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Abstract:Thestudypurposewastotrainandvalidateadeeplearningapproachtodetectmicroscale

streetscapefeaturesrelatedtopedestrianphysicalactivity. Thisworkinnovatesbycombining

computervisiontechniqueswithGoogleStreetView(GSV)imagestoovercomeimpedimentsto

conductingaudits(e.g.,time,safety,andexpertlaborcost).TheEfficientNETB5architecturewas

usedtobuilddeeplearningmodelsforeightmicroscalefeaturesguidedbytheMicroscaleAuditof

PedestrianStreetscapesMinitool:sidewalks,sidewalkbuffers,curbcuts,zebraandlinecrosswalks,

walksignals,bikesymbols,andstreetlights. Weusedatrain–correctloop,wherebyimageswere

trainedonatrainingdataset,evaluatedusingaseparatevalidationdataset,andtrainedfurtheruntil

acceptableperformancemetricswereachieved.Further,weusedtrainedmodelstoauditparticipant

(N=512)neighborhoodsintheWalkITArizonatrial.Correlationswereexploredbetweenmicroscale

featuresandGIS-measuredandparticipant-reportedneighborhoodmacroscalewalkability.Classifier

precision,recall,andoverallaccuracywereallover>84%.Totalmicroscalewasassociatedwith

overallmacroscalewalkability(r=0.30,p<0.001).Positiveassociationswerefoundbetweenmodel-

detectedandself-reportedsidewalks(r=0.41,p<0.001)andsidewalkbuffers(r=0.26,p<0.001).

Thecomputervisionmodelresultssuggestanalternativetotrainedhumanraters,allowingforaudits

ofhundredsorthousandsofneighborhoodsforpopulationsurveillanceorhypothesistesting.

Keywords:builtenvironment;computervision;deeplearning;GoogleStreetView;microscale;

walkability

1.Introduction

Thehealthandwellbeingbenefitsofphysicalactivityanditsenvironmentaland

economicco-benefitsarewellestablished[1].Ecologicalmodelspositandevidenceconsis-

tentlyshowsthatapproachesforpromotingphysicalactivitymustaddressmultiplelevels

ofinfluence,includingbuiltenvironments.Featuresofthebuiltenvironmentcaninfluence

physicalactivitybehaviorsdirectlythroughaccessibility,pedestriansafety,comfort,and

theaffectiveexperiencesofwalkingandactivetravel[1–7].Inthecontextofbehavioral

interventions,evidencesuggeststhebuiltenvironmentinteractswithinterventioncom-

ponentstoimpactphysicalactivityadoptionandmaintenance[3,8–11]. Asupportive

builtenvironmentcanfacilitatewalkingandactivetravel[6,11],whileanunsupportive

environmentmaybeabarriertophysicalactivityengagement[6,11],warrantingbehavioral

interventiontoovercome[8,9].

Featuressupportiveofwalkingandactivetravelcanbemeasuredatthemacroscale

usinggeographicinformationsystems(GIS)oratthemicroscale(street-level)within-person

streetscapeaudits,andeithermaybeclosertomeasuringwhatexiststhanperceptions[12].
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Featuresmeasuredonamacroscale,suchasland-usemix,intersectiondensity,park,transit,

orresidentialdensity,aregenerallydifficulttomodifybutareeasilyassessedusingpublicly

availabledatasources.Microscalebuiltenvironmentfeaturessuchaspedestrianamenities

thatincreasethesafetyandcomfortofactivetravelcanexplainfurthervarianceinphysical

activity,evenafteradjustingformacroscalewalkability[4,13].

Microscalefeaturesaremorecost-effectivelymodifiedthanmacroscalefeaturesbut

aremeasuredmuchlessoften.Thisobservationislikelyduetothelimitedfeasibilityof

conductingneighborhoodstreetscapeaudits.Traditionalin-personmicroscaleauditsare

expensive,requireextensivetravelandaudittime,andexposeauditorstocrime,traffic,

andweathersafetyconcerns.Asaresult,relationshipsamongmicroscaleneighborhood

environments,physicalactivity,andthesharedhealth,environmental,andeconomicco-

benefitsofactiveliving[1]arenotbroadlyresearched.Substantialpopulationdifferences

maybelinkedtorelativelyinexpensiveandeasilymodifiablestreet-levelfeatures,but

evidencetoshowinequitiesacrossneighborhoodsislacking.

VirtualmicroscaleauditsbyhumanratersusingonlinemappingtoolssuchasGoogle

StreetView(GSV)toscrolldownandauditastreetscapearereliablealternativestotradi-

tionalin-personaudits[14–22].Virtualauditseffectivelyeliminatetravel,weather,and

safetychallengesofstandardin-personaudits. However,virtualauditsconductedby

humancontentexpertsremaintime-intensive[23–25],arelimitedtosmallareasorshort

routes[4,21],requireextensiveauditortrainingandretraining,andaresusceptibletoaudi-

torfatigue[26].Thus,thescalabilityofvirtualauditsremainsdependentontheamountof

availabletrainedhumanlabor.Thechallengeofscalingin-personorvirtualauditstoassess

hundredsorthousandsofneighborhoodscontinuestobeaprimaryobstacletosurveillance

(e.g.,changesovertime)orhypothesistesting.

Combiningcomputer-enableddeeplearningandcomputervisiontechniquesisan

emergingapproachforincreasingthescalabilityofcollectingstreet-levelenvironmental

data.Deeplearningisasubsetofartificialintelligencethatusesalgorithms(i.e.,neural

networks)tolearntorecognizeandinterpretpatternsindata.Thealgorithmsusedindeep

learningareself-adaptive,meaningthatthenetworksgetsmarterwhengivenmoretraining

dataortrainingtime.Computervisionisabroadtermdescribinghowcomputersseeand

understanddigitalvisualdata. Whendeeplearningiscombinedwithcomputervision,

neuralnetworkmodelscanbetrainedtorecognizebuiltenvironmentpatternsinGSV

imagesforclassificationtasks[27]suchasland-use(e.g.,buildingclassification[28],scene

classification(e.g.,perceivedstreetscapesafety[29])andobjectdetection(e.g.,detecting

andclassifyingautomobiles[30]orcatalogingtrees[31]).

