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The vast majority of research involving active learning pedagogies uses passive lecture methods as a
baseline. We propose to move beyond such comparisons to understand the mechanisms that make different
active learning styles unique. Here, we use COPUS observations to record student and instructor activities
in six known styles of active learning in physics, and use latent profile analysis to classify these
observations. Latent profile analysis using two profiles successfully groups COPUS profiles into interactive
lecturelike and other. Five latent profiles successfully sorts observations into interactive lecturelike,
Modeling Instruction, ISLE labs, context-rich problems labs, and recitationlike or discussionlike. This
analysis serves as a proof of concept, and suggests instructional differences across pedagogies that can be
further investigated using this method.
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I. INTRODUCTION

Active learning has been gaining traction in physics
classrooms, with numerous studies showing how active
learning can promote learning gains over passive lecture
alternatives. However, within the umbrella of active learn-
ing, several physics pedagogies have spawned from differ-
ent ideological foundations, often with wildly varying
mechanical differences [1–3]. As such, the term “active
learning” no longer sufficiently describes a pedagogy,
making it difficult to pinpoint the mechanisms that lead
to observed learning gains. Thus, it is imperative that we
understand the mechanisms that make different “active
learning in physics” pedagogies unique, so future studies
can further delineate the benefits of specific active learning
mechanisms.
The “characterizing active learning environments in

physics” project, or CALEP, sets out to establish a
vocabulary that will allow us to speak about the different
active learning pedagogies in physics, without relying on a
comparison to passive lecture methods. We focused on two
aspects of the active learning pedagogies; how students and
instructors spend time in class, and the student networks
that result from the instruction. A full summary of the
CALEP project can be found in Ref. [4]. We collected

classroom observations and student network data from
six prominent research-based introductory physics cur-
ricula. We used the classroom observation protocol for
undergraduate science, technology, engineering, andmathe-
matics (STEM) courses. This protocol, abbreviated as
COPUS [5], allows us to measure the time dedicated to
certain activities during a class period, which, in essence,
gives us an idea of the kinds of activities that occur in
different active learning environments. For network analysis
results, please refer to Refs. [4,6].
This paper will focus on the COPUS observations, where

we discuss the results of latent profile analysis (LPA) on the
observed COPUS profiles. LPA can be used to tease out
hidden categories within data—such as physics pedago-
gies. LPA has been used with COPUS data to describe a
large sample of STEM classes, which effectively sorted
them into active, passive, and hybrid categories [7]. Our
analysis builds on that work by restricting to known active
learning pedagogies in physics classrooms, as a first effort
at developing a more nuanced classification scheme.

II. BACKGROUND

Because active learning is an umbrella term for different
pedagogical approaches, it fails to identify distinguishing
characteristics of pedagogies in physics. To this end, we
identified six pedagogies that are well represented in the
literature and at professional development workshops at
national conferences. These six pedagogies have different
approaches to active learning. In order to explore these
different approaches, we used COPUS as a means to
understanding unique features of classroom activity.
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A. Active learning pedagogies in physics

We collected data from six well-known active learning
pedagogies in physics. The pedagogies we studied were
Tutorials in Introductory Physics, the Investigative Science
Learning Environment (ISLE), Modeling Instruction, Peer
Instruction, context-rich problems (aka the Minnesota
curriculum), and SCALE-UP. We reached out directly to
the developers of the curricula to identify high-fidelity
implementations of each pedagogy. When possible, the
institution that developed the pedagogy was used as a
research site; however, this was not always feasible.
Secondary institutions were identified via recommendation
of instructors with extensive training or research experience
with the pedagogy in question.
Tutorials in Introductory Physics maintains a lecture-lab-

recitation structure typical of large introductory courses.
The recitations, or tutorial sections, are interactive small
group environments that have the students follow scaf-
folded worksheets that emphasize misconception confron-
tation and resolution. The teaching assistants facilitate
small group interactions [8,9].
ISLE treats students as novice scientists, and focuses on

building up correct intuition rather than debunking mis-
conceptions [10,11]. Students work in small groups
through a lab-based learning cycle, while the instructors
facilitate discussion.
Modeling Instruction is a fully contained learning

