Limitations of perturbative coupled-cluster approximations for
highly accurate investigations of Rby™
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We reveal limitations of several standard coupled-cluster (CC) methods with perturbation-theory
based noniterative or approximate iterative treatments of triple excitations when applied to the de-
termination of highly accurate potential energy curves (PECs) of ionic dimers, such as the X 22;
electronic ground state of Rb,*. Such computations are of current interest for the understanding of
ion-atom interactions in the ultracold regime. We demonstrate that these CC methods lead to an
unphysical long-range barrier for the Rb,* system. The barrier is small but spoils the long-range
behavior of the PEC. The effect is also found for other X,* systems, like X = Li, Na, and K. Cal-
culations using a flexible framework for obtaining leading perturbative triples corrections derived
using an analytic CC singles and doubles (CCSD) energy derivative formulation demonstrate that
the origin of this problem lies in the use of 73 amplitudes obtained from approximate CC singles,
doubles and triples (CCSDT) amplitude equations. It is shown that the unphysical barrier is related
to a symmetry instability of the underlying Hartree-Fock mean-field solution leading to orbitals
representing two +0.5-fold charged ions in the limit of separated fragments. This in turn leads to a
wrong 1 /R asymptote of the interaction potential computed by perturbation-based coupled-cluster
approximations. Physically meaningful perturbative corrections in the long-range tail of the PEC
may instead be obtained using symmetry-broken reference determinants.

— among others the precision measurements of ion-
atom collision parameters and associated molecular
potentials®!!.

The understanding and the gain of control of
interacting neutral atoms in the ultracold quan-
tum regime has grown substantially over the past
decades. The achievements, to mention only a few
of them, reach from Bose-Einstein condensation
(BEC)!, over Rydberg systems®>™ to creating and
controlling ultracold molecules>’. While for neu-
tral atoms reaching the ultracold quantum scattering
regime (i.e. s-wave collision regime) is nowadays
well established, it is still a non-trivial challenge
to reach the quantum scattering regime for hybrid
ion-atom systems due to more stringent temperature
requirements®. This is extremely desirable as hy-
brid ion-atom systems are expected to pave the way
for novel experiments, phenomena and applications

Novel experimental approaches have been pro-
posed recently in Refs. 12,13. Here the ion-atom
interaction for a core of a giant Rydberg atom im-
mersed in a BEC of 3'Rb leading to a temper-
ature environment below a microkelvin has been
studied. In principle, the experimental accuracy
achievable with this approach is in the MHz —
(= 0(105cm™") ) domain with a characteristic
range of the ion-atom interaction (for Rb) of R* =
VCy ~ 5000 a08.

These pilot experiments, see e.g. Ref. 12
and references therein, aim at entering the s-
wave scattering regime and eventually studying
the ro-vibrational structure (of, e.g., the threshold
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bound states) and charge-transfer processes of Rby*.
Therefore, highly accurate potential energy curves
(PECs) are needed as a starting point for subsequent
studies of corresponding properties related to design
and performance of these experiments. The PECs
have to be accurate not only in the long-range re-
gion (up to R = R* =~ 5000 a to investigate scatter-
ing effects sufficiently), but also in the short-range
region (to provide an accurate insight into the ro-
vibrational structure). The long-range part of the
interaction potential between an S-state ion and an
S-state atom in the electronic ground state is given
by?

Vi al_ar @Jr (1)
The Cf‘“d and Cé“d terms describe the interaction be-
tween the charge of the ion and the induced elec-
tric dipole (quadrupole) moment of the atom, while

the Cg’s‘) dispersion term represents the interaction
between instantaneous dipole-induced dipole mo-
ments of the ion and atom arising due to quantum
fluctuations®. Patil and Tang approximately evalu-
ated multipolar polarizabilities and dispersion coef-
ficients of homonuclear and heteronuclear interac-
tions of both alkali and alkaline earth atoms and
ions, respectively in Ref. 14. This can be further
used for models studying reactive collisions, cf. e.g.
Refs. 15,16. However, using approximate values for
the dispersion coefficient might turn out to be insuf-
ficient for predictions to guide novel experiments.
It is thus of significant interest to obtain accurate
PECs using ab-initio calculations.