Amongclassificationtasks,imageclassificationusingneuralnetworkshasbeenthe

mostcommonlyusedapproachforremotelydetectingspecificfeaturespresentinGSV

images.Forexample,Haraandcolleaguescombinedcrowdsourcingwithdeeplearning

andcomputervisiontodetectcurbrampsinGSVimagerytoassesssidewalkaccessibility

fordisabledindividuals[32].Sincethen,othershaveworkedtoautomatethedetection

ofcurbcuts[33],crosswalks[34],andotherbuiltenvironmentobjectsvisibleinGSVim-

ages[35–37].Forexample,Kooetal.selectedeightof150categoriesavailablefromthe

existingPyramidSceneParsingNetwork(PSPN)modeltorepresentmesoscalestreetscapes

includingbuilding,house,sidewalk,tree,road,grass,car,andplant[38].Theycalculated

threeindicesfromthesecategories:building-to-streetratio,greenness,andsidewalk-to-

streetproportion,andtheyfoundthatthebuilding-to-streetratioandgreennesswere

associatedwithreportedwalkingtrips.Theseadvanceshaveledtothepromiseofdevel-

opinganautomatedorsemi-automatedapproachforconductingpedestrianstreetscape

audits.However,thedevelopmentofautomatedmicroscaletoolsremainsanopenproblem.

Existingresearchreliesheavilyondeeplearningmodelsdevelopedforbroadclassifications,

whichwerenotdevelopedorvalidatedforfeaturesrelatedtophysicalactivity.Further-

more,customtrainedmodelsforphysicalactivity-relatedbehaviorsfocusedonasmall

numberofmicroscalefeatures(e.g.,curbramps),trainedand/orvalidatedmodelsinone

geographicregion(e.g.,Atlanta),didnotexaminehowmodel-detectedfeaturesalignwith
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perceptionsoffeatures(orfeatureindices)byindividualslivinginevaluatedneighbor-

hoods,orsufferedsomecombinationsoftheseissues.Developingareliableandvalidated

automatedtoolfordetectingmicroscalefeaturesthatreducesrelianceonhumanlaboris

crucialtoaddressingcurrentissuesofscalability.Increasingscalabilitywillenablegreater

numbersofstudiesinvestigatingtheinfluenceofmicroscalebuiltenvironmentfeatures,as

wellasincludinglargerandmorediversesamplesofparticipantsandneighborhoodsto

allowgeneralizability.

Thecurrentstudyexploreswhethereightmicroscalefeaturesselectedmainlyfroman

existingvalidatedtool,theMicroscaleAuditofPedestrianStreetscapes(MAPS)Mini[13],

couldbereliablytrainedandvalidatedusingcomputervisionanddeeplearningtechniques

fromasampleofGSVimagesacrossfivecities. Wefurtherinferredthepresenceor

absenceofthesemicroscalefeaturesinGSVimageswithinbuffersaround512homes

forparticipantsenrolledinthebaselinephaseofthe WalkITArizonaphysicalactivity

trial.Additionally,weexaminedthecorrelationsbetweenourautomatedmicro-scaleaudit

againstmacroscalewalkabilityandparticipantperceptionsoftheseneighborhoodfeatures

andrelatedsubscales.

Thispaperisstructuredasfollows:inSection2(MaterialsandMethods),weintroduce

thestudydesignandparticipantrecruitmentforthewalkabilityanalysis,outlinehow

perceivedwalkabilityismeasured,anddetailhowmacroscalewalkabilityisdetermined

usingGIS.ForthemicroscalewalkabilityassessmentusingGSVimages,wepresenthow

microscalefeaturesarederivedfromtheimagesusingtrainingandvalidationdatasetsand

outlinetheclassifiertrainingandevaluationprocess. Wethenexplainhowneighborhood

microscalefeaturesarequantifiedandanalyzed.InSection3(Results),wepresentthe

imageclassifierperformanceandthemodelinferenceresults.Lastly,wediscusstheresults

inSection4andofferconclusions.

2. MaterialsandMethods

StudyDesignandParticipantRecruitment.Thecurrentstudyuseddatacollectedfrom

participantsenrolledintheWalkITArizonatrialasdescribedbyAdamsetal.[10].Briefly,

participantenrollmentwasbalancedacrossfourneighborhoodtypesinMaricopaCounty,

AZ,accordingtocensusblockgroupsocioeconomicstatus(SES)andGIS-measuredmacro-

levelwalkability.Forparticipantsampling,wecomputedblockgroupSESandwalkability

usingavailablecensusmedianincomedataandpublicregionaldatasetsfornetresidential

density,landuse,intersectiondensity,andpublictransitdensity.FollowingFranketal.[6],

blockgroupsinthefirstthroughfifthdecilesofSESwerecategorizedas“lowerSES”and

thoseinthesevenththrough10thdecileswerecategorizedas“higherSES”.Thesixth

decilewasomittedtominimizemis-categorizationforparticipantsontheboundaries.

Similarly,blockgroupswererankedandcategorizedinto“lowerwalkable”(firstthrough

fourthdeciles)and“higherwalkable”(sevenththrough10thdeciles)withthefifthand

sixthwalkabilitydecilesexcludedtominimizethelikelihoodofmis-categorization.Finally,

blockgroupswereclassifiedaccordingtotheircombinedwalkabilityandSESyielding

fourneighborhoodstrata:“higherSES/higherwalkable”,“lowerSES/higherwalkable”,

“higherSES/lowerwalkable”,and“lowerSES/lowerwalkable”.Studymarketingmaterials

targetedeligibleblockgroupsfromthesestrata.

