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Abstract

The 1 Serre relations and the corresponding Serre—Lusztig relations are formulated and
established for arbitrary rquantum groups arising from quantum symmetric pairs of
Kac—Moody type.
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1 Introduction
1.1 The goal
In this Letter, we generalize some main results concerning :Serre relations in [8]

and the corresponding Serre-Lusztig (i.e., higher-order Serre) relations in [9] among
Chevalley generators B; and Bj, for 7i = i = wei and i # j € I, in rquantum
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groups U or U arising from quantum symmetric pairs of arbitrary Kac—-Moody type,
to the general cases for 7i = i (with condition wei = i dropped). The notations are
to be explained below, and we refer to loc. cit. for a more complete introduction of
backgrounds.

1.2 Background

We are concerned about the Serre-type relations among the generators B; in an
rquantum group U’ (or a universal zquantum group INJ’) arising from quantum sym-
metric pairs (QSP) (U, U"). Recall that the definition of QSP is built on the Satake
diagrams or admissible pairs (I = I, UL, 7) [11,13,14]. A universal :quantum group
U' [16]isa subalgebra of a Drinfeld double quantum group U, and U' with parameters
are recovered from U by central reductions.

The Serre-type relations of U' were obtained by G. Letzter [14] in finite type.
The Serre relations between B;, Bj (where B appears in degree 1) were explicitly
known [1,11] in an arbitrary :quantum group U' (or U') of Kac—Moody type, unless
ti =i € I,;incase ti =i € I, explicit Serre relations were written down under a
strong constraint on the Cartan integers |a;;| < 4, cf. [1,2]. General Serre relations
for i =i = wel € I, and j € I, without any constraint on Cartan integers a;;
have been formulated by the authors [8]; see (1.2) below. “Explicit” yet unwieldy
formulas for Serre relations in an arbitrary :quantum group U are also obtained in
[10]; the coefficients involved therein can be rather difficult to compute in practice.
More recently, acompact presentation for arbitrary zquantum groups has been obtained
in [12] in terms of continuous g-Hermite polynomials and a new family of deformed
Chebyshev polynomials.

The Serre-Lusztig (or higher-order Serre) relations for U’ hold in closed forms [9]

Yi.jimmpie =0, (1.1)

forti =i =wei €lo,i # j €l,andm > 1—na;j; see (4.5)—(4.6) for the definition
of y. These are generalizations of higher-order Serre relations for quantum groups in
[17]. In case n = 1 and m = 1 — q;;, the above relation reduces to the 1 Serre relation

(8]

1—ajj

> 1885 0 12)

which holds for i =i = wei € I,,i # j € L, in an arbitrary rquantum group; more
generally, the Serre—Lusztig relations of minimal degree (i.e., (1.1) form = 1 — na;;
and n > 1) take a similar simple form as in (1.2). These relations are expressed in
terms of :divided powers Bl.(,’%) (cf. [5,7,9]), depending on a parity p € {0, 1}.

In particular, these relations hold for i = ti in an arbitrary quasi-split zquantum
group (i.e., when [, = @J). Conjectures and examples for Serre—Lusztig relations of
minimal degrees in rquantum groups of split affine ADE type in very different forms
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were proposed earlier by Baseilhac and Vu [3,4]; their conjecture was proved for
g-Onsager algebra in [18].

1.3 1Serrerelations

In this Letter, the 1 Serre relation for an :quantum group of arbitrary Kac—Moody type
will be formulated as

1—a;;

(1=aij =)
Z( DB BB =0, (1.3)

That is, it formally takes the same form as (1.2), where we have replaced B;”; in (1.2)
by a more general definition of ;-divided powers Bg,mﬁ) defined in (2.5)—(2.6) (that is,

¢ in Bl.('%) is replaced by ¢; r; (Ty, E;)); in the case when wei =i, Bfmﬁ) is reduced to

B.(m)

the original B, 5 thanks to r; (E;) = 1. Moreover, the Serre—Lusztig relations (1.1)

are generalized accordingly to arbitrary :quantum group U (see Theorem 4.8) and
they follow by a recursive relation similar to the one in [9] (see Theorem 4.7).