environment where students work in small groups to
develop, test, deploy, and revise conceptual models, and
then come together for large “white-board meetings” to
discuss their findings [12–14]. The instructors facilitate
small group discussion and guide the larger white-board
meetings.
Peer Instruction is a structured, interactive lecture

environment, typically used when classroom constraints
deem a large lecture hall necessary. Peer Instruction divides

a class session into small modules, which begin with a
short lecture, and cycle through several clicker questions.
Students answer individually and then re-answer after
discussing with their peers [15,16].
Context-rich problems leads students through the course

under a pseudo apprentice-expert relationship. This peda-
gogy uses context-rich problems in all aspects of the
course, to teach students how to identify relevant informa-
tion and engage in expertlike problem-solving behavior,
as demonstrated by the instructor and teaching assist-
ants [17,18].
Finally, SCALE-UP is also a fully contained classroom

environment, where the students are in pairs or groups of
three, but seated at large tables with other groups of two or
three students to facilitate larger discussions. SCALE-UP
usually refers more to the classroom setup than the
pedagogy itself, but lends itself nicely to the adoption of
many active learning styles [19]. As such, it is often treated
as an independent pedagogy.

B. The classroom observation protocol for
undergraduate STEM

The Classroom Observation Protocol for Undergraduate
STEM (COPUS) was developed by Smith et al. [5]. It
consists of 12 instructor and 13 student codes, for which the
observer marks whether the coded behavior occurred or not
during two-minute intervals. An activity is counted if
the behavior occurs for at least five seconds during the
two-minute interval. A full list of COPUS code abbrevia-
tions and their descriptions has been included in the
Supplemental Material [20]. An example of a COPUS
observation for a tutorial session can be seen in Table I.
From these observations, we can compile the selected

codes into COPUS profiles. The method of COPUS profile
creation is not always clearly reported in literature that uses
COPUS, making it difficult to compare analyses. It is

TABLE I. COPUS observation example. Time is measured in two-minute intervals.

Students doing Instructor doing

Time L IND CG WG OG AnQ SQ WC Prd SP T=Q W O Lec RtW Fup PQ CQ AnQ MG 1o1 D=V Adm W O

0–2 × × × × ×
2–4 × × × × ×
4–6 × × × × ×
6–8 × × × ×
8–10 × × × ×
10–12 × × × ×
12–14 × ×
14–16 × × × ×
16–18 × × × ×
18–20 × × ×

Total 0 0 0 10 0 0 4 0 0 0 0 0 5 0 0 0 0 0 0 9 10 0 0 2 0
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typical of such studies to report percentages for each code,
without a description of how ratios were taken or visual-
izations to infer the same information. As such, we explain
our process here. For the CALEP project, we used the “bar
chart” method, in which COPUS profiles were created by
summing the number of marks in each column (indicated in
the “total” row in Table I), and dividing by the number of
intervals over which the observation occurred (10 intervals,
using the same example). This method leads to the
percentage of two-minute intervals in which a code was
present. An example of a COPUS profile from CALEP can
be seen in Table II. It should be noted, however, that we
calculate our COPUS profiles differently than in Smith
et al. [5]. In Smith et al., the number of marks is tallied for
each column, and divided by the total number of marks
across all columns. This method, which we dub the “pie
chart” method, is useful when investigating the prevalence
of activities. We chose the former method of profile
creation, as we felt it provided a more explicit picture of
how class time was spent. If an instructor spends the
majority of the time lecturing, but peppers in several other
instructional methods, the latter method of profile creation
can be misleading and underreport the frequency of a code.
We wanted a profile that showed the fraction of class time
engaged in a certain instructional method, not fraction of
every code reported.