Enrolledparticipants(N=512)metthefollowinginclusioncriteria:(1)livedinone

ofthefourneighborhoodstratainMaricopaCounty,(2)18–60yearsofage,(3)generally

healthy,and(4)insufficientlyactive.Thenumberofparticipantsforeachneighborhoodtype

rangedfrom108inthe“lowerwalkable/lowerSES”to136inthe“higherwalkable/higher

income”and“lowerwalkable/higherincome”neighborhoods.Themeanagewas45.5

(SD=9.1)years,withthemajorityofthesamplereportingbeingfemale(64.3%),white

(84%),non-HispanicorLatino(81.2%),andmarriedorlivingwithapartner(67.5%).The

samplereportedamedianhouseholdincomeof60,000–79,999USD,medianeducational

attainmentofcollegegraduate,amediandistancetoworkof10.1miles(16,316m),anda
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mediantimeatcurrentresidenceof52months(seeAdamsetal.forfullinclusion/exclusion

criteriaandsamplecharacteristics[10]).

PerceivedWalkabilityAttributes.Participantsevaluatedtheirperceivedneighborhoodat-

tributesusingtheNeighborhoodEnvironmentWalkabilityScale(NEWS)[39],completedat

thebaselineappointment.SevenNEWSsubscaleswerecomputedusingscoringguidelines

publishedathttps://drjimsallis.org/Documents/Measures_documents/NEWS_scoring.

pdf(accessedon14March2015).Theseincludedresidentialdensity,proximitytononresi-

dentiallanduses,streetconnectivity,presenceofwalkingandcyclingfacilities,aesthetics,

trafficsafety,andcrimesafety. Higherscoresoneachofthesubscalesandindexscore

indicatehigherperceivedwalkability.TheNEWSsubscaleshavedemonstratedgoodtoex-

cellenttest–retestreliabilityandtheabilitytodiscriminatebetweenhighandlowwalkable

neighborhoods[40,41].

GIS-MeasuredMacroscaleWalkability.Inadditiontoblockgroupwalkabilitydescribed

aboveforrecruitmentandenrollmentpurposes,wealsocalculatedindividual-levelwalka-

bilitycomponentsandtheoverallindexaroundenrolledparticipanthomes.Participants’

homeresidentialaddressesweregeocodedusingArcGIS10.5(ESRI,Redlands,CA,USA)

withUSCensusTigerlineaddressfeature.Geocodedaddresseswereusedtocreatea500m

“individual-level”bufferthroughoutthestreetnetworkandtogeoprocessspatialdatasets

andcreate“individual-level”GISvariablesforthefollowingcomponents:netresidential

density(i.e.,numberofhousingunitsdividedbyresidentialparcellandarea),land-usemix

(i.e.,diversityofseverallanduseswithnormalizedscoresrangingfrom0forsingleuseto

1indicatinganevendistributionacrossresidential,retail,recreational,office,civic,food,

andentertainmentparcellanduses),intersectiondensity(i.e.,numberofthree-legormore

intersections),andpublictransitaccess.Acompositewalkabilityindexwascalculatedwith

thefollowingformula:walkabilityindex=[(z-scorefornetresidentialdensity)+(z-score

forland-usemix)+(z-scoreforintersectiondensity)+(z-scorefortransitaccess)].Figure1
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MicroscaleFeaturesandTrainingandValidationDatasets.Tocurateahigh-qualitydataset

oflabeledfeaturesforthemicroscalefeaturesofinterestfortrainingandvalidation,we

reliedonexistingGSVimagesofstreetintersectionsfromPhoenix,AZ(133,235images),

Washington,DC(20,784images),SanDiego,CA(8000images),Seattle,WA(8000images),

andBaltimore,MD(8578images).Inaddition,wereliedonnon-intersectionimagesin

Phoenix(1,331,994images).Theimageswereretrievedbetween2018and2019forurban

climatestudies[42–44].Becauseimagesdidnotnecessarilycontainafeatureofinterest,

wereliedonalargersetofimagesthanusedforanysinglefeature.Theadvantageof

dividingtheimagesintotheseintersectionandnon-intersectioncategorieswastoallowus

touseonlyimagesthatwerenecessaryforaspecificimageclassifier.Forexample,totrain

azebracrosswalkclassifier,weonlyneededintersectionimages,and,forsidewalksand

sidewalkbuffers,werequiredbothintersectionandnon-intersectionimages.Thefollowing

classeswereusedtocreatetheirrespectiveimageclassifiers:(1)sidewalk(2)sidewalk

buffer(3)curbcut(4)zebracrosswalk(5)linecrosswalk(6)walksignal(7)bikesymbol,

and(8)streetlight.

CreatingImageClassifiers.Tostudyassociationsbetweenmodel-detectedmicroscale

streetfeaturesandGIS-measuredandperceivedneighborhoodwalkability,wewantedthe

systemtodeterminethepresenceorabsenceofeachoftheeightstreetfeaturesatevery

auditpointwithinparticipants’neighborhoodnetworkbuffers.Toaccomplishthis,we

createdaseparateimageclassifierforeachstreetfeatureusingtheEfficientNetB5neural

architecture[45].Foreachinputimage,theclassifieroutputtheprobabilityofstreetfeature

presence(i.e.,crosswalk,curbcut,etc.)usingthevisualfeaturesitidentifiedintheimage.

TheclassifiertrainingandevaluationprocessconsistedofthestepsshowninFigure2and
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CreatingInitialMaricopaDatasets.Thefirststepincreatingourclassifierswastocreate

asetofimageslabeledwiththeappropriateclassification(i.e.,presenceorabsenceofstreet

feature)totraintheclassifierandaseparatesetoflabeledimagestovalidateclassifier

performanceaftereachstepofthetrainingprocess. WeusedourknowledgeofPhoenix

neighborhoodstoselectinitialGSVimagesfromexistingimagedatasetstobeusedin
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thetrainingandvalidationdatasets.Tolabelthedatasets,weusedtheopenannotation

tool,wkentaro/labelme,availableat:https://zenodo.org/record/5711226#.YhzeS-jMJaQ

(accessedon10April2018)[46].

