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Drones’ Edge Intelligence Over Smart
Environments in B5SG: Blockchain and
Federated Learning Synergy

Saeed Hamood Alsambhi

Abstract—Edge Intelligence is an emerging technology which
has attracted significant attention. It applies Artificial Intelligence
(AI) closer to the network edge for supporting Beyond fifth
Generation (B5G) needs. On the other hand, drones can be
used as relay station (mobile drone edge intelligence) to gather
data from smart environments. Federated Learning (FL) enables
the drones to perform decentralized collaborative learning by
developing local models, sharing the model parameters with
neighbors and the centralized unit to improve global model accu-
racy in smart environments. However, drone edge intelligence
faces challenges such as security and decentralization manage-
ment, limiting its functions to support green smart environments.
Blockchain is a promising technology that enables privacy-
preserving data sharing in a distributed manner. There are
several challenges that still need to be addressed in blockchain-
based applications, such as scalability, energy efficiency, and
transaction capacity. Motivated by the significance of FL and
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blockchain, this survey focuses on the synergy of FL and
blockchain to enable drone edge intelligence for green sustainable
environments. Moreover, we discuss the combination of FL and
blockchain technological aspects, motivation, and framework for
green smart environments. Finally, we discuss the challenges and
opportunities, and future trends in this domain.

Index Terms—Smart environment, federated learning,
blockchain, tethered drone, energy harvesting, sustainable,
privacy, drone edge intelligence, green environment, energy
efficiency, connectivity, QoS, B5G.

I. INTRODUCTION

ECENTLY, driven by Beyond fifth-generation (B5G)
Rnetworks, the tremendous growth of the Internet of
Things (IoT) in many smart environments leads to maturity
with heterogeneous and widespread smart devices improving
people’s daily life quality. However, the increasing number
of distributed smart IoT devices in smart environments cause
several challenges in terms of data processing, storage, and
transfer which demands considerable computation resources,
energy, and radio bandwidth [1]. Intelligence can address
some of these challenges by bringing Artificial Intelligence
(AI) closer to smart environments [2], [3] that can offer
critical demands of smart environments in terms of connec-
tivity, security, and real-time analysis, energy efficiency, etc.
Drones can be used as a relay station (mobile drone edge
intelligence) to gather data from low-power short-range IoT
devices in smart environments, and enhance energy efficiency.
Unique features such as easy deployment, 3D mobility, and
a higher chance of line-of-sight communication have made
drones an essential technology for network coverage exten-
sion, enhancing the Quality of Service (QoS) of smart IoT
devices while moving the computation capabilities closer to
these devices [4]-[6]. Due to the above benefits, drones can
offer a promising solution for various B5G applications in
smart environments [7]-[14], where the drone can be uti-
lized as an intelligent edge node to assist in data gathering,
provide efficient computing capability, and train data models
locally [15]. Therefore, drones make environments smarter and
greener [8]. However, drone-aided IoT in smart environments
faces security and energy challenges. Limited energy leads to
a limited network access lifetime. Fig. 1 shows few used cases
of using drones in smart environments with the help of B5G
technologies.
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Traditionally, Machine Learning (ML) techniques are
deployed in a cloud which involves data to be sent and
processed in a centralized way. ML can equip drones
with data processing and decision-making capabilities in
many smart environments. However, such ML-based decision-
making techniques involve heavy computations at the drones to
process the gathered data. On the other hand, transferring the
collected data to the central station for processing can involve
various privacy and security threats. This way is not effi-
cient for drone networks due to several reasons. These reasons
are private data inaccessibility, stream raw data transfer, and
centralized latency. Therefore, moving toward decentralized
learning represents an efficient solution for drone applications
that require autonomous monitoring, real-time decision mak-
ing, as well as virtual reality applications. Federated Learning
(FL) is a critical technology that enables edge devices, i.e.,
drones, to collaboratively train a global model based on their
captured data from smart environments while preserving data
privacy [16]. Google first introduced Federated Deep Learning
(FDL) to train the models locally rather than sending raw data
to the cloud [16], [17]. In FL implementation, only some
parameters of the locally trained model need to be trans-
ferred to the FL server for aggregation [18]. FL techniques
are also vulnerable to the single-point failure when a drone
fails or is under attack. Furthermore, FL-based data aggrega-
tion models often cannot reward local drones for participation
in the model training process. Therefore, the local processing
of a huge amount of data results in high energy consump-
tion at drones during the training model. Blockchain has the
potential to support high-level security by enabling decentral-
ization to facilitate on-drone FL in IoT smart environments, as
shown in Fig. 1. The authors of [19] discussed how blockchain
could be used in energy efficiency and make energy effi-
ciency markets transparent and safer. However, the authors
of [20] proposed blockchain-based infrastructure to control
drone operation with improving energy-efficient and security
for all drones in networks.

The authors introduced blockchain for building comput-
ing frameworks within FL [21], [22]. In [23], the authors
presented on-device ML using blockchain with consen-
sus algorithms in decentralized training data. Furthermore,
blockchain offers many benefits, including reducing costs,
improving resources management efficiently, data authenti-
cation, and protecting privacy. However, blockchain faces
many issues, including scalability, transaction capacity, and
fault tolerance [24]. Utilizing blockchain and FL for secur-
ing data sharing among multiple parties was introduced
in [25]. The authors of [26] discussed the combination of
blockchain and FL to share data between industries with a
high-security, and therefore, they can collaborate to accom-
plish optimal results efficiently. This paper provides a com-
prehensive survey on blockchain and FL synergy in drone
edge intelligence for making smart environments smarter,
greener, and sustainable. We first review the drone edge
intelligence for green and sustainable environments, and
then discuss the current work related to FL and blockchain
in drone edge intelligence within B5G networks in smart
environments.

== Upload model ==J»-Download model

Blockchain

Drone edge
intelligence

Smart
Environments

Healthcare

Fig. 1. Blockchain assisted FL in drone edge intelligence for smart
environments.

A. Motivation and Contributions

Blockchain has unique features and great potential to
enhance the FL security in drone edge intelligence networks.
Decentralized blockchain helps eliminate the need for a cen-
tralized FL center [23]. Model aggregation decentralization
does not fully mitigate the risk of single-point failure but
it decreases the burden posed by a global model aggrega-
tion to the center. Therefore, blockchain allows all drones
to verify the training process and progress to ensure high-
level security and privacy. The architecture of blockchain and
FL integration was first introduced in [15] in which FL was
utilized to train ML models, exchange them, and upload to
the blockchain. Moreover, the integration of blockchain and
FL at mobile edge intelligence base IoT user coordination
to solve the optimization of data relaying issue [27], [28].
The authors in [29] introduced a framework for integrating
Al and blockchain. Furthermore, Al and blockchain integra-
tion were applied to improve clinical operation in healthcare
environments [30]. The authors of [31] introduced a decen-
tralized and asynchronous FL that offered a decentralized FL
based on blockchain, which depicted FL with asynchronous
convergence, it asynchronously permits a global aggregation
with a staleness coefficient. Furthermore, the authors in [32]
proposed a blockchain enabling FL for disaster response on
drones in B5SG networks. The focus of this work is to reduce
the blockchain latency and improve the energy efficiency in
the drone network.
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While there exist several studies on the application of
blockchain and FL in edge computing, there is no exist-
ing work to review the synergy of blockchain and FL in
drone edge intelligence to the best of the our knowledge.
To fill this gap, we provide a comprehensive survey on the
FL and blockchain synergy to enable drone edge intelli-
gence networks connectivity and energy efficiency, starting
with an overview of drone edge intelligence and using FL
and blockchain in drone edge intelligence. Then, we discuss
the framework of how blockchain and FL can improve drone
edge intelligence in smart environments, especially in improv-
ing connectivity and energy efficiency. We outline the possible
challenges and opportunities with the proposed solution for
future research using blockchain and FL in smart environ-
ments. In this context, the main contributions are highlighted
as follows.