C. Latent profile analysis

LPA, sometimes referred to as finite Gaussian mixture
modeling, allows us to uncover hidden groupings within a
dataset. It allows us to make predictions about unobserved
discrete variables based on clustering that occurs within
observed variables. LPA can be used for any situation that
calls for fitting continuous observed variables into discrete
latent variables [21]. For a visualization of how this works,

Fig. 1 illustrates some measured variable (in red). It is clear
to us that this is not a normal distribution on its own, but
could probabilistically be separated into two groups that
overlap (blue and green). LPA helps us determine those
hidden groups.
LPA is similar to factor analysis in that it uses observed

data to identify hidden groupings. Factor analysis uses
correlations between variables to identify groupings of
variables that are similar, while LPA differs by attempting
to split seemingly homogeneous data into discrete groups
created by similar variable structure.
For the CALEP project, our goal is to determine what the

quantifiable identifying features of different physics ped-
agogies are. Active learning comes with an abundance of
student-centered activities, which, in theory, are different
for each pedagogy. As such, we chose to use LPA to see if
this analysis method could identify different pedagogies
(our unobserved, discrete latent variables, or groups or
profiles) based on observations of active learning behaviors
(our measured variables). Using this same data structure to
further differentiate LPA versus factor analysis, factor
analysis would tell us what active learning behaviors are
commonly seen together (groupings of variables), while
LPA tells us groups of observations that have similar active
learning behaviors. While these two methods are very
similar, the output of LPA more closely aligns with our
goals of identifying hidden pedogogical categories.
We used the percentage of class time per COPUS code

(known as the COPUS profile) as our input variables to
LPA, with the expectation that LPA would in turn group
observations with similar COPUS profiles. Ideally, these
groupings would align with the identified active learning
pedagogies each observation represents. Unfortunately, our
data size was too small to run LPA with variable correla-
tions or factor analysis, so we were unable to compare the
different methods.

D. Previous studies using LPA

Stains et al. previously utilized LPA with COPUS
observations from several science disciplines [7]. They
collected COPUS observations from classes across STEM
disciplines, most of which were at doctoral-granting
institutions, using a convenience approach—a call was
put out on discipline-based education research (DBER)
listservs asking researchers to share COPUS data, and
they also collected voluntary COPUS submissions using
the COPUS analyzer website [22]. After using LPA on
these solicited COPUS profiles, Stains et al. ultimately
chose the model with seven profiles for their data, which
they further sorted into didactic (mostly lecture), inter-
active lecture (hybrid), or student centered (active) learn-
ing environments.
Stains et al. [7] took random observations and then

classified them into active, passive, or hybrid pedagogies.
We differ from Stains et al. in that we used purposeful

TABLE II. COPUS profile example. The total number of
occurrences for each code was tallied in each column, and
divided by the number of intervals. For this example, there were
10 intervals.

Students doing Instructor doing

L 0 Lec 0
IND 0 RtW 0
CG 0 Fup 0
WG 1.0 PQ 0
OG 0 CQ 0
AnQ 0 AnQ 0
SQ 0.4 MG 0.9
WC 0 1o1 1.0
Prd 0 D=V 0
SP 0 Adm 0
T=Q 0 W 0.2
W 0 O 0
O 0.5
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sampling, collecting data at sites chosen due to their high
fidelity implementation of different active learning pedag-
ogies. Further, we feel that it is no longer sufficient to be
abstract in classifying pedagogies as “active” or “not
active,” so our purpose was to extend the work of Stains
et al. by zooming in on the active learning category, while
limiting our scope to investigate differences among active
learning specifically in physics.
We have provided a visual in Fig. 1 to help illustrate how

LPA classifies COPUS profiles into distinct profiles. Given
a distribution of an observed variable (in our case a single
category from COPUS), shown in red, LPA assumes that
this observed distribution can be described by a combina-
tion of distinct profiles that follow a Gaussian distribution
(two groups, shown in blue and green). LPA begins by
taking some initial Gaussian distribution to represent each
profile, of which you can have any number, then iterates
through the data and adjusts the Gaussians until all points
are assigned to a profile such that the expectation value is
maximized. LPA does this by calculating a probability
distribution for each profile (the group Gaussians), and
assigns a weighted profile membership to each data point
(via probability distribution). It then recalculates the
probability distribution representing each profile using
the weighted members, and repeats this process until it
converges [23].
LPA can also accept constraints to these Gaussians, via