TrainingandValidationLoop:Usingtheinitialtrainingandvalidationdatasetsinplace

foreachstreetfeature,wetrainedaclassifiertorecognizethepresenceorabsenceofa

streetfeatureinanimage.Eachstepintheclassifiertrainingprocesswasonepassthrough

theentiretrainingdataset.Aftereachstep,thetrainedclassifierwassavedforpotential

futureuse.Thetrainingcontinueduntiltheclassifierstartedoverfittingortheperformance

metricsdidnotimproveaftereachstep.Topreventoverfitting,wetrackedtrainingand

validationerrorvalues. Wedeterminedthattheclassifierhadoverfitwhenthetraining

errorcontinuedtodecreasebutthevalidationerrorbegantoincrease. Whentrainingwas

complete,weselectedtheclassifierwiththebestperformancemetricsfromallthesaved

classifierswhilemakingsurethattheclassifierhadnotoverfit[47].

Forimagesetswithunsatisfactoryperformancemetricsofthetrainedclassifier,we

visuallyexaminedthevalidationdatasettounderstandfalsepositiveandfalsenegative

results. WethenfoundadditionalimagesfromthePhoenixdatasetthatweresimilartothe

oneswheretheclassifierfailed,labeledthem,andaddedthemtothetrainingdataset. With

thenewtrainingdataset,werestartedthetrainingprocess.

Oncethetrainedclassifierperformedwell,weraninferenceonadditionalPhoenix

imagestounderstandhowtheclassifierwasperformingonthoseadditionalimages.If

theclassifieridentifiedthestreetfeaturesinthenewimageswell,weconsideredthat

classifiertobetrained.Otherwise,wetriedtounderstandtheimageswheretheclassifier

failed,labeledtheimages,addedthoseandothersimilarlabeledimagestothetrainingand

validationdatasets,andrestartedthetrainingprocess.

Wefurtherimprovedtheclassifierbyaddingimagesfromothercities(i.e.,SanDiego,

WashingtonDC,Seattle,andBaltimore)tothetrainingdatasets.

ConsiderationsinTrainingtheClassifiers:Singlevs.MultipleClassifiers. Weselectedan

approachusingaseparateclassifierforeachfeatureinsteadofasingleclassifierthatwould

simultaneouslydetectallfeaturesbecauseitallowedustoiterateandimproveoneach

featureclassifiereffectivelyandefficiently.Additionally,asingleclassifierapproachcanbe

problematicduetothediscrepancyinprevalenceacrossfeatures.Trainingasingleclassifier

toimproveonaspecificfeaturethatislessprevalentinimages,suchasazebracrosswalk,

canleadtooverfitting[47]ondetectingafeaturethatishighlyprevalentinthedatasetsuch

asacurbcut.Thus,asingle-modelapproachmayrequiresettlingonapoorer-performing

modeloveralltobalancetheseissuesacrossfeatures.

SelectingtheClassifierArchitecture.Consideringtheresultsofhowdifferentneuralnet-

workarchitecturesperformedontheImageNetchallenge[48],aswellastheavailabilityof

pretrainedweights,wedecidedtobaseourclassifierontheEfficientNetB5[45]architecture.

SelectingaDeepLearningFramework.FrameworkssuchasTensorFlow,Keras,PyTorch,

Caffe,andFast.aiarepopularinthedeeplearningfieldtocreateneuralnetworksthatsolve

avarietyofcomputervisionproblems. Weevaluatedthedifferentframeworksforthe

purposeofcreatingimageclassifiersandselectedFast.ai[49]duetoitseaseofuse,inbuilt

dataaugmentationcapabilities,andthesimplicityofaccomplishingtransferlearning.

TransferLearning.TrainingaclassifierasdeepasEfficientNetB5isatime-consuming

process.Toreduceclassifiertrainingtimeandquicklyiteratetoimprovemodelperfor-

mance,weusedtransferlearning.Toachievetransferlearning,weusedweightsfroma

classifierpretrainedontheImageNetdatasetastheinitialweightsfortrainingourclas-

sifiers[50].Thepretrainedclassifierscouldidentifypatternsfor~1000differentclasses,

whichfacilitatedtrainingourimageclassifiers.

DataAugmentationTechniques. Whenselectingthedataaugmentationtechniques,an

importantconsiderationwasensuringthataugmentingdidnotresultinlosinginformation

thatwascriticalfortheclassifiertoinferafeature.Forexample,ifasidewalkwasonly

asmallsectionoftheimageatoneoftheedges,zoom,crop,warp,cutout,androtation

augmentationscouldcompletelyremovethesidewalkfromtheimage,resultinginthe

https://zenodo.org/record/5711226#.YhzeS-jMJaQ
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classifierlearningincompleteinformation.Thus,weappliedonlythreedataaugmentation

techniques:(1)horizontalflip,(2)brightness,and(3)contrastadjustments.

QuantifyingNeighborhoodMicroscaleFeatures.Thetrainedmodelswereusedtoinfer

(i.e.,detect)eightstreetfeaturesin765,869previouslyunexaminedphotosavailablein

participantbuffersinPhoenix,AZ.Theprobabilitythresholdtoclassify“presence”ofa

detectedfeatureinimageswassetto≥0.50andusedforeachcardinaldirectionassociated
witheverycoordinate(i.e.,ifthemodelprobabilityofspecificfeaturepresenceinanimage

was≥0.50,weclassifiedthefeatureaspresent).Tocapturethepresenceofsidewalksona
blockregardlessofthesideofthestreet,weaveragedthefourmodel-detectedprobabilities

fromthefourdirectionalimages.Thisapproachwasusedforsidewalkstoensurewedid

notmisssidewalksonlyononesideoftheblockorvisibleinonlyoneofthefourimages.

