
HoloAR: On-the-fly Optimization of 3D Holographic Processing
for Augmented Reality

Shulin Zhao
suz53@psu.edu

The Pennsylvania State University
State College, PA, USA

Haibo Zhang∗
huz123@psu.edu

The Pennsylvania State University
State College, PA, USA

Cyan S. Mishra
cyan@psu.edu

The Pennsylvania State University
State College, PA, USA

Sandeepa Bhuyan
sxb392@psu.edu

The Pennsylvania State University
State College, PA, USA

Ziyu Ying
ziy5087@psu.edu

The Pennsylvania State University
State College, PA, USA

Mahmut T. Kandemir
mtk2@psu.edu

The Pennsylvania State University
State College, PA, USA

Anand Sivasubramaniam
axs53@psu.edu

The Pennsylvania State University
State College, PA, USA

Chita R. Das
cxd12@psu.edu

The Pennsylvania State University
State College, PA, USA

ABSTRACT
Hologram processing is the primary bottleneck and contributes
to more than 50% of energy consumption in battery-operated aug-
mented reality (AR) headsets. Thus, improving the computational
efficiency of the holographic pipeline is critical. The objective of
this paper is to maximize its energy efficiency without jeopardizing
the hologram quality for AR applications. Towards this, we take the
approach of analyzing the workloads to identify approximation op-
portunities. We show that, by considering various parameters like
region of interest and depth of view, we can approximate the ren-
dering of the virtual object to minimize the amount of computation
without affecting the user experience. Furthermore, by optimizing
the software design flow, we propose HoloAR, which intelligently
renders the most important object in sight to the clearest detail,
while approximating the computations for the others, thereby sig-
nificantly reducing the amount of computation, saving energy, and
gaining performance at the same time. We implement our design in
an edge GPU platform to demonstrate the real-world applicability
of our research. Our experimental results show that, compared to
the baseline, HoloAR achieves, on average, 2.7× speedup and 73%
energy savings.

CCS CONCEPTS
• Computing methodologies → Ray tracing; • Computer sys-
tems organization → Embedded software; • Human-centered
computing → Visual analytics.
∗Work was done as a student at Penn State.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MICRO ’21, October 18–22, 2021, Virtual Event, Greece
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8557-2/21/10. . . $15.00
https://doi.org/10.1145/3466752.3480056

KEYWORDS
Augmented Reality, Holographic Processing, Approximation,
Energy-efficiency

ACM Reference Format:
Shulin Zhao, Haibo Zhang, Cyan S. Mishra, Sandeepa Bhuyan, Ziyu Ying,
Mahmut T. Kandemir, Anand Sivasubramaniam, and Chita R. Das. 2021.
HoloAR: On-the-fly Optimization of 3D Holographic Processing for Aug-
mented Reality. In MICRO-54: 54th Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO ’21), October 18–22, 2021, Virtual Event,
Greece. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3466752.
3480056

1 INTRODUCTION
Augmented reality (AR) has gained recent traction in both the con-
sumer and research communities, thanks to the advances in efficient
and low power computing technologies, high-speed communica-
tion, and specialized hardware platforms. These technologies have
become an important part of our daily life, in the form of creative
photography, content creation, gaming, online shopping, virtual
touring, and educational and non-educational training, etc. For ex-
ample, one of the earliest AR games, Pokémon GO (launched in
July 2016), had a cumulative download of over 1 Billion, and gener-
ated about $900 Million in revenue by late 20191. Moreover, these
AR infotainment applications have helped many of us through the
recent global pandemic by bringing us the liveliness of the virtual
outdoors, while we were confined to our homes, and more AR capa-
ble mobile devices penetrating the market with cheaper price tags
have made AR applications pervasive and made the virtual world
easily accessible for users on the tip of their fingers.

However, even the state-of-the-art mobile devices with high
bandwidth cannot meet the heavy compute and real-time demands
of the AR applications, leading to very low quality of service (QoS)
– in some cases as low as 1 frame per second (fps) [19, 54]. Further,

1To give a quantitative estimation of the popularity of the game, a Pokémon GO event
at Safari Zone New Taipei City, Taiwan in October 2019 had a total of 327,000 attendees
and they walked around 4.5 million kilometers to catch 50 Million Pokémons [5].

494

https://doi.org/10.1145/3466752.3480056
https://doi.org/10.1145/3466752.3480056
https://doi.org/10.1145/3466752.3480056

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Shulin and Haibo, et al.

the limited battery capacity prevents users from enjoying their AR
devices for extended periods of time.

To meet the heavy compute demands of these applications, most
of AR applications are run using high-end desktop/server-class
GPUs [18, 55], or specialized hardware accelerators [35] on cloud
platforms [16, 27]. However, since most of these applications are
now running on low-power mobile devices, and frequent communi-
cation of data to and from cloud via wireless medium is inefficient,
optimization of an AR pipeline to maximize the compute and en-
ergy efficiency, while providing adequate QoS, at an edge device is
an architectural challenge. Furthermore, existing AR headsets are
typically equipped with multiple sensors for head orientation, eye
tracking, motion detection, etc., to provide an interactive and life-
like experience. These sensor inputs play a major role in deciding
which portions of the 3D voxels need to be rendered for the user to
view. However, even selective rendering of the portion of a scene,
which is in the field of view (FoV) of the user, on a mobile device
with limited compute and power budget is challenging [19, 52]. This
calls for finding further opportunities for optimization. To under-
stand the computing requirements in a typical AR pipeline consists
of many stages (refer Sec. 2), we profiled a set of applications and
found that the hologram processing is the primary bottleneck in
terms of computation, energy consumption, and execution latency.

The heavy compute demand of the hologram (re)construction
has made this a promising candidate for acceleration, and prior
works have tried to offload it to cloud [16, 27, 67] and specialized
accelerators [35] to achieve high throughput, but doing so has led
the communication with the edge device to be a major bottleneck.
Others have proposed to design efficient and lightweight deep neu-
ral networks (DNNs) to achieve high quality scene rendering at
the edge device itself, but this requires model retraining/tuning for
a particular user [33, 54]. Apart from the above works targeting
all areas in a scene, foveated rendering techniques have been pro-
posed to reduce image resolution in the peripheral area (typically
beyond 135° vertically and 160° horizontally in human visual system
(HVS)), while maintaining a normal/high quality only for 5° foveal
vision [2, 22, 25, 47, 62]. Such differential resolution within an image
can reduce computational costs without significantly impacting
user experience [25, 47, 62]. Further optimizations such as eye-
dominance (i.e., HVS prefers scene perception from one eye over
the other) and learning-based foveated rendering are orthogonal to
this core idea and beyond the scope of this paper [24, 30].

Despite providing significant performance and energy-efficiency
benefits, these prior works still miss out on even more selective
rendering of viewed hologram images - beyond just the FoV and/or
regions of the user’s focus. This is the primary motivation of this
paper, where we explore trade-offs between hologram quality and
processing costs. These trade-offs are not very straightforward
due to the following challenges: First, among all of the inputs to
the AR headset (shown later in Fig. 1b), which one(s) are critical for
holographic processing? Second, which features of these inputs are
salient and need more fine-grained computation, and which of them
could be approximated without impacting the QoS? Third, how do
we make dynamic decisions of approximation based on the runtime
conditions (e.g., user’s current pose and eye movements)?

Towards this, we propose HoloAR, an opportunistic and edge-
friendly framework to speed up the AR holographic computation

Background

(a) An app.

Background

(b) HW components [20, 29].

Background

(c) SW pipeline [19, 50].

Figure 1: Main hardware components and software pipeline
on a typical AR device.

and improve its energy efficiency, with “approximation” as the
core idea. Starting from investigating and evaluating the existing
foveated rendering techniques, this work further explores the entire
design space for potential opportunities and optimizations unique
in AR applications, for speedup as well as energy savings. The
major contributions of this work can be summarized as follows:
• We first conduct a detailed characterization of a generic AR

processing pipeline to identify the major bottlenecks in current
state-of-the-art AR headsets, and set our optimization target as
the hologram computation. (Sec. 2.1)

• From two open-source AR datasets [1, 58], we identify two prop-
erties in AR hologram applications: spatio diversity for objects,
and temporal locality for the user (viewer) interests (i.e., user typ-
ically focuses on one region within a short period of time). Such
properties are leveraged as approximation opportunities to skip
the “unimportant” portions of the hologram computation, based
on user’s region of focus (known as foveated rendering), and
object’s distance/size from the user. (Sec. 2.2)

• To capture these two approximation opportunities from both
the user and object perspectives, first, the prior foveated ren-
dering idea (denoted as Inter-Holo design) has been imple-
mented (in Sec. 4.3) and found to work well (in Sec. 5) as in
prior works [22, 25, 30, 47]. In this paper, we have gone be-
yond foveated rendering (Inter-Holo), by proposing an optimiza-
tion/approximation called Intra-Holo, that complements the for-
mer in boosting performance/energy efficiency. Such Intra-Holo
enhancement is ideally suited for holographic processing at the
edge, without requiring additional hardware, cloud assistance,
or machine learning.

• We implement both the designs on an edge GPU platform [36],
without the need for any hardware modification. We evaluate
these designs using the NVPROF tool [37] and hardware power
management unit on the edge GPU platform [36]. Our exper-
imental results reveal that, HoloAR provides 29% reduction in
power consumption and 2.7× speedup, which collectively trans-
late to 73% total energy savings compared to the baseline setup
(Sec. 5.3). Finally, based on our findings, we discuss future direc-
tions that may help one design custom hardware accelerators for
AR holograms (Sec. 5.5).

2 BACKGROUND AND MOTIVATION

Before diving deep into the problems and possible solutions asso-
ciated with holographic processing, we first present the hardware

495

HoloAR: On-the-fly Optimization of 3D Holographic Processing for Augmented Reality MICRO ’21, October 18–22, 2021, Virtual Event, Greece

and software pipelines of a typical holographic AR application
(in Fig. 1). We further describe the existing holographic execution
inefficiencies in the AR pipeline and potential opportunities for
computation reduction.

2.1 AR Holographic Applications and Pipeline

The holographic display technique enables a large body of aug-
mented applications in real life [14]. One such application is illus-
trated in Fig. 1a, where a physical car being driven on a highway
is replaced by the corresponding virtual/augmented holographic
car in a real-time fashion such that, instead of viewing the real
cars, the AR user views the virtual ones. To implement such ap-
plications, today’s AR headsets are usually equipped with various
hardware components for sensing and processing, as depicted in
Fig. 1b. Specifically, the AR hardware has three major components:
Sensor Inputs: The AR headset receives the real-time information
from both the surrounding environment and the user (viewer),
with two types of sensing: ① “world sensors” to sense the physical
surrounding the user is currently in, such as cameras for the RGB
image and LiDAR/depth sensor for the depth or distance of the
objects in front of the user, and ② “user sensors” to sample the
behavior/status of the user, such as inertial measurement unit (IMU)
sensors for head rotation, IR sensors for eye tracking, and controller
for hand gesture. After sensing, the input samples are then buffered
in the video buffer, waiting to be processed timely at the frame-rate.
Processing Engines: To efficiently handle the above two types of
inputs, various computational resources have been integrated into
AR SoCs, as shown in Fig. 1b, e.g., CPUs for generic processing,
GPUs for graphics computing, vision processing units (VPUs) for
rendering, and tensor processing units (TPUs) for learning infer-
ences. Recently, state-of-the-art AR headsets such as HoloLens [31]
have even been planning to integrate the holographic processing
units (HPUs) for processing the information coming from all of the
on-board sensors (currently under development) [32].
On-board Battery: It is to be noted that all of the sensors and the
processing engines mentioned above are battery-backed, as shown
in Fig. 1b. This is for enabling users to freely move around in a large
area without the need of connecting with a power cable constantly.
Hence, the power/energy efficiency is critical metrics in many AR
use cases so that the battery lifetime can be sufficiently long.

With these sensors and compute resources in place, an AR head-
set executes a set of software tasks, either entirely or selectively
based on the applications’ requirements [19]. Without loss of gener-
ality, a typical AR pipeline [19] is shown in Fig. 1c. At a high level,
this AR pipeline has three major stages: ❶ Inputs stage first collects
the real-time information from all the on-board sensors such as
IMU, IR, camera and depth image sensors. With these inputs, ❷

Perception stage understands the current surrounding environment
such as pose estimation for head rotations/directions, eye tracking
for pupil centers, and scene reconstruction for the current view
analysis. Finally, ❸ Visual stage combines the physical world with
the virtual information (which is generated in real-time) together,
and renders the final images (both the physical scene as well as the
virtual frame augmented with it) for the user to view.

We want to emphasize that, compared to virtual reality (VR),
the AR video processing typically incurs additional computational

Table 1: Ideal latency requirements [19].

Task Ideal Latency Algo.
Pose
Estimate

33ms Kimera [53]

Eye
Track

33ms NVGaze [26]

Scene
Reconstruct

100ms InfiniTAM [50]

Hologram 33ms GSW [49, 63]

tasks and interacts with more hardware resources [61]. Based on
our measurements collected from a smartphone [60] running a sim-
ple AR application [3], the processing performance can be lower
than 0.5 fps, and the battery life can be as short as just 1 hour. This
motivates us to investigate which component is the major perfor-
mance and energy bottleneck, charging most of the “performance-
and/or energy-taxes” from the battery-backed AR headsets.

2.2 Motivation

2.2.1 What is the Major Bottleneck?
To identify the major performance bottlenecks in the current AR

headsets, we characterized the execution latency of the software
pipeline (discussed above in Fig. 1c) on a typical edge prototype [36]
running a set of state-of-the-art AR-related tasks [19, 26, 49, 50,
53], and compared the collected results against ideal execution
latencies for the same set of tasks (i.e., the maximum latency within
which the task needs to finish before its next invocation). The ideal
latencies and our collected latencies are given in Table 1 and Fig. 2,
respectively, for an ILLIXR playground scenario [15, 19].

Comparing the ideal latencies with practical latencies, we make
the following conclusions: In our practical setting, Pose Estimation
tracks user’s motion and viewing scene to estimate the current body
pose [53], and it takes around 13.8ms . Furthermore, estimating the
user’s eye gaze, Eye Track, requires the execution of a light-weight
neural network that takes 4.4ms and achieves 2.06° of accuracy [26].
Thus, both of these two tasks are able to meet the performance re-
quirements shown in Table 1. On the other hand, Scene Reconstruct
captures comprehensive consistent maps of environments from an
RGB-D image, and consumes 120ms in the practical setting. Note
that such maps are not necessarily required to be generated for each
frame (typically computed once per two or three frames [28, 50],
thus 67−100ms in Table 1); hence, we argue that the state-of-the-art
InfiniTAM technique, which implements a framework for real-time
depth fusion and learning of 3D scenes [50], is already close to the
ideal case. However, Hologram, which takes depthmap, point-cloud,
or light field as its input [18]2 to create arbitrary 3D configurations
of optical traps useful for capturing, moving and transforming
mesoscopic objects freely in the world [4], takes as long as 341.7ms
on an edge GPU3. This 10× performance gap between the practical
scenario and the ideal case (and the large amount of power/energy
consumption this task makes) motivates us to focus on holographic
processing in this paper, and explore the opportunities for improv-
ing the hologram computational efficiency to speed up the overall
AR application execution and reduce its energy consumption.

2In this paper, we mainly use the popular depthmap input method.
3Five iterations of the GSW algorithm [63] are profiled.

496

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Shulin and Haibo, et al.