variance and covariance. The variance can be equal
between profiles (the Gaussians have the same width),
or vary between profiles. Additionally, the prevalence of
input variables can depend on each other, introducing
covariance, which can be set to zero, equal, or varying
between profiles in the model as well [24]. Understanding
the variance of the profile distributions is a bit more
straightforward if we preemptively reference the top panel

of Fig. 3; the variance is the size of the box, and equal
variance forces the size of the boxes for each code to be
equal for each profile. Varying variance, on the other hand,
allows these boxes to be different sizes. The covariance
describes how the input variables depend on each other,
which is a bit harder to visualize. In the context of our data,
covariance would tell us how the presence of lecture
depends on the presence of real-time-writing. While
covariance is likely present in our data (by observation,
real-time-writing does typically accompany lecture), we
did not have a large enough dataset to get the varying
covariance model to converge. Additionally, the equal
covariance model, which forces each pedagogy to follow
the same relationships between codes, was excluded as it
was not an appropriate constraint for our study. Thus, we
assume zero covariance in our analysis. Future work should
explore the role that covariance plays in the development of
profiles, where a larger dataset can illuminate meaningful
relationships between COPUS codes.

III. METHODS

We collected COPUS observations from six high fidelity
active learning pedagogies in physics [4]. We traveled to
the sites and observed as many sections of the course as
possible in a one week visitation period. All observations
were done in a live environment, in person, by the same
observer. The official COPUS recording spreadsheet was
used for these data collections [5]. A summary of the
number of sections and the number of observations per
section can be seen in Table III.
From the base COPUS observations with check marks in

each code column, we created the COPUS profiles by
summing the number of checks per column and then
dividing by the number of observation intervals (see

0.0 0.2 0.4 0.6 0.8 1.0

Measured Variable

Observed

Group 1

Group 2

FIG. 1. Given an observed distribution (red), LPA assumes that
this observed distribution can be described by a combination of
distinct profiles that follow a Gaussian distribution (two groups,
shown in blue and green).

TABLE III. Number of course sections and observations for
each pedagogy included in this study.

Pedagogy Number of sections
Number of
observations

Tutorials 1 Lecture 1
19 Tutorials 1

ISLE whole class 1 Lab 1
4 Recitations 1
1 Lecture 2

ISLE lab only 5 Labs 1

Modeling Instruction 3 2

Peer Instruction 1 1

Context-rich problems 2 Discussions 1
4 Labs 1

2 Lectures 2

SCALE-UP 1 3

COMMEFORD, BREWE, and TRAXLER PHYS. REV. PHYS. EDUC. RES. 18, 010113 (2022)

010113-4



Sec. II B for a more thorough explanation of profile
creation).
For this analysis, individual class period observations

are left as stand-alone COPUS profiles. We originally
wanted to cluster observations into a single profile to
represent a week’s worth of class time for each pedagogy.
This means, for example, an ISLE course that includes a
lecture, recitation, and lab, would be reported as one
COPUS profile that encapsulates the entire pedagogical
experience for that week. Unfortunately, grouping obser-
vations in this way ensured we did not have enough data
points for the LPA models to converge. As such, we left
the COPUS profiles as individual class period observa-
tions, separated into various course components. For
future work, we would recommend grouping observation
components to represent, effectively, a “week in the life”
of a student enrolled in the course. One area of contention,
however, is how to do this for large enrollment courses
with one lecture and multiple recitations in a way that does
not overly weight one component of the course in the
analysis.

A. TidyLPA in R

There are six different LPA Gaussian mixture models
that can be used in the TidyLPA package in R [25], two of
which are run using wrappers to the proprietary software,
Mplus [26]. As such, those two models are not included in
this analysis.
Each model specifies how the variance and covariance of

the Gaussian mixture models is altered between iterations.
For equal variance, the variance of the fit Gaussians for
each profile are assumed to be equal across profiles. The
covariance for inter-COPUS code relationships can be set
to zero, equal between profiles, or varying between
profiles. Table IV illustrates the variance and covariance
combinations available, and their model number in
TidyLPA.
In this paper, we show the results from model 1 analysis.