Theoretical investigations of X,*— systems (with
X = Li, Na, K, Rb) 723 have been reported
earlier. The electron affinity equation-of-motion
coupled-cluster (EA-EOM-CC) method with scalar-
relativistic effects included via the Douglas-Kroll-
Hess method has been used recently?!~>* for compu-
tations on the Lip*, Nay™ and K,* systems yielding
satisfactory agreement with available experimental
data. As perhaps the only example aiming at high
accuracy, Tomza et al. reported a scheme for obtain-
ing a PEC of Liy* from relativistic coupled-cluster
(CC) calculations'!. This approach demonstrated
that highly accurate ab initio results can be used
to predict bounds for the ion-atom scattering length.
Among many other studies revealing the power of

ab initio theory to predict or to confirm experimen-
tal findings to high accuracy, recent work on Mg>
in Ref. 24 showed the potential of coupled-cluster
theory to accurately describe weakly bound systems.
The authors were able to compute the 19 vibrational
levels of the X 12; state to an accuracy of ~ 1cm™!
compared to 14 experimentally measured term en-
ergies, giving thus useful hints to the experimental
detection of the further so far unresolved levels.

To the best of our knowledge there are no ex-
amples on highly accurate computations of Rby™.
Therefore, our efforts originally aimed at a first
high accuracy calculation of PECs for homonu-
clear molecular ions containing heavier alkali metal
species using an additivity scheme as laid out in Sec-
tion II. While the good performance of several CC
variants, such as the completely renormalized CC
theory, in reproducing CCSDT and CCSDTQ PECs
for Be;, has been demonstrated recentlyzs, our calcu-
lations for Rb,* revealed some non-trivial subtleties
in CC methods with noniterative and approximate
iterative treatment of triple excitations including
the coupled-cluster singles and doubles augmented
with a noniterative triples correction [CCSD(T)]
method, — the ‘gold standard’ of quantum chemistry.
The corresponding theoretical basics are outlined in
Sec. III. As shown in Sec. IV, this problem leads
to an unphysical barrier in the long-range region of
the PEC. The present paper thus is focused on un-
derstanding and solving this problem. In Sec. V
the problem is analyzed and attributed to a domi-
nant contribution of the Fockian in the correspond-
ing equations of these approximate treatments of
triple excitations. We show that physically meaning-
ful perturbative corrections in the long-range can be
obtained using symmetry-broken reference determi-
nants. Moreover, we present an alternative approach
with approximate treatment of triple excitations to
obtain high accuracy and simultaneously avoiding
the long-range problem to extract valuable proper-
ties such as dispersion coefficients. Finally, Sec-
tion VI gives a summary and an outlook.

Il. COMPUTATIONAL ASPECTS

High-accuracy quantum-chemical calculations of
atomic and molecular energies often rely on ad-



ditivity schemes.”0-3! Here it is assumed that the
Hartree-Fock reference energy and the CCSD(T)
correlation contribution, both extrapolated to the
complete basis-set (CBS) limit, form a good basis to
add higher-level correlation contributions, i.e. those
beyond CCSD(T) such as CCSDT, CCSDT(Q), etc.,
and higher-order relativistic effects on top to finally
obtain the total electronic energy to the highest pos-
sible accuracy. Note that for PECs involving bond
cleavage CCSD(T) is expected to fail and thus not
a good base whereupon to build additivity schemes.
However, for the ground state of Rb,* this is unprob-
lematic since it is a single reference system for the
entire range of interatomic distances. For this we ex-
pect CCSD(T) to work well, even though it has been
noted in Refs. 32,33 that some CC variants used in
combination with open-shell UHF or ROHF refer-
ences are not guaranteed to perform as well as for
closed-shell references.

The HF and CC calculations were performed
either using the small-core effective core poten-
tial (scECP) ECP28MDF from Ref.**, where the
4524 p55s! electrons of Rb are treated explicitly and
all the others are modelled via a scalar-relativistic
pseudopotential (PP), or using the all-electron spin-
free exact two-component theory in its one-electron
variant (SFX2C-1e)%30 to treat scalar-relativistic
effects. We can use spin-unrestricted (UHF) or spin-
restricted open-shell (ROHF) approaches for the HF
part and for generating the orbitals for the subse-
quent single-reference CC calculations. For the lat-
ter we used an unrestricted spin-orbital formalism
in its singles and doubles variant augmented with a
noniterative triples method based on a ROHF refer-
ence — the ROHF-CCSD(T) method?7*° [also often
referred to as ‘RHF-UCCSD(T)’].

