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Abstract
The ıSerre relations and the corresponding Serre–Lusztig relations are formulated and
established for arbitrary ıquantum groups arising from quantum symmetric pairs of
Kac–Moody type.
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1 Introduction

1.1 The goal

In this Letter, we generalize some main results concerning ıSerre relations in [8]
and the corresponding Serre–Lusztig (i.e., higher-order Serre) relations in [9] among
Chevalley generators Bi and Bj , for τ i = i = w•i and i �= j ∈ I◦, in ıquantum
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groupsUı or˜Uı arising from quantum symmetric pairs of arbitraryKac–Moody type,
to the general cases for τ i = i (with condition w•i = i dropped). The notations are
to be explained below, and we refer to loc. cit. for a more complete introduction of
backgrounds.

1.2 Background

We are concerned about the Serre-type relations among the generators Bi in an
ıquantum group Uı (or a universal ıquantum group ˜Uı ) arising from quantum sym-
metric pairs (QSP) (U,Uı ). Recall that the definition of QSP is built on the Satake
diagrams or admissible pairs (I = I◦ ∪ I•, τ ) [11,13,14]. A universal ıquantum group
˜Uı [16] is a subalgebra of a Drinfeld double quantum group˜U, andUı with parameters
are recovered from ˜Uı by central reductions.

The Serre-type relations of Uı were obtained by G. Letzter [14] in finite type.
The Serre relations between Bi , Bj (where Bj appears in degree 1) were explicitly
known [1,11] in an arbitrary ıquantum group Uı (or ˜Uı ) of Kac–Moody type, unless
τ i = i ∈ I◦; in case τ i = i ∈ I◦, explicit Serre relations were written down under a
strong constraint on the Cartan integers |ai j | ≤ 4, cf. [1,2]. General ıSerre relations
for τ i = i = w•i ∈ I◦ and j ∈ I◦ without any constraint on Cartan integers ai j
have been formulated by the authors [8]; see (1.2) below. “Explicit” yet unwieldy
formulas for Serre relations in an arbitrary ıquantum group Uı are also obtained in
[10]; the coefficients involved therein can be rather difficult to compute in practice.
More recently, a compact presentation for arbitrary ıquantumgroups has been obtained
in [12] in terms of continuous q-Hermite polynomials and a new family of deformed
Chebyshev polynomials.

The Serre–Lusztig (or higher-order Serre) relations for ˜Uı hold in closed forms [9]

ỹi, j;n,m,p,t,e = 0, (1.1)

for τ i = i = w•i ∈ I◦, i �= j ∈ I◦ andm ≥ 1−nai j ; see (4.5)–(4.6) for the definition
of ỹ. These are generalizations of higher-order Serre relations for quantum groups in
[17]. In case n = 1 and m = 1− ai j , the above relation reduces to the ıSerre relation
[8]

1−ai j
∑

r=0

(−1)r B(r)
i,ai j+pi

B j B
(1−ai j−r)
i,pi

= 0, (1.2)

which holds for τ i = i = w•i ∈ I◦, i �= j ∈ I◦ in an arbitrary ıquantum group; more
generally, the Serre–Lusztig relations of minimal degree (i.e., (1.1) for m = 1 − nai j
and n ≥ 1) take a similar simple form as in (1.2). These relations are expressed in
terms of ıdivided powers B(m)

i,p (cf. [5,7,9]), depending on a parity p ∈ {0̄, 1̄}.
In particular, these relations hold for i = τ i in an arbitrary quasi-split ıquantum

group (i.e., when I• = ∅). Conjectures and examples for Serre–Lusztig relations of
minimal degrees in ıquantum groups of split affine ADE type in very different forms
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were proposed earlier by Baseilhac and Vu [3,4]; their conjecture was proved for
q-Onsager algebra in [18].

1.3 ıSerre relations

In this Letter, the ıSerre relation for an ıquantum group of arbitrary Kac–Moody type
will be formulated as

1−ai j
∑

r=0

(−1)rB(r)
i,ai j+pi

B jB
(1−ai j−r)
i,pi

= 0. (1.3)

That is, it formally takes the same form as (1.2), where we have replaced B(m)
i,p in (1.2)

by a more general definition of ı-divided powers B(m)
i,p defined in (2.5)–(2.6) (that is,

ςi in B(m)
i,p is replaced by ςi ri (Tw•Ei )); in the case when w•i = i , B(m)

i,p is reduced to

the original B(m)
i,p thanks to ri (Ei ) = 1. Moreover, the Serre–Lusztig relations (1.1)

are generalized accordingly to arbitrary ıquantum group ˜Uı (see Theorem 4.8) and
they follow by a recursive relation similar to the one in [9] (see Theorem 4.7).