0.2 8.0 13.8 4.4
120.0

6.0

341.7

0
100
200
300
400

IM
U/
IR

Ca
m
er
a

Po
se

Es
tim
at
e

Ey
e
Tr
ac
k

Sc
en
e

Re
co
ns
tru
ct

Re
pr
oj
ec
t

Ho
lo
gr
am

Inputs Perception Visual

La
te
nc
y
(m
s)

Motivation
Our
focus

Figure 2: A comparison of latency requirements results col-
lected from our practical setting and ideal cases shown in
Table 1.

2.2.2 What are the Prior Optimization Efforts?
Targeting the compute-intensive holographic processing dis-

cussed above, foveated rendering techniques have been previously
proposed to approximate selective regions (i.e., peripheral vision).
In fact, prior research on HVS has shown that human eyes are
able to observe beyond 135° vertically and 160° horizontally, but
see fine details within an only around 5° central circle (i.e., foveal
vision). Motivated by such degradation of peripheral visual acuity,
foveated rendering reduces computational costs for the peripheral
region, and maintains high/normal resolution only for the foveal re-
gion [2, 22, 24, 25, 30, 47, 62]. For instance, a real-time gaze-tracked
foveated rendering system is proposed to yield performance and
memory savings by avoiding shading up to 70% of the pixels for VR
headsets [47]. Similarly, a prototype AR display also takes advan-
tage of foveated rendering by tracking the user’s gaze and providing
low-resolution images to the peripheral area to reduce computa-
tion and improve display resolution [25]. More recently, another
foveated rendering based CGH reconstruction technique has been
proposed to accelerate calculations with negligible effect for the
viewer [22]. We implemented such foveated rendering idea (de-
noted as Inter-Holo design in Sec. 4.3) and found to reduce around
23% execution latency (in Sec. 5) for AR holograms. However, such
performance gain from foveated rendering is still insufficient to
close the 10× gap discussed above. Thus, in this paper, we want to
go beyond the prior foveated rendering for further optimizations,
by investigating the potential opportunities which are unique to
the AR use cases and may have been missed out before.
2.2.3 What are the Potential Opportunities?

Towards addressing this hologram bottleneck, various ap-
proaches from both the software [33, 52, 54] and hardware [32, 35]
sides have been proposed. These prior approaches either incorpo-
rate additional memory for maintaining a lookup table for compu-
tation reduction, or build an application-specific integrated circuit
(ASIC) chip specifically for holographic processing, which is more
power-efficient than generic processors. While such approaches im-
prove the hologram execution to some extent, they do not consider
the unique features of the AR applications. Recall that, in the AR
holographic application discussed above in Fig. 1a and Section 2.1,
there are two types of inputs to the holographic pipeline – world
sensors for the physical objects (real cars in this case) in the world,
and user sensors for the user behavior/state such as pose and eye
movements (discussed in details in Sec. 3). Therefore, in principle,

Motivation

0
1
2
3

bi
ke

bo
ok

bo
ttl
e

ca
m
er
a

ce
re
al
B
ox

ch
ai
r

cu
p

la
pt
op

sh
oe

D
is
ta
nc
e/
Si
ze
 (m
) Cam2ObjDist. ObjSize

(a) Object study.

Motivation

0

0.5

1

0 0.5 1Pu
pi
 P
os
tio
n
Y

Pupil Position X

0

0.5

1

0 0.5 1

Pu
pi
l P
os
iti
on
 Y

Pupil Position X

0

0.5

1

0 0.5 1Pu
pi
l P
os
iti
on
 Y

Pupil Position X

User1: User2: User3:

(b) User eye tracking study.

Figure 3: Dataset study.

Study

(a) Depthmap hologram algorithm.

Study

0
200
400
600
800
1000
1200

1 2 4 8 16 32 64

Ex
ec
. L
at
en
cy
 (m
s)

Depth Planes

Forward Backward

(b) Latency w/ num of depth planes.

Figure 4: Depthmap hologram algorithm details.

more intuitive opportunities could exist in the AR application do-
main, from both the object and user perspectives. To identify them,
we studied two published AR datasets (Objectron [1] for objects
shown in Fig. 3a, and MPIIDEye [58] for users shown in Fig. 3b),
and observed the following two properties in the AR holographic
applications:
Spatio Diversity for Objects: Intuitively, objects which are far
from the user and with small-sized shapes require less informa-
tion to generate the virtual hologram than others (more details
are provided in Sec. 3). Hence, the distance between the user and
the objects (Cam2ObjDist shown in black color in Fig. 3a), as well
as the size of how the object seems/appears to the user (ObjSize
shown in red color in Fig. 3a) affect the amount of computations
actually required to provide just enough yet necessary virtual holo-
grams. For example, compared to the chair object in Fig. 3a, the
bike object is closer to the user, and also has a larger range/size
(size=farmost-nearest); thus, more information is required to
create the hologram for the bike for maintaining fairly good QoS
than the chair. Therefore, one opportunity to reduce the amount
of computation is to approximate the hologram processing based
on the objects’ distances and sizes.
Temporal Locality for the User Interests: As also established
by prior foveated rendering proposals, the foveal vision (or Region
of Focus, RoF) is only a small region in the current scene and can
be traced by eye tracking techniques [26]. As can be observed from
three users’ eye tracking shown in Fig. 3b, all focus only on a
portion of the entire viewing window within a short period of time
(10 seconds in this case). On the other hand, even when viewing the
exact same scene, the RoF varies across users. For example, User1
has similar interest as User3, whereas User2 focuses more on the
bottom left corner. Clearly, such temporal similarity for a particular
user’s interests exposes another opportunity for leveraging prior

497

HoloAR: On-the-fly Optimization of 3D Holographic Processing for Augmented Reality MICRO ’21, October 18–22, 2021, Virtual Event, Greece

foveated rendering in AR holograms, by reducing the amount of
computation needed for the objects which are outside the RoF, thus
only emphasizing on the processing of the objects which the user
is currently focusing on.

Driven by these observations, we next want to study the details
of hologramwith the goal of addressing two critical questions:What
are the problems in the current state-of-the-art hologram software and
hardware?, and How can we leverage “approximation opportunities”
(based on the two observations above) to speed up hologram processing
and save energy, while still maintaining a high QoS?

3 HOLOGRAPHIC PROCESSING STUDY

To leverage the opportunities in the holographic processing from
a RGB-D (i.e., RGB and depth) image, we need to first understand
the detailed execution of the entire hologram processing from both
the algorithm and hardware perspectives. We illustrate the details
of depthmap hologram processing in Fig. 4a and Algo. 1 as two ma-
jor steps (more details on the depthmap hologram algorithm can be
found elsewhere [4, 18, 55, 63]). As shown in Fig. 4a, the depthmap
input is first sliced into several planes (M depth planes in this case).
With these depth planes, the first step, Forward Propagation (de-
noted ❶ in Fig. 4a), is to overlay the ith plane on the propagation
result of the previous 1st to (i − 1)th planes, and then propagate
to the next (i + 1)th plane. Note from Line#3 to Line#5 in Algo. 1
that, such forward propagation is massively parallel at the depth
plane level (across planes) as well as at the pixel level (within one
plane). Each depth plane processes the forward-propagation from
the hologram plane independently, and each pixel on a particular
depth plane goes through the exact processing sequence (HP2DP
in Line#5; more details can be found in [4, 18]). This makes hard-
ware parallelization and pipelining easier on a block/tensor type
of architecture such as GPUs. Note, however, that, this step also
requires sequential barriers within each plane (Line#6 synchro-
nizes the threads in a warp/block for one depth plane) and across
planes (Line#7 synchronizes the results from all the depth planes,
before moving forward to the second step). Hence, as we will show
later in this section, such barriers sliced into the massive parallel
execution can cause load imbalance and instruction stalls, which
slow down the entire execution and impact performance. The sec-
ond step, Backward-Propagate (denoted ❷ in Fig. 4a), accumulates
the results of each depth plane, backpropagates it to the hologram
plane via the DP2HP procedure (in Line#11), and generates the final
hologram for this depthmap input. Like the first step, this step also
involves synchronizations between planes (in Line#12), which can
again impact parallelization and slow down the entire execution.

Intuitively, the execution performance is mainly determined by
the number of depth planes (the outer for-loop in the algorithm) as
well as the number of pixels in each depth plane (the inner for-loop
in the algorithm). To study how the number of depth planes affects
the hologram performance, we profile the execution latency from a
typical edge GPU device [36], generating holograms with different
number of depth planes (assuming the same number of pixels in
each plane), and the results are plotted in Fig. 4b. From this figure,
one can observe the following: First, in general, these two steps
take similar times to execute, due to the similar procedures they

Algorithm 1: Depthmap Hologram Algorithm [4, 18].
Input :M : Number of depth planes
Input :DP [i]: Pixels in the i th depth plane
Output :Holoдram: Generated hologram

1 procedure Depthmap_Holoдram(M , DP) // main
2 // Step-1: Forward-propagate

3 for i in [1, M] do // planes in parallel
4 for p in DP[i] do // pixels in parallel
5 IntraPlanei = HP2DP (i, p)
6 IntraBlockSync (IntraPlane[i])

7 InterBlockSync ()
8 // Step-2: Backward-propagate

9 for i in [1, M] do // in parallel
10 for p′ in IntraPlane[i] do // in parallel
11 Hologram[p′] += DP2HP (i, p′)
12 InterBlockSync ()
13 return {Holoдram}

employ, as shown in Algo. 1. Second, by increasing the number of
depth planes, it takes around 2× latency to generate a hologram
with 2× number of depth planes. As also mentioned in Sec. 2.1, the
16 depth planes required by most of the AR applications (typically
10 to 100 depth planes are sufficient) [19, 49] consume more than
300ms , which is 10× larger than the real-time (QoS) requirement.
Thus, it can be concluded that, without any optimization, a state-
of-the-art edge GPU is only able to compute for < 4 depth planes
in real-time [36]. These observations motivate us to investigate
the reasons behind such low performance on GPU: is it because of
the intrinsic software/algorithm characteristics, or is it primarily a
hardware mapping issue?

Towards this, we profiled the hologram processing on the edge
GPU [36] using the NVPROF tool [37], and observed the follow-
ing: First, the SM utilization for both the steps is very high, i.e.,
74% for Forward-Propagation and 90% for Backward-Propagation.
This is because the execution is massively parallel at the depth
plane level as well as at the pixel level. Moreover, the L1 hit rate
for both these steps is as high as 99%. Thus, GPU seems to be one
of the reasonable hardware candidates for mapping the hologram
application. Second, the four major reasons for instruction stalls
in the Forward-Propagation step are: Data Request (21%), Execu-
tion Dependency (19%), Instruction Fetch (15%), and Sync (10%),
whereas in the Backward-Propagation step they are Read-only Loads
(42%), Sync (24%), Data Request (16%), and Execution Dependency
(6%). These stalls originate mainly from the inter-block and intra-
block synchronizations required by the application, as discussed
above when explaining Algo. 1. Because of this, recently, alternate
hardware-based solutions have been proposed to improve the com-
putational efficiency by replacing the expensive transcendental cal-
culations with lookup table (LUT) based memoization [35], or miti-
gating the data movement overheads by employing a customized
buffer on-chip [32], or simply offloading computations to cloud then
streaming back [16, 27, 67]. While such an approach improved the
computational efficiency and reduced power consumption to some
extent, rethinking the design of hologram software/hardware con-
sidering the unique features of the AR holographic applications (as
discussed in Sec. 2.2) as well as the characteristics of the underlying
hardware can potentially open up further opportunities.

498

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Shulin and Haibo, et al.

Motivated by this, we next explore the entire design space for the
AR holographic applications running on edge GPUs, and try to ex-
ploit potential opportunities for reducing computations to improve
both performance and energy efficiency in hologram processing.

4 PROPOSED STRATEGIES
As discussed in Sec. 2.2, holographic processing dominates the la-
tency and energy consumption in the AR video pipeline. Further,
we also observed in Sec. 3 that, the main reason behind this is that
the number of depth planes affects the number of synchronizations
between parallel executions, and determines the amount of com-
putation required to generate the holograms. Unlike prior works
targeting at optimizing the efficiency of the hologram program-
ming itself by proposing alternative hardware [32, 35], we primarily
focus on exploring the intrinsic approximation opportunities (dis-
cussed in Sec. 2.2.3) ignored in the current implementation of the
AR applications, but can be embedded into the existing hardware
such as GPUs, to speedup the holographic execution and improve
power/energy efficiency with negligible quality loss.

4.1 Exploring the Entire Design Space in AR
Hologram Processing

Exploring the entire design space for the AR hologram processing
is a non-trivial task. First of all, a large number of sensor inputs are
fed into the hologram pipeline (as shown in Fig. 1b), such as IMU
sensors, eye tracking or IR sensors, handmotion sensors, RGB-D im-
age sensors, etc. To improve the hologram approximation, we need
to first identify the set of inputs that affect the hologram computing
the most. As discussed above in Sec. 3, both the user’s pose and
the gaze position, as well as the targeted objects (intended to be re-
placed by the virtual holograms) shape the hologram computation.
Further, in many cases, these inputs are dynamically changing at the
same frequency (e.g., the image sensors) as the frame-rate, which
needs to be captured and updated at runtime, or even at a faster
rate (e.g., the IMU and IR sensors). Thus, to systematically explore
the potential opportunities of approximation in the AR hologram
applications, we start by distinguishing between three fundamental
scenarios, where the objects, head pose, and eye tracking provide
different opportunities, as depicted in Fig. 5.
• In the Viewing-Window scenario shown in Fig. 5a, only the

soccer ball object is located inside the viewing window in
the current frame, Frame-I, while football and box are not.
Thus, only the soccer ball hologram is required to be com-
puted for this frame, and other two can be skipped. Similarly, for
the next frame, Frame-II, now the user lifts her head a bit, hence
the corresponding viewing window changes from the previous
one. Because of this, now the football is partially located in the
viewing window, and requires computing (only for the bottom
right part that is inside the viewing window). Note also that,
since the soccer ball hologram has been already generated in
Frame-I, we can skip its computation. Again, the box object is
still outside of the viewing window and thus, we do not need
to compute its hologram. We use such a viewing-window based
“sub-hologram” technique which has already been proposed in
prior works (such as Sub-Hologram [52]) as the Baseline design.

• Apart from the viewing window, the dense or sparse hologram
computing is also RoF-dependent, which is the main idea be-
hind foveated rendering [25, 47, 62], as discussed in Sec. 1 and
Sec. 2.2.3. In the Inter-Holo scenario shown in Fig. 5b, such a
region of focus is just a subset of the entire viewing window, and
thus contains a small number of objects that need to be computed
with rich information (as it needs 16 depth planes). However, for
the objects outside of the current RoF, since the user is not cur-
rently focusing on them, a reasonable approximation would not
affect the user experience that much (which implies we do not
need 16 depth planes for all of them). For example, in Frame-I in
Fig. 5b, the user is currently focusing on the soccer ball; mean-
while the football is located outside of the RoF, hence, becomes
a candidate for approximation. On the other hand, in Frame-II,
the user moves her eyes and changes the region of focus. Now,
the football needs the full depth planes’ information, while the
soccer ball can be approximated. To take advantage of this
opportunity, the football object (which is inside the RoF in this
example scenario) requires all of the 16 depth planes to compute
its dense hologram, whereas the other objects (the soccer ball
in this case) can be approximated with a pre-defined sparse sam-
pling factor (e.g., 12 ; more details provided later in Algo. 2 and
Sec. 4.3). We leverage such foveated rendering idea in Inter-Holo
as our Reference design in this paper.