Because of our relatively small dataset, models 2 and 6 fail
to converge. Model 3, which assumes equal covariance
between observed variables for each profile, was ultimately
discarded as we felt it was not appropriate to force that
condition. It would, however, be more interesting and
realistic to use models 2 or 6, but we require more
observations in order to get a convergent result.

IV. RESULTS

We ran LPA on our data using model 1 (equal variance
between profiles, zero covariance) for 2–8 profiles. This
range of profiles was originally chosen because it was the
same range that is used in the TidyLPA vignette [25], but
was ultimately kept after investigating the results. The
sorting of observations into profiles becomes nonsensical
after 8 profiles.
The BIC was used as the primary indicator of

model acceptability [27]. In general, the further left on
the number line, the better the fit of the model. The
BIC is plotted for model 1 against the number of profiles
that the COPUS data was sorted into, which can be
seen in Fig. 2. We present the 2 profile and 5 profile
solutions here, and include the remainder in the
Supplemental Material [20]. The 2 profile solution is
included due to the successful sorting of observations into
groups we interpreted as “interactive lecturelike” and
“other,” as seen in Table V. The top panel of Fig. 3 shows
the box plots for each COPUS code and their associated
profile groupings.
The 5 profile solution was included in this analysis

because it had the best BIC with the least number of
profiles. The 5 and 6 profile solutions had a BIC difference
less than 5, while the 6 to 7 profile solutions had a BIC
difference less than 2. As such, we interpreted models
6 and 7 to be equally good, and model 5 to be nearly as
good. The BIC values are included in the caption
of Fig. 2. As model 5 had the least amount of degrees
of freedom and made the most sense from our interpreta-
tions of the groupings, we chose model 5 to highlight. This
fit successfully sorted the COPUS observations into groups
that we interpreted as interactive lecturelike, Modeling

2300

2200

2100

2000

1900

2 3 4 5 6 7 8
Number of Profiles

B
IC

FIG. 2. BIC vs number of profiles. We see a slight increase in
BIC from two (BIC -1892) to three (BIC -1877) profiles, and then
a sharp drop to 4 (BIC -1959) until five (-2314) profiles. Five, six
(BIC -2318), and seven (BIC -2320) profiles have nearly equal
BIC values, before increasing again with eight (BIC -2262)
profiles. As such, we focus on two profiles, to observe the
minimum case, and five profiles in further discussion.

TABLE IV. Variance and covariance of TidyLPA model.
Models 4 and 5 were not included, as they are run using the
proprietary software, Mplus [26].

Covariance

Variance Varying Equal Zero

Equal MPLUS 3 1
Varying 6 MPLUS 2
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Instruction, ISLE labs, CRP labs, and “recitationlike”
categories, as seen in Table VI. The lower panel of
Fig. 3 shows the box plots for each COPUS code and
their associated profile groupings.

The LPA algorithm uses hierarchical clustering to
determine initial parameters, meaning the order of the
data can have an effect on the resulting models. Stains
et al. [7] combated this by shuffling their data and
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FIG. 3. Model 1 shown for 2 profiles (top panel) and 5 profiles (bottom panel). The x axis shows the full set of COPUS codes included
in the analysis, while the y axis shows the fraction of class time dedicated to that code. The light shaded dots show the actual COPUS
profiles, colored by their assigned profile. The boxes show the standard deviation in each assigned profile, and the bars show the
confidence interval of the centroid of said profile assignment. Since we used the equal variance model, the size of the boxes is equal
between classes in each COPUS code.
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running the analysis 10 000 times. As this paper is proof
of concept with a limited dataset, we randomized the
data five times to determine if further randomization
was needed. After 5 additional analyses, there were zero
discrepancies between profile assignments. As such, we
did not run further randomization trials. Part of the LPA
output is the probability of assignment to each profile,

so examining these probabilities gives a measure of
certainty (or ambiguity) for the classification of each set
of observations. For all trials in our analysis, the
probabilities of assignment to nondesignated profiles
were at 10−6 or less, indicating that each set of
observations belonged very strongly to one profile
and not to any of the others.