1) We provide a brief discussion on drone edge intelligence
as well as blockchain and FL in drone edge intelligence
for smart environments. We discuss the existing work in
blockchain and FL for green and smart environments.

2) We discuss the blockchain and FL synergy framework
in drone edge intelligence to improve the smartness of
the IoT environment based on connectivity and energy
efficiency. This conceptual framework aims to provide
a comprehensive grasp on how drone edge intelligence
can benefit from the integration of blockchain and
FL in smart environments. We particularly study the
potential of this technology to improve energy effi-
ciency, QoS, and security for green and sustainable smart
environments.

3) We outline the challenges and opportunities brought by
blockchain and FL in drone edge intelligence in smart
environments.

B. Related Work

There are many research attempts on IoT, blockchain, FL,
edge computing, and technical aspect issues related to these
technologies. Furthermore, there many works have been done
based on the convergence of blockchain and IoT, ML, and
edge computing in B5G Networks. The authors of [33] dis-
cussed the synergy of blockchain and B5G networks with
exploring the blockchain opportunities to enable BSG services
such as network slicing, edge computing, etc. The authors
of [34] discussed the IoT challenges and potential blockchain
solutions to B5G networks in order to improve industrial
applications. Moreover, the authors of [35] introduced a com-
bination of blockchain and cloud to manage decentralization
by improving system implementation security and privacy in
many applications.

Furthermore, authors in [36] discussed how blockchain
could secure and support data storage in edge computing.
In [37], the authors investigated the convergence of ML and
blockchain to improve model development and data sharing in
a decentralized way with enhancing the privacy and scalability
of blockchain. The above studies focused on the conver-
gence of ML, blockchain, and edge computing. Blockchain
plays a vital role in offering a valuable solution to FL future
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applications in smart environments. Blockchain as a dis-
tributed decentralized ledger that shares information in Peer
to Peer (P2P) networks with high-level security was discussed
in [38]-[40]. Moreover, blockchain enables decentralized com-
puting instead of traditional centralized computing while
assuring high-level security [41]-[43]. The authors of [44]
discussed the integration of B5G and drones. Distributed het-
erogeneous computing of integration of terrestrial stations and
drones were considered by utilizing the collaborative commu-
nication capability and cashing. FL is used for predicting the
cashing placement.

However, to the best of our knowledge, there is no existing
work on the convergence of blockchain and FL synergy for
drone edge intelligence. This survey investigates blockchain
and FL synergy for improving drone edge intelligence in smart
environments.

C. Paper Structure

The remainder of the paper is organized as follows, and
shown in Fig. 2. Section II gives an overview of drone edge
intelligence with support of FL and blockchain. Section III
discusses the convergence of blockchain and FL to sup-
port drone edge intelligence for green and sustainable smart
environments. In Section IV, the discussion of challenges
and opportunities is provided followed by the conclusion in
Section V.

II. OVERVIEW
A. Drone Edge Intelligence

Drone can be considered as an intelligent flying relay sta-
tion which flies closer to the smart environments for data
gathering and processing locally in real-time. Drone edge
intelligence offers several unique features, including mobility,
flexibility, ease of deployment, line of sight communica-
tion, and ease of maintenance. These features can contribute
to extending the coverage of cellular and IoT networks as
well as improving communications. Drone edge intelligence
enables several industries 4.0 such as telecommunications,
delivering goods, monitoring, surveillance, etc. The authors
of [45] presented and discussed the importance of drones
for traffic monitoring, such as road vehicle features, con-
structing databases, visualization, analysis, and movement
properties.
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Fig. 3. Drones edge intelligence over smart environments.

Recently, many studies have been devoted to improv-
ing smart environments in smart cities, smart health-
care, smart homes, smart agriculture, smart transportation,
etc. [7], [9], [46]. However, few studies have considered
drones as an edge intelligence node for supporting green
and sustainable smart environments [47]. The authors of [48]
discussed drone-aided mobile crowdsourcing to improve the
energy efficiency of drones in sensing tasks and trajectories.
Zhang et al. [49] applied deep reinforcement learning tech-
niques to improve the priority of data sensing in dynamic smart
environments, where smart cars were used for recharging the
drone battery. Furthermore, Zhang et al. [50] studied drone’s
trajectory and power optimization over cellular networks
to offer real-time data transmission. Moreover, the authors
in [51] developed a Long Short-Term Memory (LSTM)-based
optimization policy for drones to optimize the data gathered
ratio to reduce energy consumption during sensing tasks.

Drone edge intelligence can be very useful in administer-
ing B5G networks due to Line of Sight (LoS) connections
with numerous smart devices, mobile users and terrestrial BSs.
Fig. 3 illustrates several drones edge intelligence nodes cov-
ering smart environments without the need for connecting
directly to BSs. Furthermore, drone edge intelligence can col-
laborate over smart environments to maintain the connectivity,
increase the network performance, assist with load balanc-
ing, and managing energy consumption. Thanks to the LoS
communication link between the drone edge intelligence and
users within the coverage area, drones edge intelligence can
offer intelligent real-time decision-making at IoT and cellular
devices in smart environments [52]. In networking, drone edge
intelligence can serve as a learning agent to monitor the con-
dition of terrestrial networks in terms of resource availability,
QoS , Quality of Experience (QoE) needs, mobility and link
quality.

Summary: We believe that drone edge intelligence-based FL
training offers several advantages. First, it can be deployed
anywhere to participate in model training. Second, it can
establish short-distance LoS connections with training clients,

which can significantly speed up the training process. Third,
it covers many smart devices or users and enlist them into
the training. Finally, compared to their terrestrial equivalents,
drones edge intelligence equipped with smart IoT devices fly-
ing in the sky can capture more data, including monitoring
photos and videos with high resolution. However, designing
energy-efficient training techniques for FL model training at
drones is very desirable because their energy resources are lim-
ited, the drones consume considerable energy during the flight
in addition to the energy required for computing and commu-
nication. Furthermore, drone-based surveillance missions are
still vulnerable to several privacy and security threats during
data sharing with other drones or the ground station. Relying
on recent advances of BSG, edge computing and model devel-
opment at drones can facilitate several applications such as
autonomous driving, smart cities and industry 4.0.