Forsidewalkbuffers,weestimatedthepresenceofsidewalkbuffersforcoordinateswitha

model-detectedsidewalkonly.Tosummarizeeachparticipant’sneighborhood,wesummed

thecountofcoordinateswithpositiveinstancesofeachfeaturewithintheneighborhood

bufferanddividedbythecountofcoordinateswithinthebuffertoobtainanaverage

countofneighborhoodcoordinateswithpositiveinstancesofeachfeature.Becausethe

denominator(numberofcoordinates)couldvarybyintersectionvs.non-intersection

feature,theaveragesofeachfeaturewerez-scoredtocreatearankingrelativetothesample

mean.A“totalmicroscalefeaturescore”foreachparticipant’shomeneighborhoodwas

createdbysummingindividualz-scoresforeachofthemicroscalefeaturesdetectedwithin

theneighborhoodbuffer.

AnalyticPlan.Theperformanceoftheimageclassifierwasassessedusingthevalida-

tiondatasetforPhoenix,AZ.Asthetaskwasclassifyingimagesbystreetfeaturepresenceor

absence,wecalculatedprecision,recall,negativepredictivevalue,specificity,andaccuracy

foreachfeature.Precisionwastheprobabilitythat,followingapositivemodel-detected

observation,theimagetrulyhadthefeaturepresent(i.e.,truepositives/truepositives+

falsepositives).Recallwastheprobabilitythatamodel-detectedobservationwastruly

presentinanimage(i.e.,truepositives/truepositives+falsenegatives).Negativepre-

dictivevaluewastheprobabilitythat,followinganegativemodel-detectedobservation,

theimagetrulydidnothaveafeaturepresent(i.e.,truenegatives/truenegatives+false

negatives).Specificitywastheproportionofimagesclassifiedasnothavingafeature

amongallimagesthattrulydidnothavethefeaturepresent(i.e.,truenegatives/true

negatives+falsepositives).Accuracywastheprobabilityofacorrectobservation(i.e.,true

positives+truenegatives/allobservations).

Additionally,weexaminedtheextenttowhichmodel-detectedneighborhoodmi-

croscalefeaturescorrespondedwithGIS-measuredmacro-levelwalkabilityandself-reported

neighborhoodwalkabilityattributes(i.e.,convergentvalidity)byconductingSpearman

rankcorrelationsbetween(1)model-detectedmicroscaleneighborhoodfeatures(z-scored

individualfeaturesandtotalmicro-scale)andGIS-measuredneighborhoodwalkability(z-

scoredindividualcomponentsandoverallwalkability),and(2)model-detectedmicroscale

neighborhoodfeatures(z-scoredindividualandtotalmicroscale)andparticipants’NEWS

items(e.g.,sidewalks,curbcuts)andsubscales(e.g.,walkingandcyclingfacilities).

3.Results

3.1.ImageClassifierPerformance

Eightimageclassifiersweretrainedtoidentifytheirrespectivestreetfeatures(i.e.,

sidewalk,sidewalkbuffer,curbcut,zebracrosswalk,linecrosswalk,walksignal,bike

symbol,andstreetlight).Table1providesthenumberofimagesusedfortrainingand

validationforeachoftheeightclassifiers.
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Table1.Summaryofthenumberofimagesusedfortrainingandvalidationdatasets.

Street
Feature

ImageCounts

Present Absent Total

All
Training

All
Validation

Phoenix
Only
Training

Phoenix
Only

Validation

All
Training

All
Validation

Phoenix
Only
Training

Phoenix
Only

Validation
Training Validation

Sidewalk 8868 2851 5177 1745 3702 1254 2298 429 12570 4105

Sidewalk
buffer

3530 629 1519 347 6066 1773 4461 1567 9596 2402

Curbcuts 5947 599 2406 268 6059 767 2459 599 12006 1366

Zebra
crosswalk

1687 2456 412 100 5604 6121 2971 879 7291 8577

Line
crosswalk

1762 1053 1693 758 4057 2462 3798 2257 5819 3515

Walk
Signal

3126 509 1951 216 4722 1221 2747 1014 7848 1730

Bike
Symbol

1127 152 853 132 9306 2138 6908 2078 10433 2290

Streetlight 1380 288 808 170 1213 273 761 171 2593 561

TheperformancemetricsforeachoftheimageclassifiersusingthePhoenix,AZ

validationdatasetaredisplayedinTable2.Generally,accuracywashighandrangedfrom

99.59%forzebracrosswalksto90.03%forstreetlights.Theprecisionvalues(whenthe

modelindicatedthepresenceofafeature,howlikelywasthemodeltobecorrectcompared

tohumanraters)rangedfrom100%forzebracrosswalksto86.73%forsidewalkbuffers.

Negativepredivevalues(i.e.,whenthemodelindicatedtheabsenceofafeature,how

likelywasthemodeltobecorrectcomparedtohumanraters)rangedfrom99.66%forbike

symbolsto89.93%forsidewalks.SeeAppendixAforatableofvalidationperformance

usingpooleddatafromallfivecities.

Table2.ValidationperformanceofimageclassifiersforPhoenix,AZ.

StreetFeature

Performance

Precision Recall
Negative

PredictiveValue
Specificity Accuracy

Sidewalk 97.93% 97.48% 89.93% 91.61% 96.32%

Sidewalkbuffer 86.73% 84.73% 96.63% 97.13% 94.88%

Curbcut 95.38% 92.54% 96.71% 98.00% 96.31%

Zebracrosswalk 100% 96.00% 99.55% 100% 99.59%

Linecrosswalk 95.97% 94.20% 98.06% 98.67% 97.55%

Walksignals 96.77% 97.22% 99.41% 99.31% 98.94%

Bikesymbols 93.28% 94.70% 99.66% 99.57% 99.28%

Streetlight 88.64% 91.76% 91.52% 88.30% 90.03%

3.2.ModelInferenceResults

Theprevalenceofmodel-detectedfeaturesacrossthe512participantneighborhoods

inPhoenix,AZwashighestforsidewalks(89.8%),followedbystreetlights(31.5%),curb

cuts(26.2%),sidewalkbuffers(15.9%),linecrosswalks(4.9%),walksignals(3.7%),bike

symbols(0.5%),andzebracrosswalks(0.3%).