Fori € I, with ti =i # w,i, a version of :divided powers Bl.(m) (independent of
D € Z») was introduced in [6] as a key ingredient toward :canonical basis. These Bi(m)
(for some suitable parameter ¢;) therein satisfies a crucial integral property, i.e., it lies
inthe Z[g, ¢ ~']-form of the modified : quantum group. In contrast, the B(";) introduced
in this Letter are not integral for m > 2 and for any parameter ¢;. Paraphrasing, the
1divided powers for ti = i € L, arising in 2 totally different settings of icanonical
basis and :Serre relations, miraculously coincide if and only if wei = i. (Alas, we
had a mental block on the “only if" part, and this explains why the formulation of this
Letter were not noticed earlier when we were writing [9].)

1.4 Serre-Lusztig relations

We shall establish in this Letter the : Serre relation (1.3) and its corresponding Serre—
Lusztig relations. Actually, we achieve much more, by formulating and establishing
further generalizations of these relations, which involve higher powers B;?, forn > 2;
see Theorem 4.1:

Z (= l)rB,(r;B;sz(%+W=0

r+s=1-na;;

This is referred to as Serre—Lusztig relations of minimal degrees. For more general
Serre—Lusztig relations, see Theorem 4.8.

The proof of the Serre—Lusztig relations in Theorem 4.1 and Theorem 4.8 uses 2
key ingredients. First, it relies on the results in [9] in an essential way, and a reader is
recommended to keep a copy of it at hand (as it is impractical for us to repeat verbatim
most arguments of that paper in the current general setting). The other key ingredient
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is a new universality property for :quantum groups formulated in Proposition 3.2.
This universality statement follows by a (seemingly weaker) version of universality
property proved in Proposition 3.1 and then comparing with known Serre-Lusztig
relations for quasi-split zquantum groups in [9]. (Such a universality result for n = 1
was almost explicit in [11,14] based on their projection techniques, and was made
very explicit in [10].)

This Letter is organized as follows. In Sect. 2, we set up the preliminaries on Drinfeld
doubles and quantum symmetric pairs. Then we formulate the new :divided powers in
rquantum groups. In Sect. 3, we establish a universality property in :quantum groups
concerning the structure constants appearing in Serre—Lusztig relations. In Sect. 4,
we formulate and establish Serre—Lusztig relations in rquantum groups in a great
generality.

2 :Divided powers in iquantum groups
2.1 New :divided powers for U

Given a Cartan datum (I, -), we have a root datum of type (I, -) [17, 1.1.1, 2.2.1],
which consists of

(a) two finitely generated free abelian groups Y, X and a perfect bilinear pairing
()Y xX > Z;

(b) an embedding I C X (i + «;) and an embedding I C Y (i + h;) such that
(hi,aj) =27+ foralli, j e I

The matrix C = (a;j);, je1 = ((hi, aj))i, jel is a generalized Cartan matrix. For
D = diag(e; | € € Z*, i € 1), where ¢; = %, DC is symmetric. Let ¢; = g for
any i € I. The associated Drinfeld—Jimbo quantum group U = Uy is a Q(g)-algebra
generated by E;, F;, K iil, fori € I. Let W denote the Weyl group generated by simple
reflections s; fori € I. ~ ~ o

The Drinfeld double U = Uy is a Q(g)-algebra generated by E;, F;, K;, K l/ , for
i el and K i K l/ is central in INJ; cf., for example, [16, §6]. Then U is obtained from U
by a central reduction:

U=U/(K;K|—1]iel).