For i ∈ I◦ with τ i = i �= w•i , a version of ıdivided powers B(m)
i (independent of

p ∈ Z2) was introduced in [6] as a key ingredient toward ıcanonical basis. These B
(m)
i

(for some suitable parameter ςi ) therein satisfies a crucial integral property, i.e., it lies
in theZ[q, q−1]-formof themodified ıquantumgroup. In contrast, theB(m)

i,p introduced
in this Letter are not integral for m ≥ 2 and for any parameter ςi . Paraphrasing, the
ıdivided powers for τ i = i ∈ I◦, arising in 2 totally different settings of ıcanonical
basis and ıSerre relations, miraculously coincide if and only if w•i = i . (Alas, we
had a mental block on the “only if" part, and this explains why the formulation of this
Letter were not noticed earlier when we were writing [9].)

1.4 Serre-Lusztig relations

We shall establish in this Letter the ıSerre relation (1.3) and its corresponding Serre–
Lusztig relations. Actually, we achieve much more, by formulating and establishing
further generalizations of these relations, which involve higher powers Bn

j , for n ≥ 2;
see Theorem 4.1:

∑

r+s=1−nai j

(−1)rB(r)
i,p B

n
jB

(s)
i,p+nai j

= 0.

This is referred to as Serre–Lusztig relations of minimal degrees. For more general
Serre–Lusztig relations, see Theorem 4.8.

The proof of the Serre–Lusztig relations in Theorem 4.1 and Theorem 4.8 uses 2
key ingredients. First, it relies on the results in [9] in an essential way, and a reader is
recommended to keep a copy of it at hand (as it is impractical for us to repeat verbatim
most arguments of that paper in the current general setting). The other key ingredient
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is a new universality property for ıquantum groups formulated in Proposition 3.2.
This universality statement follows by a (seemingly weaker) version of universality
property proved in Proposition 3.1 and then comparing with known Serre–Lusztig
relations for quasi-split ıquantum groups in [9]. (Such a universality result for n = 1
was almost explicit in [11,14] based on their projection techniques, and was made
very explicit in [10].)

ThisLetter is organized as follows. InSect. 2,we set up the preliminaries onDrinfeld
doubles and quantum symmetric pairs. Then we formulate the new ıdivided powers in
ıquantum groups. In Sect. 3, we establish a universality property in ıquantum groups
concerning the structure constants appearing in Serre–Lusztig relations. In Sect. 4,
we formulate and establish Serre–Lusztig relations in ıquantum groups in a great
generality.

2 ıDivided powers in ıquantum groups

2.1 New ıdivided powers for ˜Uı

Given a Cartan datum (I, ·), we have a root datum of type (I, ·) [17, 1.1.1, 2.2.1],
which consists of

(a) two finitely generated free abelian groups Y , X and a perfect bilinear pairing
〈·, ·〉 : Y × X → Z;

(b) an embedding I ⊂ X (i 
→ αi ) and an embedding I ⊂ Y (i 
→ hi ) such that
〈hi , α j 〉 = 2 i · j

i ·i for all i, j ∈ I.

The matrix C = (ai j )i, j∈I = (〈hi , α j 〉)i, j∈I is a generalized Cartan matrix. For
D = diag(εi | εi ∈ Z

+, i ∈ I), where εi = i ·i
2 , DC is symmetric. Let qi = qεi for

any i ∈ I. The associated Drinfeld–Jimbo quantum group U = UI is a Q(q)-algebra
generated by Ei , Fi , K

±1
i , for i ∈ I. LetW denote theWeyl group generated by simple

reflections si for i ∈ I.
The Drinfeld double ˜U = ˜UI is a Q(q)-algebra generated by Ei , Fi , ˜Ki , ˜K ′

i , for
i ∈ I, and ˜Ki ˜K ′

i is central in ˜U; cf., for example, [16, §6]. Then U is obtained from ˜U
by a central reduction:

U = ˜U/(˜Ki ˜K
′
i − 1 | i ∈ I).

Let ˜U+ (and respectively, U+) be the subalgebra of ˜U (and respectively, U) generated
by Ei (i ∈ I). Clearly, ˜U+ ∼= U+, and we shall identify them. For i ∈ I, denote by
ri : U+ → U+, i r : U+ → U+ the unique Q(q)-linear maps [17] such that

ri (1) = 0, ri (E j ) = δi j , ri (xx
′) = xri (x

′) + qi ·μ′
ri (x)x

′;
i r(1) = 0, i r(E j ) = δi j , i r(xx

′) = i r(x)x
′ + qμ·i (x)i r(x ′),

(2.1)

for x ∈ U+
μ and x ′ ∈ U+

μ′ .
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For any x ∈ U+, by [17, Proposition 3.1.6] one has

xFi − Fi x = ri (x)˜Ki − ˜K ′
i (i r(x))

qi − q−1
i

. (2.2)

Let (I = I◦ ∪ I•, τ ) be an admissible pair; cf. [11, Definition 2.3]. Let WI• = 〈si |
i ∈ I•〉 be the parabolic subgroup of W with the longest element w•.