TABLE V. Model 1 profile assignment, 2 profiles. Profile 1 is red on the top panel of Fig. 3, while profile 2 is blue. ISLE had two sets
of observations, the whole-class implementation (WC) and the lab-only implementation (LO).

Profile 1 Profile 2 Profile 2 (cont.) Profile 2 (cont.) Profile 2 (cont.)

Peer instruction ISLE LO lab 1 Modeling 1.1 Tutorials 1 Tutorials 11
SCALE-UP 1.1 ISLE LO lab 2 Modeling 1.2 Tutorials 2 Tutorials 12
SCALE-UP 1.2 ISLE LO lab 3 Modeling 2.1 Tutorials 3 Tutorials 13
SCALE-UP 1.3 ISLE LO lab 4 Modeling 2.2 Tutorials 4 Tutorials 14
ISLE WC lecture 1.1 ISLE LO lab 5 Modeling 3.1 Tutorials 5 Tutorials 15
ISLE WC lecture 1.2 ISLE WC lab 1 Modeling 3.2 Tutorials 6 Tutorials 16
CRP 1.1 lecture ISLE WC recitation 1 CRP discussion 1 Tutorials 7 Tutorials 17
CRP 1.2 lecture ISLE WC recitation 2 CRP discussion 2 Tutorials 8 Tutorials 18
CRP 2.1 lecture ISLE WC recitation 3 CRP lab 1 Tutorials 9 Tutorials 19
CRP 2.2 lecture ISLE WC recitation 4 CRP lab 2 Tutorials 10
Tutorials lecture CRP lab 3

CRP lab 4

TABLE VI. Model 1 profile assignment, 5 profile. Profile 1 is red in the lower panel in Fig. 3, profile 2 is blue, profile 3 is green,
profile 4 is purple, and profile 5 is orange. ISLE had two sets of observations, the whole-class implementation (WC) and the lab-only
implementation (LO).

Profile 1 Profile 2 Profile 3 Profile 4 Profile 5

Peer instruction Modeling 1.1 ISLE WC lab 1 CRP lab 1 ISLE WC recitation 1
SCALE-UP 1.1 Modeling 1.2 ISLE LO lab 1 CRP lab 2 ISLE WC recitation 2
SCALE-UP 1.2 Modeling 2.1 ISLE LO lab 2 CRP lab 3 ISLE WC recitation 3
SCALE-UP 1.3 Modeling 2.2 ISLE LO lab 3 CRP lab 4 ISLE WC recitation 4
ISLE WC lecture 1.1 Modeling 3.1 ISLE LO lab 4 CRP discussion 1
ISLE WC lecture 1.2 Modeling 3.2 ISLE LO lab 5 CRP discussion 2
CRP 1.1 lecture Tutorials 1
CRP 1.2 lecture Tutorials 2
CRP 2.1 lecture Tutorials 3
CRP 2.2 lecture Tutorials 4
Tutorials lecture Tutorials 5

Tutorials 6
Tutorials 7
Tutorials 8
Tutorials 9
Tutorials 10
Tutorials 11
Tutorials 12
Tutorials 13
Tutorials 14
Tutorials 15
Tutorials 16
Tutorials 17
Tutorials 18
Tutorials 19
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V. DISCUSSION

A. Two profiles

If we look more closely at the top panel of Fig. 3, we can
start to pick apart the differences in the assigned profiles.
The two profiles that emerged effectively sorted the
observations into what we interpreted as “large lecturelike”
and “other.” This becomes more apparent as we zoom into
the individual codes. The largest separation between the
two profiles occurs with the instructor lecturing (I.Lec),
students listening (S. L), and the instructor having one on
one conversations with students or small groups (I.1o1). If
we think about how the observations were sorted (see
Table V for the full list), this makes sense. While Peer
instruction and SCALE-UP are pedagogies that incorporate
active learning techniques, they are still typically large
classes where the bulk of information transfer occurs. Pair
those with the lecture components of the other pedagogies,
and we can see how I.Lec and S. L were the starkest
differences from the profile that encompasses lab and
recitation components. The lecturelike profile that we
see in our data more closely aligns with the hybrid category
(“active lecture”) that Stains et al. [7] report.
The code where profile 2 takes the lead, I.1o1, indicates