• The above Viewing-Window and Inter-Holo proposals target at
reducing the amount of computation for the holograms from the
head orientation (rotation) and eye tracking (up-down) perspec-
tives. As discussed in Fig. 3a, another enabler for computation
reduction is the relative distance between the camera/user and
the objects, i.e., left-right. As one can observe from the Intra-
Holo scenario shown in Fig. 5c, the football is larger than the
soccer ball, and is located much closer to the user. Hence,
even though both of them are located inside the RoF (and, of
course, inside the viewing window), intuitively, the soccer ball
hologram does not need as much information as the football
hologram to compute. Inspired by this observation, another level
of approximation can be explored based on the relative camera-
to-object distance as well as the object range/size.

4.2 HoloAR Overview
Driven by the above discussion and the potential approximation
opportunities presented by the Inter-Holo and Intra-Holo scenarios,
we propose HoloAR, a novel framework for holographic process-
ing in AR applications to improve both the performance and en-
ergy consumption of the hologram processing, without affecting
user experience. HoloAR aims to reduce the amount of hologram
computations as much as possible by carefully approximating the
hologram computing for select objects, while maintaining an ac-
ceptable video quality. The overall design of our proposed HoloAR
framework is illustrated in Fig. 6a. First, HoloAR utilizes the exist-
ing viewing-window based technique [52] (denoted

HoloAR: On-the-fly Optimization of 3D Holographic Processing for Augmented Reality MICRO ’21, October 18–22, 2021, Virtual Event, Greece

Design

(a) Viewing-Window scenario [52].

Design

(b) Inter-Holo scenario.

Design

(c) Intra-Holo scenario.

Figure 5: Three opportunities for reducing hologram computation in an AR application.

Design

(a) HoloAR overview.

Design

(b) The Inter-Holo and Intra-Holo.

Figure 6: The proposed HoloAR which includes Inter-Holo
leveraging foveated rendering, and Intr-Holo further ap-
proximating holograms for far objects.

4.3 Inter-Holo Computation Optimization
We first answer how to deploy the previously proposed foveated

Algorithm 2: Inter-Holo algorithm.
Input : 𝐼𝑅𝑠 : eye tracking sensors
Input :𝑂𝑏 𝑗𝑠 : set of virtual objects
Input :𝛼 : inter-holo approximation factor, 𝛼 ∈ (0, 1]
Output :𝐻𝑜𝑙𝑜𝑔𝑟𝑎𝑚𝑠 : Generated holograms

1 procedure 𝐼𝑛𝑡𝑒𝑟_𝐻𝑜𝑙𝑜(𝐼𝑅𝑠 ,𝑂𝑏 𝑗𝑠 , 𝛼) // main
2 RoF = 𝐸𝑦𝑒𝑇𝑟𝑎𝑐𝑘𝑖𝑛𝑔(𝐼𝑅𝑠)
3 for 𝑜𝑏 𝑗 in𝑂𝑏 𝑗𝑠 do // View-Window only
4 if 𝑜𝑏 𝑗 in RoF then // inside of RoF
5 Holograms[obj] = Algorithm1(16, obj)

6 else // outside of RoF, thus approximate
7 Holograms[obj] = Algorithm1(16 × 𝛼 , obj)

8 return {𝐻𝑜𝑙𝑜𝑔𝑟𝑎𝑚𝑠}

rendering technique on AR holograms, by investigating how to
leverage the temporal similarity when the user’s region of focus is
only a part of the entire viewing window, as mentioned earlier in
Sec. 2.2 (Fig. 3b). To capture the current RoF, an additional eye track-
ing step is introduced before the hologram computations, as shown
in Fig. 6b a . This eye tracking step takes the current IR sensor im-
ages as its input, and analyzes the user’s current gaze area as well as
the viewing direction. Note that this additional eye tracking proce-
dure needs to be invoked for each frame, in order to capture/reflect
the current eye movements without causing nausea for the user.
As a result, eye tracking needs to incur minimum overhead, while
providing a fairly good accuracy. Fortunately, there already exist

a large body of techniques which can track the eye movements
efficiently (e.g., see [26] and [12] and the references therein). In this
work, we chose to use the NVGaze technique [26] to perform eye
tracking for the Inter-Holo design due to two main reasons. First, it
provides sufficient accuracy for the AR applications – as high as
2.06° accuracy for gaze shape/direction estimation across a wide
field of view [26]. Second, its execution latency when running on
our edge GPU prototype [36] is within 4.5𝑚𝑠 , which contributes to
less than 1% of the entire hologram processing pipeline latency.

With the RoF attained from the eye tracking, the next question
we need to answer is how to deploy the approximation opportuni-
ties discussed above in Sec. 2.2.3 on top of the existing hologram
pipeline. As shown by Line#5 and Line#7 in Algo. 2, our proposal
can actually reuse the original hologram execution engine without
any architectural modifications or reprogramming. In fact, only
one input argument, i.e., the number of depth planes, requires to
be changed based on the approximation factor 𝛼 , when the object
is outside of RoF. Here, we set 𝛼 to 0.5, as our detailed profiling
(discussed later in Sec. 5) indicates that setting 𝛼 to this specific
value brings significant energy savings while maintaining good
hologram quality. We also present a sensitivity study on how en-
ergy savings and performance vary with different approximation
factors in Sec. 5.4.

4.4 Intra-Holo Computation Optimization

Algorithm 3: Intra-Holo proposal algorithm.
Input :𝑃𝑜𝑠𝑒𝑠 : pose sensors
Input :𝑂𝑏 𝑗𝑠 : set of virtual objects
Output :𝐻𝑜𝑙𝑜𝑔𝑟𝑎𝑚𝑠 : Generated holograms

1 procedure 𝐼𝑛𝑡𝑟𝑎_𝐻𝑜𝑙𝑜(𝑃𝑜𝑠𝑒𝑠 ,𝑂𝑏 𝑗𝑠) // main
2 Cam2ObjDists = 𝑃𝑜𝑠𝑒𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛(𝑃𝑜𝑠𝑒𝑠)
3 for 𝑜𝑏 𝑗 in𝑂𝑏 𝑗𝑠 do // approx. based on dist.
4 𝛽 = 𝑎𝑝𝑝𝑟𝑜𝑥𝐹𝑎𝑐𝑡𝑜𝑟𝑠(cam2ObjDists[obj])
5 Holograms[obj] = Algorithm1(16 × 𝛽 , obj)

6 return {𝐻𝑜𝑙𝑜𝑔𝑟𝑎𝑚𝑠}

In the Inter-Holo design, the hologram computation can be ap-
proximated by identifying the region of focus from eye tracking.
However, the scope of this approximation opportunity might be
limited due to the strict 16 depth planes requirement for all objects
inside the RoF, regardless of their distance from the user. In fact,
there may still be another level of opportunity for approximating

) to skip the
hologram computations for the objects which are outside of the
current viewing window, in a “just-in-time” fashion. Next, HoloAR
employs the Inter-Holo scheme (denoted

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Shulin and Haibo, et al.

the objects in long distance (Intra-Holo, shown in Fig. 5c). To lever-
age this opportunity, we need to know where the user is located in
the world and what the objects in the world look like [13, 19, 53, 59].
Next, we use one of the popular SLAM techniques, Kimera-VIO [53],
to estimate the user’s pose and understand the relative positions of
the objects and the user. As shown in Fig. 6b b , similar to the Inter-
Holo pipeline, the additional pose estimation step also sits between
the inputs and the original hologram processing, and thus has to
be efficient without introducing much overhead. Our profiling on
the edge GPU prototype [36] shows that Kimera-VIO takes, on av-
erage, 13.75𝑚𝑠 latency to execute, which is less than 1% of the total
hologram processing time. Therefore, the overhead introduced due
to the additional pose estimation step is negligible compared to the
baseline latency, thereby opening up opportunities for significant
energy savings and performance speedup as demonstrated later in
Sec. 5.

With the help of the pose estimation, now the AR hologram
pipeline has the knowledge about the range/size of each object as
well as its relative distance from the user. Next, as shown in Algo. 3,
for each of the objects, a corresponding approximation factor (𝛽)
can be determined based on these insights. Similarly, the original
hologram engine can still be reused without any reprogramming,
except for the first argument, i.e., the number of depth planes for
this particular object, as shown in Line#5 of Algo. 3.
Inter-Intra-Holo: It is to be noted that, when the user eye track-
ing and pose estimation are available simultaneously for hologram
processing, the Inter-Holo and Intra-Holo schemes can be both ap-
plied to achieve maximum amount of energy savings and perfor-
mance benefits. In this paper, we refer to this combined scheme
as Inter-Intra-Holo. In this scheme, we first identify the objects in-
side/outside the RoF (Inter-Holo), and then approximate each of
them based on its shape and distance (Intra-Holo). Note that since
the other option – first Intra-Holo, then Inter-Holo – is theoreti-
cally identical to the proposed Inter-Intra-Holo, we skip its detailed
discussion due to space limitation.

4.5 Design and Implementation
Optimization Choices: Our main goal in this paper is to reduce
the amount of hologram computation by appropriate approxima-
tion, in order to speed up hologram processing, to satisfy the real-
time requirement as well as to reduce the energy consumption and
prolong the battery life of the AR device, while maintaining the QoS.
Our proposal is fundamentally different from prior optimizations
targeting various architectures or execution environments, such as
customized hardware accelerators [35], cloud assistance [16, 27, 67],
or neural network training/inferencing [33, 54]. Note that, each of
these prior efforts has its own limitations, e.g., expensive in-house
implementation and fixed functionality without proper power gat-
ing in accelerators [35]; requiring reliable network connections and
expensive round-trip latency in cloud offloading [16, 27, 67]; and
re-training of a new model for each application scenario and poten-
tially for each user in neural networks [33, 54]. Thus, our proposal
does not rely on any assistance from hardware accelerators, cloud
platforms, or neural networks. Instead, we focus exclusively on a
typical edge GPU to execute the hologram, and present our three

techniques, namely, Inter-Holo (as Reference), Intra-Holo and Inter-
Intra-Holo, which capture various approximation opportunities in
the AR hologram applications to improve both performance and
energy efficiency.
Framework Prototype: To prototype a real-life AR headset, a
proper codebase and a hardware platform are essential. For our
codebase, we build our proposals on top of ILLIXR [19], which
is the first open-source full-system extended reality testbed. IL-
LIXR already contains several AR software components (some of
them are shown in Fig. 1c), including head tracking, IMU integra-
tion, reprojection, and sound processing. On top of the ILLIXR
codebase, we implemented three new components – eye tracking,
pose estimation, and hologram processing. Further, we mapped
these AR software components to an edge GPU prototype [36],
from which the power breakdown across different components
such as SoC, memory, CPU, and GPU are measured through the
on-board Texas Instruments INA 3221 voltage monitor IC hard-
ware, and the performance of execution status is sampled by the
Nvidia NVPROF [37] profiling tool, which enables the collection of
a timeline of CUDA-related activities on both the CPU and GPU,
including kernel execution, memory transfer, CUDA API calls and
events/metrics for CUDA kernels.

5 EVALUATION
We evaluate our proposed HoloAR design by comparing the execu-
tion latency and total energy consumption with four different AR
hologram setups. In this section, we first describe our evaluation
methodology, experimental platform, datasets, and measurement
tools. Next, we analyze the results measured using these platforms.
After that, we show the general applicability of the proposed de-
sign, and also present results from a sensitivity study that focuses
on the quality-loss vs. energy-savings trade-offs. We conclude this
section by outlining some research directions for implementing
approximation-based accelerators for AR holograms.

5.1 AR Hologram Configurations

We evaluate the following five configurations of AR hologram
processing to demonstrate the effectiveness of our proposedHoloAR:
• Baseline (Viewing-Window): Similar to the recent viewing-

window based sub-hologram optimization [52], we first obtain
the field of view or the current viewing window from the user’s
head orientation, and then skip the computations of the objects,
which are outside the viewing window (i.e., only compute for
the objects located inside) to save computations and energy. This
software-based viewing window optimization is considered to
be the state-of-the-art at an algorithm level, and we refer to it as
Baseline in this study. We evaluate this baseline by profiling its
performance and energy consumption from a mobile GPU [36].

• Inter-Holo:Weevaluate the Inter-Holo design on amobile GPU [36]
using a framework similar to the state-of-the-art ILLIXR frame-
work [19], with one additional eye tracking task (as shown in
Fig. 6b a) integrated into the existing pipeline to partially by-
pass the computations of holograms that are outside the focus
area. Note that, this implementation is purely done in software,
without any hardware modification.

), to take advantage of
the region of focus from analyzing the current eye tracking inputs
and sparsely compute the objects outside the RoF. Finally, HoloAR

499

HoloAR: On-the-fly Optimization of 3D Holographic Processing for Augmented Reality MICRO ’21, October 18–22, 2021, Virtual Event, Greece

Design

(a) Viewing-Window scenario [52].

Design

(b) Inter-Holo scenario.

Design

(c) Intra-Holo scenario.

Figure 5: Three opportunities for reducing hologram computation in an AR application.

Design

(a) HoloAR overview.

Design

(b) The Inter-Holo and Intra-Holo.

Figure 6: The proposed HoloAR which includes Inter-Holo
leveraging foveated rendering, and Intr-Holo further ap-
proximating holograms for far objects.

uses the Intra-Holo scheme (denoted

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Shulin and Haibo, et al.

4.1 Exploring the Entire Design Space in AR
Hologram Processing

Exploring the entire design space for the AR hologram processing
is a non-trivial task. First of all, a large number of sensor inputs are
fed into the hologram pipeline (as shown in Fig. 1b), such as IMU
sensors, eye tracking or IR sensors, handmotion sensors, RGB-D im-
age sensors, etc. To improve the hologram approximation, we need
to first identify the set of inputs that affect the hologram computing
the most. As discussed above in Sec. 3, both the user’s pose and
the gaze position, as well as the targeted objects (intended to be re-
placed by the virtual holograms) shape the hologram computation.
Further, in many cases, these inputs are dynamically changing at the
same frequency (e.g., the image sensors) as the frame-rate, which
needs to be captured and updated at runtime, or even at a faster
rate (e.g., the IMU and IR sensors). Thus, to systematically explore
the potential opportunities of approximation in the AR hologram
applications, we start by distinguishing between three fundamental
scenarios, where the objects, head pose, and eye tracking provide
different opportunities, as depicted in Fig. 5.
• In theViewing-Window scenario shown in Fig. 5a, only the soccer

ball object is located inside the viewing window in the current
frame, Frame-I, while football and box are not. Thus, only
the soccer ball hologram is required to be computed for this
frame, and other two can be skipped. Similarly, for the next
frame, Frame-II, now the user lifts her head a bit, hence the
corresponding viewing window changes from the previous one.
Because of this, now the football is partially located in the
viewing window, and requires computing (only for the bottom
right part that is inside the viewing window). Note also that,
since the soccer ball hologram has been already generated in
Frame-I, we can skip its computation. Again, the box object is
still outside of the viewing window and thus, we do not need
to compute its hologram. We use such a viewing-window based
“sub-hologram” technique which has already been proposed in
prior works (such as Sub-Hologram [52]) as the Baseline design.