Note that˜UI• (and respectively,UI• ) is naturally a subalgebra of˜U (and respectively,
U). The ıquantum group ˜Uı is a (coideal) subalgebra of ˜U (see [9,16]), which is
generated by ˜UI• ,˜ki = ˜Ki ˜K ′

τ i (i ∈ I◦), and

Bi = Fi + Tw•(Eτ i )˜K ′
i (i ∈ I◦).

Here Tw = T ′′
w,+1 denotes a braid group operator as in [17] for any w ∈ W . Note that

Tw•(Eτ i ) ∈ U+ = ˜U+.
In this Letter, we are mainly concerned about Bi , for i ∈ I◦ with τ i = i ; in this

case, Bi = Fi + Tw•(Ei )˜K ′
i ∈ ˜Uı . It is known (cf. [11]) that ri (Tw•Ei ), i r(Tw•Ei ) ∈

U+
I• = ˜U+

I• ⊂ ˜Uı and

[ri (Tw•Ei ), Bj ] = 0, for i, j ∈ I◦. (2.3)

It follows by weight reason that

[ri (Tw•Ei ), Fj ] = 0 = [ri (Tw•Ei ), Tw•(Eτ j )˜K ′
j ], for i, j ∈ I◦. (2.4)

Form ∈ Z, let [m]i = [m]qi denotes the quantum integer associate to qi . Let i ∈ I◦
with τ i = i (but we drop the assumption that w•i = i which was imposed in [8,9]).
The ı divided powers of Bi in ˜Uı are defined to be

B(m)

i,1̄
= 1

[m]i !

⎧

⎨

⎩

Bi
∏k

j=1

(

B2
i − [2 j − 1]2i qi˜ki ri (Tw•Ei )

)

if m = 2k + 1,
∏k

j=1

(

B2
i − [2 j − 1]2i qi˜ki ri (Tw•Ei )

)

if m = 2k; (2.5)

B(m)

i,0̄
= 1

[m]i !

⎧

⎨

⎩

Bi
∏k

j=1

(

B2
i − [2 j]2i qi˜ki ri (Tw•Ei )

)

if m = 2k + 1,
∏k

j=1

(

B2
i − [2 j − 2]2i qi˜ki ri (Tw•Ei )

)

if m = 2k.
(2.6)

Given p ∈ Z2 = {0̄, 1̄}, the ıdivided powers are determined by the following
recursive relations, for m ≥ 0:

BiB
(m)
i,p =

{

[m + 1]iB(m+1)
i,p if p �= m,

[m + 1]iB(m+1)
i,p + [m]i qi˜ki ri (Tw•Ei )B

(m−1)
i,p if p = m.

(2.7)

We set B(m)

i,0̄
= 0 = B(m)

i,1̄
for any m < 0.
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2.2 New ıdivided powers for Uı

The Q(q)-algebra Uı = Uı
ς , for ς = (ςi )i∈I◦ (subject to some constraints [1,6]), can

be defined as a subalgebra of U (similar to ˜Uı as a subalgebra of ˜U). In particular, for
i ∈ I◦ with τ i = i , we have Bi = Fi + ςi Tw•(Ei )K

−1
i ∈ Uı . Alternatively, Uı is

related to ˜Uı by a central reduction:

Uı
ς = ˜Uı/

(

˜ki − ςi (i = τ i),˜ki˜kτ i − ςiςτ i (i �= τ i)
)

.

Let us specialize to the case τ i = i ∈ I◦, which ismost relevant to us. Our parameter
ςi corresponds to the notation in [1] as ςi = −ci s(i). The parameters ci , s(i) therein
were not needed separately. Similarly, the notation Zi = −s(i)ri (Tw•Ei ) in [1] is
never needed separately, and instead ciZi and ri (Tw•Ei ) are all one needs. We have

ciZi = ςi ri (Tw•Ei ). (2.8)

By a slight abuse of notation, the ıdivided powers inUı , denoted again by B(m)
i,p , for

p ∈ Z2, are defined in almost the same way as in (2.5)–(2.6), with˜ki replaced by ςi :

B(m)

i,1̄
= 1

[m]i !

⎧

⎨

⎩

Bi
∏k

j=1

(

B2
i − [2 j − 1]2i qiςi ri (Tw•Ei )

)

if m = 2k + 1,
∏k

j=1

(

B2
i − [2 j − 1]2i qiςi ri (Tw•Ei )

)

if m = 2k; (2.9)

B(m)

i,0̄
= 1

[m]i !