that instructors spend more time engrossed in individual
discussions with students outside of large lecturelike
environments. This is to be expected when comparing
small, typically small-group activity-centered environ-
ments to a large information transfer environment. The
outlier to this generalization is Modeling Instruction; a
large enrollment course with very little information transfer
from the instructor via lecture, and large amounts of small
group learning activities (which is likely why it was
grouped with recitation and lab components).
On the other hand, there were a few codes that were

nearly indistinguishable between the two profiles, includ-
ing administrative tasks (I. Adm), students and instructor
waiting (S. W. and I. W.), test or quiz (S.TQ), students
making a prediction (S. Prd), and student presentations
(S. SP). The only pedagogy that had student presentations
was Modeling Instruction, when the students gathered for
their white board meetings. Only one observation had a test
or quiz, given in the lecture component of Tutorials.
Student prediction is for when students are explicitly asked
to make a prediction about the outcome of a demo or
experiment, which was also a very rare occurrence in our
set of observations. Meanwhile, administrative tasks, wait-
ing around for students to finish an activity or the instructor
to begin the next part of the lesson, and other unclassifiable
activities (like eating a snack or taking a restroom break),
seem to be universal to all pedagogies.
Codes related to clicker questions or whole-class ques-

tioning were more common in the first profile, which is to
be expected, as large enrollment courses are typically the
environment for this instructional tool. These codes

included I.CQ (instructor administers clicker question),
I.Fup (instructor follows up a question with a longer
discussion), I.PQ (instructor poses a nonrhetorical ques-
tion to the whole class), S.AnQ (student answers a
question with the whole class listening), S.CG (students
work as a group to answer a clicker question), and
S.Ind (students think independently to answer a question
posed to the whole class).
While the first profile had very little group worksheet

activity (S.WG) outside of SCALE-UP, the second profile
had a large variance due to the wide array of group activities
that are encompassed in these observations. Lab sections
had mostly S.OG (other group activity), Tutorials had
mostly S.WG, and Modeling Instruction had a mixture
of both. As such, this code forced a large variance in the
first profile as well, since we used model 1 during our LPA.

B. Five profiles

Now let us look more closely at the bottom panel of
Fig. 3. Profile 1 (red boxes), which included lecture
components and SCALE-UP observations, had a higher
usage of clicker questions (I.CQ, S.CG, and S.Ind) and
subsequent follow up (I.Fup). Profile 1 also had signifi-
cantly higher usage of lecture (I.Lec) and thus students
listening (S. L). Also noteworthy of profile 1 is a distinct
lack of one-on-one discussions (I.1o1) and moving about
the room to guide discussion (I.MG).
Profile 2 (blue boxes), which holds all of the Modeling

Instruction observations, is the only pedagogy that used
student presentations (S.SP) and whole class discussions
(S.WC). Profile 2 also shows slightly less time engaged in
one-on-one discussions than the other active profiles. Less
time was also spent engaged in group worksheets (S.WG)
than the other active profiles.
Profiles 3 and 4, which hold the ISLE labs and the

context-rich problem labs, respectively, are a little more
difficult to distinguish. The most notable difference
between these two lab sortings is the use of student
predictions (S.Prd) in the CRP labs. In these observations,
students had to predict the outcome of their experiments
and discuss as a group before jumping into the activity,
whereas the ISLE labs were less explicitly structured in this
regard. The CRP labs were actually the first group to
separate from the two-profile solution due to this code (see
3 profiles in the Supplemental Material [20]), followed by
the ISLE labs in the 4 profile solution. It is also worth
mentioning that the ISLE labs all go together, even though
most are the stand-alone implementation and one is part of
the full-class implementation. That suggests that the lab-
only implementation had high fidelity to the goals of the
whole-class ISLE implementation.
Finally, the recitationlike observations in profile 5 stand

out with their abundance of group worksheet activities
(S.WG). This profile also has elevated levels of moving
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around the room to guide discussion (I.MG), as well as
students raising their hands to ask questions (S.SQ).