Let Ut (and respectively, U™) be the subalgebra of U (and respectively, U) generated
by E; (i € I).Clearly, Ut = U™, and we shall identify them. For i € I, denote by
ri : Ut — U, ;7 : UT — U the unique Q(g)-linear maps [17] such that

() =0, r(Ej)=38j, rixx)=xr(x)+q""rxx;

. .1
ir(1) =0, r(Ej) =68j, ir(xx")=r(x)x"+q¢"" (x)irx),

forx e UI and x’ € U:,.
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For any x € U*, by [17, Proposition 3.1.6] one has

xF — Fix = rl(x)K K (lr(x)) 2.2)

qi _51,

Let (I =1, UL, 7) be an admissible pair; cf. [11, Definition 2.3]. Let W, = (s; |
i € L) be the parabolic subgroup of W with the longest element w,.

Note that UH (and respectlvely, Uy, ) is naturally a subalgebra of U (and respectively,
U). The rquantum group U is a (coideal) subalgebra of U (see [9,16]), which is
generated by Up,, k; = K; K/ (i €L,), and

B = Fi + Tu,(E:)K] (i €L).
Here T\, =T 1Z 1 denotes a braid group operator as in [17] for any w € W. Note that
Typ.(Esi) € Ut = UT,

In this Letter, we are Qainly~concerned about B;, fori € I, with ti = i; in this
case, B = F; + Tw.(Ei)Kl./ e U'. Itis known (cf. [11]) that r; (T, E}), ir(Tyw, E;) €
Uf =Uf cU and

[ri(Tw.Ei),Bj] =0, fori,j € l,. 2.3)

It follows by weight reason that
ri(Tw, Ei), Fj] =0 = [ri(Ty, E;), Tw.(Erj)E}]a fori, j € L. (2.4)
Form € Z,let [m]; = [m],, denotes the quantum integer associate to ¢;. Leti € I,

with 77 = i (but we drop the assumption that wei = i which was imposed in [3,9]).
The 1 divided powers of B; in U' are defined to be

| BT (B - 12) — 1R ri(Tu B ) ifm =2k + 1,

)
B™ — " 2.5)
SN TN (Bl.2 —12j — 12qik ri(Tw.Ei)) ifm = 2k:
k 2 2T :
s _ 1| BT (B2 = 27 Rqiki ri(Tu, ED) it m =2k + 1, 06

S Imlit | T (Bl? —2j — 2Pgik; ri(Tw.Ei)> ifm = 2k.

Given p € Z, = {0, 1}, the :divided powers are determined by the following
recursive relations, for m > 0:

B(m) —

Lp

! [m + 11,8 Ao

1 T B ) B S —
[m + 1B + (mligiki ri (T, EDB" "V i p = 7.
We set B%) =0= B;"%) forany m < 0.
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2.2 New :divided powers for U’

The Q(g)-algebra U’ = U‘g, for ¢ = (gi)ier, (subject to some constraints [1,6]), can

be defined as a subalgebra of U (similar to U asa subalgebra of ﬁ). In particular, for
i € I, with ti = i, we have B; = F; + ¢; Tw.(Ei)Ki_1 e U'. Alternatively, U’ is
related to U’ by a central reduction:

U, =U'/(ki = gi (i = ti), kikei = Gigri (i # 70)).
Letus specialize to the case 7i = i € I, which is most relevant to us. Our parameter
G; corresponds to the notation in [1] as ¢; = —c;s(i). The parameters c;, s(i) therein

were not needed separately. Similarly, the notation Z; = —s(i)r;(Ty, E;) in [1] is
never needed separately, and instead ¢; Z; and r; (T,,, E;) are all one needs. We have

¢iZi =giri(Ty,E;). (2.8)

By aslight abuse of notation, the :divided powers in U’, denoted again by Bgmﬁ), for
D € Z», are defined in almost the same way as in (2.5)—(2.6), with E replaced by ¢;:

goo _ 1| BT (B -2 - Wasin T Bp) itm =2k 1.
SN Ny (33 —2j - 1Pgici r,-(Tw.E,-)) it m = 2k; '
Tk 2 _ 2.~ . : _

o _ BT, (B. 12 12ic; ri (T, E; )) itm =2k +1, o0

.0 [m];! ]_[]; | ( —[2j — 2] qisiri(Ty, E; )) if m = 2k.