⎧

⎨

⎩

Bi
∏k

j=1

(

B2
i − [2 j]2i qiςi ri (Tw•Ei )

)

if m = 2k + 1,
∏k

j=1

(

B2
i − [2 j − 2]2i qiςi ri (Tw•Ei )

)

if m = 2k.
(2.10)

Remark 2.1 In the case when w•i = i , we have ri (Tw•Ei ) = 1, and the ıdivided
powers B(m)

i,p were introduced first in [5,7] for a distinguished parameter ςi = q−1
i and

they are ıcanonical basis elements in the modified ıquantum group. The B(m)
i,p when

w•i = i for a general parameter ςi used in [8,9] (denoted by B(m)
i,p ) are obtained from

the distinguished case above by a renormalization automorphism of Uı .
In case when w•i �= i and then ri (Tw•Ei ) �= 1, B(m)

i,p in general do not lie in the

Z[q, q−1]-form of Uı . Toward the construction of ıcanonical basis, different ıdivided
powers, B(m)

i , which lie in the Z[q, q−1]-form of (modified) Uı , for τ i = i �= w•i ,
were introduced in [6].

3 A universality property for ıquantum groups

In this section, we shall establish a universality property on the structure constants
appearing in the Serre–Lusztig relations.
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3.1 A weak form of universality for Uı

Recall the linear maps ri , i r , for i ∈ I from (2.1). For any j, k ∈ I◦, by (2.2), we have

Fj Tw•(Eτk)K
−1
k = q−k· j Tw•(Eτk)K

−1
k Fj + δ j,τk Zτk + δ j,τk Z

′
τk K

−2
k , (3.1)

where we denote by μ the weight of kr(Tw•Ek), and set

Zk = rk(Tw•Ek)

q−1
k − qk

, Z ′
k = kr(Tw•Ek)

qk·μ(qk − q−1
k )

. (3.2)

For any τ i = i ∈ I◦, by combining with (2.4), we have

[Zi , Z j ] = 0 = [Zi , Z
′
j K

−2
j ], for j ∈ I◦. (3.3)

For τ i = i ∈ I◦ and i �= j ∈ I◦, we denote

Si, j;n(Bi , Bj ):=
∑

r+s=1−nai j

(−1)r
[

1 − nai j
r

]

i
Br
i B

n
j B

s
i . (3.4)

As a main step toward proving the universality property in Proposition 3.2, we first
establish the following variant.

Proposition 3.1 Let n ≥ 1. For τ i = i ∈ I◦ and i �= j ∈ I◦, we have the following
identity in Uı :

Si, j;n(Bi , Bj ) = ̂Ci, j;n(Bi , Bj ), (3.5)

where ̂Ci, j;n(Bi , Bj ) is a (non-commutative) polynomial in Bi , Bj of the form

̂Ci, j;n(Bi , Bj ) =
∑

r+s≤−1−nai j

∑

2m≤n

�̂
(i, j,ai j )
r ,s,m,n

(

ςi Zi
)

1−nai j−r−s
2 (ς j Zτ j )

mBr
i B

n−2m
j Bs

i ,

(3.6)

for some universal Laurent polynomials �̂
(i, j,ai j )
r ,s,m,n ∈ Z[q, q−1] (i.e., they depend only

on ai j , εi , ε j , and r , s,m, n). Moreover, if τ j �= j then �̂
(i, j,ai j )
r ,s,m,n = 0 for all m > 0.

Proof In the argument below, we assume that j = τ j . (The j �= τ j case follows from
a similar analysis and can be obtained by setting Zτ j = 0 and Z ′

τ j = 0 everywhere.)

Let U−
i, j be the subalgebra generated by Fi and Fj , and

U
+
i, j :=

∑

γ≥αi or γ≥α j

U+
γ U

−
i, j

˜U0, and T
+
i, j =

∑

e, f ≥0,e+ f >0

UI•U
−
i, j K

−2e
i K−2 f

j .
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By using (3.1) and the definition Bk = Fk + ςkTw•Eτk K
−1
k for any k ∈ I◦, one can

expand out the term Ba
i B

r
j B

b
i so that it satisfies

Ba
i B

r
j B

b
i ∈ Fa

i F
r
j F

b
i +

∑

m,u,s,t

gm,u,s,t
i, j,a,b,r (ςi Zi )

u+s+t (ς j Z j )
mFa−2u−t

i

Fr−2m
j Fb−2s−t

i + U
+
i, j + T

+
i, j ,

where gm,u,s,t
i, j,a,b,r is a scalar. This result is a special case of [15, Lemma 4.1]. In fact,

one starts with monomials in the Fi , Fj , Tw•(Ei )K
−1
i , and Tw•(E j )K

−1
j . Terms of the

form Tw•(Ek)K
−1
k are moved to the left and new monomials are created via (3.1) that

have Zk or Z ′
k K

−2
k entries. Those monomials that have a Tw•(Ek)K

−1
k that survives

all the way on the left-hand side of the expression (for either k = i or k = j)
become part of U+

i, j . Whenever a Z ′
k K

−2
k appears, we move the K−2

k to the right;

if, in addition, there are no Tw•(Ek)K
−1
k terms remaining all the way on the left,

then the resulting monomial is in T+
i, j . It follows from (3.1), (2.4) and (3.3) that each

gm,u,s,t
i, j,a,b,r ∈ Z[q, q−1] and depends only on ai j , εi , ε j , a, b,m, u, s, t .
In the special case where u = t = s = 0, each term of the form