C. Further discussion

Modeling Instruction and SCALE-UP are both studio
format with a mingled lecture-lab-recitation, but were not
binned in the same profiles for any number of profile fits.
Unlike Modeling Instruction, the SCALE-UP class we
observed still used lecture as the primary means of
information transfer, whereas the bulk of information
transfer in a Modeling environment is through exploration
by the students and the subsequent whole class discussions.
This, plus the usage of clicker questions, was the biggest
difference between the seemingly similar studio-based
pedagogies. As mentioned in the introduction of the
pedagogies, SCALE-UP is more-so descriptive of the
physical environment rather than specific activities, and
lends itself well to a combination of many styles of active
learning. It is therefore possible that the COPUS profile of a
SCALE-UP course could vary wildly between implemen-
tations, but it is also possible that a unique SCALE-UP
signature could emerge that encompasses all codes due to
the physical capability to cover all codes. More observa-
tions from several institutions will be necessary to inves-
tigate further.
It is also interesting to see how all of the recitation or

discussion observations were grouped in both 2 and 5
profile cases. The largest distinction between these and the
lab sections was the usage of S.WG and S.OG. The bulk of
recitation or discussion section activities was with small
group worksheets, hence the WG “working in groups on a
worksheet” designation. Meanwhile, the labs were coded as
“other group activity,” as COPUS does not include a code
for this purpose. Without this distinction, there would likely
be a lot of overlap between lab and recitation profile
assignment, as the base behaviors of working in small
groups while the instructor mills about the room were
largely similar. For future work, we recommend exploring
different observation protocols that can better capture the
difference between group activities, or using both COPUS
and LOPUS (Lab Observation Protocol for Undergraduate
STEM, which is the lab variant of COPUS) [28].

VI. CONCLUSION

We collected COPUS observations from six high-fidelity
active learning pedagogies in physics. Using these obser-
vations, we performed LPA for 2–8 latent profile group-
ings. Two latent profiles successfully categorized the
observations into lecturelike and not lecturelike. Five latent
profiles sorted the observations into lecturelike, Modeling
Instruction, ISLE labs, context-rich labs, and recitationlike.
With our preliminary dataset, we made a first draft
classification scheme using COPUS and LPA.

This was a proof of concept study, which showed great
promise for using LPA to study how COPUS profiles can
be used to classify physics active learning pedagogies.
Gathering additional data is an important next step, since
our study included 52 total cases (sections with observed
COPUS code frequencies), and this is substantially below
the sample size of 500 recommended as a rule of thumb for
LPA [27]. It is encouraging that our model converged and
had high-probability profile assignments despite this limi-
tation. However, more data would address this concern.
Stains et al. [7] suggest that at least four COPUS

observations are required to get a good snapshot of each
class, because day to day fluctuations had some instructors
categorized into more than one cluster in their study. While
we were unable to achieve this with our current iteration of
data collection, we suggest future studies take this sugges-
tion into account, and make a “combined COPUS profile,”
consisting of several days worth of observations that
include all components of a course (like lecture, lab, and
recitation combined into one observation, as if a student
were encountering the entire class). This method of data
collection would allow us to more directly explore the
difference between pedagogies, such as how a Peer
Instruction experience with separate lab and recitation
differs from a SCALE-UP integrated lab-lecture-recitation
experience.
Though five profiles are a good fit to the six sampled

curricula, it is not quite as simple as finding one profile per
pedagogy. Instead, we find that LPA can group broad
components of the courses as similar (e.g., all the lecture-
heavy observation sets), while still identifying differences
within these components (like the split lab types in
profiles 3 and 4). If more COPUS observations from
other institutions and pedagogies map onto these same
profiles, it suggests that they characterize broad recurring
structures in active learning environments. If more or
different profiles emerge as more data are added, it
suggests that additional dimensions are needed to fully
describe this space. In either case, the codes that distin-
guish the profiles—such as use of student predictions in
CRP labs—help to identify distinct features between
active learning pedagogies, which is the larger goal of
the CALEP project.
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