In order to gauge and understand the problems
encountered for the CCSD(T) potential energy sur-
face, we also carried out full CC singles dou-
bles and triples (CCSDT)*"**> and CC singles dou-
bles triples augmented with noniterative quadru-
ples [CCSDT(Q)]**** calculations. For the lat-
ter we used the CCSDT(Q)/B variant for ROHF
reference.* In addition, we also considered sev-
eral approximate iterative triples methods including
CCSDT-n (n=1b,2,3,4).4647

The recently published*® aug-cc-p(w)CVnZ-PP
basis sets for alkali metal and alkaline earth

atoms, designed for the ECP28MDF pseudopoten-
tial, have been used (n = 3,4,5), while for all-
electron SFX2C-1e based computations, the aug-cc-
pwCVTZ-X2C basis set was used.

The ECP-based ROHF-CCSD(T) calculations de-
scribed above have been performed using the MOL-
PRO 2018.2 program package**->3, the SFX2C-1e-
ROHF-CCSD(T), all CCSD(T),,>+¢ CCSDT, and
CCSDT-n (n=1b, 2, 3, and 4) calculations have
been carried out using the CFOUR program pack-
age40’57‘59, and all CCSDT(Q) energies were com-
puted using the MRCC program suite*+60-61,

Ill. THEORY

Coupled-cluster theory is based on a similarity
transformation of the Hamiltonian and a projec-
tive solution of the resulting stationary Schrodinger
equation. This leads to the equations

E= <CI)()|I:I|¢'()> (23.)
0= (P, |H|CI>0> , (2b)

where
A=eTh 3)

is the similarity transformed electronic clamped-
nuclei Hamiltonian and |®,) the reference wave-
function. The excited determinants |®;) are chosen
to match the excitations reached by he cluster oper-
ator T = Y. f‘n, which consists of n-fold excitation
operators defined via

N 1 At At A N A A
o= L L Bl alaal add,--
(n! ijk,...abc,...
“)

Here, the symobls 4" are creation and the 4 an-
nihilation operators, [T,]{% are the cluster ampli-
tudes and the indices a,b,c, ... run over virtual and
i,J],k,... over occupied orbitals, respectively. The
electronic Hamiltonian A is usually formulated as

H =Ey+ fy+Wy (5a)
pia L Cat At A A
=Ey+ prqa;aq + 7 Z g‘l’,“,a;aiasaq, (5b)
pq pars



with the one-particle operator fy containing the
Fock matrix f; and the two-particle operator Wy
with the anti-symmetrized two-electron integrals
ghr. For later reference, we note that the coupled-
cluster equations, Egs. (2), can be summarized as
an energy functional®?

& = (®o|(1+A)H|Dy) (©6)

where the Lambda operator was introduced, consist-
ing of a set of deexcitation operators with analogous
definition to that of the excitation operators of the
cluster operator.

For CCSD, the cluster operator is truncated after
double excitations, but it is well-known that quanti-
tative computations require at least an approximate
account of triple excitations. In order to cut down
the computational expense of full CCSDT compu-
tations, it is usual to approximate the triple excita-
tions perturbatively. One of the first approaches im-
plemented is the CCSDI[T] energy correction [orig-
inally called CCSD+T(CCSD)]%3, which is based
on a fourth-order perturbation theory contribution
and is given, assuming canonical (Hartree-Fock) or-
bitals, in terms of

AET] = AE<4> = — (DT} fn T3] Po)
LYY () o @
z/k abc
with T3 defined via Eq. (4) and D?j’}f expressed in
terms of orbital energies €, via
D“,f_ea+8b+ec—e,—ej—ek (8)

The triples amplitudes are computed from the con-
verged CCSD amplitudes

<CD?,I7< | W, T.ccsp) | o)
&t E+E—E—E—& ’

(€))

b
(T3] =

where CID#}CC denotes a triply excited determinant. By
considering an additional term including CCSD sin-
gles excitations one obtains an energy correction,
which is formally of fifth-order in the perturbation
expansion, yielding

AE®) — <q>0 } T W Ty }cpo)

— Iy m

ljk abc

(bel| jk) [T5)¢¢. (10)
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The well-known CCSD(T) method?”*° includes
this fifth-order term:

AET = AE® 4 AE®) = AETI L AED) . (11)

The fifth-order term can be understood in terms of
an alternative definition of the unperturbed system>*
and was shown to be often essential for a good per-
formance of the perturbative triples correction.®*