(ς j Z j )
mFa

i F
r−2m
j Fb

i comes from expanding out Br
j inside the term Fa

i B
r
j F

b
i and

moving powers of ς j Z j to the left. Hence, g
m,0,0,0
i, j,a,b,r is independent of a and b.

Return to Si, j;n(Bi , Bj ). From the above analysis, we have

∑

r+s=1−nai j

(−1)r
[

1 − nai j
r

]

i

(

Fr
i F

n
j F

s
i +

∑

m

gm,0,0,0
i, j,r ,s,n(ς j Z j )

mFr
i F

n−2m
j Fs

i

)

= 0

by using the Serre–Lusztig relation and its non-standard variant (cf. [9, Corollary 3.3]).
It follows that Si, j;n(Bi , Bj ) is contained in the set

∑

u+v≤−1−nai j

(
∑

m

du,v,m(ςi Zi )
1−nai j−u−v

2 (ς j Z j )
mFu

i F
n−2m
j Fv

i

)

+ U
+
i, j + T

+
i, j ,

(3.7)

where the coefficientsdu,v,m come fromsumsof termsof the form

[

1 − nai j
r

]

i
g·,·,·,·
i, j,r ,s,n

and clearly are Laurent polynomials of the desired form.
Let z be the maximum of u + v + n − 2m with du,v,m �= 0. Replacing terms of the

form Fu
i F

n−2m
j Fv

i for u + v + n − 2m = z with Bu
i B

n−2m
j Bv

i in (3.7) yields

Si, j;n(Bi , B j )−
∑

u+v+n−2m=z

du,v,m(ςi Zi )
1−nai j−u−v

2 (ς j Z j )
mBu

i B
n−2m
j Bv

i

∈
∑

u+v+n−2m<z

d ′
u,v,m(ςi Zi )

1−nai j−u−v

2 (ς j Z j )
mFu

i Fn−2m
j Fv

i + U
+
i, j + T

+
i, j ,
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where once again the coefficients d ′
u,v,m have the desired form. Repeating this process

and noting that Uı
ς ∩ (

U
+
i, j + T

+
i, j

) = 0, we have proved the proposition. ��

3.2 The universality for Uı

Using the Serre–Lusztig relations for quasi-split ıquantum groups obtained in [9], we
can sharpen the statement in Proposition 3.1.

Proposition 3.2 (Universality) Let n ≥ 1. For τ i = i ∈ I◦ and i �= j ∈ I◦, we have
the following identity in Uı :

Si, j;n(Bi , Bj ) = Ci, j;n(Bi , Bj ), (3.8)

where Ci, j;n(Bi , Bj ) is a (non-commutative) polynomial in Bi , Bj of the form

Ci, j;n(Bi , Bj ) =
∑

r+s≤−1−nai j

�
(i, j,ai j )
r ,s|n

(

ςi ri (Tw•Ei )
)

1−nai j−r−s
2 Br

i B
n
j B

s
i , (3.9)

for some universal Laurent polynomials �
(i, j,ai j )
r ,s|n ∈ Z[q, q−1] (which depend only on

ai j , εi , ε j and r , s, n).

(The identities (3.8)–(3.9) remain valid in ˜Uı when ςi in Ci, j;n(Bi , Bj ) above is
replaced by˜ki .)

Proof By Proposition 3.1, we have a Serre–Lusztig-type relation (for i �= j ∈ I◦)
of the form (3.5)–(3.6), Si, j;n(Bi , Bj ) = ̂Ci, j;n(Bi , Bj ), where ̂Ci, j;n(Bi , Bj ) is an

expression with universal coefficients �̂
(i, j,ai j )
r ,s,m,n ∈ Z[q, q−1], which depend only on

ai j , εi , ε j , and r , s,m, n.

Claim (	). We have �̂
(i, j,ai j )
r ,s,m,n = 0, for m > 0.

Let us prove the Claim. In order to determine �̂
(i, j,ai j )
r ,s,m,n , we shall restrict ourselves

to the setting of quasi-split ıquantum groups, where ri (Tw•Ei ) = 1, i.e., Zi = 1
q−1
i −qi

.