Remark 2.1 In the case when wei = i, we have r;(Ty, E;) = 1, and the zdivided
powers B( were introduced first in [5,7] for a distinguished parameter ¢; = ql and

they are tcanomcal basis elements in the modified :quantum group. The B( when

wei = i for a general parameter ¢; used in [8,9] (denoted by B(m)) are obtamed from
the distinguished case above by a renormalization automorphlsm of U'.

In case when wei # i and then r; (T, E;) # 1, B(m) in general do not lie in the
Zlq, g~ '1-form of U'. Toward the construction of 1canomcal basis, different :divided
powers, B, which lie in the Z[g, ¢~ ]-form of (modified) U', for ti = i # wi,
were introduced in [6].

3 A universality property for :quantum groups

In this section, we shall establish a universality property on the structure constants
appearing in the Serre-Lusztig relations.
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3.1 A weak form of universality for U’
Recall the linear maps r;, ;r, fori € [ from (2.1). For any j, k € I, by (2.2), we have
FiTy (Ex)Ky ' = q I Ty (Ec)KL ' Fj+8) ek Zek + 85,k Z0y K 2, (1)

where we denote by u the weight of xr (T, Ex), and set

N Y VR VI 42
G — Gk q* Mgk —q; )
For any ti =i € [, by combining with (2.4), we have
[Zi, Zj1=0=12;, Z}K;?], forj €. (3.3)
Forti =i €I, andi # j € I, we denote
Si,jin(Bi, Bj):= Z (=" [1 _rnaijl B; BjB;. 3.4

r+s=Il—na;;

As a main step toward proving the universality property in Proposition 3.2, we first
establish the following variant.

Proposition3.1 Letn > 1. Forti =i € I, andi # j € I, we have the following
identity in U*:

Si,jin(Bi, Bj) = Cj j.n(Bi, Bj), (3.5)

where a‘,j;n(Bh Bj) is a (non-commutative) polynomial in B;, B; of the form

l—na;;—r—s
-~ ~(i,j.aij) — m pr pn—2m ps
Ci jn(Bi, Bj) = E Orsmm (i Zi) 7 (5jZ:j)"B] B; " B;,
r+s<—l-na;j 2m=n

(3.6)

2 J i)

for some universal Laurent polynomials ﬁﬁl;mn € Zlq,q~ "1 (i.e., they depend only

. . . ~(i,j.aij)
on ajj, €, €, andr,s, m, n). Moreover, if T j # j then Qr,S{mfﬁl =0forallm > 0.

Proof In the argument below, we assume that j = 7. (The j # 7 j case follows from
a similar analysis and can be obtained by setting Z;; = 0 and Z;, i= 0 everywhere.)

LetU; f be the subalgebra generated by F; and F;, and

+ . +u- 170 + _ — p2ep2f
Ui= Y. U 0% and TS, = ) ULU K *K;

Y=o ory>a; e, f>0,e+f>0
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By using (3.1) and the definition By = Fy + ¢k Ty, ETkKk_1 for any k € I, one can
expand out the term B B; Bf’ so that it satisfies