In addition, a number of further approximations
to CCSDT exist, which treat the triple excitations
perturbatively, but include them self-consistently
into the solution of the coupled-cluster equations.
This is in particular the class of CCSDT-n methods
of which we in this work consider the variants n =
1b, 2, 3, and 4.4647:6566 CCSDT-1b can be largely
viewed as the self-consistent version of CCSD(T),
as it includes the same leading-order terms in the
coupled-cluster equations, which also lead to the
perturbative energy expression, Eq. (11). In addi-
tion, it includes contributions of 7;73 to the dou-
bles residual, which is thus complete (compared to
the doubles residual of the full CCSDT method).
The other methods, CCSDT-2 and CCSDT-3, sub-
sequently include further terms in the residual for
the triple excitations, while avoiding any N8-scaling
contributions. Hence, up to this point the only con-
tribution of the cluster operator T3 in the triple ex-
citation residual appears via (@, |fyT3|®o) defin-
ing an equation for determlmng the corresponding
T3 amplitudes independent of T3 itself. These am-
plitudes are calculated ‘on the fly’ immediately fol-
lowed by calculating the resulting contribution of 73
in the projections onto the singles and doubles sub-
spaces. These computational savings are lost when
proceeding to CCSDT-4 which partially includes
N8 terms. This method goes beyond the perturba-
tive approximation of 73 and includes the full term
(®y,|[H, T3]|Pp). While the CCSDT-n methods do
not find wide use for the computation of ground
state energies, they provide a useful hierarchy to in-
vestigate any short-comings of CCSD(T).

IV. RESULTS

In this work we focus on the calculation of the
X2%; ground state of Rby* at ROHF-CCSD(T)
level of theory. We note that there is a second state
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Figure 1. Schematic illustration of complete potential en-
ergy curves (PECs) of the Rby* ground states ZZ‘,; and
2):;. For studying the ion-atom interaction we need high
accuracy over the whole range of the PEC to obtain both
the rovibrational structure and the long-range region, rel-
evant for investigating scattering events, highly accurate.

of ungerade symmetry (i.e. (1)2X,") which becomes
degenerate to the former one in the long-range re-
gion, as shown in Fig. 1.

A. Breakdown of CCSD(T)

In all calculations, we tightened the convergence
thresholds for both the underlying ROHF calcula-
tions and the subsequent coupled-cluster part as
much as possible to avoid numerical errors. Fig-
ure 2 gives an overview of the resulting long-range
parts of the corresponding PECs for the aug-cc-
pCVnZ-PP basis sets (n =T, Q, 5). The curves for
the ROHF reference and the CCSD energies show
the expected long-range behavior, i.e. a weakly
attractive potential that decays in accordance with
Eq. (1). However, including perturbative triples
corrections either via CCSD(T) or CCSDI[T] pro-
duces a small but clearly unexpected barrier in the
long-range region at R ~ 100 A with a magnitude of
~ 0.15cm™! above the dissociation asymptote. We
note that the fifth-order energy correction AE () is
unproblematic in this respect.

To the best of our knowledge this kind of unphys-
ical behavior seems to be undocumented so far. It
appears to be an inherent problem for the CCSD(T)

method, since other sources of error can be excluded
after thoroughly investigating their impact (see also
supplementary material):

(i) numerical errors due to convergence issues:
We used tightened thresholds a priori, with
numerical noise for energies in the order of
<025-107ecm™1).

(i1) insufficient basis set: As seen in Fig. 2, the
shape of the PEC for ROHF-CCSD does not
depend on the basis set and the height of the
spurious barrier at the ROHF-CCSD(T) level
even increases for larger basis sets. This also
implies that basis set superposition is not a
cause of the problem either, which we could
also confirm by applying the counterpoise cor-
rection scheme to account for basis set super-
position errors.

(iii) the choice of reference wavefunction: We
computed the long-range tail of the PECs us-
ing UHF references with the CFOUR program
and obtained virtually the same result, with ab-
solute energy differences &'(10~2cm™1).

(iv) use of spin-unrestricted or partially spin-
restricted coupled-cluster theory [i.e. RHF-
UCCSD(T) or RHF-RCCSD(T)], see, e.g.,
Refs. 51-53: This only leads to energy differ-
ences in the long-range region in the order of
O(10~*cm™1)