• Apart from the viewing window, the dense or sparse hologram
computing is also RoF-dependent, which is the main idea be-
hind foveated rendering [25, 47, 62], as discussed in Sec. 1 and
Sec. 2.2.3. In the Inter-Holo scenario shown in Fig. 5b, such a
region of focus is just a subset of the entire viewing window, and
thus contains a small number of objects that need to be computed
with rich information (as it needs 16 depth planes). However, for
the objects outside of the current RoF, since the user is not cur-
rently focusing on them, a reasonable approximation would not
affect the user experience that much (which implies we do not
need 16 depth planes for all of them). For example, in Frame-I in
Fig. 5b, the user is currently focusing on the soccer ball; mean-
while the football is located outside of the RoF, hence, becomes
a candidate for approximation. On the other hand, in Frame-II,
the user moves her eyes and changes the region of focus. Now,
the football needs the full depth planes’ information, while the
soccer ball can be approximated. To take advantage of this
opportunity, the football object (which is inside the RoF in this
example scenario) requires all of the 16 depth planes to compute
its dense hologram, whereas the other objects (the soccer ball

in this case) can be approximated with a pre-defined sparse sam-
pling factor (e.g., 12 ; more details provided later in Algo. 2 and
Sec. 4.3). We leverage such foveated rendering idea in Inter-Holo
as our Reference design in this paper.

• The above Viewing-Window and Inter-Holo proposals target at
reducing the amount of computation for the holograms from the
head orientation (rotation) and eye tracking (up-down) perspec-
tives. As discussed in Fig. 3a, another enabler for computation
reduction is the relative distance between the camera/user and
the objects, i.e., left-right. As one can observe from the Intra-
Holo scenario shown in Fig. 5c, the football is larger than the
soccer ball, and is located much closer to the user. Hence,
even though both of them are located inside the RoF (and, of
course, inside the viewing window), intuitively, the soccer ball
hologram does not need as much information as the football
hologram to compute. Inspired by this observation, another level
of approximation can be explored based on the relative camera-
to-object distance as well as the object range/size.

4.2 HoloAR Overview
Driven by the above discussion and the potential approximation
opportunities presented by the Inter-Holo and Intra-Holo scenarios,
we propose HoloAR, a novel framework for holographic process-
ing in AR applications to improve both the performance and en-
ergy consumption of the hologram processing, without affecting
user experience. HoloAR aims to reduce the amount of hologram
computations as much as possible by carefully approximating the
hologram computing for select objects, while maintaining an ac-
ceptable video quality. The overall design of our proposed HoloAR
framework is illustrated in Fig. 6a. First, HoloAR utilizes the exist-
ing viewing-window based technique [52] (denoted a) to skip the
hologram computations for the objects which are outside of the
current viewing window, in a “just-in-time” fashion. Next, HoloAR
employs the Inter-Holo scheme (denoted b), to take advantage of
the region of focus from analyzing the current eye tracking inputs
and sparsely compute the objects outside the RoF. Finally, HoloAR
uses the Intra-Holo scheme (denoted c), to identify the number of
depth planes required for a particular object by analyzing the rela-
tive camera-to-object distance as well as the shape/size of the target
object. Note that, both the Inter-Holo and the Intra-Holo schemes
are complementary to each other, when both the eye tracking and
pose estimation inputs are available at the same time. Therefore,
we also investigate a combined Inter-Intra-Holo scheme which com-
bines both the schemes to further reduce the amount of hologram
computations.

Wewould like to emphasize that the proposedHoloAR framework
can, in principle, work with any hardware platform. As discussed
later in Sec. 5, in this paper, we evaluate the performance and
energy benefits of HoloAR by using an embedded GPU prototype
for the edge AR headsets [36], and leave the hardware-software co-
design based on FPGA-based acceleration for future work. However,
the architectural insights on how to co-design a next-generation
accelerator that can accommodate our proposed HoloAR framework
are discussed later in Sec. 5.5.

), to identify the number of
depth planes required for a particular object by analyzing the rela-
tive camera-to-object distance as well as the shape/size of the target
object. Note that, both the Inter-Holo and the Intra-Holo schemes
are complementary to each other, when both the eye tracking and
pose estimation inputs are available at the same time. Therefore,
we also investigate a combined Inter-Intra-Holo scheme which com-
bines both the schemes to further reduce the amount of hologram
computations.

Wewould like to emphasize that the proposedHoloAR framework
can, in principle, work with any hardware platform. As discussed
later in Sec. 5, in this paper, we evaluate the performance and
energy benefits of HoloAR by using an embedded GPU prototype
for the edge AR headsets [36], and leave the hardware-software co-
design based on FPGA-based acceleration for future work. However,
the architectural insights on how to co-design a next-generation
accelerator that can accommodate our proposed HoloAR framework
are discussed later in Sec. 5.5.

4.3 Inter-Holo Computation Optimization

We first answer how to deploy the previously proposed foveated
rendering technique on AR holograms, by investigating how to
leverage the temporal similarity when the user’s region of focus is
only a part of the entire viewing window, as mentioned earlier in
Sec. 2.2 (Fig. 3b). To capture the current RoF, an additional eye track-
ing step is introduced before the hologram computations, as shown
in Fig. 6b

HoloAR: On-the-fly Optimization of 3D Holographic Processing for Augmented Reality MICRO ’21, October 18–22, 2021, Virtual Event, Greece

Design

(a) Viewing-Window scenario [52].

Design

(b) Inter-Holo scenario.

Design

(c) Intra-Holo scenario.

Figure 5: Three opportunities for reducing hologram computation in an AR application.

Design

(a) HoloAR overview.

Design

(b) The Inter-Holo and Intra-Holo.

Figure 6: The proposed HoloAR which includes Inter-Holo
leveraging foveated rendering, and Intr-Holo further ap-
proximating holograms for far objects.

4.3 Inter-Holo Computation Optimization
We first answer how to deploy the previously proposed foveated

Algorithm 2: Inter-Holo algorithm.
Input : 𝐼𝑅𝑠 : eye tracking sensors
Input :𝑂𝑏 𝑗𝑠 : set of virtual objects
Input :𝛼 : inter-holo approximation factor, 𝛼 ∈ (0, 1]
Output :𝐻𝑜𝑙𝑜𝑔𝑟𝑎𝑚𝑠 : Generated holograms

1 procedure 𝐼𝑛𝑡𝑒𝑟_𝐻𝑜𝑙𝑜(𝐼𝑅𝑠 ,𝑂𝑏 𝑗𝑠 , 𝛼) // main
2 RoF = 𝐸𝑦𝑒𝑇𝑟𝑎𝑐𝑘𝑖𝑛𝑔(𝐼𝑅𝑠)
3 for 𝑜𝑏 𝑗 in𝑂𝑏 𝑗𝑠 do // View-Window only
4 if 𝑜𝑏 𝑗 in RoF then // inside of RoF
5 Holograms[obj] = Algorithm1(16, obj)

6 else // outside of RoF, thus approximate
7 Holograms[obj] = Algorithm1(16 × 𝛼 , obj)

8 return {𝐻𝑜𝑙𝑜𝑔𝑟𝑎𝑚𝑠}

rendering technique on AR holograms, by investigating how to
leverage the temporal similarity when the user’s region of focus is
only a part of the entire viewing window, as mentioned earlier in
Sec. 2.2 (Fig. 3b). To capture the current RoF, an additional eye track-
ing step is introduced before the hologram computations, as shown
in Fig. 6b a . This eye tracking step takes the current IR sensor im-
ages as its input, and analyzes the user’s current gaze area as well as
the viewing direction. Note that this additional eye tracking proce-
dure needs to be invoked for each frame, in order to capture/reflect
the current eye movements without causing nausea for the user.
As a result, eye tracking needs to incur minimum overhead, while
providing a fairly good accuracy. Fortunately, there already exist

a large body of techniques which can track the eye movements
efficiently (e.g., see [26] and [12] and the references therein). In this
work, we chose to use the NVGaze technique [26] to perform eye
tracking for the Inter-Holo design due to two main reasons. First, it
provides sufficient accuracy for the AR applications – as high as
2.06° accuracy for gaze shape/direction estimation across a wide
field of view [26]. Second, its execution latency when running on
our edge GPU prototype [36] is within 4.5𝑚𝑠 , which contributes to
less than 1% of the entire hologram processing pipeline latency.

With the RoF attained from the eye tracking, the next question
we need to answer is how to deploy the approximation opportuni-
ties discussed above in Sec. 2.2.3 on top of the existing hologram
pipeline. As shown by Line#5 and Line#7 in Algo. 2, our proposal
can actually reuse the original hologram execution engine without
any architectural modifications or reprogramming. In fact, only
one input argument, i.e., the number of depth planes, requires to
be changed based on the approximation factor 𝛼 , when the object
is outside of RoF. Here, we set 𝛼 to 0.5, as our detailed profiling
(discussed later in Sec. 5) indicates that setting 𝛼 to this specific
value brings significant energy savings while maintaining good
hologram quality. We also present a sensitivity study on how en-
ergy savings and performance vary with different approximation
factors in Sec. 5.4.

4.4 Intra-Holo Computation Optimization

Algorithm 3: Intra-Holo proposal algorithm.
Input :𝑃𝑜𝑠𝑒𝑠 : pose sensors
Input :𝑂𝑏 𝑗𝑠 : set of virtual objects
Output :𝐻𝑜𝑙𝑜𝑔𝑟𝑎𝑚𝑠 : Generated holograms

1 procedure 𝐼𝑛𝑡𝑟𝑎_𝐻𝑜𝑙𝑜(𝑃𝑜𝑠𝑒𝑠 ,𝑂𝑏 𝑗𝑠) // main
2 Cam2ObjDists = 𝑃𝑜𝑠𝑒𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛(𝑃𝑜𝑠𝑒𝑠)
3 for 𝑜𝑏 𝑗 in𝑂𝑏 𝑗𝑠 do // approx. based on dist.
4 𝛽 = 𝑎𝑝𝑝𝑟𝑜𝑥𝐹𝑎𝑐𝑡𝑜𝑟𝑠(cam2ObjDists[obj])
5 Holograms[obj] = Algorithm1(16 × 𝛽 , obj)

6 return {𝐻𝑜𝑙𝑜𝑔𝑟𝑎𝑚𝑠}

In the Inter-Holo design, the hologram computation can be ap-
proximated by identifying the region of focus from eye tracking.
However, the scope of this approximation opportunity might be
limited due to the strict 16 depth planes requirement for all objects
inside the RoF, regardless of their distance from the user. In fact,
there may still be another level of opportunity for approximating

. This eye tracking step takes the current IR sensor im-
ages as its input, and analyzes the user’s current gaze area as well as

Algorithm 2: Inter-Holo algorithm.
Input : I Rs : eye tracking sensors
Input :Objs : set of virtual objects
Input :α : inter-holo approximation factor, α ∈ (0, 1]
Output :Holoдrams : Generated holograms

1 procedure Inter_Holo(I Rs , Objs , α) // main
2 RoF = EyeT rackinд(I Rs)
3 for ob j in Objs do // View-Window only
4 if ob j in RoF then // inside of RoF
5 Holograms[obj] = Algorithm1(16, obj)

6 else // outside of RoF, thus approximate
7 Holograms[obj] = Algorithm1(16 × α , obj)

8 return {Holoдrams }

the viewing direction. Note that this additional eye tracking proce-
dure needs to be invoked for each frame, in order to capture/reflect
the current eye movements without causing nausea for the user.
As a result, eye tracking needs to incur minimum overhead, while
providing a fairly good accuracy. Fortunately, there already exist
a large body of techniques which can track the eye movements
efficiently (e.g., see [26] and [12] and the references therein). In this
work, we chose to use the NVGaze technique [26] to perform eye
tracking for the Inter-Holo design due to two main reasons. First, it
provides sufficient accuracy for the AR applications – as high as
2.06° accuracy for gaze shape/direction estimation across a wide
field of view [26]. Second, its execution latency when running on
our edge GPU prototype [36] is within 4.5ms , which contributes to
less than 1% of the entire hologram processing pipeline latency.

With the RoF attained from the eye tracking, the next question
we need to answer is how to deploy the approximation opportuni-
ties discussed above in Sec. 2.2.3 on top of the existing hologram
pipeline. As shown by Line#5 and Line#7 in Algo. 2, our proposal
can actually reuse the original hologram execution engine without
any architectural modifications or reprogramming. In fact, only
one input argument, i.e., the number of depth planes, requires to
be changed based on the approximation factor α , when the object
is outside of RoF. Here, we set α to 0.5, as our detailed profiling
(discussed later in Sec. 5) indicates that setting α to this specific
value brings significant energy savings while maintaining good
hologram quality. We also present a sensitivity study on how en-
ergy savings and performance vary with different approximation
factors in Sec. 5.4.

500

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Shulin and Haibo, et al.

4.4 Intra-Holo Computation Optimization

Algorithm 3: Intra-Holo proposal algorithm.
Input :Poses : pose sensors
Input :Objs : set of virtual objects
Output :Holoдrams : Generated holograms

1 procedure Intra_Holo(Poses , Objs) // main
2 Cam2ObjDists = PoseEstimation(Poses)
3 for ob j in Objs do // approx. based on dist.
4 β = approxFactors (cam2ObjDists[obj])
5 Holograms[obj] = Algorithm1(16 × β , obj)

6 return {Holoдrams }

In the Inter-Holo design, the hologram computation can be ap-
proximated by identifying the region of focus from eye tracking.
However, the scope of this approximation opportunity might be
limited due to the strict 16 depth planes requirement for all objects
inside the RoF, regardless of their distance from the user. In fact,
there may still be another level of opportunity for approximating
the objects in long distance (Intra-Holo, shown in Fig. 5c). To lever-
age this opportunity, we need to know where the user is located in
the world and what the objects in the world look like [13, 19, 53, 59].
Next, we use one of the popular SLAM techniques, Kimera-VIO [53],
to estimate the user’s pose and understand the relative positions of
the objects and the user. As shown in Fig. 6b

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Shulin and Haibo, et al.

the objects in long distance (Intra-Holo, shown in Fig. 5c). To lever-
age this opportunity, we need to know where the user is located in
the world and what the objects in the world look like [13, 19, 53, 59].
Next, we use one of the popular SLAM techniques, Kimera-VIO [53],
to estimate the user’s pose and understand the relative positions of
the objects and the user. As shown in Fig. 6b b , similar to the Inter-
Holo pipeline, the additional pose estimation step also sits between
the inputs and the original hologram processing, and thus has to
be efficient without introducing much overhead. Our profiling on
the edge GPU prototype [36] shows that Kimera-VIO takes, on av-
erage, 13.75𝑚𝑠 latency to execute, which is less than 1% of the total
hologram processing time. Therefore, the overhead introduced due
to the additional pose estimation step is negligible compared to the
baseline latency, thereby opening up opportunities for significant
energy savings and performance speedup as demonstrated later in
Sec. 5.

With the help of the pose estimation, now the AR hologram
pipeline has the knowledge about the range/size of each object as
well as its relative distance from the user. Next, as shown in Algo. 3,
for each of the objects, a corresponding approximation factor (𝛽)
can be determined based on these insights. Similarly, the original
hologram engine can still be reused without any reprogramming,
except for the first argument, i.e., the number of depth planes for
this particular object, as shown in Line#5 of Algo. 3.
Inter-Intra-Holo: It is to be noted that, when the user eye track-
ing and pose estimation are available simultaneously for hologram
processing, the Inter-Holo and Intra-Holo schemes can be both ap-
plied to achieve maximum amount of energy savings and perfor-
mance benefits. In this paper, we refer to this combined scheme
as Inter-Intra-Holo. In this scheme, we first identify the objects in-
side/outside the RoF (Inter-Holo), and then approximate each of
them based on its shape and distance (Intra-Holo). Note that since
the other option – first Intra-Holo, then Inter-Holo – is theoreti-
cally identical to the proposed Inter-Intra-Holo, we skip its detailed
discussion due to space limitation.

