IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 9, NO. 3, JUNE 2022 891

Echo Chambers and Segregation in Social
Networks: Markov Bridge Models and Estimation
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Abstract— This article deals with the modeling and estimation
of the sociological phenomena called echo chambers and
segregation in social networks. Specifically, we present a novel
community-based graph model that represents the emergence
of segregated echo chambers as a Markov bridge (MB) process.
An MB is a 1-D Markov random field that facilitates modeling
the formation and disassociation of communities at deterministic
times, which is important in social networks with known timed
events. We justify the proposed model with real-world examples
and examine its performance on a recent Twitter dataset.
We provide a model parameter estimation algorithm based
on maximum likelihood and a Bayesian filtering algorithm for
recursively estimating the level of segregation using noisy samples
obtained from the network. Numerical results indicate that
the proposed filtering algorithm outperforms the conventional
hidden Markov modeling in terms of the mean-squared error.
The proposed filtering method is useful in computational social
science where data-driven estimation of the level of segregation
from noisy data is required.

Index Terms—Bayesian filtering, echo chamber, Markov
bridge (MB), segregation, social network.

I. INTRODUCTION

NLINE social networks (OSNs) lay the foundation for

online community formation. Billions of users rely on
OSNs to connect with friends, share information, and advertise
products. Echo chambers, i.e., situations where one is exposed
only to opinions that agree with their own, are an increasing
concern for the usage of OSNs. According to the theory of
preferential attachment or homophily [1], users tend to link
with other users who share similar attributes (e.g., opinions
and interests). Furthermore, social influence [2] also increases
users’ tendency of becoming more similar to somebody as a
result of social interaction. These two factors lead to segre-
gated and polarized clusters known as “echo chambers” on
social networks. A vivid example of such echo chambers in
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Fig. 1. Itindicates how Twitter users’ political opinions are polarized into two
communities (echo chambers) before the 2020 presidential election. Nodes
represent Twitter users and edges represent retweets during the one-month
period before election (October 1-November 1). Multiple snapshots illustrat-
ing the graph evolution during this period are shown in Fig. 6. The graph is
laid out using DrL (a force-directed graph layout) and the nodes are assigned
different colors and shapes (blue circles and red triangles) according to the
two communities detected by the Louvain method [3]. Details can be found
in Section V-BI1.

a directed graph is from Twitter users’ retweeting behavior
before the 2020 presidential election, as shown in Fig. 1.
Echo chambers are studied on various social networks from
different modeling perspectives. However, the evolution of
echo chambers is characterized by certain temporal patterns
in many cases, which is neglected by many proposed models.
Having an anticipatory model of segregation in social networks
allows us to incorporate the effects of periodic (i.e., seasonal)
events into the model. This enables the real-time statistical
inference as well as tasks such as offering incentives to reduce
the effects of segregation (control strategies for preventing seg-
regation and echo chambers). For example, one can imagine a
control strategy, which offers incentives to users at each time
instant (subject to budget restrictions) to influence the link
formation in order to hinder the segregation in social networks.
Toward this end, the aim of this article is to develop and
analyze a model for the anticipatory nature of the segregation

2329-924X © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Cornell University Library. Downloaded on May 27,2022 at 18:44:12 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0003-0711-8039
https://orcid.org/0000-0002-6070-892X
https://orcid.org/0000-0002-4170-6056

892 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 9, NO. 3, JUNE 2022

process in a social network, i.e., one can assign probabilities
to the event that the social network will be segregated at a
certain fixed time instant.

Main Results:

1) We present a dynamic network formation model that
captures the dynamics of how a social network segre-
gates into disconnected communities, i.e., echo cham-
bers (and then integrates back again). The key idea
behind our model is to represent the strength of the ties
between communities (in terms of a graph clustering
metric) as a Markov bridge (MB) process, which is a
special case of an anticipatory process.

2) Based on the proposed MB-based segregation model,
we propose a time-inhomogeneous Bayesian filter
(called hidden Markov bridge (HMB) filter) for recur-
sively estimating the state of the graph clustering metric.
The HMB filter uses only a few (compared to graph
size) noisy samples from the social network at each time
instant.