B. FL for Drone Edge Intelligence

The implementation of ML techniques at drones can
enhance their decision making capabilities, while it can raise
several issues regarding resource consumption, privacy, and
security. FL is a promising technique to enable drones to col-
laboratively train shared global models without sharing local
sensing data. FL techniques have attracted the attention of
industry and academia in many applications of smart envi-
ronments. Wang et al. [53] introduced adaptive FL in edge
computing systems to balance the training of local models
and the aggregation of a global model. The authors of [54]
introduced a FL technique for joint optimization of power
consumption and resource allocation of vehicle networks in
B5G to enable low latency. The authors of [55] explored
FL opportunities for Industry 4.0 networks and collaboration
of smart components in smart manufacturing. Recently, FL
has introduced ML to the edge, closer to smart devices [56].
The authors of [57] introduced federated deep learning for
drone-based wireless networks to solve several challenges.

Fig. 4 shows how FL helps drones edge intelligence in train-
ing gathered datasets locally and send only updated models
instead of raw data to the server. The cloud carries the aggrega-
tion task and sends global models to drones edge intelligence
to facilitate task collaboration. Therefore, FL techniques can
result in reducing the transmission overhead in B5G networks,
reducing the computation complexity, and providing privacy
and security.

The authors of [58] discussed optimizing FL performance
with the goal of minimizing delay and enhancing resource
allocation. Furthermore, in [59], the introduced strategy for FL
was implemented in a wireless network to improve bandwidth
allocation and energy efficiency. Moreover, the authors in [60]
discussed scheduling policies’ impact on FL performance.
However, these techniques could not be applied in drones due
to mobility and the limited lifetime of batteries. Due to limited
battery challenges in B5G mobile users, FL plays an important
role in solving such issues.

Noting the mobility of drones, optimizing their operation
involves optimizing the transmission time, power control,
bandwidth, and location to maximize the energy efficiency
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Fig. 4. FL function in drones edge intelligence over smart environments.

of drones. The authors of [61] proposed a FL-based model
to enable power transfer and support sustainable wireless
networks. The results showed significant improvement in
drone energy efficiency. The drone needs ML for task recog-
nition in real-time. Furthermore, implementing centralized
ML is also challenging to maintain continuous connectivity
between the drone and center. The authors of [62] proposed
a framework for leader-follower UAV swarms where FL is
implemented at each drone. Each drone processes the collected
data locally and creates a model according to its gathered data
and then sends its model to a cluster-head drone that is able
to aggregate and generate a global model. The findings of the
proposed approach showed the effectiveness of FL analysis in
improving energy efficiency and delay.

To enable privacy among independent drones as a ser-
vice, the authors of [63] proposed an FL approach to address
the trade-off between the age of information and service
latency. In [64], the authors introduced FL for privacy to
enable drone-based mobile computing for pandemic and dis-
aster emergency communications. Furthermore, the authors
of [65] focused on controlling massive drones, while FL. was
used to share model parameters of neural networks among
the drones. There are very limited works considering the con-
vergence of FL and drone technology applications in smart
environments [54], [66]. In [66], the authors proposed an
aggregation technique for data collected from the only edge in-
vehicle networks. The main challenges of using a FL in drone
edge intelligence environments include transmission overhead,
delay, drone mobility, dynamic environments, privacy and
security, and resource management.

Summary: The integration of FL techniques at drones as
edge intelligent devices and improving the performance met-
ric including improving the QoS, enhancing energy efficiency,
ensuring high-level security and privacy, and assuring the reli-
ability has recently given extraordinarily research attention. FL

plays a vital role in swarm drones to train each drone locally
based on its gathered data and create a model. The created
model can be shared with other drones by using advanced
communication technologies such as B5G. Therefore, drones
can reach a consensus on managing their trajectory and avoid
collision during flying and performing tasks. However, there
are several issues such as transmission delay, drone mobility
to be investigated further.

C. Blockchain for Drone Edge Intelligence

Recently, the role of blockchain technology in securing
drone operations in B5G networks has been the subject of
several research. Qiu et al. [67] introduced blockchain for
securing spectrum sharing of drones in cellular networks.
The authors of [68] developed a blockchain-based solution
for mobile edge computing in a scenario where the drone
serves as an aerial base station. The authors of [69] discussed
blockchain-enabled drone edge intelligence for supporting
edge computing in 5G to meet dynamic applications. The
authors of [70] introduced blockchain for securing data gath-
ered from IoT networks, where drones operate as relay stations
for authentication before data is sent to mobile edge com-
puting. Reference [71] proposed a blockchain approach for
decentralized data sharing among air-to-ground IoT networks.
Moreover, Li et al. [72] introduced blockchain for decentral-
izing multi-drone in high-level security in ad hoc networks.
Alsamhi et al. [43] discussed the framework of blockchain
for decentralized multi-drone collaboration to perform tasks
in a decentralized way to avoid a collision.

Kang et al. [73] adopted a decentralized blockchain for
achieving reputation management efficiently. In contrast, the
authors of [74] proposed a blockchain-based model for secur-
ing the system of energy trading. Recently, blockchain has
been also proposed for asynchronous decentralized FL [17],
[56], [73]. The authors of [75] introduced the integration of
blockchain and FL to enhance privacy and security in 5G
network applications, considering learning quality and energy
consumption. In [76], the authors proposed the architecture of
FL with blockchain, which included numerical evaluation and
selected participant devices in each group of FL training.

Recently, many efforts have focused on leveraging
blockchain technology to enhance drone networks’ security.
Qiu et al. [67] introduced blockchain for securing spec-
trum sharing for drone-assisted wireless networks. Islam and
Shin [70] introduced a secure framework for data gather-
ing by mobile edge computing enabled smart environment,
in which drones operate as a relay station for authentication
before information is sent to mobile edge computing. The
authors of [68] utilized blockchain as a service integrated
with mobile edge computing for smart environments, where
drones as Arial stations to facilitate blockchain task offload-
ing. Furthermore, in [71], the authors proposed a decentralized
blockchain for sharing data in a drone to ground smart environ-
ment. Moreover, Li et al. [72] developed a private blockchain
for key distribution for ad hoc UAV networks.

Summary: The integration of blockchain and FL techniques
has not been extensively investigated yet. The ever-growing
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application of massive IoT devices calls for new mobile access
points such as drones to be deployed in smart environment.
Therefore, blcokchain can be used in B5G networks to meet
the dynamic demands via decentralized services, and support
drone edge intelligence with a high-level security.