Bla B;‘Blb c FlaFJI‘F‘lb + Z gm,u,s,t (gl Zi)u-‘rS-H‘(s_jzj)m Fia72ufz

i,j.a,b,r
m,u,s,t

r—2m pb—2s—t + +
Fim"F, +U; + T/,

m,u,s,t
i,j,a.b,r

one starts with monomials in the F;, F;, Ty, (E,-)Ki_1 ,and Ty, (Ej)Kj_1 . Terms of the

where g is a scalar. This result is a special case of [15, Lemma 4.1]. In fact,

form Ty, (Ex) K !"are moved to the left and new monomials are created via (3.1) that
have Z; or Z ,’( K, 2 entries. Those monomials that have a Ty, (Ex)K, ! that survives
all the way on the left-hand side of the expression (for either k = i or k = j)
become part of U;f i Whenever a Z, K, 2 appears, we move the K~ % to the right;

if, in addition, there are no T, (Ex) K, ! terms remaining all the way on the left,
then the resulting monomial is in T;T i It follows from (3.1), (2.4) and (3.3) that each

m,u,s,t -1
8ijabr€ Zlq,q~"] and depends only on a;;, €;,€j,a, b, m,u, s, t.

In the special case where u = ¢t = s = 0, each term of the form
(6jZj)"F{'F} —2m F} comes from expanding out B’ inside the term F'B’; F} and
m,0,0,0

moving powers of ¢; Z; to the left. Hence, g; b is independent of a and b.
Return to §; ;. (B;, Bj). From the above analysis, we have

1_ .. —
> | (e Sz ) =0
1 m

r+s=1-na;;

by using the Serre-Lusztig relation and its non-standard variant (cf. [9, Corollary 3.3]).
It follows that S; ;.,(B;, B;) is contained in the set

lfna,-_/-fufv _
> (X e Gz T (G Z) AT 4 U 4 T,
ut+v<—I-na;; m

3.7

. 1 — na;; e
where the coefficients dy, ,, », come from sums of terms of the form |: - & 8ij s

and clearly are Laurent polynomials of the desired form.
Let z be the maximum of 4 4+ v +n — 2m with d;, , m # 0. Replacing terms of the
form F{'F!™>" FY foru + v +n — 2m = z with B/ B"~>" B in (3.7) yields

1—na; ;—u—v
ij _
Sijn(BiBp= Y duwm(GiZ) T T (jZj)" BB} "B}
u+v+n—2m=z
1—na; ;—u—v
’ — -2 + +
€ D diww(GZDT T (GZY"FIFITE A UL T
u+v+n—2m<z
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where once again the coefficients d,, , ,, have the desired form. Repeating this process

and noting that U N (U;L it ’]I‘;T j) = 0, we have proved the proposition. O

3.2 The universality for U’

Using the Serre—Lusztig relations for quasi-split zquantum groups obtained in [9], we
can sharpen the statement in Proposition 3.1.

Proposition 3.2 (Universality) Letn > 1. Forti =i € [, andi # j € L,, we have
the following identity in U':

Si,j;n(Bia Bj)ZCi,j;n(Bi’Bj)a (3.3)

where C; j.,(B;, Bj) is a (non-commutative) polynomial in B;, B of the form

1—najj—r—s
(i,j.aij) p ¥
CijinBi, By = > o " (ciri(Tw,E)) > B/B'B!, (3.9)

r+s<—l-na;;

i, ),aij)
r,s|n

for some universal Laurent polynomials o € Zlq, g~ (which depend only on

ajj, €, €jandr,s, n).

(The identities (3.8)—(3.9) remain valid in U' when i in C; j;n(B;, Bj) above is
replaced by k;.)

Proof By Proposition 3.1, we have a Serre-Lusztig-type relation (for i # j € 1)
of the form (3.5)-(3.6), S; j.x(B;, Bj) = C; j.n(Bi, Bj), where C; j.,(B;, Bj) is an
expression with universal coefficients 5??/ ,,7'{1) e Zlg, q’l], which depend only on
ajj,€i,€j,andr, s, m,n.

Claim (»). We have aﬁ’sf,,‘f’{f =0, form > 0.