3) We numerically compare the performance of the pro-
posed HMB filter with the conventional hidden Markov
model (HMM) filter in terms of mean-squared error. Our
results show that the proposed method outperforms the
traditional HMM filter. This shows that the Bayesian
filter yields useful real-time information about the dis-
association and association of communities in a network.

4) We evaluate the performance on a publicly available
dataset [4], which encompasses 7 million tweets related
to the 2020 U.S. presidential election. Our results illus-
trate the proposed model and filter are useful in estimat-
ing Twitter users’ state of political opinion polarization
under real-world settings.

II. RELATED WORK AND MOTIVATION
A. Segregation and Echo Chambers

Previous works on segregation and echo chambers that are
related to ours can be considered under two categories.

1) Generation Mechanism of Echo Chambers: Echo cham-
bers are segregated communities that do not interact across
communities but only form intracommunity communication.
This phenomenon appears in many areas, including political
discussion [5], [6], e-commerce [7], and urban planning [8].
Various mechanisms have been proposed in the literature to
explain the emergence of echo chambers. One category of such
mechanisms focuses on a self-reinforcement procedure, which
polarizes a user’s opinion by exposure to similar contents or
interaction with similar users. Baumann et al. [9] proposed a
radicalization mechanism, which reinforces extreme opinions
from moderate initial conditions. Ge et al. [7] explored the
effect of repeated exposure to similar contents on users’
e-commerce shopping interest. The second category intro-
duces a social feedback mechanism, which modifies a user’s
opinion by imposing social constraints, e.g., peer effects.
Sasahara et al. [2] constructed a model of social influence and
unfriending where users can change both their opinions and
social connections based on the information they received.
Banisch and Olbrich [10] considered the social feedback’s

effect on users expressing alternative opinions and analyzed
the sufficient conditions for stable bipolarization on a stochas-
tic block model.

In this article, we associate users with their known and
fixed labels (i.e., customer types in Section III-A and political
ideologies in Section V-B). A similar approach has been
considered in [10] and [11]. We model echo chambers via the
community-level behavior, e.g., how dense are intracommunity
and intercommunity connections. More precisely, we construct
a segregation measurement using the graph conductance of the
corresponding network and the ratio between the number of
intracommunity connections and the number of total connec-
tions,! which represents how users’ interactions are confined
inside community.

2) Dynamics of Segregation: Another direction has explored
the dynamics of segregation and opinion polarization. Many
related works view segregation as a steady state of a multiagent
system and build upon opinion dynamics models, such as the
DeGroot model [13], the Friedkin—Johnsen model [14], and
the voter model [15].2 Dandekar et al. [16] complemented a
biased assimilation term into DeGroot model, which strength-
ens the individual’s self-opinion and ensures polarization
at the steady state. Chitra and Musco [17] augmented the
Friedkin—Johnsen model with an external network administra-
tor, which reduces disagreement among interacting users and
leads to echo chambers. Friedkin [18] studied the community
cleavage problem by comparing different opinion dynamics
models’ results on different social structures. De et al. [19]
modeled individual users’ opinions over time by marked
jump-diffusion stochastic differential equations and identify
conditions under which opinions converge to a steady state.

Our work does not build upon agent-based opinion models.
Instead, we model the segregation in the network as a tempo-
ral signal and propose expectation—maximization (EM)-based
parameter estimation from data. This is more amenable to
data-driven analysis that is typically used in real-world set-
tings.

B. Why MB Dynamics?

In this article, we focus on modeling the dynamics of
segregation and echo chambers by considering the information
of future events. To this end, we propose an MB model and
justify this model based on real-world examples and a Twitter
dataset. The temporal dynamics of social networks give rise
to states where the network is segregated into multiple echo
chambers at certain known time instants and integrate back
into a single community at other known time instants. In sta-
tistical signal processing (e.g., in target tracking), dynamical
processes with long-range dependencies are typically modeled
as MB processes [20]-[22]. An MB process can be viewed as a
special case of an anticipatory process in which the distribution
at a future known time instant is fixed. In the following,

! Another option is modularity [12], which represents the strength of division
of a network into modules (i.e., echo chambers).