III. BLOCKCHAIN AND FL SYNERGY IN
DRONE EDGE INTELLIGENCE

The communication network of Industry 4.0 is mainly
focused on autonomous and digitalization of industrial com-
ponents such as drones, vehicles, robots, IoT devices, and
machines. These communication networks require fast and
reliable communication with low latency while assuring
resource energy efficiency, and high QoS. FL techniques can
improve the learning and communication reliability of industry
4.0 components in smart environments. Noting the increasing
demand for autonomous vehicles and therefore the fast grow-
ing number of smart devices in smart streets, the Internet of
Vehicles (IoV) needs FL to preserve the users’ privacy in IoV.
However, FL suffers from a single point of failure of com-
munication when a continuous model is required to maintain
synchronously. The authors of [77] proposed drones as flying
relay stations to facilitate high connectivity in IoV with the
help of FL for improving data processing accuracy. In [78],
the authors proposed an FL technique to enable the privacy of
independent drones as a service for IoV applications, such as
predicting the traffic and managing car parking in high occu-
pancy. The finding showed that the proposed FL guaranteed
profit efficiency. The authors of [79] developed an integrated
blockchain and FL system for a constellation of satellites.
This approach was applicable to drones. In [80], the authors
proposed a blockchain approach to secure FL framework in
drone-assisted mobile crowd sensing to exchange local models
and authenticate the verification.

Blockchain can also assist FL for drone edge intelligence
computing and reduce the risk of failure in smart environ-
ments. Moreover, the combination of blockchain and FL
provides privacy and ensures model updating [81]. In [23],
the authors described blockchain-based FL techniques for
edge devices collaboration with providing rewards to the
training sample. The authors of [82], introduced blockchain
for ensuring reliable reputation-based incentive techniques.
The incentive technique could host updated learning models
efficiently and improve learning model accuracy.

Blockchain enables digital twins wireless networks to
increase edge intelligence accuracy and efficiency with bet-
ter performance [28]. Moreover, the authors of [83] discussed
the combination of blockchain and FL closer to end-nodes.
Blockchain was used to store the local learning model, and
then the aggregation model could be provided to the edge
nodes. Decentralized FL techniques can coordinate local learn-
ing updates and verify them by a‘ smart contract in the
blockchain. Such Chain FL is used to store and update aggre-
gation of the model [84]. Blockchain assisted FL in solving
the single point of failure issue and providing reliable learning
smart environments [85], [86]. Table I summaries the combi-
nation of FL and blockchain synergy for smart environments.

TABLE I

BLOCKCHAIN AND FL SYNERGY FOR SMART ENVIRONMENTS

(2019)| ing data FL

Ref Highlighted Synergy Blockchain func-
tion
[24] | Enable decentralized train- | Block- Edge devices col-

laboration

[85] | Introduced high reputation
(2019)| devices for participating in
learning and training model

Ensuring high reli-
able reputation

(2020)| tralized FL technique that | FL
uses blockchain for transfer-
ring stored models between

between nodes .

[29] | Blockchain-enabled FL for | DTWN Sharing the infor-
(2020)| digital twins collaborative mation models

in wireless Computing net-

works
[86] | Bring blockchain and FL to | iFL-BC Storing the shared
(2020)| edge intelligence at the end model

nodes
[87] | ChainFL is used as decen- | Chain- Aggregating  the

updated model
and  storing it
Heterogeneous

for solving edge intelligence
inefficiency subsequent

[88] | Blockchain network for im- | Fl-chain Storing the local
(2019)| proving FL collaboration of model of each ag-
secure data computation gregation
[89] | Developing a novel | FL- Verifying  global

(2020)| blockchain-enabled FL | Block model

[84] | Presenting a blockchain for
(2021)] FL crowdsourcing to ensure
high-level security and pri-
vacy.

Model aggregate

[76] | Introduced blockchain for
(2020)| reliable FL in reputation
management

Storing the reputa-
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Fig. 5. FL and blockchain synergy.

Blockchain can assist the FL. model by replacing the center
processing for obtaining a global model among drones edge
intelligence; as shown in Fig. 5.

Fig. 6 illustrates the convergence of blockchain and FL
for sustainable and green smart environments. The proposed
framework is divided into three layers, i.e., smart environment
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Fig. 6.  Blockchain and FL enabling drone edge intelligence in smart
environments.

layer, drone edge intelligence layer, and blockchain layer.
The environments layer contains the actual location of smart
devices that are used to gather data from surrounding smart
environments. These smart devices are used to sense the envi-
ronment and send data to closer drone edge intelligence. The
data gathered from a smart environment is vital and sensitive
for the training model in drone edge intelligence, in which
drone edge intelligence can perform decision-making with a
great accuracy rate based on local data. The drone edge intel-
ligence layer consists of many drones connected with each
other in the blockchain network. Each drone edge intelligence
has been used as a minor node to validate and aggregate the
transaction. Furthermore, each drone has its own off-chain
for training the gathered data, storing the training model, and
generating an aggregation model using FL. The cloud layer
generates a global model trained based on a selected training
model sent by the drone edge intelligence layer.

Blockchain for IoT applications is discussed in [87]. The
implementation of IOTA Tangle and DAG-based distributed
ledger are discussed in [88] without examining the IOTA tan-
gle’s flaws. In [88], IOTA Tangle presented the random and
the random-walk-based Monte Carlo Markov Chain (MCMC)
selection algorithms. The authors of [89] improved IOTA
Tangle, however, it is still vulnerable to the parasite chain
attack, which may compromise the ledger’s immutability and
irreversibility. Therefore, IOTA Tangle requires significant
enhancements to fulfil the fault tolerance and high-security
criteria of IoT applications.

Federated blockchain platforms include Stellar [90]. The
network is divided into smaller groups known as feder-
ates [91], with each federate maintaining local consensus.
Thus, local consensus can be transmitted across the network,
and global consensus can be established under specific con-
ditions. In addition, the federates that run in parallel enhance
throughput. CAPER [92] went on to develop three global con-
sensus techniques. CAPER, interestingly, uses a DAG structure

TABLE II
SUMMARY OF TECHNIQUES TO ENHANCE BLOCKCHAIN SCALABILITY

Ref Scalable technique
[91] [92] DAG

[93] Stellar

[96] [97] [98] | Multiple chain

[99]

[101] Transaction recording
[95] CAPER

[93] [94] Fedrated blcockhain
[100] Sharding

for its distributed ledger. In addition, Herlihy’s [93] atomic
cross-chain swaps, which are represented in a directed graph
topology, allow for asset exchange across several (unrelated)
blockchains. Another well-known technique is to delegate the
processing of some transactions from the main blockchain
to a series of sidechains [94]. A node-clustering technique
was presented in a recent paper [95] on the multi-chain
structure in the context of the industrial Internet to decrease
cross-chain interactions and increase throughput. Hellings
and Sadoghi [96] developed a delayed-replication method
to increase the efficiency of handling read-only workloads.
Dang et al. [97] proposed a sharding-based scalable blockchain
with a throughput of over 3000 transactions per second.
Sharma et al. [98] effectively used transaction reordering, a
well-known database method, to boost the throughput of com-
pleted transactions by a factor of 12x while cutting the average
delay in half. Table II provides a summary of techniques
recently proposed to enhance blockchain scalability.