Let us prove the Claim. In order to determine 55’3,: fi,), we shall restrict ourselves
to the setting of quasi-split zquantum groups, where r; (T, E;) = 1,1.e., Z; = _11

g7 —qi"
By [9, Theorem 4.1], for quasi-split zquantum groups U’, we have
> (-1)’3}233?3}2 i =00 (0= 0), (3.10)

a+b=1-naj;

where the 1divided powers Bl.('%) are as in (2.9)—(2.10) but with r; (T, E;) = 1.
Expanding [1 — na;;];!-LHS(3.10) into a linear combination of monomials of the
form B B;’ Bis , we have

1—na;; —r—s
(.j.aij) —4—
Sijm(Bi.Bj)= > oo s 7 B/BIB, (3.11)
r+s<—1l-naj;
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i,],aij)

sin € Zlq,q~ "] (i.e., they depend only
ona;j, €, € and r, s, n). As (3.11) does not involve ng/tj, , a comparison of (3.11)

and (3.5)~(3.6) with Z; = —L— shows that 3. ;s) = 0, for m > 0. Claim (%) is
q

for some universal Laurent polynomials Qi

i i
proved.
A comparison of (3.11) and (3.5)—(3.6) with Z; = q_]l_q_ again further shows that
PG P naji+r+s—1
o) — o) (g7l — gy T, forallr,s,n. (3.12)

Now back to arbitrary : quantum groups U By Claim (x) and (3.12), we can rewrite
the identity (3.5)—(3.6) in the precise form of the Serre—Lusztig relation (3.8)—(3.9).
The proposition is proved. O

Remark 3.3 For n = 1, the universality result in Proposition 3.2 has been (somewhat
implicitly) known in [11,14] and made explicit in [10]. Actually, a very careful and
tedious work was carried out in [10] to describe explicitly these universal polynomials

0" in C; ;.1 (Bi. B;): see [10, Theorem 4.7].

r,s|l

4 The Serre-Lusztig relations in :zquantum groups
4.1 Serre-Lusztig relations of minimal degree

We consider :quantum groups U’ of arbitrary Kac—-Moody type, where I, # ¢ is
allowed.

Theorem 4.1 (Serre-Lusztig relations of minimal degree) For any i # j € I such
that ti =i and t € 7y, the following identities hold in U' forn > 1:

") prg® _ _
Y CUBLBIBY =0, 4.1
r+s:lfna,-j
" g
Y BB =0 4.2)

r+s:lfna,-j

We do not recall the precise formulas for the :divided powers B](";) in 3 cases, and
we refer to [6, (5.12)] and [9, (5.5)] for details. ~

Forn = 1,theidentity (4.1) reduces to the:Serre relation (1.3) in U’ . In case wei = i
and thus r; (Ty,, E;) = 1, the relations in Theorem 4.1 reduce to [9, Theorem A], and
the 1Serre relation (1.3) was obtained in [8].

Proof of Theorem 4.1 As explained in [9, Introduction], (4.2) follows from (4.1) by [9,
Proposition 3.2]. Hence it suffices to prove (4.1), or its U’ -variant, where k; is replaced
by ¢; in the :divided powers.

By Proposition 3.2, we have a Serre—Lusztig relation (fori # j € I,,) of the form
(3.8),1.e., S; j;:n(Bi, Bj) = C; j.n(B;, Bj).
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The above discussion remains valid in the setting of quasi-split zquantum groups
where r;(T,,, E;) = 1; in this case, we already have a Serre-Lusztig relation (for
i # j €l,)oftheform (4.1), where g;r; (T, E;) reduces to ¢; in the definition of B(r)
see [8, (3.9)]. Then we have the following expansion in terms of (non- commutatlve)
monomials in B;, B, where itis understood that7; (T, E;) = 1in the divided powers
and in Ci,j;n(Bis Bj)Z

1—naj;

(1 aij—r)
Z ( 1)"Bl(rr)la +pl BB i,p; ! |rt(Tw.Ei):1

=11 na,-,-]i!—l(s,-, jinBis B)) = Cijin(Bis Bt ep=1 ). (43)

Indeed, the universal polynomials o, Y]‘n i) appearing in C; j.,(B;, B;) from (3.9) are

determined from the expansion of the LHS above as in Proposition 3.2.