4.5 Design and Implementation
Optimization Choices: Our main goal in this paper is to reduce
the amount of hologram computation by appropriate approxima-
tion, in order to speed up hologram processing, to satisfy the real-
time requirement as well as to reduce the energy consumption and
prolong the battery life of the AR device, while maintaining the QoS.
Our proposal is fundamentally different from prior optimizations
targeting various architectures or execution environments, such as
customized hardware accelerators [35], cloud assistance [16, 27, 67],
or neural network training/inferencing [33, 54]. Note that, each of
these prior efforts has its own limitations, e.g., expensive in-house
implementation and fixed functionality without proper power gat-
ing in accelerators [35]; requiring reliable network connections and
expensive round-trip latency in cloud offloading [16, 27, 67]; and
re-training of a new model for each application scenario and poten-
tially for each user in neural networks [33, 54]. Thus, our proposal
does not rely on any assistance from hardware accelerators, cloud
platforms, or neural networks. Instead, we focus exclusively on a
typical edge GPU to execute the hologram, and present our three

techniques, namely, Inter-Holo (as Reference), Intra-Holo and Inter-
Intra-Holo, which capture various approximation opportunities in
the AR hologram applications to improve both performance and
energy efficiency.
Framework Prototype: To prototype a real-life AR headset, a
proper codebase and a hardware platform are essential. For our
codebase, we build our proposals on top of ILLIXR [19], which
is the first open-source full-system extended reality testbed. IL-
LIXR already contains several AR software components (some of
them are shown in Fig. 1c), including head tracking, IMU integra-
tion, reprojection, and sound processing. On top of the ILLIXR
codebase, we implemented three new components – eye tracking,
pose estimation, and hologram processing. Further, we mapped
these AR software components to an edge GPU prototype [36],
from which the power breakdown across different components
such as SoC, memory, CPU, and GPU are measured through the
on-board Texas Instruments INA 3221 voltage monitor IC hard-
ware, and the performance of execution status is sampled by the
Nvidia NVPROF [37] profiling tool, which enables the collection of
a timeline of CUDA-related activities on both the CPU and GPU,
including kernel execution, memory transfer, CUDA API calls and
events/metrics for CUDA kernels.

5 EVALUATION
We evaluate our proposed HoloAR design by comparing the execu-
tion latency and total energy consumption with four different AR
hologram setups. In this section, we first describe our evaluation
methodology, experimental platform, datasets, and measurement
tools. Next, we analyze the results measured using these platforms.
After that, we show the general applicability of the proposed de-
sign, and also present results from a sensitivity study that focuses
on the quality-loss vs. energy-savings trade-offs. We conclude this
section by outlining some research directions for implementing
approximation-based accelerators for AR holograms.

5.1 AR Hologram Configurations

We evaluate the following five configurations of AR hologram
processing to demonstrate the effectiveness of our proposedHoloAR:
• Baseline (Viewing-Window): Similar to the recent viewing-

window based sub-hologram optimization [52], we first obtain
the field of view or the current viewing window from the user’s
head orientation, and then skip the computations of the objects,
which are outside the viewing window (i.e., only compute for
the objects located inside) to save computations and energy. This
software-based viewing window optimization is considered to
be the state-of-the-art at an algorithm level, and we refer to it as
Baseline in this study. We evaluate this baseline by profiling its
performance and energy consumption from a mobile GPU [36].

• Inter-Holo:Weevaluate the Inter-Holo design on amobile GPU [36]
using a framework similar to the state-of-the-art ILLIXR frame-
work [19], with one additional eye tracking task (as shown in
Fig. 6b a) integrated into the existing pipeline to partially by-
pass the computations of holograms that are outside the focus
area. Note that, this implementation is purely done in software,
without any hardware modification.

, similar to the Inter-
Holo pipeline, the additional pose estimation step also sits between
the inputs and the original hologram processing, and thus has to
be efficient without introducing much overhead. Our profiling on
the edge GPU prototype [36] shows that Kimera-VIO takes, on av-
erage, 13.75ms latency to execute, which is less than 1% of the total
hologram processing time. Therefore, the overhead introduced due
to the additional pose estimation step is negligible compared to the
baseline latency, thereby opening up opportunities for significant
energy savings and performance speedup as demonstrated later in
Sec. 5.

With the help of the pose estimation, now the AR hologram
pipeline has the knowledge about the range/size of each object as
well as its relative distance from the user. Next, as shown in Algo. 3,
for each of the objects, a corresponding approximation factor (β)
can be determined based on these insights. Similarly, the original
hologram engine can still be reused without any reprogramming,
except for the first argument, i.e., the number of depth planes for
this particular object, as shown in Line#5 of Algo. 3.
Inter-Intra-Holo: It is to be noted that, when the user eye track-
ing and pose estimation are available simultaneously for hologram
processing, the Inter-Holo and Intra-Holo schemes can be both ap-
plied to achieve maximum amount of energy savings and perfor-
mance benefits. In this paper, we refer to this combined scheme
as Inter-Intra-Holo. In this scheme, we first identify the objects in-
side/outside the RoF (Inter-Holo), and then approximate each of
them based on its shape and distance (Intra-Holo). Note that since
the other option – first Intra-Holo, then Inter-Holo – is theoreti-
cally identical to the proposed Inter-Intra-Holo, we skip its detailed
discussion due to space limitation.

4.5 Design and Implementation
Optimization Choices: Our main goal in this paper is to reduce
the amount of hologram computation by appropriate approxima-
tion, in order to speed up hologram processing, to satisfy the real-
time requirement as well as to reduce the energy consumption and
prolong the battery life of the AR device, while maintaining the QoS.
Our proposal is fundamentally different from prior optimizations
targeting various architectures or execution environments, such as
customized hardware accelerators [35], cloud assistance [16, 27, 67],
or neural network training/inferencing [33, 54]. Note that, each of
these prior efforts has its own limitations, e.g., expensive in-house
implementation and fixed functionality without proper power gat-
ing in accelerators [35]; requiring reliable network connections and
expensive round-trip latency in cloud offloading [16, 27, 67]; and
re-training of a new model for each application scenario and poten-
tially for each user in neural networks [33, 54]. Thus, our proposal
does not rely on any assistance from hardware accelerators, cloud
platforms, or neural networks. Instead, we focus exclusively on a
typical edge GPU to execute the hologram, and present our three
techniques, namely, Inter-Holo (as Reference), Intra-Holo and Inter-
Intra-Holo, which capture various approximation opportunities in
the AR hologram applications to improve both performance and
energy efficiency.
Framework Prototype: To prototype a real-life AR headset, a
proper codebase and a hardware platform are essential. For our
codebase, we build our proposals on top of ILLIXR [19], which
is the first open-source full-system extended reality testbed. IL-
LIXR already contains several AR software components (some of
them are shown in Fig. 1c), including head tracking, IMU integra-
tion, reprojection, and sound processing. On top of the ILLIXR
codebase, we implemented three new components – eye tracking,
pose estimation, and hologram processing. Further, we mapped
these AR software components to an edge GPU prototype [36],
from which the power breakdown across different components
such as SoC, memory, CPU, and GPU are measured through the
on-board Texas Instruments INA 3221 voltage monitor IC hard-
ware, and the performance of execution status is sampled by the
Nvidia NVPROF [37] profiling tool, which enables the collection of
a timeline of CUDA-related activities on both the CPU and GPU,
including kernel execution, memory transfer, CUDA API calls and
events/metrics for CUDA kernels.

5 EVALUATION
We evaluate our proposed HoloAR design by comparing the execu-
tion latency and total energy consumption with four different AR
hologram setups. In this section, we first describe our evaluation
methodology, experimental platform, datasets, and measurement
tools. Next, we analyze the results measured using these platforms.
After that, we show the general applicability of the proposed de-
sign, and also present results from a sensitivity study that focuses
on the quality-loss vs. energy-savings trade-offs. We conclude this
section by outlining some research directions for implementing
approximation-based accelerators for AR holograms.

501

HoloAR: On-the-fly Optimization of 3D Holographic Processing for Augmented Reality MICRO ’21, October 18–22, 2021, Virtual Event, Greece

Table 2: Salient features of the six videos used in this study.

No. Video #Frames #Obj/Frame Distance ObjSize
1 bike[38] 150k 1.1 2.08m 1.54m
2 book[39] 576k 1.5 0.64m 0.28m
3 bottle[40] 476k 1.1 0.47m 0.22m
4 cup[41] 546k 1.6 0.47m 0.16m
5 laptop[42] 485k 1.3 0.58m 0.38m
6 shoe[43] 557k 2.3 0.65m 0.21m

5.1 AR Hologram Configurations

We evaluate the following five configurations of AR holo-
gram processing to demonstrate the effectiveness of our proposed
HoloAR:
• Baseline (Viewing-Window): Similar to the recent viewing-

window based sub-hologram optimization [52], we first obtain
the field of view or the current viewing window from the user’s
head orientation, and then skip the computations of the objects,
which are outside the viewing window (i.e., only compute for
the objects located inside) to save computations and energy. This
software-based viewing window optimization is considered to
be the state-of-the-art at an algorithm level, and we refer to it as
Baseline in this study. We evaluate this baseline by profiling its
performance and energy consumption from a mobile GPU [36].

• Inter-Holo: We evaluate the Inter-Holo design on a mobile
GPU [36] using a framework similar to the state-of-the-art IL-
LIXR framework [19], with one additional eye tracking task (as
shown in Fig. 6b

HoloAR: On-the-fly Optimization of 3D Holographic Processing for Augmented Reality MICRO ’21, October 18–22, 2021, Virtual Event, Greece

Design

(a) Viewing-Window scenario [52].

Design

(b) Inter-Holo scenario.

Design

(c) Intra-Holo scenario.

Figure 5: Three opportunities for reducing hologram computation in an AR application.

Design

(a) HoloAR overview.

Design

(b) The Inter-Holo and Intra-Holo.

Figure 6: The proposed HoloAR which includes Inter-Holo
leveraging foveated rendering, and Intr-Holo further ap-
proximating holograms for far objects.

4.3 Inter-Holo Computation Optimization
We first answer how to deploy the previously proposed foveated

Algorithm 2: Inter-Holo algorithm.
Input : 𝐼𝑅𝑠 : eye tracking sensors
Input :𝑂𝑏 𝑗𝑠 : set of virtual objects
Input :𝛼 : inter-holo approximation factor, 𝛼 ∈ (0, 1]
Output :𝐻𝑜𝑙𝑜𝑔𝑟𝑎𝑚𝑠 : Generated holograms

1 procedure 𝐼𝑛𝑡𝑒𝑟_𝐻𝑜𝑙𝑜(𝐼𝑅𝑠 ,𝑂𝑏 𝑗𝑠 , 𝛼) // main
2 RoF = 𝐸𝑦𝑒𝑇𝑟𝑎𝑐𝑘𝑖𝑛𝑔(𝐼𝑅𝑠)
3 for 𝑜𝑏 𝑗 in𝑂𝑏 𝑗𝑠 do // View-Window only
4 if 𝑜𝑏 𝑗 in RoF then // inside of RoF
5 Holograms[obj] = Algorithm1(16, obj)

6 else // outside of RoF, thus approximate
7 Holograms[obj] = Algorithm1(16 × 𝛼 , obj)

8 return {𝐻𝑜𝑙𝑜𝑔𝑟𝑎𝑚𝑠}

rendering technique on AR holograms, by investigating how to
leverage the temporal similarity when the user’s region of focus is
only a part of the entire viewing window, as mentioned earlier in
Sec. 2.2 (Fig. 3b). To capture the current RoF, an additional eye track-
ing step is introduced before the hologram computations, as shown
in Fig. 6b a . This eye tracking step takes the current IR sensor im-
ages as its input, and analyzes the user’s current gaze area as well as
the viewing direction. Note that this additional eye tracking proce-
dure needs to be invoked for each frame, in order to capture/reflect
the current eye movements without causing nausea for the user.
As a result, eye tracking needs to incur minimum overhead, while
providing a fairly good accuracy. Fortunately, there already exist

a large body of techniques which can track the eye movements
efficiently (e.g., see [26] and [12] and the references therein). In this
work, we chose to use the NVGaze technique [26] to perform eye
tracking for the Inter-Holo design due to two main reasons. First, it
provides sufficient accuracy for the AR applications – as high as
2.06° accuracy for gaze shape/direction estimation across a wide
field of view [26]. Second, its execution latency when running on
our edge GPU prototype [36] is within 4.5𝑚𝑠 , which contributes to
less than 1% of the entire hologram processing pipeline latency.

With the RoF attained from the eye tracking, the next question
we need to answer is how to deploy the approximation opportuni-
ties discussed above in Sec. 2.2.3 on top of the existing hologram
pipeline. As shown by Line#5 and Line#7 in Algo. 2, our proposal
can actually reuse the original hologram execution engine without
any architectural modifications or reprogramming. In fact, only
one input argument, i.e., the number of depth planes, requires to
be changed based on the approximation factor 𝛼 , when the object
is outside of RoF. Here, we set 𝛼 to 0.5, as our detailed profiling
(discussed later in Sec. 5) indicates that setting 𝛼 to this specific
value brings significant energy savings while maintaining good
hologram quality. We also present a sensitivity study on how en-
ergy savings and performance vary with different approximation
factors in Sec. 5.4.

4.4 Intra-Holo Computation Optimization

Algorithm 3: Intra-Holo proposal algorithm.
Input :𝑃𝑜𝑠𝑒𝑠 : pose sensors
Input :𝑂𝑏 𝑗𝑠 : set of virtual objects
Output :𝐻𝑜𝑙𝑜𝑔𝑟𝑎𝑚𝑠 : Generated holograms

1 procedure 𝐼𝑛𝑡𝑟𝑎_𝐻𝑜𝑙𝑜(𝑃𝑜𝑠𝑒𝑠 ,𝑂𝑏 𝑗𝑠) // main
2 Cam2ObjDists = 𝑃𝑜𝑠𝑒𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛(𝑃𝑜𝑠𝑒𝑠)
3 for 𝑜𝑏 𝑗 in𝑂𝑏 𝑗𝑠 do // approx. based on dist.
4 𝛽 = 𝑎𝑝𝑝𝑟𝑜𝑥𝐹𝑎𝑐𝑡𝑜𝑟𝑠(cam2ObjDists[obj])
5 Holograms[obj] = Algorithm1(16 × 𝛽 , obj)

6 return {𝐻𝑜𝑙𝑜𝑔𝑟𝑎𝑚𝑠}

In the Inter-Holo design, the hologram computation can be ap-
proximated by identifying the region of focus from eye tracking.
However, the scope of this approximation opportunity might be
limited due to the strict 16 depth planes requirement for all objects
inside the RoF, regardless of their distance from the user. In fact,
there may still be another level of opportunity for approximating

) integrated into the existing pipeline to par-
tially bypass the computations of holograms that are outside
the focus area. Note that, this implementation is purely done in
software, without any hardware modification.

• Intra-Holo:We evaluate our Intra-Holo design again on a mobile
GPU as shown in Fig. 6b

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Shulin and Haibo, et al.

the objects in long distance (Intra-Holo, shown in Fig. 5c). To lever-
age this opportunity, we need to know where the user is located in
the world and what the objects in the world look like [13, 19, 53, 59].
Next, we use one of the popular SLAM techniques, Kimera-VIO [53],
to estimate the user’s pose and understand the relative positions of
the objects and the user. As shown in Fig. 6b b , similar to the Inter-
Holo pipeline, the additional pose estimation step also sits between
the inputs and the original hologram processing, and thus has to
be efficient without introducing much overhead. Our profiling on
the edge GPU prototype [36] shows that Kimera-VIO takes, on av-
erage, 13.75𝑚𝑠 latency to execute, which is less than 1% of the total
hologram processing time. Therefore, the overhead introduced due
to the additional pose estimation step is negligible compared to the
baseline latency, thereby opening up opportunities for significant
energy savings and performance speedup as demonstrated later in
Sec. 5.