Summary: The integration of blockchain with FL can
improve the performance of drone edge intelligence in smart
environments. The Storage of the trained model will be
off-chain instead of on-chain to solve the storage issue of
blockchain. Deployment of drone edge intelligence closer to
smart devices in a smart environment will improve their energy
efficiency and reduce delay. This paper focuses mainly on dis-
cussing the combination of blockchain and federated learning
for drone edge intelligence in smart and green environment
and highlighting the research gaps.

A. Energy Efficiency

Besides the security and privacy concerns,drone-assisted
IoT in a smart environment faces several other issues such
as energy efficiency, mobility, and connectivity. The limited
battery lifetime at drones results in a limited network access
lifetime. To address these challenges, the authors of [99] intro-
duced blockchain technology for drone-assisted IoT in a smart
environment to secure data collection and improve energy
efficiency. The simulation results showed that the proposed
system could effectively improve the security and energy effi-
ciency of data gathered from IoT in smart environments.
The authors in [100] represented a blockchain technology for
authentication and verification of the marine vehicles when
drones performed smart surveillance. The findings show that
blockchain supported less energy consumption.

Furthermore, in an untrusted environment, energy transfer
of drones present various security and privacy challenges.
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The authors of [101] introduced a blockchain and direct
acyclic graph-based approach to secure drone-assisted power
transfer while different consensus were created to verify
macro energy transactions. The numerical results showed
the high security level of drones-assisted power transfer.
Reference [102] addressed a drone base station placement
problem and proposed an ML-based approach for optimized
deployment of drones to reduce energy consumption. The
authors in [103] discussed the framework of drones in deliv-
ery systems with improving security and energy efficiency.
Furthermore, the authors of [104] discussed a reliable and
secure energy trading method among drones and the charg-
ing station. The proposed model allowed drones to pay tokens
or borrow tokens for buying energy from charging stations.
The proposed model results provided an increasing utility for
charging stations and drones with a high level of security.

Collaboration of multi-drone has shown significant enhance-
ment in achieving complex tasks effectively and efficiently.
Due to security issues, the authors of [105] proposed a
blockchain-based approach for distributed key management
in ad hoc UAV networks to identify malicious UAVs. The
findings showed imprudent energy efficiency and resistance
against internal and external attacks. The authors of [106]
introduced blockchain to secure IoT data via drones to improve
connectivity and energy efficiency.

Drones are used for supporting various smart environments,
including smart cities, smart homes, smart agriculture, surveil-
lance etc. Due to the limited time of drone operation, the
authors of [107] introduced scheduling drone chagrining-based
consensus in the multi-drone network with a limited charging
stations. The battery capacity of drones has an upper limit.
The limited energy of drones has become the most signifi-
cant limitation of drone applications. Research on blockchain
and mobile edge computing has put forward practical IoT
security and drone energy efficiency [15], [108], [109]. These
researches can effectively improve the trustworthiness of data
and the efficiency of drones. However, there is still a lack of
integrated solutions real-world drone-assisted IoT scenarios to
provide secure and efficient data collection. Reference [110]
introduced a FL and dynamic digital twin for the drone to
ground networks, in which drones are used for data aggrega-
tion captured by digital twins for clients. The results showed
a significant enhancement in energy efficiency and accuracy.
The authors of [111] discussed drone deployment energy effi-
ciency and user association. Furthermore, the authors used FL
to predict the illumination distribution for minimizing drones
total transmission power. The results showed a significant
reduction in drone transmission power.

Summary: Blockchain and FL can play a vital role in
improving drones edge intelligence to perform tasks effectively
and efficiently in the near real-time. Since in FL approaches,
the models are trained locally and the raw collected datasets
are no longer shared among the agents, the energy con-
sumption of drones can be significantly reduced. Blockchain
technology can facilitate collaboration among multi-drone
edge intelligence and reduce energy consumption. The tethered
drone can be used to support computing and provide a long
operation time and support charging drone edge intelligence,
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Fig. 7. Tethered drone charging station to support drones edge intelligence
using blockchain-aided FL.

as shown in Fig. 7. Moreover, The collaboration among drones
in can result in the system becoming smarter, greener, and
more sustainable.

1) Energy Harvesting: Energy harvesting equipped the
drones with the capability to use available energy sources, i.e.,
wind, solar, etc. However, because ambient sources are unpre-
dictable and variable, they may not meet QoS requirements. As
a result, controlled energy sources from a power plant may be
considered to supply energy on demand [112]. Furthermore,
the energy consumption of transmitting the acquired drone
to drone connectivity data can be reduced by adjusting the
drone’s wireless transmission power [113]. In addition, energy
harvesting may potentially be a viable option for extending
drones battery life [114].

Energy harvesting control is challenging to regulate in
dynamic and time-varying drone networks. The variable
network states at different time epochs necessitate varied
power control and energy harvesting control approaches to
achieve the best performance. Drones network may be char-
acterized using a Markov decision process [115]. However,
collecting correct Markov decision process model information
in unknown and dynamic drones networks is challenging.
Deep Reinforcement Learning (DRL) technique was sug-
gested to solve the Markov decision process model in drones
networks [116]. DRL, in particular, is a trial-and-error learning
process that interacts with the drones network environment by
watching network states. DRL [116] applys DNNs to estimate
state-action values while calculating the potential system cost
of each state-action pair.

In enabling energy harvesting drone-assisted IoT, the
authors of [117] introduced game theory to improve the power
control policy while assuming that smart IoT devices’ loca-
tions were fixed. In order to reduce the drone’s journey
time, the authors of [118] developed a protocol to address
the joint optimization of task allocation and flying speed
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Energy harvesting of drones edge intelligence.

control in drone networks, which involves the drone generating
computing tasks, offloading them to a fog node, and visiting
various points of interest.

The use of energy harvesting to charge batteries is a promis-
ing technique. The authors of [119] presented a Markov energy
model to assess the probability of shortage,energy outage, and
service loss for an energy harvesting assisted communication
system. Also, the authors of [120] developed an energy-
harvesting-aware protocol for IoT networks to extend the IoT
devices’ lifetime in the face of changing traffic loads and
energy availability. For enabling energy-harvesting-assisted
IoT networks, the authors of [117] developed a Stackelberg
game to motivate the charging station to transfer energy to
the IoT devices. Although the energy used by the drone for
air hovering accounts for the drone’s total energy consump-
tion [121], it is connected to the drone’s physical attributes.
Furthermore, the energy harvesting control techniques affect
the hovering energy consumption. As a result, the energy cost
of the drone hovering remains constant and may be omitted in
the objective function that seeks to reduce the average system
energy cost. Fig. 8 illustrates energy harvesting from teth-
ered drone to untethered drones and from untethered drones
to smart devices in the smart environments

2) Protocols and Models for Energy Efficiency: The use
of energy harvesting to charge batteries is a promising tech-
nique. Reference [119] presented a Markov energy model to
examine the possibilities of an energy harvesting-assisted com-
munication system’s energy outage, shortage, and service loss.
Nguyen et al. [120] developed an energy-harvesting-aware
routing protocol for smart environment networks to extend
smart devices’ lifetime in the face of changing traffic loads and
energy availability. In cached-enabled energy-harvesting-aided
smart environment networks, the authors of [117] introduced
a Stackelberg game solution to incentivize the charging sta-
tion to send energy to the smart devices in the environment.
The magnetic resonant coupling model was used in [117] to
charge the drone batteries wirelessly. It was shown that the

drone’s battery life was increased from 30 to 851 minutes.
Furthermore, a multi-agent Q-learning model is used for cog-
nitive transmission power management in smart environment
networks, where each smart devices learns its power con-
trol [122]. DRL has been used to improve the performance
of network strategies in time-varying situations in smart
environment networks [123].