3.2.1.AssociationsbetweenModel-DetectedMicroscaleFeatureandGIS-Measured
Macro-LevelWalkability

Spearmancorrelationsbetweenmodel-detectedmicroscalefeaturesandGIS-measured

walkabilityattributesarepresentedinTable3.Themacroscalewalkabilityindexcorrelated
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withninemicroscalefeatures,whilethefourindividualmacroscalecomponentscorrelated

withsevenmicroscalefeatures.Ageneralpatternofsignificantweak-to-moderatepositive

associationsexistedbetweenGIS-measuredmacroscalewalkabilityandmicroscalefeatures

(r=0.11to0.52,p<0.05).Thereweretwoexceptionstothispattern:(1)model-detected

curbcutshadweakbutsignificantnegativerelationshipswithintersectiondensity,transit

density,andoverallmacro-levelwalkability,and(2)GIS-measuredintersectiondensityhad

weakbutsignificantnegativeassociationswithmodel-detectedsidewalkbuffers,curbcuts,

linecrosswalks,walksignals,andthetotalmicroscalefeaturescore.Overall,themagnitude

ofassociationswithmodel-detectedmicroscalefeatureswasgreatestfortransitdensity,

land-usemixdiversity,andoverallGIS-measuredwalkability.Model-detectedmicroscale

featuresgenerallyshowingthegreatestmagnitudeofassociationswithGIS-measured

walkabilitywerecrosswalks,walksignals,bikesymbols,streetlights,andtotalmicroscale

featurescores(r=0.19–0.52,p<0.05).

3.2.2.AssociationsbetweenModel-DetectedMicroscaleFeatureandPerceived
NeighborhoodWalkability

Spearmancorrelationsbetweenmodel-detectedmicroscalefeaturesandNEWSsub-

scaleswalkabilityattributesarepresentedinTable3.Subscalesforperceivedresidential

density,land-usemixdiversity,presenceofwalkingandcyclingfacilities,andperceived

aestheticswerepositivelyassociatedwithoneormoremodel-detectedmicroscalefeatures

(r=0.11–0.31).Significantnegativeassociationswerefoundbetweenmodel-detectedcurb

cutsandperceivedresidentialdensity(r=−0.19,p=0.000)andbetweenmodel-detected
sidewalksandperceivedaesthetics(r=−0.24,p=0.000).Perceivedstreetconnectivity,
pedestriansafety,andcrimesafetywerenotrelatedtoanymodel-detectedmicroscale

featureortothetotalmicroscalefeaturescore.Amongmodel-detectedmicroscalefeatures

withcorrespondingindividualNEWSitems,thereweresignificantpositiveassociations

betweenmodel-detectedandperceivedsidewalks(r=0.41,p=0.000),model-detected

sidewalkbuffersandperceivedgrass/dirtsidewalkbuffers(r=0.26,p=0.000),and

model-detectedandperceivedcrosswalksandwalksignals(r=0.15,p<0.01).
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Table3.Model-detectedmicroscalefeaturecorrelationswithGIS-measuredmacro-levelwalkabilityandperceivedNEWSscales.

Model-
Detected
Microscale
Feature

GIS-MeasuredMacroscaleNeighborhood
Walkability

PerceivedNeighborhoodWalkability

Residential
Density

Land-Use
Mix

Diversity

Intersection
Density

Transit
Density

Overall
Walkability
Index

Residential
Density

Land-Use
Mix

Diversity

Street
Connectivity

Walkingand
Cycling
Facilities

Aesthetics
Pedestrian
Safety

Crime
Safety

Sidewalks 0.12** 0.05 0.18** −0.06 0.02 −0.06 −0.02 −0.03 0.11* −0.24*** 0.01 −0.02

SidewalkBuffers 0.18*** 0.30*** −0.14** 0.01 0.17*** 0.07† −0.01 0.05 0.17*** 0.19** −0.08† 0.01

CurbCuts 0.04 0.16* −0.16*** −0.20*** −0.11* −0.19*** −0.06 0.06 0.17*** −0.03 0.08† 0.04

Zebracrosswalks 0.16*** −0.07 0.04 0.37*** 0.02 0.15** 0.04 −0.01 −0.04 −0.06 −0.04 −0.07

Linecrosswalks 0.06 0.42*** −0.14** 0.13** 0.39*** 0.28*** 0.24*** 0.01 0.02 0.03 −0.01 −0.02

Allcrosswalks 0.07† 0.39*** −0.12** 0.38** 0.38*** 0.30*** 0.23*** 0.00 0.01 0.01 −0.01 −0.03

WalkSignals 0.09* 0.37*** −0.10* 0.52*** 0.46*** 0.31*** 0.23** 0.02 0.00 0.07 −0.07† −0.07

BikeSymbols 0.17** 0.22*** 0.06 0.20*** 0.28*** 0.25*** 0.15** −0.01 0.02 −0.03 −0.03 −0.05

Streetlights 0.23*** 0.38*** 0.00 0.12** 0.35*** 0.17*** 0.07 −0.00 0.14** −0.03 −0.06 −0.07

TotalMicroscale 0.19*** 0.38*** −0.12* 0.11* 0.30*** 0.13** 0.07† 0.02 0.21*** 0.04 −0.02 −0.02

Notes:Spearmanrankcorrelationcoefficients.†p<0.10,*p<0.05,**p<0.01,***p<0.001.Model-detectedfeatureswereassessedbyz-scoringtheaveragecountofpositivefeature
instancesforcoordinateswithina500mstreetnetworkbufferaroundparticipants’homes.PerceivedneighborhoodfeatureswereassessedbytheNeighborhoodEnvironment
WalkabilityScale(NEWS).Allcrosswalks=sumofzebraandlinecrosswalks.Totalmicroscalescore=sumofz-scoreaveragesforbikesymbols,allcrosswalks,curbcuts,walksignals,
sidewalks,sidewalkbuffers,andstreetlightswithineachparticipant’s500mneighborhoodbuffer.
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4.Discussion

Thispaperdemonstratesthattheuseofcomputervisiontodetectintersectionand

streetsegmentfeaturesthatareconceptuallyrelatedtopedestrianphysicalactivity(i.e.,

zebraandlinecrosswalks,curbramps,walksignals,sidewalks,sidewalkbuffers,bike

symbols,andstreetlights)isfeasiblewithhighcorrespondencetohumanraters.Indi-

vidualmicroscalefeaturesandasummaryindexofmicroscalefeaturescorrelatedwith

bothGIS-measuredmacroscalewalkabilityandwithhumanparticipants’reportsoftheir

neighborhoodenvironment.Theseexpectedcorrelationsofferadegreeofvalidlytothe

computervisionmodelsofmicroscalefeatures.Thedevelopmentofmachinelearning

modelsfordetectingmicroscalefeaturesopensthepossibilityofconductingresearchacross

broadregionsandnewresearchquestions.

