events have more
influence on the school areas, which should draw atten-
tion from the city managers. Students should reduce or

Fig. 9. Comparisons of satisfaction rate on AR1–AR5.

avoid activities during this time when there is an event
going on nearby.

3) During 11 A.M. to 2 P.M., the overall performance on
all five requirements is worst, even less than 50%. It is
actually the time period right after a morning event or
before an afternoon event. The monitoring results help
the city managers have a better view of the distribution
of effects from events.

4) We also find that the satisfaction rate is very high (almost
100%) after 8 P.M. The reasons for that are the schools
are usually closed at that time, and most of the cultural
and library events happen during the day. In other cities
or events, the distribution will be different. However, the
SaSTL monitor is general enough to help citizens and
managers detect it.

The evaluation on Aarhus shows how the SaSTL monitor
helps the city to understand the effects on the city from events
and make better plans for events. Usually, areas with an event
get caught up in complicated situations, such as paralyzed traf-
fic, long queues with a large amount of people, emergencies,
and accidents. Therefore, playing back and analyzing the city
data during events is extremely important for cities to avoid
emergency situations for future events.

VIII. COVERAGE ANALYSIS

We compare the specification coverage on 1000 quantita-
tively specified real city requirements between STL, SSTL,
STREL, and SaSTL. The study is conducted by graduate stu-
dents following the rules that if the language is able to specify
the whole requirement directly with one single formula, then it
is identified as True. To be noted, another spatial STL, SpaTeL,
is not considered as a baseline here, because it is not applicable
to most of city spatial requirements. SpaTeL is built on a quad
tree, and able to specify directions rather than the distance.

STL is only able to specify 184 out of 1000 requirements,
while SSTL and STREL are able to formalize 431 require-
ments. SaSTL is able to specify 950 out of 1000 requirements.
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In particular, we made the following observations from the
results. First, 50 requirements cannot be specified using any of
the four languages because they are defined by complex math
formulas that are ambiguous with missing key elements, rele-
vant to the operations of many variables, or referring to a set
of other requirements, e.g., “follow all the requirements from
Section 201.12,” etc. Second, SSTL, STREL, and SaSTL out-
performed STL in terms of requirements with spatial ranges,
such as “one-mile radius around the entire facility”; third,
SSTL and STREL have the same coverage on the requirements
that only contain a temporal and spatial range. Comparing
to SSTL and SaSTL, STREL can also be applied to the
dynamic graph and check requirements reachability, which
is very useful in applications like wireless sensor networks,
but not common in smart city requirements; fourth, the rest
of the requirements (467 out of 1000) measure the aggre-
gation of a set of locations, which can only be specified
using SaSTL.

IX. RELATED WORK

Monitoring spatial–temporal properties over CPS execu-
tions has been initially investigated in [35] and [36], where
the authors introduced a spatial–temporal event-based model
for monitoring CPS. In this model, events are labeled with
time and space stamps. These events can be triggered by
actions, exchange of messages, or physical changes. A cen-
tralized monitor is then responsible to process all these
events. Their approach provides an algorithmic framework
enabling a user to develop manually a monitor, but they do
not provide any spatial–temporal specification language. The
literature instead offers several logic-based specification lan-
guages to reason about the spatial structure of the concurrent
systems [37], medical images [38], and the topological [39]
or directional [40] aspects of the interacting components.
However, these logics are not practical for monitoring CPS,
because they are generally computationally complex [40] or
even undecidable [41].

Specification-based monitoring of spatial–temporal proper-
ties over CPS executions has become practical only recently
with SpaTeL [9] and SSTL [12]. SpaTeL extends the STL [11]
with the tree spatial superposition logic (TSSL) [42], [43].
TSSL classifies and detects spatial patterns by reasoning over-
quad trees, suitable spatial data structures that are constructed
by recursively partitioning the space into uniform quadrants.
The notion of superposition in TSSL [43] provides a way
to describe statistically the distribution of discrete states in
a particular partition of the space and the spatial operators
corresponding to zooming in and out in a particular region
of the space. By nesting these operators, it is possible to
specify self-similar and fractal-like structures [44] that gen-
erally characterize the patterns emerging in nature such as the
electrical spiral formation in cardiac tissues [45]. The proce-
dure allows one to capture very complex spatial structures,
but at the price of a complex formulation of spatial proper-
ties, which are in practice only learned from some template
image.

SSTL [12] extends STL with several spatial operators
(i.e., somewhere, everywhere, and surround). The SSTL
semantics operates on a weighted undirected graph, where

the weight on each edge represents the distance between
two nodes. The spatial–temporal reach and escape logic
(STREL) [13], [14] generalizes SSTL, by introducing two
new spatial operators: 1) reach and 2) escape, which are able
to express the same spatial operators of SSTL. Furthermore,
while SSTL can be applied only on static weight undirected
graphs, STREL can be applied also to dynamic networks.
However, both SSTL and STREL do not support spatial aggre-
gation operators that we show to be an important feature for
monitoring smart cities.

X. CONCLUSION

In this article, we presented a novel SaSTL to specify and to
monitor requirements of smart cities at runtime. We develop an
efficient monitoring framework that optimizes the requirement
parsing process and can check in parallel an SaSTL require-
ment over multiple data streams generated from thousands of
sensors that are typically spatially distributed over a smart city.
SaSTL is a powerful specification language for smart cities
because of its capability to monitor the city desirable fea-
tures of temporal (e.g., interval), spatial (e.g., PoIs and range),
and their complicated relations (e.g., always, everywhere, and
aggregation) between them. More importantly, it can coalesce
many requirements into a single SaSTL formula and provide
the aggregated results efficiently, which is a major advance
on what smart cities do now. The development of 5G and
6G could better support the monitoring and communication
among sensors, services and the city center. We believe it is a
valuable step toward developing a practical smart city moni-
toring system even though there are still open issues for future
work. Furthermore, SaSTL monitor can also be easily general-
ized and applied to monitor other large-scale IoT deployments
at runtime efficiently. In the future, we will explore its capa-
bility to specify and monitor other properties and requirements
(e.g., security and privacy).
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