3) Tethered Drones: The idea of Tethered drones comes
from Tethered balloon technology, in which tethered is used
for multiple purposes such as power supply, fixed balloons
to the ground, and high data transmission [124], [125]
[126], [127], [128], [129], [130]. One of the most signifi-
cant obstacles toward using drones is their short endurance
since a conventional electric drone would need to be recharged
every hour. However, this issue can be solved by using teth-
ered drone, as shown in [131], [132], [133]. Through a tether
linked to a base station, a TUAV obtains continuous power and
high-bandwidth communication. As a result, tethered drones
outperform free-flying UAVs in this application, especially
for B5SG networks. The authors of [131] presented a sub-
optimal closed-form solution to optimize the LoS probability
given the inclination angle and the tether length. The authors
of [132], [134] proposed a Tethered drone connected to a
ground base station through a cable in the proposed arrange-
ment, which supplies both energy and data to the Tethered
drone. Also, for drone-assisted cellular networks , in [134],
the authors proposed tethered drones. The results showed that
the proposed Tethered drone can fly for a long-distance flight
compared to the untethered drone. The authors of [135] intro-
duced Tethered drone coverage probability and analyzed the
optimization of end to end signal-to-noise ratio. The findings
showed that the tethered drones provide better performance in
cellular offloading compared to the battery-operated drones.
Moreover, the authors of [136] discussed the correction posi-
tion of Tethered drones in weather conditions with focusing
on finding the optimal position for tethered drones.

Summary: Tethered drones can play a vital role in prolong-
ing the operation time and improving the computing capability
over smart environments. Furthermore, Tethered drones with
support of FL. and blockchain can provide more advanced
services over a large area due to their extended flight time.
On the other hand, Tethered drones can serve as a minner
in case of collaborating with multi untethered drones due to
the energy limitation of untetherd drones. In such systems,
the untethered drone can work for local processing, while the
Tethered drone work for global processing and aggregation
with high level of security using blockchain technology.

B. Connectivity and QoS

Drone technology integrated with machine learning has
revolutionized mobile crowdsensing (MCS). MCS leverages
ubiquitous smart device sensing capabilities that are an essen-
tial component of smart environments [137], [138]. Due to the
limitation of MCS in QoS satisfactory, the drone becomes a
possible solution to assist MCS challenges [48], [139], [140].
Drones can allow autonomous crowdsensing anywhere, any-
time due to low cost, flexible mobility, and easy and fast
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deployment [141]. Moreover, drones equipped with smart
devices can be used for many MCS applications such as
monitoring the traffic environment, public safety, disaster man-
agement, and surveillance [142]. In some applications, sharing
sensing data has more sensitive information and potentially
private information during data gathering and training [143].

The authors of [144] extended work done by [16], [17] and
discussed the use cases in 5G networks, while the authors
in [145] discuss how to bring intelligence, learning closer
to mobile edge networks where data is gathered. Hence,
FDL can be helpful in training drone models as compared
to centralized techniques. Furthermore, the drone has limited
computing power and bandwidth, so it cannot support cen-
tralized techniques, and therefore, DFL is the most suitable
solution for drone-based supporting smart devices environ-
ment. The authors of [57] showed how FDL was applied for
drone-based wireless networks.

In [146], the authors proposed a blockchain-based solution
to establish drone terminal data security in which edge com-
puting is used to support computing and storage for drones.
The authors of [147] introduced blockchain for drone and
IoT management with providing security and trust in agricul-
ture scenarios. The results showed significant decrease in time
operations with providing security and trust during drone man-
agement in a decentralized and autonomous way. The authors
of [32] introduced blockchain and FL techniques for drones
in B5G networks for disaster management and response. The
study focused on blockchain for maintaining low latency and
improving the energy efficiency of drone networks. One of
the weak points of the drone is the lifetime of the battery.
Therefore, the mission of drones needs to be very short. The
authors of [148] introduced FL to minimize drone traveling
time with a guarantee to satisfy connectivity in smart environ-
ment. The finding showed effectiveness in connectivity and
traveling time of drone networks.

Summary: Blockchain technology can be employed to build
a decentralized drone edge intelligence learning network via
securely connecting drones to collaboratively perform tasks in
smart environments. Fig. 9 shows that the drones only require
to send the updated local model of training their local sensing
data to the base station instead of sharing raw data. The train-
ing process is continuing until the global model approaches
the desired level.

C. Data Collection

Autonomous automobiles are used to assist drone battery
recharging. The authors of [49] presented a drone cruise
path control protocol for high priority data sensing. Then,
under velocity and uplink rate limits, Zhang et al. [50] intro-
duced an energy-efficient technique for cellular drone systems
to maximize drone sensing and data transfer. Moreover, the
authors of [51] established a novel sequential model for drones
based on proximal policy optimization and LSTM to maximize
the data collection ratio and decrease energy consumption
when performing sensing tasks. Furthermore, the authors
of [71] proposed a blockchain-based decentralized architec-
ture for data exchange in a drone-to-smart environment, using
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Fig. 9. Blockchain and FL enabling connectivity of drones edge intelligence.

a Cournot model to maximize advantages for drones and
smart devices of smart environments. In addition, a secure
blockchain-based system for data management in drones
networks can improve security while reducing communication
and compute overheads [149].

To limit the drone’s energy consumption while meeting
the QoS requirement, the authors in [150] introduced power
regulation in drone networks for the data gathering service.
Moreover, [151] introduced DRL to optimise each drone’s
transmission power, route, and cell association in drone swarm
assisted networks to reduce interference and wireless trans-
mission latency by improving data collection from smart
environments.

Furthermore, the authors of [152] introduced time-varying
cache-enabled smart environment networks to reduce data
transmission delays caused by cache storage capacity and the
freshness of smart environment data. To establish a dependable
and safe smart environment, the authors of [153] discussed
a data collecting and secure sharing strategy that combined
Ethereum blockchain with DRL.