Computermodel-detectedmicroscalefeaturescorrelatedwithboththeindividual

componentsofmacroscalewalkabilityandthemacroscalewalkabilityindexaroundpar-

ticipantneighborhoodsinPhoenix.Thesecorrelationswereexpected,ashigherlevels

ofmacroscalewalkabilityareoftencomplementedbyimprovementstomoreaffordable

microscaleimprovements(e.g.,curbcuts,sidewalks)thatfurtherenhancethestreetscape.

Previousstudieshaveshownthatindividualmicroscalefeaturesandmacroscalewalkabil-

ityindicesareweaklytomoderatelycorrelated,withbothcontributinguniquemeasures

ofthebuiltenvironmentforwalking[4]. Whilemostcomponentcorrelationsbetween

macro-andmicroscalefeatureswerepositive,themacroscalecomponentofintersection

densitywasnegativelycorrelatedwithallmicroscalefeaturesexceptsidewalks.Higher

intersectiondensitiesaretypicallyobservedindenserurbansettingswithshorter,more

connectedstreetblocks.Onecouldexpecturbansettingswithshorterblockstohavea

greaterprevalenceofsidewalksandrelatedsafetyfeaturessuchascrosswalksandcurbcuts;

however,theWalkITAZparticipants’perceptionsofstreetconnectivityandpedestrian

safetysurprisinglydidnotcorrelatewithanymodel-detectedfeatures.

Model-detectedmicroscalefeaturescorrelatedwithfourperceivedsubscalesofthe

builtenvironment,specificallyresidentialdensity,land-usemix,walkingandcyclingfacili-

ties,andaesthetics.WalkITparticipantsevaluatedtheirneighborhoodsusingthepreviously

validatedNEWS,whichhasbeenvalidatedagainstGIS-measuredmacroscalefeaturesand

usedindozensofstudiesasapredictorofpedestrianwalkingfortransportationwith

weaktomoderatecorrelations(i.e.,r<0.40)[40,41].TheNEWSdoesnotofferanindexto

summarizeitssevensubscales,butourindexofmodel-detectedmicroscalefeaturesdid

correlatewithperceivedresidentialdensityandwalkingandcyclingfacilitiessubscales

(r=0.13and0.21,respectively).Thestrongestmicroscalerelationshipsoccurredfortheresi-

dentialdensitysubscale,whichhadeightsignificantcorrelations,withmodel-detectedwalk

signalsandcombinedcrosswalks(zebraandline)correlatingthestrongest(r=0.30–0.31).

Thissuggeststhathigherlevelsofmodel-detectedsafetyfeaturesforpedestrianscorrelated

withhigherlevelsofindependentperceptionsofresidentialdensity,whichalignswith

expectationsthatthesefeatureswouldbemoreprevalentinareaswithmorepeople.The

presentresultswereconsistentwithpreviousstudiesshowingweaktomodestagreement

betweenobjectiveandsubjectiveassessmentsofneighborhoodwalkabilityoverall,with

lowerconcordanceamongthosewithlessphysicalactivityandhigherBMI[12,51].Because

thecurrentstudyincludedonlyinsufficientlyactiveindividualswithamedianBMIof

33.0,resultsmaynotgeneralizetootherpopulations. However,consideringprevious

research[41],wewouldexpecthighercorrespondencebetweenmodel-detectedfeatures

andperceivedneighborhoodwalkabilityinamorephysicallyactivesample.

MethodologicalConsiderations.Twomajorstrengthsshouldbenoted.First,inprevious

studies,humanratersauditedonlypartsofparticipantneighborhoods—usuallylimited

toaquartermilerouteorsampleofblocksinaneighborhood—byinpersonorvirtual

observation.Thecurrentcomputervisionapproachwasusedtoauditallblocksand

crossingsfortheentireneighborhoodforallparticipants,limitedonlybythenumberof

GSVphotosavailableandthetimeframeofthestudy.Second,WalkITparticipantswere

purposefullyrecruitedinsimilarnumbersfromneighborhoodshighandlowinwalkability
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andhighandlowinneighborhoodsocioeconomicstatus.Therefore,ouranalysesinvolving

microscale,macroscale,andparticipantperceptionsreflectthefullspectrumofwalkability

andincomeenvironmentspresentinthePhoenix,AZregion.

However,ourmodelswerelimitedtosevenofthe15featuresassessedbytheMAPS

Miniroadmap.Futureworkwillfocusondevelopingmodelsfordetectingadditional

microscalefeaturessupportiveofphysicalactivity(e.g.,benchesimportantforolderadults).

SeveralMAPSMiniitems,suchastransitstopsandpublicparks,arenowcommonly

includedinpubliclyavailabledatasets,makingitpossibletoconductauditsusingGIS

technology.Otheritems,suchasbuildingandsidewalkdisrepairorgraffitiaredifficultto

observefromtheperspectiveofomnidirectionalcameras,requiresubjectiveorqualitative

judgement,oraremoretransientinnature.Alternativeartificialintelligencemethodologies

havebeensuggestedtoovercomethescalabilitychallengesassociatedwithassessingthese

items.Forexample,Athensetal.[52]appliedanaturallanguageprocessingapproach

todetectsidewalkmaintenance,buildingsafety,andotherurbanblightindicatorsfrom

311data,whilePingetal.[53]leveragedcitygarbagetrucksequippedwithvideocameras

combinedwithedgecomputingtechnologytodevelopadeeplearningmodelfordetecting

andclassifyingstreetlitter.Acombinationofapproacheswilllikelybeneededtoprovidea

comprehensivecharacterizationofmicroscaleneighborhoodstreetscapesonalargescale.