2We remind readers that a user following the DeGroot model averages her
opinion with the opinions of her neighbors, whereas a user following the
voter model adopts a neighbor’s opinion at random. Friedkin and Johnsen [14]
extended the DeGroot model by associating a user with an innate opinion.
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we discuss how the temporal dynamics of segregation in many
social network scenarios can be modeled using MB dynamics.?

Example 1 (Schelling’s Segregation Model): The segregation
model developed by Schelling [23] is set in an N x N grid.
Agents are split into two groups and occupy the spaces of the
grid. Agents desire a fraction B, of their neighborhood to be
from the same group. This model shows how echo chambers
and weak intercommunity connectivity might arise even with
a moderate individual preference B,. The physical grid space
can be generalized to a social network as a grid graph. In case
of external stimulus such as elections, the value of B, or its
distribution is anticipatory and can be modeled as an MB
process.

Example 2 (Polarization of Political Opinion): OSNs (e.g.,
Twitter) users have different political leanings and tend to
follow or retweet users of similar opinions. Such tendency
can be moderate, i.e., users are open-minded to follow or hear
someone from different ideology groups. However, during a
politically polarization event, such as election or legislation,
the tendency will become stronger and hinder users from
connecting with others of different opinions, which results in
highly segregated online echo chambers, as shown in Fig. 1.
We can formulate the portion x of interactions between
users of different political leanings as an MB process. It is
anticipatory to be at a low level during the polarization event.

Example 3 (Social Media Marketing): Consider a social
media marketing scenario (e.g., Facebook Business page)
where a company is connected with customers. Customers are
classified into fans and utilitarian customers [24]. As shown
in Fig. 2, while fans (bottom-left vertices) have a stable
connection strength (i.e., fixed edge weight) with the com-
pany (center vertex), utilitarian customers (top-right vertices)
have time-varying connection strength (i.e., time-varying edge
weights) with the company due to reasons such as sales events.
The variable connection leads to segregation and integration
of the company—customer social network.

III. MB MODEL FOR DYNAMIC SOCIAL NETWORKS

This section presents a stochastic model to represent the
evolution of a social network whose state is fixed at the
beginning and at the end. The two fixed states correspond to a
segregated social network (with multiple echo chambers) and a
social network that has a single community (i.e., an integrated
network). Thus, the model presented in this section is a
useful, intuitive representation of the process of social network
segregation. Furthermore, as we show later in Section IV,
the proposed model is easily amenable to the Bayesian sta-
tistical inference, making it useful in data-driven contexts in
computational social science.

A. Time-Varying Edge Weight Graph Model

This section explains the graph model with time-varying
edge weights using a company—customer social network con-
sisting of a company and two types of customers as the graph
vertices. The binary classification of customers is motivated
from the topological study of Facebook fans in [24].

3 Also, see Appendix A for more motivating examples.
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Fig. 2. Snapshots of a dynamic company—customer social network model
in (1) at four time instants. The edges between utilitarian customers (top-right
vertices) and the company (center vertex) grow weaker as the social network
evolves into segregation with two communities (echo chambers).

The social network at discrete time instant ¢ is modeled
by an undirected, weighted graph G (V, E, w®), with |V]
number of agents, |E| number of undirected edges represent-
ing their connectivity, and w® : E®) — R representing the
weights of the edges (i.e., the strengths of the connections).

Let |V| = n be the number of vertices in the network,
M = {vy,...,0,} C V be the set of utilitarian cus-
tomers who are all connected with each other (i.e., form
a complete subgraph), v,+; € V be the company, and
N ={vopmyi2,...,0,} CV be the set of other customers (fans)
that form another complete subgraph. Then, edge weight
function wl(;) between v; and v;, where (v;,v;) € E, is as
follows:

Wij(l) if v; = Um+1 Vj € M
VO = 0Up41 U € M
1 ifo,=0vu410; €N

(1) _
w;; =

(1

VO =Upy1 U €N
1 if (l)i,l)j)GMl)i#l)j
V(l)i,l)j) e N v; 75 0

where, W;;(t), t = 1,2, ..., is the MB process that we define
in Section III-B.