By [9, Theorem 4.1], for quasi-split ıquantum groups ˜Uı , we have

∑

a+b=1−nai j

(−1)r B(a)
i,p B

n
j B

(b)
i,p+nai j

= 0, (n ≥ 0), (3.10)

where the ıdivided powers B(m)
i,p are as in (2.9)–(2.10) but with ri (Tw•Ei ) = 1.

Expanding [1 − nai j ]i !·LHS(3.10) into a linear combination of monomials of the
form Br

i B
n
j B

s
i , we have

Si, j;n(Bi , Bj ) =
∑

r+s≤−1−nai j

�
(i, j,ai j )
r ,s|n ς

1−nai j−r−s
2

i Br
i B

n
j B

s
i , (3.11)
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for some universal Laurent polynomials �
(i, j,ai j )
r ,s|n ∈ Z[q, q−1] (i.e., they depend only

on ai j , εi , ε j and r , s, n). As (3.11) does not involve ς j Z ′
τ j , , a comparison of (3.11)

and (3.5)–(3.6) with Zi = 1
q−1
i −qi

shows that �̂
(i, j,ai j )
r ,s,m,n = 0, for m > 0. Claim (	) is

proved.
A comparison of (3.11) and (3.5)–(3.6) with Zi = 1

q−1
i −qi

again further shows that

�̂
(i, j,ai j )
r ,s,0,n = �

(i, j,ai j )
r ,s|n · (q−1

i − qi )
nai j+r+s−1

2 , for all r , s, n. (3.12)

Now back to arbitrary ıquantum groups˜Uı . By Claim (	) and (3.12), we can rewrite
the identity (3.5)–(3.6) in the precise form of the Serre–Lusztig relation (3.8)–(3.9).
The proposition is proved. ��
Remark 3.3 For n = 1, the universality result in Proposition 3.2 has been (somewhat
implicitly) known in [11,14] and made explicit in [10]. Actually, a very careful and
tedious work was carried out in [10] to describe explicitly these universal polynomials

�
(i, j,ai j )
r ,s|1 in Ci, j;1(Bi , Bj ); see [10, Theorem 4.7].

4 The Serre–Lusztig relations in ıquantum groups

4.1 Serre–Lusztig relations of minimal degree

We consider ıquantum groups Uı of arbitrary Kac–Moody type, where I• �= ∅ is
allowed.

Theorem 4.1 (Serre–Lusztig relations of minimal degree) For any i �= j ∈ I◦ such
that τ i = i and t ∈ Z2, the following identities hold in ˜Uı for n ≥ 1:

∑

r+s=1−nai j

(−1)rB(r)
i,p B

n
jB

(s)
i,p+nai j

= 0, (4.1)

∑

r+s=1−nai j

(−1)rB(r)
i,p B

(n)

j,t B
(s)
i,p+nai j

= 0. (4.2)

We do not recall the precise formulas for the ıdivided powers B(n)

j,t in 3 cases, and
we refer to [6, (5.12)] and [9, (5.5)] for details.

Forn = 1, the identity (4.1) reduces to the ıSerre relation (1.3) in˜Uı . In casew•i = i
and thus ri (Tw•Ei ) = 1, the relations in Theorem 4.1 reduce to [9, Theorem A], and
the ıSerre relation (1.3) was obtained in [8].

Proof of Theorem 4.1 As explained in [9, Introduction], (4.2) follows from (4.1) by [9,
Proposition 3.2]. Hence it suffices to prove (4.1), or itsUı -variant, where˜ki is replaced
by ςi in the ıdivided powers.

By Proposition 3.2, we have a Serre–Lusztig relation (for i �= j ∈ I◦) of the form
(3.8), i.e., Si, j;n(Bi , Bj ) = Ci, j;n(Bi , Bj ).
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The above discussion remains valid in the setting of quasi-split ıquantum groups
where ri (Tw•Ei ) = 1; in this case, we already have a Serre–Lusztig relation (for
i �= j ∈ I◦) of the form (4.1), where ςi ri (Tw•Ei ) reduces to ςi in the definition ofB

(r)
i,p;

see [8, (3.9)]. Then we have the following expansion in terms of (non-commutative)
monomials in Bi , Bj , where it is understood that ri (Tw•Ei ) = 1 in the ıdivided powers
and in Ci, j;n(Bi , Bj ):

1−nai j
∑

r=0

(−1)rB(r)
i,nai j+pi

Bn
jB

(1−ai j−r)
i,pi

|ri (Tw• Ei )=1

= [1 − nai j ]i !−1
(

Si, j;n(Bi , Bj ) − Ci, j;n(Bi , Bj )|ri (Tw• Ei )=1

)

. (4.3)