We also found that this unphysical barrier is uni-
versal for X,* systems (X = Li,Na, K, Rb, Cs),
which is shown in the supplementary material. The
problem further occurs for both the aug-cc-pCVnZ-
PP and the aug-cc-pwCVnZ-PP basis set series of
Ref. 48 as demonstrated in the supplementary ma-
terial. Moreover, it is not an artefact due to the
approximative nature of the scECP treatment since
an all-electron SFX2C-1e-ROHF-CCSD(T) calcula-
tion at aug-cc-pwCVTZ-X2C level of theory leads
to the long-range behavior shown in Fig. 3. Ob-
viously, the long-range barrier is still present, at
the same position with the same order of magni-
tude. Finally, we note that there are no multiref-
erence effects expected for the Rby* system. The
two near-degenerate states (X %] and (1)?%) are
of different symmetry and thus do not mix. This
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Figure 2. Overview of the long-range parts of the PECs of the Rby* ground state calculated at different levels of theory
each using ECP28MDF. In (a) the reference energies (ROHF) are shown for the aug-cc-pCVnZ-PP basis sets. In (b)
the coupled-cluster energies with single and double excitations (CCSD) are shown. From Figs. (¢) and (d) we obtain
that including perturbative triples in the coupled-cluster method either via (T) or [T] lead to unphysical humps in the
long-range region. All energies are given as interaction energies relative to the asymptote.

is in contrast to what has been reported, e.g., in
Ref. 67 for the ground state PEC of neutral LiNa,
where indeed multireference effects are present and
CCSD(T) fails to correctly describe the bond cleav-
age.

B. Higher excitations and iterative approximations

CCSD[T] and CCSD(T) are non-iterative approx-
imations to CCSDT. To further investigate the ori-
gin of the long-range hump we also applied iter-
ative approximations to full CCSDT: the CCSDT-
n, with n = 1b, 2, 3, 4, methods*®*7:% We used
the ECP28MDF pseudopotential and the aug-cc-
pCVTZ-PP basis set in these calculations.

As outlined in Sec. III these methods include con-
tributions due to triples excitations conveyed via T3
into the solution of the coupled-cluster equations.
Here all approaches, except the CCSDT-4 method,
avoid including any terms with N® scaling.

The resulting long-range PECs of these iterative
approximations to CCSDT are shown in Fig. 4 (a).
Again, we obtain a hump for CCSDT-1b, CCSDT-
2, CCSDT-3 at the same position (= 100A) and of
the same magnitude (= 0.1cm™ 1) as we have al-
ready seen for the non-iterative methods. Including
more terms in the approximation scheme leads to a
decrease in the size of the barrier. However, only
with the inclusion of the full Hamiltonian in the pro-
jection onto the excited triples manifold, i.e. for
CCSDT-4, the artificial barrier disappears. But, as
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Figure 3. All-electron SFX2C-1e calculation at ROHF-
CCSD(T)/aug-cc-pwCVTZ-X2C level of theory. The en-
ergies are given as interaction energies relative to the
asymptote.

already mentioned this method is already as expen-
sive as the full CCSDT calculation. The resulting
long-range tails are presented in Fig. 4 (b) with both
methods leading to the same shape in the asymptotic
region.

This suggests the hypothesis that the
<<I>o|f“3T fnT3|®o) term, shared by all problem-
atic methods (CCSD[T]/CCSD(T) as well), does
not correctly account for interatomic interactions.
In fact, this term only contains the interaction with
the Hartree-Fock density of the other atom.

We obtain the same phenomenon if we pertur-
batively include even higher excitations such as
CCSDT(Q). The corresponding result is shown in
Fig. 4 (c). The hump is smaller in size, as the
contributions of connected quadruples are generally
smaller than those of connected triples. Neverthe-
less, despite its smallness the artificial barrier com-
pletely spoils the long-range behavior of the poten-
tial, which is important for correct predictions of the
scattering physics.

C. Symmetry breaking

In general X,* — systems, with X = Li, Na, K,
Rb, Cs, are characterized by the point group Dey.
This implies the asymptotical indistinguishability of
Rb*+Rb and Rb-+Rb*, which is also clear from

0.15 _(a) IROHIF—CICSDFi‘—lb I—e—l ]
ROHF-CCSDT-2
0.12 | ROHF-CCSDT-3 E
ROHF-CCSDT-4 ——
— 0.09 -
|
£ 0.06 1
53]
0.03 E
0.00 f-v-nmeenonr
_0.03 I /IM‘~Iv 'l 'l 'l 'l 'l 'l ]
50 100 150 200 250 300 350 400 450 500
R[A]
0‘004 T T T T T
0.000
-0.004
D
i -0.008
)
-0.012
-0.016 F ROHF-CCSDT b
ROHF-CCSDT-4 ——
-0.020 L L L L L
0 100 200 300 400 500
R[A]
0'0005 T T T T T T T T
0.0000 i
-0.0005 i
T -0.0010 ]
B
— 4
o -0.0015 i
-0.0020 i
-0.0025 i
ROHF-CCSDT(Q) —e—
_00030 L L L L L 1 L
50 100 150 200 250 300 350 400 450
R[A]
Figure 4. (a) Long-range part of the interaction ener-