Note that (1) classifies the edge weights into three groups:
between company and utilitarian customers, between com-
pany and fans, and between two customers of the same
type. Note that there is no edge between two customers
of different types. The edge weights between company and
utilitarian customers are subject to sales events and therefore
described as a time-evolving random process W (¢) (specified
in Section III-B). Other weights are simply set to be one. The
simplification is reasonable because fans would be indifferent
about sales events and have a more stable relationship with
the company. Furthermore, we also assume that the customers
of the same type are all connected with each other motivated
by the concept of homophily [1].
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B. MB Model of Edge Weights

We now propose an MB model for the evolution of the
weight W;;(¢) in the graph. Recall [25] that an MB is a 1-D
Markov random field. It is clamped at the beginning and end
time point and evolves in between with a three-point transition
probability p{W;;()|W;;(t + 1), W;;(t — 1))}. An MB for
W;;j(t) facilitates modeling a community that separates and
then reintegrates with another community in a network. Unlike
a Markov chain that enters a state at a geometrically distributed
time, an MB enters a state at a fixed deterministic time [20].

We consider (2T — 1) time steps as the period between
two consecutive sales events. The edge weight W;;(r) between
company and utilitarian customers reaches maximum at time
1 and time 27 — 1 when sales event happens and decreases
to minimum at time 7 in the middle of two sales events.
The process can be described as two consecutive MBs as we
explain next.

The Markov process W;;(t), t = 1,...,2T — 1 takes
value in some finite state space S = {0, (1/(Ng — 1)), ...,
((Ns — 2)/(Nsg — 1)), 1}, which is an arithmetic sequence
with Ng elements. The transition matrix of the Markov
process is chosen to be an Ny x Ng row-normalized Toeplitz
matrix such that transitions from a given state to neighboring
states (i.e., values in S that are closer to the given state)
are more likely. Let the entries of the transition matrix be
P, = P{W;;(t + 1) = S[b] | W;;(t) = Slal} for all edge
weights W;; in (1), where S[a], S[b] € § are two states of the
social network with order a,b € {1, ..., Ng}, respectively.

In this setup, we fix the states at ¢t = 1, T, and 27 — 1 of a
Markov process—this can be viewed as two sequential MBs:
one that starts at time 1 and another one that starts at time 7.
Both MBs have their starting and end states fixed. The first
MB’s end state overlaps the second MB’s starting state. The
first MB (for each edge) is initialized as 1 and the state at time
T is set to be 0, i.e., Wllj =1, Wg = 0. Thus, the transition
probability of the first MB going from state S[a] to state S[b]
is obtained by applying the Bayes rule as follows [25]:

B (1) = P{W;;(t + 1) = S[b] | Wi;(1) = Slal, W;;(T) = 0}
Pa PT—(H—])
_ =b( - )h,c (2)
(77

a,c

fort =1,...,T — 2, where c is the order of O in the state
space, i.e., S[c] = 0.

Likewise, the state of social network is fixed to be 1 at
2T — 1 (i.e., the last time step) We can then formulate the
transition probability of the second MB in a similar manner
as follows:

5

B, (1) = (P - 3)

Pua(PT1D)
c

a,c’

fort =T —1,...,2T — 3, where ¢’ is the order of 1 in the
state space, i.e., S[¢’] = 1. Thus, the dynamics of edge weights
is specified by two MBs with transition probability matrices
given by (2) and (3) and the fixed initial state of the first MB.
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Fig. 3. Two metrics (left: graph conductance ¢(G) and right: algebraic con-
nectivity 1) that indicate the strength of connectivity between communities
in a graph. The figure shows that conductance (the state random variable in
our model) resembles other metrics such as the algebraic connectivity.

C. Graph Clustering Metrics

The aim of this section is to discuss the graph metric called
graph conductance that we use to express segregation and set
as the state of our model. Graph conductance is a measurement
of the level of clustering in a graph and is explained as follows.