With the help of the pose estimation, now the AR hologram
pipeline has the knowledge about the range/size of each object as
well as its relative distance from the user. Next, as shown in Algo. 3,
for each of the objects, a corresponding approximation factor (𝛽)
can be determined based on these insights. Similarly, the original
hologram engine can still be reused without any reprogramming,
except for the first argument, i.e., the number of depth planes for
this particular object, as shown in Line#5 of Algo. 3.
Inter-Intra-Holo: It is to be noted that, when the user eye track-
ing and pose estimation are available simultaneously for hologram
processing, the Inter-Holo and Intra-Holo schemes can be both ap-
plied to achieve maximum amount of energy savings and perfor-
mance benefits. In this paper, we refer to this combined scheme
as Inter-Intra-Holo. In this scheme, we first identify the objects in-
side/outside the RoF (Inter-Holo), and then approximate each of
them based on its shape and distance (Intra-Holo). Note that since
the other option – first Intra-Holo, then Inter-Holo – is theoreti-
cally identical to the proposed Inter-Intra-Holo, we skip its detailed
discussion due to space limitation.

4.5 Design and Implementation
Optimization Choices: Our main goal in this paper is to reduce
the amount of hologram computation by appropriate approxima-
tion, in order to speed up hologram processing, to satisfy the real-
time requirement as well as to reduce the energy consumption and
prolong the battery life of the AR device, while maintaining the QoS.
Our proposal is fundamentally different from prior optimizations
targeting various architectures or execution environments, such as
customized hardware accelerators [35], cloud assistance [16, 27, 67],
or neural network training/inferencing [33, 54]. Note that, each of
these prior efforts has its own limitations, e.g., expensive in-house
implementation and fixed functionality without proper power gat-
ing in accelerators [35]; requiring reliable network connections and
expensive round-trip latency in cloud offloading [16, 27, 67]; and
re-training of a new model for each application scenario and poten-
tially for each user in neural networks [33, 54]. Thus, our proposal
does not rely on any assistance from hardware accelerators, cloud
platforms, or neural networks. Instead, we focus exclusively on a
typical edge GPU to execute the hologram, and present our three

techniques, namely, Inter-Holo (as Reference), Intra-Holo and Inter-
Intra-Holo, which capture various approximation opportunities in
the AR hologram applications to improve both performance and
energy efficiency.
Framework Prototype: To prototype a real-life AR headset, a
proper codebase and a hardware platform are essential. For our
codebase, we build our proposals on top of ILLIXR [19], which
is the first open-source full-system extended reality testbed. IL-
LIXR already contains several AR software components (some of
them are shown in Fig. 1c), including head tracking, IMU integra-
tion, reprojection, and sound processing. On top of the ILLIXR
codebase, we implemented three new components – eye tracking,
pose estimation, and hologram processing. Further, we mapped
these AR software components to an edge GPU prototype [36],
from which the power breakdown across different components
such as SoC, memory, CPU, and GPU are measured through the
on-board Texas Instruments INA 3221 voltage monitor IC hard-
ware, and the performance of execution status is sampled by the
Nvidia NVPROF [37] profiling tool, which enables the collection of
a timeline of CUDA-related activities on both the CPU and GPU,
including kernel execution, memory transfer, CUDA API calls and
events/metrics for CUDA kernels.

5 EVALUATION
We evaluate our proposed HoloAR design by comparing the execu-
tion latency and total energy consumption with four different AR
hologram setups. In this section, we first describe our evaluation
methodology, experimental platform, datasets, and measurement
tools. Next, we analyze the results measured using these platforms.
After that, we show the general applicability of the proposed de-
sign, and also present results from a sensitivity study that focuses
on the quality-loss vs. energy-savings trade-offs. We conclude this
section by outlining some research directions for implementing
approximation-based accelerators for AR holograms.

5.1 AR Hologram Configurations

We evaluate the following five configurations of AR hologram
processing to demonstrate the effectiveness of our proposedHoloAR:
• Baseline (Viewing-Window): Similar to the recent viewing-

window based sub-hologram optimization [52], we first obtain
the field of view or the current viewing window from the user’s
head orientation, and then skip the computations of the objects,
which are outside the viewing window (i.e., only compute for
the objects located inside) to save computations and energy. This
software-based viewing window optimization is considered to
be the state-of-the-art at an algorithm level, and we refer to it as
Baseline in this study. We evaluate this baseline by profiling its
performance and energy consumption from a mobile GPU [36].

• Inter-Holo:Weevaluate the Inter-Holo design on amobile GPU [36]
using a framework similar to the state-of-the-art ILLIXR frame-
work [19], with one additional eye tracking task (as shown in
Fig. 6b a) integrated into the existing pipeline to partially by-
pass the computations of holograms that are outside the focus
area. Note that, this implementation is purely done in software,
without any hardware modification.

. This approach tries to reduce the
amount of hologram computation by approximating each of the
holograms based on the distance between the user and the object.

• Inter-Intra-Holo: The above two designs can be integrated to-
gether into the original hologram pipeline, in either Inter-then-
Intra or Intra-then-Inter fashion. In this paper, we chose the first
one and denote this design as Inter-Intra-Holo.

• HORN-8:While hardware acceleration of hologram is not a goal
of this work, to qualitatively compare our GPU-based design with
hardware specific accelerators, we also discuss one of the most
recent ASIC implementations, HORN-8 [35]. Due to unavailabil-
ity of its hardware implementation or datasheet, we estimate its
power efficiency compared to the equivalent GPU SoC based on
a published data [51]. With this estimation, we briefly discuss the
performance and computational efficiency variations between
this accelerator and our approach, and discuss takeaways that can
help one to co-design a hardware accelerator targeting hologram
processing.

5.2 Experimental Platform and Datasets

The edge GPU platform used in this work consists of a 512-
core Volta GPU, a 4Kp60 HEVC codec, 16GB LPDDR4x memory,
32GB eMMC storage, and a power management unit (PMU) that
exposes the real-time power traces to users [36]. To ensemble the

AR pipeline with generic state-of-the-art components shown in
Fig. 1c, we implemented an open-source full-system extended real-
ity testbed, ILLIXR [19], on the edge GPU platform [36], and built
our HoloAR design on top of it. To collect performance metrics such
as the streaming multiprocessor (SM) utilization, memory traffic,
and CUDA kernel execution latency, we utilized the open-source
Nvidia NVPROF tool [37] on the GPU platform.

We use the published short object-centric Objectron [1] video
dataset, which is accompanied by AR session metadata such as
camera poses, as well as the object annotations such as position,
orientation and dimension for nine categories of object videos4.
The salient characteristics these videos are given in Tab. 2. To re-
place these real objects, we choose six virtual holograms (Sniper,
Rock, Tree, Planet, Rabbit, and Dice holograms) from the Open-
Holo depthmap database [45]. Note that the real-object and the
corresponding virtual-hologram are randomly mapped because,
theoretically, different mappings have no impact on the perfor-
mance speedup and energy saving results (shown in Sec. 5.3).

5.3 Experimental Results
We present the power and energy consumption, as well as the
execution latency of the hologram computation in Fig. 7, when
processing the six videos listed in Tab. 2, with the first four config-
urations described earlier in Sec. 5.1. We discuss the impact of our
proposal on output/result quality, compared to the baseline design,
later in Sec. 5.4.
Power Consumption: Overall, the Inter-Holo scheme consumes
around 4.24Watts , on average, when running on the edge GPU,
which translates to 3.86% power reduction, compared to the baseline.
In addition, our Intra-Holo scheme ismore power efficient than Inter-
Holo, translating to 27.72% power reduction with respect to the
baseline. This indicates that the optimization scope of the distance-
based Intra-Holo is larger than that of the RoF-based Inter-Holo,
which provides more sparsity in the hologram computing. Finally,
combination of the two schemes (Inter-Intra-Holo), results in 28.95%
power reduction compared to the baseline.

To better explainwhere the power benefits come from,we further
breakdown the power consumption for the hologram processing
into four parts: CPU (to handle sensor inputs, scheduling, kernel
launch, etc.), GPU (to execute hologram), Mem (for data accesses),
and the SoC (the remaining hardware components, e.g., codec,
network), with different number of depth planes (ranging from 2 to
16), as shown in Fig. 8a. One can observe from this figure that, when
the number of depth planes is increased, the power consumptions
of SoC and CPU do not change much, while, in contrast, both the
GPU and Mem consume more power. This is due to the fact that,
to process a denser hologram with more depth planes, additional
GPU cores are scheduled to launch the per-plane CUDA kernel (as
discussed in Algo. 1) with more holographic data accesses (fetched
from the host-side memory).

We next quantify how many depth planes can be reduced by our
approximation scheme. Towards this, we plot, in Fig. 8b, the average
number of depth planes (across our six videos), required by the
four design alternatives (configurations). We see that, the number

4Due to space limitation, we chose six representative categories that cover diversity
across multiple video parameters.

502

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Shulin and Haibo, et al.

result
4413.87 4243.51 3190.25 3135.99

0
1000
2000
3000
4000

bi
ke

bo
ok

bo
ttl
e

cu
p

la
pt
op

sh
oe

Av
g.

bi
ke

bo
ok

bo
ttl
e

cu
p

la
pt
op

sh
oe

Av
g.

bi
ke

bo
ok

bo
ttl
e

cu
p

la
pt
op

sh
oe

Av
g.

bi
ke

bo
ok

bo
ttl
e

cu
p

la
pt
op

sh
oe

Av
g.

baseline InterHolo IntraHolo InterIntraHolo

Av
g.
 P
ow
er
 (m
W
)

(a) Avg. power (mW).

result

1006.01

0
500
1000
1500
2000

bi
ke

bo
ok

bo
ttl
e

cu
p

la
pt
op

sh
oe

Av
g.

bi
ke

bo
ok

bo
ttl
e

cu
p

la
pt
op

sh
oe

Av
g.

bi
ke

bo
ok

bo
ttl
e

cu
p

la
pt
op

sh
oe

Av
g.

bi
ke

bo
ok

bo
ttl
e

cu
p

la
pt
op

sh
oe

Av
g.

baseline InterHolo IntraHolo InterIntraHolo

Ex
ec
. L
at
en
cy
 (m

s)

HoloCompute Overhead

876.81
430.15 393.07

(b) Exec. latency (ms).

result

4.48

0
2
4
6
8
10

bi
ke

bo
ok

bo
ttl
e

cu
p

la
pt
op

sh
oe

Av
g.

bi
ke

bo
ok

bo
ttl
e

cu
p

la
pt
op

sh
oe

Av
g.

bi
ke

bo
ok

bo
ttl
e

cu
p

la
pt
op

sh
oe

Av
g.

bi
ke

bo
ok

bo
ttl
e

cu
p

la
pt
op

sh
oe

Av
g.

baseline InterHolo IntraHolo InterIntraHolo

En
er
gy
 (J
)

HoloCompute Overhead

3.68
1.40 1.28

(c) Energy consumption (J).

Figure 7: (a) Average power consumption, (b) execution latency, and (c) energy consumption with different configurations and
video inputs.

result

0
2000
4000
6000

2 4 6 8 10 12 14 16Po
w
er
 (m

W
)

Depth-planes

CPU SoC GPU Mem

(a) Power breakdown.

result
23.6

19.8
7.1 6.7

0
10
20
30
40

bi
ke

bo
ok

bo
ttl
e

cu
p

la
pt
op

sh
oe

Av
g.

bi
ke

bo
ok

bo
ttl
e

cu
p

la
pt
op

sh
oe

Av
g.

bi
ke

bo
ok

bo
ttl
e

cu
p

la
pt
op

sh
oe

Av
g.

bi
ke

bo
ok

bo
ttl
e

cu
p

la
pt
op

sh
oe

Av
g.

baseline InterHolo IntraHolo InterIntraHolo

Av
g.
 #
de
pt
hP
la
ne
s

(b) Avg. number of depth planes.

Figure 8: (a): Profiling the power breakdown on the edge
GPU prototype [36]; and (b): Average number of depth
planes required for four design configurations.

of depth planes required by the Inter-Holo scheme is reduced from
23.6 to 19.8, and even further to 7.1 and 6.7, by the Intra-Holo
and Inter-Intra-Holo schemes, respectively. The above observations
from these two figures explain the power benefits of our proposed
designs.
Execution Latency: Clearly, the reduction in the number of depth
planes when using our approximation schemes can reduce the
hologram execution latency as well. As shown in Fig. 7b, overall,
the Inter-Holo scheme provides a 1.15× speedup compared to the
baseline. Further, a 2.42× speedup is achieved when employing
Intra-Holo (with only 0.44% overhead), and 2.68× when employ-
ing Inter-Intra-Holo (with only 0.14% overhead). Recall that the
number of depth planes for each hologram object affects the ex-
ecution latency dramatically as shown in Fig. 4b; thus, these per-
formance benefits come from the speedup brought by the reduced
depth planes by approximation in our schemes. Another interest-
ing observation is that, Intra-Holo saves more execution time than
Inter-Holo. This is because the latter only approximates the objects
outside of the current region of focus (still requiring full compute
for the objects inside), whereas the scope of the former is much
larger, i.e., including all the objects in the current viewing window
and approximating each of them based on its location. In addition,
from an individual video’s perspective, we further observe that
the shoe video achieves the maximum performance benefits from
our schemes (specifically, 23%, 69% and 73% latency reduction with
Inter-Holo, Intra-Holo and Inter-Intra-Holo, respectively, compared
to the baseline). In contrast, the bike video achieves the minimum
speedup (4%, 34% and 36% in the same order). The reason behind
this is that, as shown earlier in Tab. 2, the bike video usually has
only one object per frame (1.1 on average), and also the ranges/sizes
of the bikes are larger, compared to others. Thus, chances for ap-
proximating the objects outside the RoF (in Inter-Holo) and the
objects which are relatively far-away from the user (in Intra-Holo)

are limited. On the other hand, the shoe video frames typically
contain more objects (2.3 on average, as shown in Tab. 2), thereby
gaining more opportunities to reduce the amount of computations
for all the objects in the current frame.
Energy Savings: The above power and latency reductions pro-
vided by HoloAR eventually translates to energy savings for the
hologram processing. As shown in Fig. 7c, on average, the Inter-
Holo scheme saves 18% energy compared to the baseline, and the
Intra-Holo scheme saves 70% energy. Finally, the energy saving
achieved by the Inter-Intra-Holo scheme is about 73%, meaning that
it only consumes 27% of the baseline energy.

To put the energy-efficiency of our designs into perspective, we
compared their energy consumption against the state-of-the-art
HORN-8 hardware accelerator [35]. Due to the unavailability of
the hardware RTL, we estimated its energy consumption based on
the published characterization numbers from the Jetson GPU plat-
form with the ZCU102 FPGA[64] (which is similar to the HORN-8
prototype) [51]. Because of the LUT memoization and power ef-
ficiency optimizations [35], HORN-8 saves around 48% power5.
However, HORN-8 does not explore the approximation opportuni-
ties to speedup the hologram execution. Hence, as shown in Fig. 7c,
our HoloAR design running on the edge GPU [36] still saves 25%
more energy than the custom HORN-8 accelerator.