Indeed, the universal polynomials �
(i, j,ai j )
r ,s|n appearing in Ci, j;n(Bi , Bj ) from (3.9) are

determined from the expansion of the LHS above as in Proposition 3.2.
Return to the setting of general ıquantum groups. The above formula (4.3) remains

valid when replacing the scalar ςi by ςi ri (Tw•Ei ) = ciZi (which can be regarded as
a commuting variable by (2.3) when dealing with these relations) on both sides. The
effect of such replacement is the removal of the restriction |ri (Tw• Ei )=1 on both sides
of (4.3), that is, the following identity holds:

1−nai j
∑

r=0

(−1)rB(r)
i,nai j+pi

Bn
j B

(1−ai j−r)
i,pi

= [1 − nai j ]i !−1
(

Si, j;n(Bi , Bj ) − Ci, j;n(Bi , Bj )
)

. (4.4)

Since RHS(4.4) = 0 by (3.8), the identity (4.1) follows. ��
Remark 4.2 Note that it is possible to deduce the formulas (4.1)–(4.2) in the n = 1
case directly from [10, Proposition 4.6, Theorem 4.7], though the proofs we provide
here do not rely on the formulas of [10]. Moreover, it is instructive to compare the
ıSerre relation in a canonical form (1.3) (as in [8]) to a complicated formulation in
[10, Theorem 4.7]. They coincide up to a scalar multiple of [1 − ai j ]i !.
Remark 4.3 When the parameter ςi satisfies the conditions in [6, (3.7)] (which goes
back to [1] in some form), it follows from [6, (5.10)] (or [1, Theorem 3.11(2)]) that
qiςi ri (Tw•Ei ) is bar invariant. Hence the relation (1.3) in the Uı setting is manifestly
bar invariant in this case. Such a bar invariance was also observed in [10] based on the
explicit formulas therein.

Remark 4.4 Combining the relations obtained by Letzter, Kolb and Balagovic (cf.,
e.g., [1,11,14]) and (1.3) in this Letter, all the Serre-type relations between Bi and Bj

for ıquantum groups ˜Uı (or Uı ) of arbitrary Kac–Moody type have been formulated
in clean and closed formulas in terms of ıdivided powers, except in the case when
τ(i) = i ∈ I◦ and j ∈ I•; examples in this exceptional case can be found in [1]. For a
different expression of defining relations in this case, see [12].

Example 4.5 Let j �= i ∈ I◦ with τ i = i . With the help of (2.8), the formula (1.3)
specializes to
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1. B2
i B j − [2]i Bi B j Bi + Bj B2

i = qi ciZi B j , for ai j = −1,
2. B3

i B j − [3]i B2
i B j Bi + [3]i Bi B j B2

i − Bj B3
i = [2]2i qi ciZi (Bi B j − Bj Bi ), for

ai j = −2.

The above two formulas, together with a formula for ai j = −3, were earlier obtained
in [1, Theorem 3.7(2)] by rather involved computations.

4.2 Definition of ỹi,j;n,m,p,t,e and ỹ
′
i,j;n,m,p,t,e

Let i �= j ∈ I◦ be such that τ i = i . For m ∈ Z, n ∈ Z≥0, e = ±1 and p, t ∈ Z2, we
define elements ỹi, j;n,m,p,t,e and ỹ′

i, j;n,m,p,t,e in
˜Uı below, depending on the parity of

m − nai j . (They are simply modified from those in the same notations in [9], with a
substitution of qi˜ki by qi˜kiri (Tw•Ei ).)

If m − nai j is odd, we let

ỹi, j;n,m,p,t,e

=
∑

u≥0

(qi˜ki ri (Tw• Ei ))
u

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∑

r+s+2u=m

r=p+1

(−1)r q
−e((m+nai j )(r+u)−r)
i

[

m+nai j−1
2
u

]

q2i

B(r)
i,p B

(n)

j,t B
(s)
i,p+nai j

+
∑

r+s+2u=m
r=p

(−1)r q
−e((m+nai j−2)(r+u)+r)
i

[

m+nai j−1
2
u

]

q2i

B(r)
i,p B

(n)

j,t B
(s)
i,p+nai j

⎫

⎪

⎪

⎬

⎪

⎪

⎭

; (4.5)

if m − nai j is even, then we let

ỹi, j;n,m,p,t,e

=
∑

u≥0

(qi˜ki ri (Tw• Ei ))
u

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∑

r+s+2u=m

r=p+1

(−1)r q
−e(m+nai j−1)(r+u)

i

[m+nai j
2
u

]

q2i

B(r)
i,p B

(n)

j,t B
(s)
i,p+nai j

+
∑

r+s+2u=m
r=p

(−1)r q
−e(m+nai j−1)(r+u)

i

[

m+nai j−2
2
u

]

q2i

B(r)
i,p B

(n)

j,t B
(s)
i,p+nai j

⎫

⎪

⎪

⎬

⎪

⎪

⎭

. (4.6)