gies using different iterative approximations to CCSDT.
(b) Comparison of CCSDT-4 and full CCSDT interaction
energies. Computatations are based on the ECP28MDF
pseudopotential, the aug-cc-pCVTZ-PP basis set and a
ROHEF reference. (¢) ROHF-CCSDT(Q) long-range tail
of the respective PEC calculated with the MRCC program
suite using ECP28MDF/aug-cc-pwCVTZ-PP. The ener-
gies in (a) and (b) are given relative to the asymptote
while in (c) they are given w.r.t. the last ab-initio point.



a fundamental quantum mechanical point of view.
The correct asymptotic behavior is given in terms
of a superposition of both limiting cases, i.e.

|X22g+> = \%(|0,+>+|+,0>) (12a)
(1)25h) = % (10.4)—[+.0) . (12b)

The zeroth-order description of the system is a
mean-field approximation (Hartee-Fock), which in-
volves the self-consistent-field (SCF) solution for
the corresponding equations. This need for self-
consistent solutions leads to different orbitals for
Rb* and Rb and with that the solution of the sep-
arated fragments is in conflict with the symmetry
requirement that the two cases Rb*+Rb and vice
versa are quantum-mechanically indistinguishable.
All the orbitals of Rb and Rb* are a “compromise”
of the neutral and ionic orbitals. The mean-field
solution also defines the Fockian, the effective one-
electron potential of the system and plays an impor-
tant role for defining perturbative approximations in
the coupled-cluster equations. Rather than describ-
ing the correct superposition, it contains the compro-
mise solution with half an electron on the right and
half an electron on the left side, possibly explaining
the repulsive long-range barrier as a consequence of
a leading-order repulsive 1/R component in the re-
spective interaction potentials.

If this is true, breaking the symmetry of the sys-
tem to C.., should lead to a correct asymptotic be-
havior without any barrier. Quantum mechanically
speaking we project on one of the two limiting cases
(|0,4+) =Rb+Rb™ or vice versa |+,0)). To test this
hyothesis, we carried out CCSD and CCSD(T) com-
putations using symmetry-broken ROHF orbitals.
The resulting long-range tails of the PECs are given
in Fig. 5.

The results demonstrate that the long-range hump
can indeed be avoided by reducing the symmetry
to Cwyp. At short-range these symmetry-broken so-
lutions collapse to the symmetric one. This is il-
lustrated in more detail in the supplementary mate-
rial. Furthermore, the doubly logarithmic analysis
in Fig. 5 (d) clearly reveals a repulsive 1/R compo-
nent in the long-range tail of the symmetry-adapted
CCSD(T) PEC. In contrast, the symmetry-broken

solution results in a curve with the correct R~* be-
havior.

The findings suggest that the best model for
the long-range region is based on the symmetry-
broken solutions. So far the most promising ap-
proach is to use symmetry-broken (T) and (Q) cor-
rections for the long-range tail and properly merge
with symmetry-adapted solutions for smaller inter-
nuclear distances. With this all terms of the out-
lined additivity scheme according to Sec. II are well-
defined paving the way for a highly accurate PEC.
The details on this will be published in a subsequent
study.

Beyond that, we tested alternative approaches
such as the electron affinity equation-of-motion
coupled-cluster (EA-EOM-CC) method in the spirit
of the approaches on Li*, Nay* and K,* re-
ported in Refs. 21-23. Preliminary results at EA-
EOM-CCSD level of theory®® using CFOUR look
quite promising with similiar performance to CCSD.
These findings are reported in the supplementary
material. We further examined the applicability
of completely renormalized CC (CR-CC) methods
such as the CR-CC(2,3),A and CR-CC(2,3),D vari-
ants, cf. Refs. 69-72, where corresponding calcu-
lations were performed using the GAMESS pro-
gram package.”>’* We observed that CR-CC(2,3),A
leads to the same long-range barrier as obtained for
CCSD(T) with a leading-order repulsive 1/R com-
ponent. At variance, the CR-CC(2,3),D variant does
not feature a repulsive barrier, but instead - some-
what surprisingly - an attractive 1/R component,
which also leads to a wrong asymptotic behavior.
This is discussed in more detail in the supplemen-
tary material.