D. Security and Privacy

The studies in [65], [80], [154] used FL to facil-
itate drones applications, including quality sensing with
drone swarms [154], secure drone crowdsensing with
blockchain [80], and huge drone communications [65]. By
avoiding sending experienced data to a central node, FDL pro-
tects the privacy of drone data and lowers network cost and
latency. Although the major goal of the FDL idea is to protect
privacy, sharing some local models may nevertheless disclose
private information. As a result, the authors developed a safe
aggregation technique in [155], allowing clients to encrypt
their local models while enabling the FL server to aggregate
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them without decrypting them. Analyzing the global aggre-
gated model, on the other hand, can assist in revealing the
participation of some learners. As a result, creating algorithms
to ensure privacy at the participant level is critical rather than
safeguarding acquired data.

For supporting IoT networks, the authors of [156] intro-
duced FL-based drone authentication. DNN was proposed for
drone authentications. Experiments indicated that the proposed
model provided a higher true positive rate and improved the
performance of drone authentication. For smart cities, the
authors of [157] provided a low-latency safe authentication
technique for drones’ networks using blockchain technology.
Therefore, each drone that wants to join the network could reg-
ister to become authenticated on the blockchain. Furthermore,
in [158], the authors discussed the convergence of Al and
blockchain for the sustainable smart city, and highlighting the
security challenges in smart city applications. For IoT systems,
the authors of [159] proposed closed loop and open loop RFID
systems as decentralized mutual authentication algorithms for
smart environments. Reference [160] proposed FL-IIoT for
android malware identification. They applied two methods,
i.e., Generative adversarial network (GAN) and Federated
GAN. The finding showed that FL-IIoT provided high-level
security for participating in IIoT while interacting without
compromising privacy. Moreover, [161] presented a novel
authentication method that used blockchain and SDN methods
to eliminate the required for re-authentication during frequent
handover between heterogeneous cells. The proposed method
is intended to ensure low latency, suitable for a 5G network in
which devices/users are replaced with the least latency among
heterogeneous cells using their public and private keys given
by the developed blockchain component while maintaining
their privacy.

Using a single server to handle all sensed data is inefficient,
especially when data is often dispersed across a wide network.
FL and blockchain integration allows highly scalable intelli-
gent edge data crowdsensing solutions and delivers high levels
of privacy and security.The integration of FL and blockchain
is investigated in [80] to create a mobile crowdsensing system
based on drones. With blockchain supporting, drones’ data
training and model exchange are monitored and traceable for
attack detection and data alteration prevention.

Although FL can protect users’ privacy during training,
data characteristics encoded in model updates can be exposed,
revealing personal information [162]. A differential privacy
approach is used to address this issue, which involves insert-
ing artificial noise into each communication round’s local
gradient training. Then, an incentive system is added to
recruit additional drones in the training to increase the over-
all FL performance. The evaluation results show that drones
have a high utility and low aggregation error while low-
ering convergence delay. In addition, [163] proposes an
incentive-based crowdsensing/crowdsourcing architecture for
IoT in edge computing, based on FL. To encourage addi-
tional users to contribute computational resources for running
FL models, each client can earn an incentive after success-
fully uploading their computed parameter to the MEC server.
Finally, in [81], an integrated FL-blockchain architecture in

IoT settings is used to examine another edge crowdsourcing
technique.

Summary: A crowdsourcing-powered FL system is designed
to enable distributed ML training at the network edge. The
ultimate objective is to improve appliance manufacturer ser-
vice quality while protecting consumer privacy using various
privacy methods. Blockchain is linked with FL training to
identify and prevent malicious attacks from altering gradi-
ent updates and audit the parameter update of FL clients
like IoT smart devices in smart environments. The suggested
FLchain’s viability with high training accuracy, security pro-
tection, and low system latency has been demonstrated through
implementation results.

E. Sustainable Smart Environments

Drones have offered a number of advantages to the environ-
ment sustainability. Drones with video cameras are extremely
beneficial for swiftly obtaining photos of huge expanses of
land, such as agricultural crops, forest regions, and fire man-
agement. In this way, drones can reduce pollutant emissions
resulting from ground or air control and get to a critical
point sooner before an incident occurs. Furthermore, drones
are commonly utilized for parcel deliveries and other uses in
civic and commercial spheres [164]. Even though drone is
still in its infancy in terms of commercial applications, its
current and anticipated commercial applications have already
demonstrated the potential to drastically alter several industries
in terms of reducing workload and overall production costs,
saving time, increasing work efficiency and productivity, and
bridging the urban-rural divide.

Healthcare: Drones play a vital role for supporting medical
services in distant locations, for instance, in cases where nor-
mally take a long time to reach and respond a patient suffering
from cardiac arrest or other life-threatening illnesses [165].
Drone technology has many benefits for supporting healthcare
such as delivering medical supplies, vaccine delivery, faster
lab tests. Drones are already used for medical blood supplied
while the short delivery time can contribute to saving people
lives. Drones can support vaccines delivery to the hardest area
due to unconnected transportation keeping vaccines cool and
viable during transport. drones can also quickly fly blood from
disease and illness people in remote or rural areas to central
laboratories and hospitals for testing.

Disaster Management: The natural catastrophes, such as
mudslides, earthquakes, floods, explosions, and wildfires,
necessitate rapid and prompt medical treatment since the lives
of some survivors are at stake [166]. Drones intelligence can
thus be used to swiftly scan the region and detect victims using
onboard cameras that provide real-time data [167]. Drones
with gas sensors and cameras may be flown over volcanic
areas, oceans, and forests, to monitor the condition. Drones can
identify natural catastrophes before they happen, informing
residents and allowing them to escape [168].

Pollution Management: Drones also have the significant
benefit of being a safe and environmentally friendly technol-
ogy. For example, when drones are used for last-mile delivery,
it decreases the amount of carbon dioxide emissions that would

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on May 27,2022 at 18:22:05 UTC from IEEE Xplore. Restrictions apply.



306 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 6, NO. 1, MARCH 2022

have been created if the products were delivered by other
means [169].

Economics: Drones are now available can fill a delivery ser-
vice niche in sparsely inhabited locations with low consumer
density. The regulatory landscape and last-yard delivery lim-
its are likewise more loosened in rural regions. The economic
benefit of decreasing the expense of a driver to visit remote
consumers is clear in rural locations, but drone range is a
crucial factor in this context.

Environmental: The impact on the environment is like-
wise enormous. Drones are more ecologically friendly than
delivery vans since batteries power them. Many firms’ depen-
dence on autos would be reduced if delivery drones became
widely used. This would be good for the environment, as it
would help many countries decrease emissions and reach emis-
sion objectives established by numerous international accords.
Furthermore, drone delivery can complete deliveries that cars
can not or can only do at significantly higher costs, and it
can always efficiently save money and reduce CO2 emissions.
Safety considerations and last-yard limits, on the other hand,
are likely to limit the gains that economies of scale may pro-
vide. Drone delivery as a shopping system is one of the most
ecologically beneficial modes of transportation in a variety
of circumstances [170].Furthermore, Blockchain technology
empowered drone to deliver goods and medicine to quarantine
area with high-level security during COVID-19 [171], [42],
[172], [173].