We first define a cut (S, S) as a partition of the vertices of
a graph into two disjoint subsets S and S. The conductance
of a cut (S, S) in a graph is defined as

ZieS Zj¢5 Wij
min{a(S),a(V \ S)}’

where a(S) = 3,5 > ;cy wi; is the sum of the weights of all
edges with at least one endpoint in S. Then, given a graph G,
we define the graph conductance as the minimum conductance
over all possible cuts

#(G) = min ¢ (S). ®)

Graph conductance is also related to the algebraic connec-
tivity, which is the second smallest eigenvalue of the Laplacian
matrix of G. Algebraic connectivity is used in many results in
spectral graph theory such as Cheeger’s inequality [26]. The
derivation of algebraic connectivity can be found in [27]. The
weighted adjacency matrix A of the graph is given by

(ty _ (@)
Aij =w;;. (6)

$(S) = Scv )

The degree matrix D) is given by

DAY =
k

DY = )

0, otherwise.

The Laplacian L") of the graph is given by
LY = p®O _ A0 (8)

Fig. 3 shows that the variations of both graph conductance and
algebraic connectivity follow a similar dynamics. This implies
that an estimate of the graph conductance also serves as a
proxy for the algebraic connectivity under our model.

IV. BAYESIAN ESTIMATION OF GRAPH METRICS

Section III presented an MB for a social network segre-
gation. A natural question is: assuming the MB with known
parameters, how can one estimate the level of segregation in
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a data-driven manner? An answer to this question is useful
in computational social science and network science that
deal with large-scale, partially observable (via noisy samples)
social networks. As a solution, we propose a Bayesian filtering
method based on the proposed segregation model.

A. Measuring Conductance via Sampled Edges

This section discusses our criteria for obtaining a noisy
estimate of the conductance of the underlying dynamic
graph (explained in Section III) using a sampled subgraph.
We demonstrate that the sampling noise can be approximated
as a Gaussian noise from the central limit theorem.

We assume that y N of the total N edges are uniformly
sampled and observed at each time ¢ (random sampling of
edges has been used widely in the literature in statistical
estimation tasks, see [28]-[30]). y is a fixed ratio in (0, 1].
The observed graph conductance ¢(G®) is computed from
the partially sampled graph G at time . Graph conductance
is a static function of edge weights

o).

$(GV) = f(w§’>, L 9)

Also, the observed graph conductance is the same function of
sampled edge weights
)
l],N

$(G) = f(wl. ..

where iy,...,i,5 are sampled from 1,..., N with equal
probabilities. From (9), it follows straightforwardly that graph
conductance as a static function of the edge weights follows
the same MB dynamics. For the rest of this article, we denote
#(GD) and $(GV) as ¢ and ¢ respectively.

To estimate the observation probabilities p(¢®|¢p® = j),
we use a Monte Carlo simulation to obtain sample trajectories
of the (2T — 1) step graph evolution and compute the empirical
cumulative distribution function (cdf) of noise of the conduc-
tance computed from the partial observation, i.e., the cdf of
the difference between the estimated conductance y ) and
the true conductance ¢). Fig. 4 shows that the observation
noise is approximately (in the sense of Kolmogorov—Smirnov
(KS) test) a Gaussian distribution, i.e.,

p(gZ(t)|¢(t) =) NN()’ FO — p0), 0 (a(’))2>. (11

The normal distribution form of the observation noise (11)
can also be viewed as a consequence of the central limit
theorem; since we are sampling independent identically dis-
tributed (i.i.d) edge sequences from the social network and
approximate the graph conductance using the average of their
weights, it follows from the central limit theorem that the
sample mean (scaled by the square root of the number of
samples) converges in distribution to a Gaussian distribution
centered around the true state.

(10)

B. HMB Filter

In this section, we aim to estimate the segregation level
of a social network by computing the posterior probability
of the graph conductance given its sampled observation (the
conductance computed from sampled edges of the graph).
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Fig. 4. Empirical cdf of the sampling noise for graph conductance can be
fitted as a Gaussian distribution. It contains the empirical and fitted cumulative
probability at four states in a simulation of six-state model. The p-value of KS
test is above a 0.05 significance level, and therefore, the Gaussian distribution
null hypothesis is unrejectable.