V. DISCUSSION

Our findings so far suggest that the physical ori-
gin of the artificial long-range humps is connected
with the underlying mean-field character of our cal-
culations and the way it enters perturbative coupled-
cluster approximations. However, it is not clear if
this problem is caused by the approximation in the
energy expression or due to the use of approximate
triples amplitudes. The latter can be tested rather
systematically by using T3 amplitudes from CCSDT
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deviation of the symmetry-broken solution for ~ 12 —20A is due to a numerical bistability discussed in more detail in
the supporting information. All energies are given as interaction energies relative to the asymptote.

in Eq. (7).

We first carried out calculations using a closely
related formulation for the triples contribution
based on analytic energy derivative formulation of
CCSD.”>7% A CCSD Lagrangian®>”7 with triple ex-
citations treated as an “external” perturbation with
a fictitious field strength y is used here

LTy, T, xT3) = (0](14 Acesp)H[x][0) ,  (13)

in which ACCSD e A] .CCSD +/A\2,CCSD represents the
CCSD A operator, and T3 contributes to H, defined

in Eq. (3), in the same way as in the CCSDT method.

Given the exact T3, a finite-field CCSD calculation

defined as the left-hand side of Eq. (13) with y =1
produces the exact CCSDT energy. This finite field
CCSD calculation uses the CCSDT equation, but
treats the triples as the perturbation. Hence the
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CCSDT energy can be expanded in a Taylor series

Eccspr = «iﬂ(fhfz,%@)‘

x=1
dZ
- [X‘xzo—’—xa x=0
1 ,d*¥
T g X:ﬁ“'}
=1

_ 7| dz ldzﬁ‘ L

=0 dy lxy=0 2 dy? ly=0 ’

(14)

with the unperturbed energy being the CCSD energy

f‘ _ = Eccsp (15)
and the first-order correction given by
4z " oH
T = <0 Accsp 2] ’0>
X 1x=0 ayx
x2=0
= (0|Accsp[H, 13]|0) . (16)

Eq. (16) offers a flexible framework for obtain-
ing leading triples corrections to the CCSD en-
ergy. When the leading-order contribution to 73 is
used, i.e. the triples amplitudes defined in Eq. (9),

Eq. (16) reduces to the CCSD(T), method orig-
inally derived within the equation-of-motion CC
framework.>*+>% Eq. (16) is also compatible with
the use of improved 73 amplitudes obtained from
iterative solutions of the CCSDT amplitude equa-
tions. This is particularly useful for the present
purpose to understand whether the small humps in
the CCSD(T) potential energy curves originate from
the approximation in the energy expression or from
the approximation of using the approximate 73 as in
Eq. (9). A straightforward approach to improve 73 is
to solve the CCSDT amplitude equations iteratively.
Here we define Er[CCSD(T),-n] as the triples en-
ergy correction using Eq. (16) with T3’n’th obtained
from the n’th iteration of CCSDT equations with
converged CCSD amplitudes adopted as the initial
guess

Er[CCSD(T)z-n] = (0|Accsp[H, T3] [0) . (17)

The use of 73 from a converged CCSDT calculation
provides the first-order correction from the triples
amplitudes to the CCSD energy

ET[CCSD(T)A-COHV] = <0|1A\CCSD [H, T3,CCSDT] |0> .
(18)

Here “-conv” denotes the use of converged CCSDT
T5. Although it is obviously not practically useful,



Eq. (18) defines the limit of the accuracy that can
be obtained using Eq. (16).

The CCSD(T)A-n methods are related to avail-
able methods for obtaining triples corrections,’84
the most intimately to the CCSD(T-n) methods®>84
derived using CCSD Lagrangian, which also treats
CCSD as the unperturbed state. The difference lies
in that the schemes outlined so far refrain from
performing an Mgller-Plesset perturbation analysis
and limit the consideration to the first derivative
with respect to the triples amplitudes, whereas, the
CCSD(T-n) derivation expands the Lagrangian or-
der by order in terms of the fluctuation potential.
Since the first iteration of the CCSDT amplitude
equations in CCSD(T)a-n uses CCSD solutions as
the initial guess and generates first-order T3, substi-
tuting this 73 into Eq. (16) gives a triples correction
correct to second-order, i.e., CCSD(T)-1 is iden-
tical to CCSD(T-2). CCSD(T-4) contains contribu-
tions from higher orders, i.e., the second term in Eq.
(14), which is not considered in CCSD(T)A-n. The
CCSD(T-n) methods are more efficient, since no
storage of T3 is needed. However, the CCSD(T)x-
n approaches may have the advantage that the use
of convergence-acceleration techniques during iter-
ative solutions of CCSDT equation such as direct
inverse of iterative space (DIIS)® may smooth the
convergence when the plain iterative solutions ex-
hibit an oscillating behavior.