Severalconsiderationsalsoshouldbenotedinthedevelopmentofcomputervision

models.First,weexploredexistingannotatedimagedatasetssuchasMapillary[54]and

CAMVID[55]andfoundthatlabelingdidnotcapturethefeaturesofinterest,aswell

asledtoincorrectclassificationsandbucketingofcategories,whichprecludedutilizing

existingdatasetsanddevelopinggoodcomputervisionmodelsofthefeaturesofinterest.

Second,whileastandardizednumberofimagesforeachfeaturefortrainingandvalidation

datasetswouldhavebeenconceptuallyclearertoreport,wefoundthatadditionaltraining

orvalidationimageswereneededforcertainfeatures(e.g.,bikesymbols,zebracrosswalks)

becauseofthelowprevalenceofsuchfeaturesinthePhoenix,AZregion. Wealsocollected

agreaternumberoftrainingsamplestoensurethatwecapturedinherentvariabilityin

featuredesignandphotosoffeaturesthatexistintherealworldinthetrainingdataset.

Forexample,thevariabilityinthedesignofcrosswalksvariesevenbysmallgeographic

regionstoincludedifferentpatternsandcolors(e.g.,crosswalkwithLGBTrainbowflag

colors). Wealsoconsideredimageartefacts(e.g.,shadowsthatappearsimilartozebra

crossings,distancefromGSVcameratostreetlight)thatresultedinsmallorfuzzytraining

samples.Inaddition,somephotoelementsconfusedthemodels(e.g.,actualbikevs.

paintedbikesymbol)andnecessitatedadditionaltrainingsamples. Althoughresults

presentedinthecurrentanalysesusedaPhoenix,AZvalidationdataset,weexpectthatthe

generalizabilityofourtrainedclassifierswasenhancedwiththeinclusionofimagesfrom

fouradditionalgeographicallydiversecities(i.e.,Seattle,SanDiego,Washington,D.C.,and

Baltimore)intheclassifiertraining(seeAppendixATableA1).Toscaleupresultstocities

aroundtheglobe,imagesfromothercountrieswouldhavetobeincludedinthetraining

dataset,becausestreetfeaturessuchassidewalksandcrossingsdonotfollowinternational

standards.

5.Conclusions

Thecurrentresultsdemonstratethatcomputervisionmodelscanreliablyconduct

neighborhoodauditsofpedestrianstreetscapefeatures.Ourmodelresultscorrelatewith

bothobjectiveandself-reportedmacroscaleneighborhoodwalkability.Futureresearch

willexaminetherelationshipbetweenmodel-detectedmicroscalefeaturesandphysical

activityandchronicdiseaseoutcomes.Thecomputervisionapproachtoauditingneigh-

borhoodspromisestoacceleratethepaceofmicroscaleresearchandopensnewlinesof

microscaleresearchforurbanplanningandpublichealth.Resultssuggestthatautomated

virtualstreetscapeauditsmayprovideascalablealternativetohumanaudits,enabling

advancementsinthefieldcurrentlyconstrainedbytimeandcost.Reducingrelianceon

trainedauditorswillenablescalingupauditstoassesshundredsorthousandsofneighbor-
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hoodsorevenentirecitiesforsurveillance,hypothesistesting,identifyingenvironmental

disparities,orchangedetectionresearchrelatedtopedestrianstreetscapes.Forexample,

givensufficientresources,suchmodelscouldbeappliedatscaletomapallsidewalks

intheUS,evaluatewhethermotivationalphysicalactivityinterventionsperformbetter

inneighborhoodswithmorevs.fewersidewalks,determinewhethertheprevalenceof

sidewalksdiffersbyneighborhoodsthatvarybyrace/ethnicityorincome,orevenevaluate

changeinsidewalksbeforeandafteranewdevelopmentorpassageofacompletestreet

policyortransportationinfrastructuretax.Thisworkalsohaspotentiallyimportantimpli-

cationsforurbanmunicipalitydecision-makers. Whilepreviousworkhaslargelyfocused

onmacroscalewalkabilityduetoeaseofmeasurement,itisoftennotfeasibletochange

theseaspectsofthebuiltenvironmentduetocomplexityandcost.However,microscale

featurescanbemoreeasilyandcost-effectivelymodifiedthanmacroscaleelements.Thus,

large-scalemicroscaleauditscanenablemunicipalitiestomakewell-informeddecisions

aboutstreetscapeenhancementsthatequitablypromotephysicalactivitywithinbudgetary

constraints.
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AppendixA

TableA1.ValidationperformanceofimageclassifiersinpooleddatasetincludingPhoenixAZ,San

DiegoCA,WashingtonD.C.,SeattleWA,andBaltimoreMD.

StreetFeature

Performance

Precision Recall
Negative

PredictiveValue
Specificity Accuracy

Sidewalk 97.25% 96.81% 92.82% 93.78% 95.88%

Sidewalkbuffer 87.10% 85.85% 95.01% 95.49% 92.96%
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TableA1.Cont.

StreetFeature

Performance

Precision Recall
Negative

PredictiveValue
Specificity Accuracy

Curbcut 83.21% 65.86% 52.32% 73.81% 68.54%

Zebracrosswalk 97.33% 84.97% 93.61% 98.95% 94.62%

Linecrosswalk 89.20% 75.59% 71.20% 86.83% 80.20%

Walksignals 86.00% 73.38% 68.80% 83.09% 77.40%

Bikesymbols 95.00% 95.00% 98.33% 98.33% 97.50%

Streetlight 84.30% 86.44% 83.84% 81.37% 84.09%
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