Return to the setting of general :quantum groups. The above formula (4.3) remains
valid when replacing the scalar ¢; by ¢;r;(Ty, E;) = ¢; Z; (which can be regarded as
a commuting variable by (2.3) when dealing with these relations) on both sides. The
effect of such replacement is the removal of the restriction |y, (7, £;)=1 on both sides
of (4.3), that is, the following identity holds:

1—naj;

1—a; _
Z( l)rB,(r,)m P ;B,( [,aj - = [1 — na;;);! I(Si,j:n(Binj)_Ci.j;n(BiaBj))- 4.4

Since RHS(4.4) = 0 by (3.8), the identity (4.1) follows. O

Remark 4.2 Note that it is possible to deduce the formulas (4.1)-(4.2) inthe n = 1
case directly from [10, Proposition 4.6, Theorem 4.7], though the proofs we provide
here do not rely on the formulas of [10]. Moreover, it is instructive to compare the
1Serre relation in a canonical form (1.3) (as in [8]) to a complicated formulation in
[10, Theorem 4.7]. They coincide up to a scalar multiple of [1 — a;;];!.

Remark 4.3 When the parameter ¢; satisfies the conditions in [6, (3.7)] (which goes
back to [1] in some form), it follows from [6, (5.10)] (or [1, Theorem 3.11(2)]) that
gisiri(Ty, E;) is bar invariant. Hence the relation (1.3) in the U’ setting is manifestly
bar invariant in this case. Such a bar invariance was also observed in [10] based on the
explicit formulas therein.

Remark 4.4 Combining the relations obtained by Letzter, Kolb and Balagovic (cf.,
e.g., [1,11,14]) and (1 .~3) in this Letter, all the Serre-type relations between B; and B;
for rquantum groups U’ (or U'") of arbitrary Kac—-Moody type have been formulated
in clean and closed formulas in terms of :divided powers, except in the case when
t(i) =i €l, and j € I,; examples in this exceptional case can be found in [1]. For a
different expression of defining relations in this case, see [12].

Example 4.5 Let j # i € I, with i = i. With the help of (2.8), the formula (1.3)
specializes to
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1. B?B; —[21;B;BjB; + BjB? = gic; Z;B;, for a;; = —1,
2. 33 - [3]1323 'B; + [31;B;B;B? — B;B} = [217q;ciZi(B;B; — B;B;), for
ajj = —2.

The above two formulas, together with a formula for a;; = —3, were earlier obtained
in [1, Theorem 3.7(2)] by rather involved computations.

4.2 Definition of y, A

.andy
i.j;n,m,p,t, i,js;n,m,p,t,e

Leti # j € I, be such that ti = i. Form € Z, ne Zso,e =*land p,t € Zo, we
define elements y; ;. »u 5.7, and y;,j;n’mﬂ ,in U’ below, depending on the parity of
m — na;;. (They are simply modified from those in the same notations in [9], with a
substitution of g;k; by g;k;r; (T, E;).)

If m — naj; is odd, we let

Yi,jin,m,p,1e

=Y @k T E* ] Y (~1)g, —e(mnaij)(r-+uy—r) | G B gWpBH)
= (gikiri(Tw, E;)) (=D i, p+nai;
2
q

M LpT Lt
u=0 rs+2u=m ;

r=p+1

—ellmnay=D(-+0+) motndy 1 ") )

ij— s T— s .
+ Z - 1) th Bi,ﬁBjjBi,ﬁ-;_m ’ (45)
r+s+2u=m ‘1,'2

r=p

if m — na;; is even, then we let

Yi,jin.m,p.1.e

= qiKili(Ly, Lj q; u ) ipPjt 1p+na,j
q;

u=0 rs+2u=m
F=p+1

i

(4.6)