We have performed CCSD(T),-n,n = 1 —6 and
CCSD(T),-oo calculations for potential energy sur-
faces of szr using the aug-cc-pwCVTZ-PP basis
set. As shown in Fig. 6 (a), the CCSD(T)-n results
systematically converge to the CCSD(T) 5 -oo results,
which is essentially indistinguishable from CCSDT
results. The CCSD(T) -1 curve shows an artificial
hump similar to the case of CCSD(T),. The hump
is significantly reduced in the CCSD(T),-2 curve
and is eliminated using methods with more than
two iterations. The doubly logarithmic representa-
tion in Fig. 6 (b) shows, however, that the recovery
of the correct long-range behavior proceeds more
slowly. CCSD(T)A-3 still is dominated by an R—3
component in the range plotted in the figure, while
CCSD(T)a-4 decays too quickly in this range, show-
ing an R~3 behavior. From order 5 on, the method
has essentially converged to the correct R~ behav-
ior. These results clearly support that the artificial
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hump in the CCSD(T) curve and the wrong asymp-
totic behavior originates from the approximation of
T3. This is also true for iterative approximations to
CCSDT, i.e. CCSDT-n (n = 1b,2,3) since the equa-
tion for the approximate triples amplitudes is for-
mally similar to Eq. (9).

Note that the CCSD(T),-n energies converge
more rapidly than CCSDT energies with respect to
iterative solution of CCSDT amplitude equations, as
also demonstrated in Fig. 6. The CCSDT-2i ener-
gies lead to a PEC with a leading-order attractive
R component similar to CCSD(T)A-3, while the
CCSDT-3i results also reveal a tiny repulsive barrier,
see Fig. 6 (b). The CCSD(T),-n triples correction
is less sensitive to the quality of 73, since it is only
a small fraction of the total CCSDT energy. Finally,
we note that, while the CCSD(T),-n methods have
proven useful in the present context, the potential
usefulness in calculations of chemical properties re-
mains to be explored.

VI. CONCLUSION

This work shows that several standard coupled-
cluster methods with noniterative or approximative
iterative treatments of triple excitations can lead
to unphysical potential energy curves for X,* sys-
tems, X € {Li,Na,K,Rb,Cs}, with a spurious long-
range repulsive 1/R component leading to a bar-
rier at around 100 A (for the case of Rby™). Al-
though this effect is in the order ¢(10~'em™!) it
would lead to severe problems when using the cor-
responding PECs for highly accurate studies in the
context of ultracold chemistry. We unraveled the
origin of this phenomenon by studying the ground
state PEC of Rb,*. It arises from the need to
define self-consistent solutions which at the same
time cannot be both consistent with the separated
fragments (different orbitals for Rb* and Rb) and
with the quantum mechanically imposed symmetry
requirement (indistinguishable cases Rb*+Rb and
Rb+Rb*). The resulting asymptotic orbitals thus
correspond to two +0.5-fold charged ions. This
problem lives on in the Fockian and affects the per-
turbative estimates of the Tg amplitudes, which fi-
nally lead to the wrong behavior of the PEC. This
was demonstrated quantitatively by using a new



“CCSD(T)A-n" scheme.

For the Rb,* molecule we found that symmetry-
broken CCSD(T) solutions lead to physically cor-
rect long-range PECs while symmetry-broken and
non-broken CCSD curves virtually coincide in this
region. From this we conclude that (T) corrections
from symmetry- broken calculations can be used for
estimating the complete basis set limit of the long-
range part of the PEC. In the same way we could
proceed with (Q) corrections and smaller basis sets
eventually defining a protocol for obtaining a highly
accurate global PEC for the ground state of Rb,*.
This will be thoroughly investigated in a subsequent
study.

SUPPLEMENTARY MATERIAL

See supplementary material for technical details
on the independence of the long-range hump on pos-
sible sources of error and different basis sets, for the
universality of the current problem for X,* systems
and for more details on symmetry breaking and tests
for alternative coupled-cluster methods.
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