If m − nai j is odd, we let
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ỹ′
i, j;n,m,p,t,e

=
∑

u≥0

(qi˜ki ri (Tw• Ei ))
u

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∑

r+s+2u=m

r=p+1

(−1)r q
−e((m+nai j )(r+u)−r)
i

[

m+nai j−1
2
u

]

q2i

B(s)
i,p B

(n)

j,t B
(r)
i,p+nai j

+
∑

r+s+2u=m
r=p

(−1)r q
−e((m+nai j−2)(r+u)+r)
i

[

m+nai j−1
2
u

]

q2i

B(s)
i,p B

(n)

j,t B
(r)
i,p+nai j

⎫

⎪

⎪

⎬

⎪

⎪

⎭

; (4.7)

if m − nai j is even, then we let

ỹ′
i, j;n,m,p,t,e

=
∑

u≥0

(qi˜ki ri (Tw• Ei ))
u

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∑

r+s+2u=m

r=p+1

(−1)r q
−e(m+nai j−1)(r+u)

i

[m+nai j
2
u

]

q2i

B(s)
i,p B

(n)

j,t B
(r)
i,p+nai j

+
∑

r+s+2u=m
r=p

(−1)r q
−e(m+nai j−1)(r+u)

i

[

m+nai j−2
2
u

]

q2i

B(s)
i,p B

(n)

j,t B
(r)
i,p+nai j

⎫

⎪

⎪

⎬

⎪

⎪

⎭

. (4.8)

4.3 Serre–Lusztig relations in ˜Uı

Denote

f −
i, j;n,m,e =

∑

r+s=m

(−1)r q
er(1−nai j−m)

i F (r)
i F (n)

j F (s)
i ,

for i �= j ∈ I, n > 0, and e = ±1. The following Serre–Lusztig relations hold in the
quantum group U (cf. [17]): f −

i, j;n,m,e = 0, for m ≥ 1 − nai j .
The Serre–Lusztig relations as formulated in [9, Theorems B,C,D] for quasi-split

ıquantum groups (upon a substitution of ˜ki by ˜kiri (Tw•Ei ) in ˜Uı or ςi ri (Tw•Ei ) in
Uı ) remain valid for arbitrary ıquantum groups; see Theorems 4.6, 4.7 and 4.8 below.
The same proofs loc. cit. (upon a substitution of a “scalar” ˜ki by another “scalar”
˜kiri (Tw•Ei ) in ˜Uı as far as these relations are concerned), which are based on Serre–
Lusztig relations of minimal degree (see Theorem 4.1), go through verbatim in the
current setting. We shall not repeat the long proofs here.

As the identities (4.1)–(4.2) (i.e., Theorem 4.1) hold for n ≥ 1, so are the statements
in Theorem 4.6 and Theorem 4.8 below.
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Theorem 4.6 For any i �= j ∈ I◦ such that τ i = i ,u ∈ Z≥0, and t ∈ Z2, the following
identities hold in ˜Uı (or in Uı ), for n ≥ 1:

∑

r+s=1−nai j+2u

(−1)rB(r)
i,p B

n
jB

(s)
i,p+nai j

= 0,

∑

r+s=1−nai j+2u

(−1)rB(r)
i,p B

(n)

j,t B
(s)
i,p+nai j

= 0. (4.9)

Theorem 4.7 For i �= j ∈ I◦ such that τ i = i , p, t ∈ Z2, n ≥ 0, and e = ±1, the
following identity holds in ˜Uı :

q
−e(2m+nai j )
i Bi ỹi, j;n,m,p,t,e − ỹi, j;n,m,p,t,e Bi

= −[m + 1]i ỹi, j;n,m+1,p,t,e + [m + nai j − 1]i q1−e(2m+nai j−1)
i

˜ki ri (Tw• Ei )ỹi, j;n,m−1,p,t,e.

(4.10)

Theorem 4.8 (Serre–Lusztig relations) Let i �= j ∈ I◦ such that τ i = i , p, t ∈ Z2,
n ≥ 0, and e = ±1. Then, for m < 0 and m > −nai j , the following identities hold in
˜Uı , for n ≥ 1:

ỹi, j;n,m,p,t,e = 0, ỹ′
i, j;n,m,p,t,e = 0. (4.11)

Remark 4.9 Theorems 4.7 and 4.8 hold if we replace B(n)

j,t by Bn
j throughout the defi-

nitions of ỹi, j;n,m,p,t,e and ỹ′
i, j;n,m,p,t,e in (4.5)–(4.8). Theorems 4.7 and 4.8 remain

valid over Uı = Uı
ς , once we replace˜ki by ςi in the definition of ỹi, j;n,m,p,t,e.
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