5.4 Sensitivity Study

Impact on Quality: The prior Inter-Holo scheme captures the
small-region of eye focus to approximate the hologram outside
of RoF, and the proposed Intra-Holo takes advantage of the sparse
computation required for the far objects to reduce the number of
depth planes. To study how these approximation decisions affect
the hologram video quality, we next want to reconstruct/render
the hologram from our design based on the real-time eye move-
ments and head orientations, and compare the quality of the recon-
structed images against the baseline using the peak signal-to-noise
ratio (PSNR) [21, 44] metric. Given the lack of the physical optical
holographic displays (e.g., the prototype built in Tensor Holog-
raphy project [54]), we numerically generate the reconstructed
holographic images on top of the OpenHolo library [18]. Three
demo examples of reconstructed images by OpenHolo are shown
in Fig. 9: viewing a whole-hologram from different pupil positions
in Fig. 9a; viewing an entire hologram (in Fig. 9b); and a partial

5The data is from our estimation based on [51], rather than real-hardware
measurements.

503

HoloAR: On-the-fly Optimization of 3D Holographic Processing for Augmented Reality MICRO ’21, October 18–22, 2021, Virtual Event, Greece

result

(a) Viewing W-CGH from different eye-center positions. Eye-center coordi-
nates from left to right: (0, 11mm), (0, 12mm), (0, 13mm), and (0, 14mm).

result

(b) Viewing W-CGH from different focal distances. Focal distance from left to
right: 0.3m, 0.4m, 0.5m, and 0.6m.

result

(c) Viewing S-CGH from different focal distances. Focal distance from left to
right: 0.3m, 0.4m, 0.5m, and 0.6m

Figure 9: A demo of viewing/rendering the virtual planet
whole-hologram (W-CGH, generated from all of the depth
planes, i.e., from 1-st to 16-th) or sub-hologram (S-CGH,
generated from only a subset of the depth planes, from
9-th to 12-th in this case) with different configurations. (a):
Viewing theW-CGH from different eye-center positions. (b)
Viewing theW-CGHfromdifferent focal distances. (c): View-
ing the S-CGH from different focal distances.

result
41.48 31.79 30.74

0
10
20
30
40
50
60

bi
ke

bo
ok

bo
ttl
e

cu
p

la
pt
op

sh
oe

Av
g.

bi
ke

bo
ok

bo
ttl
e

cu
p

la
pt
op

sh
oe

Av
g.

bi
ke

bo
ok

bo
ttl
e

cu
p

la
pt
op

sh
oe

Av
g.

InterHolo IntraHolo InterIntraHolo

PS
N
R

(a) PSNR.

result

0%
20%
40%
60%
80%
100%

0% 20%40%60%80%100%

no
rm
. P
SN
R
 (%

)

Energy Savings (%)

(b) Trade-offs.

Figure 10: Sensitivity studies.

hologram (in Fig. 9c) from different distances. Compared to the
baseline, we then report the averaged PSNR [21, 44] of the recon-
structed images from the six videos in Fig. 10a. It can be observed
from this figure that, even with the most aggressive approximation
introduced by Inter-Intra-Holo, the video quality is still sufficient
for most of the AR applications (30.7 on average) [57].

Further, to study how the tuned approximation (in Algo. 2 and
Algo. 3) affect the energy savings achieved, we report five design
points in Fig. 10b. This figure shows a clear pattern of trade-offs
between more-energy-savings vs. more-quality-drop.
Generality of HoloAR: Although the core idea of approximation
seems to be general across many video domains, our proposal is
not expected to work very well for all AR applications. Specifi-
cally, there are two classes of applications that would probably
achieve only limited benefits from our approach. First, for the
quality-critical applications such as AR surgery [56], ultra-high
resolution/quality of holograms are typically required. In this case,
offloading computations to a resource-rich cluster/cloud system
would be amore reasonable design choice (instead of approximating
on the edge). Second, for applications, which are motion-sensitive

such as the spaceship simulation [34], the hologram computation
process is required to complete faster, in order to correctly reflect
the current user’s eye movement and head pose in real-time. The
proposed HoloAR on the edge GPU cannot achieve such strict la-
tency requirement, and can cause lagging, e.g., the eye could move
to another area, while the hologram is still being computed for
the previous focus region. We postpone optimizations for such
applications to a future work.

5.5 Future Work

Despite the hardware-agnostic nature of HoloAR, it is still in-
teresting to study how to deploy our idea on an ASIC hardware,
and co-design the next-generation accelerator on edge for the AR
hologram. Towards this, we plan to explore three critical questions
in our future work: First, how many processing units (PUs) are
required and just sufficient for most of the cases in a typical AR
holographic application? To answer this, we plan to characterize
the number of depth planes needed in various AR applications, and
guide the optimal design choices (i.e., number of PUs, frequency,
input and output buffer size, etc.) based on application require-
ments, and evaluate both PSNR and user-experience metrics such
as satisfaction and dizziness [66]. Second, How do we maintain
high power efficiency of PUs during runtime? In some cases where
a small amount of hologram computation required, not all of the
PUs on-board are needed to be active. We plan to design and imple-
ment a clock/power gating technology to switch off the un-utilized
PUs and save power/energy. Third, how do we handle the corner
cases, where more computational resources than that provided by
the accelerator are required? Towards this, we plan to design a
system-level scheduler which can efficiently partition the hologram
tasks between the heterogeneous accelerator and original execution
engines such as CPUs or GPUs.

6 RELATEDWORK
In this section, we summarize prior work related to different aspects
of holographic processing.
Optimizations in Holographic Processing: Holographic pro-
cessing has been optimized in various domains [33, 35, 52, 54], to
improve power efficiency or execution performance. For exam-
ple, HORN-8 [35] has proposed a special-purpose computer for
electro-holography to reduce the power consumption and still de-
liver a high frame rate (similar to that of a cloud GPU). From the
software/algorithm perspective, a sub-hologram technique is pro-
posed with a tracked viewing-window technology to tailor the
holographic computation only for the necessary information in-
side of the window [52]. More recent efforts have attempted to
combine holographic processing with neural network techniques.
For instance, DeepHolo [33] proposes a binary-weighted computer-
generated hologram model to recognize 3D objects. Furthermore,
another convolution neural network (CNN) model is trained and
deployed on mobile devices to synthesize a photorealistic colour 3D
hologram from a single RGB-depth image in real time [54]. Apart
from neural network techniques, foveated rendering is another
promising performance optimization for reducing computational
costs [2, 22, 24, 25, 30, 47, 62], as summarized in Sec. 2.2.2. In this
paper, the foveated rendering idea (denoted as Inter-Holo design)
has been implemented (in Sec. 4.3) and found to work well (in

504

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Shulin and Haibo, et al.

Sec. 5) as in prior works. Further, in this paper, we have gone
beyond foveated rendering (Inter-Holo), by proposing an optimiza-
tion/approximation called Intra-Holo, that complements the former
in boosting performance/energy efficiency. This enhancement is
ideally suited for holographic processing at the edge, without re-
quiring additional hardware, cloud assistance, or machine learning
framework.
Holographic Displays on AR: Another large body of prior
works focus on optimizing the holographic displays for the next-
generation AR headsets [6, 17, 23]. For example, Michelson proposes
a holographic display technology that optimizes image quality for
emerging near-eye displays using two SLMs and camera-in-the-
loop calibration [7]. Neural-Holography proposes an algorithmic
hologram generation framework that uses camera-in-the-loop train-
ing to achieve unprecedented image fidelity and real-time frame
rates [48]. OLAS proposes an overlap-add stereogram algorithm,
which uses overlapping hogels to encode the view-dependent light-
ing effects of a light field into a hologram, achieving better quality
than other holographic stereograms [46]. These display quality
optimizations are orthogonal to our approximation-based proposal,
and our approach can be used along with such optimizations.
Volumetric Video Streaming, Compression, and Other Opti-
mizations: Volumetric sensor inputs such as LiDAR have large vol-
ume and require significant computational power and bandwidth
to process/transmit. Targeting them, prior efforts have proposed
to optimize their compression ratio, processing performance, and
energy efficiency [8–10, 16, 27, 67–70]. For example, ASV lever-
ages characteristics unique to stereo vision and proposes algorith-
mic and computational optimizations to improve performance and
energy-efficiency of “depth from stereo” [11]. Tigris proposes an
algorithm-architecture co-design system specialized for point cloud
registration, to improve real-time performance and energy effi-
ciency for 3D perception applications [65]. To efficiently steam
volumetric video to mobile devices, GROOT proposes a novel PD-
Tree data structure and streams the volumetric videos at a 30fps
frame rate with minimal memory usage and computation for de-
coding [27]. Note, however, that none of these existing schemes
target at reducing the amount of “unnecessary” computations in
the AR holographic applications. In addition to the Inter-Holo de-
sign, our proposed Intra-Holo technique focuses on computation
approximation opportunities, and as such, it is orthogonal to these
prior efforts.

7 CONCLUSION
The extremely heavy computation in hologram processing hinders
the growth of the 3D display applications on AR headsets. Thus,
prior efforts have proposed using accelerators or cloud for optimiz-
ing the hologram computation. In contrast, this paper attempts to
exploit available approximation opportunities unique in AR holo-
graphic applications, and proposes a two-stage HoloAR scheme to
speed up the execution and save energy. Specifically, we leverage
the existing foveated rendering in Inter-Holo to track the user’s
eye movements and approximate the holograms of the objects that
are outside the user interest. We also propose Intra-Holo to further
approximate each of the object holograms, by analyzing its cur-
rent distance from the user. Our experimental results show that,
compared to the baseline, HoloAR achieves 2.7× speedup and 73%

energy savings. We believe that the lessons learned from this work
will help in designing next-generation hologram accelerators that
can combine approximation as well as other optimizations such as
tuning PU counts, frequency, and power gating for achieving the
target performance and energy efficiency for edge devices.

ACKNOWLEDGMENTS
This research is supported in part by NSF grants #1763681, #1629915,
#1629129, #1317560, #1526750, #1714389, #1912495, and #1909004.
This work was also supported in part by CRISP, one of six centers
in JUMP, a Semiconductor Research Corporation (SRC) program
sponsored by DARPA.Wewould also like to thank Dr. Jack Sampson
and Dr. Dinghao Wu for their feedback on this paper.

REFERENCES
[1] Adel Ahmadyan, Liangkai Zhang, Jianing Wei, Artsiom Ablavatski, and Matthias

Grundmann. 2020. Objectron: A Large Scale Dataset of Object-Centric Videos in
the Wild with Pose Annotations. arXiv preprint arXiv:2012.09988 (2020).

[2] Rachel Albert, Anjul Patney, David Luebke, and Joohwan Kim. 2017. Latency
Requirements for Foveated Rendering in Virtual Reality. ACMTrans. Appl. Percept.
(2017).

[3] ARCore. 2020. Using Scene Viewer to Display Interactive 3D Models in AR from
an Android App or Browser. "https://developers.google.com/ar/develop/java/
scene-viewer".

[4] Stephen A Benton and V Michael Bove Jr. 2008. Holographic Imaging. John Wiley
& Sons.

[5] BusinessofApps. 2020. Pokémon GO Revenue and Usage Statistics. "https:
//www.businessofapps.com/data/pokemon-go-statistics/".

[6] Chenliang Chang, Kiseung Bang, Gordon Wetzstein, Byoungho Lee, and Liang
Gao. 2020. Toward the Next-generation VR/AR Optics: A Review of Holographic
Near-eye Displays from a Human-centric Perspective. Optica (2020), 1563–1578.

[7] Suyeon Choi, Jonghyun Kim, Yifan Peng, and GordonWetzstein. 2021. Optimizing
image quality for holographic near-eye displays with Michelson Holography.
Optica (2021), 143–146.

[8] Yu Feng, Patrick Hansen, P. Whatmough, Guoyu Lu, and Yuhao Zhu. 2021. A
LiDAR-Guided Framework for Video Enhancement. ArXiv (2021).

[9] Y. Feng, Shaoshan Liu, and Yuhao Zhu. 2020. Real-Time Spatio-Temporal LiDAR
Point Cloud Compression. 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) (2020), 10766–10773.

[10] Yu Feng, Boyuan Tian, Tiancheng Xu, Paul Whatmough, and Yuhao Zhu.
2020. Mesorasi: Architecture Support for Point Cloud Analytics via Delayed-
aggregation. In Proceedings of the International Symposium on Microarchitecture
(MICRO). 1037–1050.

[11] Yu Feng, Paul Whatmough, and Yuhao Zhu. 2019. ASV: Accelerated Stereo
Vision System. In Proceedings of the International Symposium on Microarchitecture
(MICRO). 643–656.

[12] gazepoint. 2020. Eye Tracking and Neuromarketing Research Made Easy.
"https://www.gazept.com/".

[13] Patrick Geneva, Kevin Eckenhoff, Woosik Lee, Y. Yang, and Guoquan Huang.
2020. OpenVINS: A Research Platform for Visual-Inertial Estimation. 2020 IEEE
International Conference on Robotics and Automation (ICRA) (2020), 4666–4672.

[14] Giorgia Lombardo. 2020. Meet the Humans of the Future: Holograms, Digital
Humans, and Deep Fakes. "https://medium.com/demagsign/meet-the-humans-
of-the-future-holograms-digital-humans-and-deep-fakes-35024b881545".

[15] Stuart Golodetz, Michael Sapienza, Julien Valentin, Vibhav Vineet, Ming-Ming
Cheng, Anurag Arnab, Victor Adrian Prisacariu, Olaf Kaehler, Carl Yuheng Ren,
David W. Murray, Shahram Izadi, and Philip H.S. Torr. 2015. SemanticPaint: A
Framework for the Interactive Segmentation of 3D Scenes. arXiv (2015).

[16] Bo Han, Yu Liu, and Feng Qian. 2020. ViVo: Visibility-aware Mobile Volumetric
Video Streaming. In Proceedings of the ACM/IEEE International Conference on
Mobile Computing and Networking (MobiCom). 1–13.

[17] Zehao He, Xiaomeng Sui, Guofan Jin, and Liangcai Cao. 2019. Progress in Virtual
Reality and Augmented Reality Based on Holographic Display. Appl. Opt. (2019),
A74–A81.

[18] Jisoo Hong, Youngmin Kim, Hyunjoo Bae, and Sunghee Hong. 2020. OpenHolo:
Open Source Library for Hologram Generation, Reconstruction and Signal Pro-
cessing. In Imaging and Applied Optics Congress. Optical Society of America,
HF3G.1.

[19] Muhammad Huzaifa, Rishi Desai, Samuel Grayson, Xutao Jiang, Ying Jing, Jae Lee,
Fang Lu, Yihan Pang, Joseph Ravichandran, Finn Sinclair, Boyuan Tian, Hengzhi
Yuan, Jeffrey Zhang, and Sarita V. Adve. 2021. Exploring Extended Reality with
ILLIXR: A new Playground for Architecture Research. arXiv:cs.DC/2004.04643

505

"https://developers.google.com/ar/develop/java/scene-viewer"
"https://developers.google.com/ar/develop/java/scene-viewer"
"https://www.businessofapps.com/data/pokemon-go-statistics/"
"https://www.businessofapps.com/data/pokemon-go-statistics/"
https://arxiv.org/abs/cs.DC/2004.04643

HoloAR: On-the-fly Optimization of 3D Holographic Processing for Augmented Reality MICRO ’21, October 18–22, 2021, Virtual Event, Greece

[20] IFIXIT. 2020. Magic Leap One Teardown.
"https://www.ifixit.com/Teardown/Magic+Leap+One+Teardown/112245".

[21] NATIONAL INSTRUMENTS. 2019. Peak Signal-to-Noise Ratio as an Image
Quality Metric. "https://www.ni.com/en-us/innovations/white-papers/11/peak-
signal-to-noise-ratio-as-an-image-quality-metric.html".