IV. CHALLENGES AND FUTURE DIRECTIONS

The main focus of this paper is to investigate the potential
of an integrated blockchain and federated learning solution in
drone networks to enhance energy efficiency and connectivity
among drones and also smart devices while improving QoS.
The implementation of FL for drones edge intelligence is still
in its early stages and the impact of combination of blockchain
and FL for drone edge intelligence is not fully investigated yet.
Therefore, many new opportunities can be offered, and many
challenges exist in using FL to enable drone edge intelligence
networks. Here, we discuss some of the challenges in future
research.

Channel Quality and Signal Strength: FL techniques may
enable drones’ edge intelligence prediction in decentralized
ways. Therefore, drones can dynamically and efficiently adjust
their location, trajectory and autonomously to optimize the
signal strength and connectivity [171]. The authors of [174]
proposed that an artificial neural network to determine the
drones’ location to better serve smart devices according to the
predicted channel quality of dynamic environments.

Trajectory Planning at Drones Edge Intelligence: The tra-
jectory of drones may impact their energy efficiency and the
signal strength between smart devices in smart environments.
FL can enable drone edge intelligence to identify suitable tra-
jectories based on predicting the energy consumption for each
trajectory. FL techniques such as deep learning may predict the
energy consumption for drone edge intelligence and effectively
deal with heterogeneous data [175]. In this case, blockchain
technology can be used for efficient energy sharing; if the

battery of one drone edge intelligence is almost depleted, the
nearest one may replace it and gather data from smart environ-
ments. Furthermore, if one sensor’s data is not received due
to the presence of a malicious device (dirty sensor), the drone
can borrow the missing data from the nearest drone using the
decentralized blockchain.

Drone Edge Intelligence Deployment: In order to improve
connectivity and coverage of the network, the optimal drone
deployment depends on the position of smart environments
devices, channel quality, signal strength, path loss, distance,
etc. FL is an efficient solution to deal with heterogeneous
smart devices. Then combining of multi-drone edge intelli-
gence model can help in generating the global model. Here,
blockchain can be used to verify and authenticate the gener-
ated models and distribute them to all drone edge intelligence
in a decentralized way. Furthermore, in the case of drone
edge intelligence used as a station above a smart device in a
smart environment, hybrid deep learning techniques can help
solve the collaboration between smart devices and drone edge
intelligence [176].

Resource Allocation: Drone edge intelligence faces the chal-
lenge of resource allocation due to the limited frequency
spectrum. The heterogeneous data gathered from the smart
environment and data rate are depending on applications. ANN
reinforcement learning is suitable for enabling drone edge
intelligence to generate predicted models [174]. In contrast,
ANN reinforcement learning helps optimize the relationship
between drone edge intelligence and smart device data rates
in smart environments.

Obstacles: Collaboration of multi-drone edge intelligence
to perform common goals is crucial. Data routing via drone
edge intelligence is required to satisfy QoS parameters (end
delay and network capacity) and guarantee energy efficiency.
Transmission data between the drones edge and server needs
to be performed with a high-level accuracy. FL techniques
can play a vital role in data transmission routing models
(based on speed, direction, energy etc.) among multi-drone
edge intelligence. ANN can be implemented to predict the rou-
tine performance regarding optimal routing path for each drone
edge intelligence [177]. The local model is aggregated to gen-
erate a global model to control multi-drone edge intelligence
with the help of a decentralized ledger.

Traffic Load: To deal with IoT device connectivity and bat-
tery lifetime challenges, the traffic load between smart IoT
devices and drone edge intelligence must be considered. High
traffic load of all smart devices in a smart environment leads to
consuming energy and an overhead to the network. Therefore,
using distributed FL can be a suitable solution for such an
issue. Smart devices can make their local model by using
FL techniques. At the same time, blockchain can be used to
provide the decentralized network with high privacy between
drone edge intelligence and smart devices in smart environ-
ments. These solutions may help reduce network overload and
with a lower transmit power.

Connectivity and Accuracy: There are particular issues
related to drone edge intelligence networks such as heteroge-
neous resource capacity, which includes data size, computing,
energy, channels and etc. Therefore, new studies must be
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focused on efficient FL techniques that consider connectivity
maintenance with ensuring high accuracy learning. For exam-
ple, the trade-off between communication delays, computation,
and learning accuracy.

Collaboration Among Drones Edge Intelligence Network: A
single drone may not be able to offer the service adequately
enough. In reality, the collaboration of numerous drones edge
intelligence over smart environments is required to meet
the enormous demand of a range of terrestrial consumers.
Furthermore, to provide a service as a whole, numerous drone
edge intelligence should be intelligently controlled. The use of
multiple-agent RL for intelligent control of numerous drones
is both intriguing and challenging [15].

FL Drone in B5G: BS5G provides a unique communication
architecture for autonomous vehicle systems to execute com-
plex smart applications. Drones may be used as relay devices
to convey communications and assist edge servers because
they fly near the smart devices or the end-users. Furthermore,
using FL techniques, drones may assist in processing the
acquired data and sending the learned model to ground
station, where all of the received models are pooled and com-
pared for decision making. However, adopting FL integrated
drone technology places additional constraints on computation,
necessitating optimising drone resources based on efficient
task allocation, scheduling, and various other mechanisms to
reduce energy consumption and extend operation lifetime.

Storage Off-Chain: Drones trade a variety of data. Some of
the data may be too huge to fit into the blockchain properly,
or it may need to be modified or deleted often. To solve this
issue and improve speed, off-chain blockchain storage should
be made available.

Designing Framework for Energy Efficiency Analysis: The
combination of FL and blockchain to design an efficient frame-
work for energy efficiency analysis is needed to be addressed
and discussed more with highlighting the benefits of the com-
bination. Furthermore, efficient protocols are also needed for
improving energy efficiency, maintaining QoS and enhancing
tasks computation.

V. CONCLUSION

There is an increasing interest to utilize drones in vari-
ous civilian applications such as disaster management, and
smart cities and environment However, there still remain sev-
eral challenges related to drone operations including privacy,
security, energy consumption, and loss of connectivity to reach
the desired energy efficiency and high QoS since the current
implementation of this technology often rely on centralized
data processing at the ground station. FL is known as a key
technology to enable local data processing and decision mak-
ing at edge devices where only the information of the local
trained model is shared among the agents rather than trans-
ferring the raw data. Therefore, FL can facilitate distributed
model training among multi-drone edge intelligence with the
help of B5G to share updated models to obtain a global model
of task performance in smart environments. However, latency,
energy consumption, security, network partitioning, learning
quality, and security are amongst the challenges of using FL

approaches. Blockchain technology has the potential to over-
come some of these issues including the risk of single point
failure and other security threats that promote edge intelli-
gence in a decentralized way. This paper provides a framework
for how blockchain and FL convergence enables drone-edge
intelligence for green and sustainable smart environments.
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