m+naij—2
r —e(m+na,,—l)(r+u) 7/ ) (1) (s)
+ ) (=g [ B LB,[JBHBIW%
q

r+s+2u=m

r=p

i

If m — na;; is odd, we let
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~

i.jin,m,p.t.e
m+na;;j—1
~ e<<m+na, Yr+u)—r) | ——1— ) pmpg®
= (qikiri(T, E)" { > (= ! { ; } B, 5B, B sy
u>0 r+s+2u=m in
F=p+1
+na;i—1
r L((m+rw,j—2)(r+u)+r) mi’ (s) (n) (r) .
+ Z (= 1) u 7Bl 7 ]tBi,ﬁJrWij ’ (47)
r+A7+_2%_m q;

if m — na;; is even, then we let

~

i,jin,m,p,i,e

m+na;;
~ —e(m+naj;j—1)(r4u) —Y
=Y @k, E* Y (—1)g, i [ 2 ]ZBSS,),B(”)BE’LM,]

u>0 rs+2u=m 4q;
r=p+1
+na;;j—2
—e(m+naufl)(r+u) 7m L (8) p(n)p(r)
+ Y (=g { 2 B BB} ot (4.8)
rts+2u=m ‘1/'2

r=p

4.3 Serre-Lusztig relations in U

Denote

_ er(1=najj—m) (r) (1) -(s)
fi,j;n,m,e: Z (_l)rqi / Fi Fj Fl ’

r4+s=m

fori # j e, n > 0, and e = £1. The following Serre-Lusztig relations hold in the
quantum group U (cf. [17]): fl_ m.e =0, form =1 —najj.

The Serre—Lusztig relations as formulated in [9, Theorems B,C,D] for quasi-split
rquantum groups (upon a substitution of E by Eri(Tw. E;) in U or g;iri(Ty, E;) in
U") remain valid for arbitrary tquantum groups; see Theorems 4.6, 4.7 and 4.8 below.
The same proofs loc. cit. (upon a substitution of a “scalar” k; by another “scalar”
k ri(Ty, E;) in U’ as far as these relations are concerned), Wthh are based on Serre—
Lusztig relations of minimal degree (see Theorem 4.1), go through verbatim in the
current setting. We shall not repeat the long proofs here.

As the identities (4.1)—(4.2) (i.e., Theorem 4.1) hold for n > 1, so are the statements
in Theorem 4.6 and Theorem 4.8 below.
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Theorem 4.6 Foranyi # j € I, suchthatti =i,u € Z>, andt € 7y, the following
identities hold in U* (or inU"), forn > 1:

2. (CU'BBIB =0,
r+s=1-na;;j+2u

") pmge)
12 2 (—1)'B; BB} e = 0. (4.9)
r+s=1-na;j+2u

Theorem 4.7 Fori # j € L, such that ti = i, Pt €Zyn >0, ande = 1, the

Sfollowing identity holds in U*:
—e(2m+naij) 5 ~ ~
f ! Biyi,j:n,m‘ﬁ,?,e - yi‘j;n,m,ﬁ,?,eBi
~ 1—e(2m+na;j—1)7 ~
= —[m+ l]iy,-’j;n,er],;j,g + [m + najj — l]iql‘ e kiri (Ty, Ei))’i.j;n,mfl,ﬁ,?,e'

(4.10)

Theorem 4.8 (Serre-Lusztig relations) Let i # j € 1, such that ti = i, p,t € Zo,
n >0, and e = 1. Then, form < 0 and m > —na;j, the following identities hold in
U, forn > 1:

- -
Yijinmpie =0 Vi jnmpie=0 @.11)

Remark 4.9 Theorems 4.7 and 4.8 hold if we replace Bj("?) by B? throughout the defi-
.. ~ ~ . .
nitions of y; ., 1 5.7, and yi,j;n,m,ﬁ,?’,j in (4.5)—(4.8). Theorems 4.7 and 4.8 remain
valid over U' = U, once we replace k; by g; in the definition of i, jinm piier
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