[22] Yeon-Gyeong Ju and Jae-Hyeung Park. 2018. Fast Generation of Mesh Based CGH
in Head-Mounted Displays using Foveated Rendering Technique, In Imaging
and Applied Optics 2018 (3D, AO, AIO, COSI, DH, IS, LACSEA, LS&C, MATH,
pcAOP). Imaging and Applied Optics 2018 (3D, AO, AIO, COSI, DH, IS, LACSEA,
LS&C, MATH, pcAOP), DTu5F.6.

[23] Daniel K Nikolov, Sifan Ye, Sydney Dlhopolsky, Zhen Bai, Yuhao Zhu, and Jannick
P Rolland. 2020. Hyperion: A 3D Visualization Platform for Optical Design of
Folded Systems. Frameless 2, 1 (2020), 21.

[24] Anton Kaplanyan, Anton Sochenov, Thomas Leimkühler, Mikhail Okunev, T.
Goodall, and Gizem Rufo. 2019. DeepFovea: Neural Reconstruction for Foveated
Rendering and Video Compression using Learned Statistics of Natural Videos.
ACM Trans. Graph. (2019), 212:1–212:13.

[25] Jonghyun Kim, Youngmo Jeong, Michael Stengel, Kaan Akşit, Rachel Albert,
Ben Boudaoud, Trey Greer, Joohwan Kim, Ward Lopes, Zander Majercik, Peter
Shirley, Josef Spjut, Morgan McGuire, and David Luebke. 2019. Foveated AR:
Dynamically-Foveated Augmented Reality Display. ACM Trans. Graph. (2019).

[26] Joohwan Kim, Michael Stengel, Alexander Majercik, Shalini De Mello, David
Dunn, Samuli Laine, Morgan McGuire, and David Luebke. 2019. Nvgaze: An
Anatomically-informed Dataset for Low-latency, Near-eye Gaze Estimation. In
Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems.
1–12.

[27] Kyungjin Lee, Juheon Yi, Youngki Lee, Sunghyun Choi, and Young Min Kim. 2020.
GROOT: A Real-time Streaming System of High-fidelity Volumetric Videos. In
Proceedings of the ACM/IEEE International Conference on Mobile Computing and
Networking (MobiCom). 1–14.

[28] T. Lee and T. Hollerer. 2008. Hybrid Feature Tracking and User Interaction for
Markerless Augmented Reality. In 2008 IEEE Virtual Reality Conference. 145–152.

[29] Magic Leap. 2020. Magic Leap 1 is a Wearable Computer for Enterprise Produc-
tivity. "https://www.magicleap.com/en-us/magic-leap-1".

[30] Xiaoxu Meng, Ruofei Du, and Amitabh Varshney. 2020. Eye-dominance-guided
Foveated Rendering. IEEE Transactions on Visualization and Computer Graphics
(2020), 1972–1980.

[31] Microsoft. 2020. HoloLens 2 Tech Specs. "https://www.microsoft.com/en-
us/p/holoLens-2/91pnzzznzwcp/?activetab=pivot:techspecstab".

[32] Microsoft Research Blog. 2020. Second Version of HoloLens HPU will Incorporate
AI Coprocessor for Implementing DNNs. "https://www.microsoft.com/en-
us/research/blog/second-version-hololens-hpu-will-incorporate-ai-
coprocessor-implementing-dnns/".

[33] Naoya Muramatsu, Chun Wei Ooi, Yuta Itoh, and Yoichi Ochiai. 2017. Deep-
Holo: Recognizing 3D Objects Using a Binary-Weighted Computer-Generated
Hologram. In SIGGRAPH Asia 2017 Posters.

[34] NASA. 2020. NASA at Home – Virtual Tours and Apps. "https://www.nasa.gov/
nasa-at-home-virtual-tours-and-augmented-reality".

[35] Takashi Nishitsuji, Yota Yamamoto, Takashige Sugie, Takanori Akamatsu, Ryuji
Hirayama, Hirotaka Nakayama, Takashi Kakue, Tomoyoshi Shimobaba, and
Tomoyoshi Ito. 2018. Special-purpose Computer HORN-8 for Phase-type Electro-
holography. Opt. Express (2018), 26722–26733.

[36] Nvidia. 2019. JETSON AGX XAVIER AND THE NEW ERA OF AUTONOMOUS
MACHINES. "http://info.nvidia.com/rs/156-OFN-742/images/Jetson_AGX_
Xavier_New_Era_Autonomous_Machines.pdf".

[37] Nvidia. 2020. CUDA Toolkit Documentation: Nvprof. "shorturl.at/zEFU5".
[38] Objectron. 2020. Objectron Dataset Annotation: bike. "https://github.com/google-

research-datasets/Objectron/blob/master/index/bike_annotations".
[39] Objectron. 2020. Objectron Dataset Annotation: book. "https://github.com/

google-research-datasets/Objectron/blob/master/index/book_annotations".
[40] Objectron. 2020. Objectron Dataset Annotation: bottle. "https://github.com/

google-research-datasets/Objectron/blob/master/index/bottle_annotations".
[41] Objectron. 2020. Objectron Dataset Annotation: cup. "https://github.com/google-

research-datasets/Objectron/blob/master/index/cup_annotations".
[42] Objectron. 2020. Objectron Dataset Annotation: laptop. "https://github.com/

google-research-datasets/Objectron/blob/master/index/laptop_annotations".
[43] Objectron. 2020. Objectron Dataset Annotation: shoe. "https://github.com/google-

research-datasets/Objectron/blob/master/index/shoe_annotations".
[44] OpenCV. 2019. Similarity check (PNSR and SSIM) on the GPU.

"https://docs.opencv.org/2.4/doc/tutorials/gpu/gpu-basics-similarity/gpu-
basics-similarity.html".

[45] OpenHolo. 2020. OpenHolo Database. "http://openholo.org/database/depth".
[46] Nitish Padmanaban, Yifan Peng, and Gordon Wetzstein. 2019. Holographic Near-

Eye Displays Based on Overlap-Add Stereograms. ACM Trans. Graph. (2019).
[47] Anjul Patney, Marco Salvi, Joohwan Kim, Anton Kaplanyan, Chris Wyman, Nir

Benty, David Luebke, and Aaron Lefohn. 2016. Towards Foveated Rendering for
Gaze-Tracked Virtual Reality. ACM Trans. Graph. (2016).

[48] Yifan Peng, Suyeon Choi, Nitish Padmanaban, Jonghyun Kim, and Gordon Wet-
zstein. 2020. Neural Holography. In ACM SIGGRAPH 2020 Emerging Technologies
(SIGGRAPH ’20). Association for Computing Machinery.

[49] Martin Persson, David Engström, andMattias Goksör. 2011. Real-time Generation
of Fully Optimized Holograms for Optical Trapping Applications. In Optical
Trapping and Optical Micromanipulation VIII, Vol. 8097. International Society for
Optics and Photonics, 80971H.

[50] Victor Adrian Prisacariu, Olaf Kähler, Stuart Golodetz, Michael Sapienza, Tom-
maso Cavallari, Philip H. S. Torr, and David William Murray. 2017. InfiniTAM
v3: A Framework for Large-Scale 3D Reconstruction with Loop Closure. CoRR
(2017).

[51] Murad Qasaimeh, Kristof Denolf, Jack Lo, Kees A. Vissers, Joseph Zambreno, and
Phillip H. Jones. 2019. Comparing Energy Efficiency of CPU, GPU and FPGA
Implementations for Vision Kernels. In 15th IEEE International Conference on
Embedded Software and Systems. 1–8.

[52] Stephan Reichelt, Ralf Haussler, Norbert Leister, Gerald Futterer, Hagen Stolle,
and Armin Schwerdtner. 2010. Holographic 3-D Displays - Electro-holography
Within the Grasp of Commercialization. IntechOpen. shorturl.at/jmnpD

[53] Antoni Rosinol, Marcus Abate, Yun Chang, and Luca Carlone. 2020. Kimera: an
Open-Source Library for Real-Time Metric-Semantic Localization and Mapping.
In IEEE Intl. Conf. on Robotics and Automation (ICRA).

[54] Liang Shi, Beichen Li, Changil Kim, Petr Kellnhofer, and Wojciech Matusik. 2021.
Towards Real-time Photorealistic 3D Holography with Deep Neural Networks.
Nature 592 (2021).

[55] Tomoyoshi Shimobaba, Jiantong Weng, Takahiro Sakurai, Naohisa Okada,
Takashi Nishitsuji, Naoki Takada, Atsushi Shiraki, Nobuyuki Masuda, and To-
moyoshi Ito. 2012. Computational Wave Optics Library for C++: CWO++ Library.
Computer Physics Communications (2012), 1124–1138.

[56] Jeffrey H. Shuhaiber. 2004. Augmented Reality in Surgery. Archives of Surgery
(2004), 170–174.

[57] Randall Shumaker and Lackey Stephanie. 2014. Virtual, Augmented and Mixed
Reality: Designing and Developing Augmented and Virtual Environments: 6th
International Conference, VAMR 2014, Held as Part of HCI International 2014,
Heraklion, Crete, Greece, June 22-27, 2014, Proceedings, Part I. Vol. 8525. Springer.

[58] Julian Steil, Inken Hagestedt, Michael Xuelin Huang, and Andreas Bulling. 2019.
Privacy-Aware Eye Tracking Using Differential Privacy. In Proc. ACM Interna-
tional Symposium on Eye Tracking Research and Applications (ETRA). 1–9.

[59] Stereolabs. 2020. ZED Software Development Kit.
"https://www.stereolabs.com/developers/release/".

[60] techradar. 2020. Google Pixel 2 Review. "https://www.techradar.com/reviews/
google-pixel-2-review".

[61] Oren M Tepper, Hayeem L Rudy, Aaron Lefkowitz, Katie A Weimer, Shelby M
Marks, Carrie S Stern, and Evan S Garfein. 2017. Mixed Reality with HoloLens:
Where Virtual Reality Meets Augmented Reality in the Operating Room. Plastic
and reconstructive surgery (2017), 1066–1070.

[62] Lingjie Wei and Yuji Sakamoto. 2019. Fast Calculation Method with Foveated
Rendering for Computer-generated Holograms Using an Angle-changeable Ray-
tracing Method. Appl. Opt. (2019), A258–A266.

[63] Yang Wu, Jun Wang, Chun Chen, Chan-Juan Liu, Feng-Ming Jin, and Ni Chen.
2021. Adaptive Weighted Gerchberg-Saxton Algorithm for Generation of Phase-
only Hologram with Artifacts Suppression. Opt. Express (2021), 1412–1427.

[64] XILINX. 2020. Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit. "https://www.
xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html".

[65] Tiancheng Xu, Boyuan Tian, and Yuhao Zhu. 2019. Tigris: Architecture and
Algorithms for 3D Perception in Point Clouds. In Proceedings of the International
Symposium on Microarchitecture (MICRO). 629–642.

[66] Hiroshi Yoshikawa, Takeshi Yamaguchi, and Hiroki Uetake. 2016. Image Quality
Evaluation and Control of Computer-generated Holograms. In Practical Hologra-
phy XXX: Materials and Applications, Hans I. Bjelkhagen and V. Michael Bove Jr.
(Eds.). International Society for Optics and Photonics, SPIE, 144 – 152.

[67] Anlan Zhang, Chendong Wang, Bo Han, and Feng Qian. 2021. Efficient Volu-
metric Video Streaming Through Super Resolution. In Proceedings of the 22nd
International Workshop on Mobile Computing Systems and Applications. 106–111.

[68] Haibo Zhang, Prasanna Venkatesh Rengasamy, Shulin Zhao, Nachiappan Chi-
dambaram Nachiappan, Anand Sivasubramaniam, Mahmut T. Kandemir, Ravi
Iyer, and Chita R. Das. 2017. Race-to-Sleep + Content Caching + Display Caching:
A Recipe for Energy-Efficient Video Streaming on Handhelds. In Proceedings of
the International Symposium on Microarchitecture (MICRO). 517–531.

[69] Haibo Zhang, Shulin Zhao, Ashutosh Pattnaik, Mahmut T. Kandemir, Anand
Sivasubramaniam, and Chita R. Das. 2019. Distilling the Essence of Raw Video
to Reduce Memory Usage and Energy at Edge Devices. In Proceedings of the
International Symposium on Microarchitecture (MICRO). 657–669.

[70] Shulin Zhao, Haibo Zhang, Sandeepa Bhuyan, Cyan Subhra Mishra, Ziyu Ying,
Mahmut T. Kandemir, Anand Sivasubramaniam, and Chita R. Das. 2020. Déjà
View: Spatio-Temporal Compute Reuse for Energy-Efficient 360° VR Video
Streaming. In Proceedings of the International Symposium on Computer Architec-
ture (ISCA). 241–253.

506

"https://www.ni.com/en-us/innovations/white-papers/11/peak-signal-to-noise-ratio-as-an-image-quality-metric.html"
"https://www.ni.com/en-us/innovations/white-papers/11/peak-signal-to-noise-ratio-as-an-image-quality-metric.html"
"https://www.nasa.gov/nasa-at-home-virtual-tours-and-augmented-reality"
"https://www.nasa.gov/nasa-at-home-virtual-tours-and-augmented-reality"
"http://info.nvidia.com/rs/156-OFN-742/images/Jetson_AGX_Xavier_New_Era_Autonomous_Machines.pdf"
"http://info.nvidia.com/rs/156-OFN-742/images/Jetson_AGX_Xavier_New_Era_Autonomous_Machines.pdf"
"https://github.com/google-research-datasets/Objectron/blob/master/index/bike_annotations"
"https://github.com/google-research-datasets/Objectron/blob/master/index/bike_annotations"
"https://github.com/google-research-datasets/Objectron/blob/master/index/book_annotations"
"https://github.com/google-research-datasets/Objectron/blob/master/index/book_annotations"
"https://github.com/google-research-datasets/Objectron/blob/master/index/bottle_annotations"
"https://github.com/google-research-datasets/Objectron/blob/master/index/bottle_annotations"
"https://github.com/google-research-datasets/Objectron/blob/master/index/cup_annotations"
"https://github.com/google-research-datasets/Objectron/blob/master/index/cup_annotations"
"https://github.com/google-research-datasets/Objectron/blob/master/index/laptop_annotations"
"https://github.com/google-research-datasets/Objectron/blob/master/index/laptop_annotations"
"https://github.com/google-research-datasets/Objectron/blob/master/index/shoe_annotations"
"https://github.com/google-research-datasets/Objectron/blob/master/index/shoe_annotations"
"https://docs.opencv.org/2.4/doc/tutorials/gpu/gpu-basics-similarity/gpu-basics-similarity.html"
"https://docs.opencv.org/2.4/doc/tutorials/gpu/gpu-basics-similarity/gpu-basics-similarity.html"
"http://openholo.org/database/depth"
shorturl.at/jmnpD
"https://www.techradar.com/reviews/google-pixel-2-review"
"https://www.techradar.com/reviews/google-pixel-2-review"
"https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html"
"https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html"

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 AR Holographic Applications and Pipeline
	2.2 Motivation

	3 Holographic Processing Study
	4 Proposed Strategies
	4.1 Exploring the Entire Design Space in AR Hologram Processing
	4.2 HoloAR Overview
	4.3 Inter-Holo Computation Optimization
	4.4 Intra-Holo Computation Optimization
	4.5 Design and Implementation

	5 Evaluation
	5.1 AR Hologram Configurations
	5.2 Experimental Platform and Datasets
	5.3 Experimental Results
	5.4 Sensitivity Study
	5.5 Future Work

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