Section IV-A exploits the Gaussian approximation of measure-
ment noise and we propose an HMB filter here for recursively
tracking the state of the graph conductance. HMB filter is a
generalization of the time-homogeneous HMM filter [31] and
has been widely used in signal processing methods for target
tracking [20]-[22].

Suppose that the MB process ® = {1, ..., ¢} is
observed via the observation process ® = {1, ..., 40}
Assume that the observation at time ¢ given the state ¢
is conditionally independent of ¢ and ¢*, ¢ # r. This
conditional independence implies that

t

P(@D,.... 0160, ... 0) = []P@V16®). (12)

k=1

The process @ is called an HMB because the property (12)
is analogous to the assumption made for HMM. Consider the
HMB @ with state ®, known MB transition probability (2),
and precomputed observation probability (11). The posterior
probability can be evaluated recursively via Bayes’ rule

p(qz(t+1)|¢(t+1):j) Z?;l Bi]fj (1)q; (1)
S p(@DIge =1) 32 B (0)gi(0)

as shown in [32].

q;j(t+1)=

V. NUMERICAL EXAMPLES ON SOCIAL MEDIA
MARKETING AND TWITTER POLITICAL RETWEETS

In this section, we numerically illustrate that the pro-
posed HMB filter (Section IV) outperforms (in terms of
mean-squared error) the widely used HMM filter for estimat-
ing the level of segregation on synthetic data. This highlights
how the proposed model and filtering method can be useful
in estimating the level of segregation with a better accuracy
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Fig. 5. Mean-squared error of the proposed HMB filter compared with an
HMM filter in the company—customer marketing network simulation. HMB
filter outperforms HMM filter by approximately 20%, which indicates its
better prediction ability of segregation in social networks.

compared to the baseline method of HMM filtering. We also
evaluate the proposed model on a public Twitter election
dataset.

A. Simulation on Weighted Customer-Merchant Graph

In this section, we consider a social media marketing
scenario where the connection between company and cus-
tomers is modeled as an MB. An HMB filter is implemented
to estimate the intercommunity distance based on sampled
observation of single edge weights and an additive Gaussian
noise. It outperforms a hidden Markov chain filter regarding
the mean-squared error.

1) Simulation Setup: We consider a company—customer
network of ten utilitarian customers, 20 fans, and one company
as discussed in Section III for 27 — 1 time steps (7' = 20).
The state space of the weight of each edge between util-
itarian customers and company is an arithmetic sequence
[1, (Ns —2)/(Ns — 1)),...,(1/(Ns — 1)),0]. The weight
evolves according to a transition matrix that is a Toeplitz
matrix. Each descending diagonal from left to right is constant:
[(1/4)Ns=1 ... 1,...,(1/4)"~']. Each row vector of the
Toeplitz matrix is normalized so that the row elements add
up to 1. We then implement the HMB filter in assuming
that the measurement noise is Gaussian with the empirically
estimated mean and covariance in Section IV-A. To assess the
performance, we compare the mean-squared error of the HMB
filter with an HMM filter that assumes the underlying process
is a Markov chain (instead of an MB).

2) Numerical Results of Filters: Fig. 5 shows the results
obtained using the above simulation setup. Results show that
the proposed HMB filter outperforms the HMM filter for all
considered numbers of states (Ng values). Thus, the numerical
results indicate that the proposed Bayesian filter is capa-
ble of accurately estimating the level of segregation in a
company—consumer network from noisy sampled edges.

B. HMB Model of Political Polarization During
2020 Election

In this section, we propose that the MB model is sociolog-
ically beneficial for predicting the emergence and segregation

TABLE I

SAMPLE OF ELECTION-RELATED TWITTER ACCOUNTS TRACKED IN THE
DATASET

account name
@realDonald Trump
@GovBillWeld
@MarkSanford
@WalshFreedom
@JohnDelaney
@AmbassadorRice
@TrumpWarRoom
@TeamTrump
@JoeBiden
@CoryBooker
@GovernorBullock
@SenKamalaHarris
@BernieSanders
@SenWarren
@marwilliamson
@AndrewYang

political party

viviviviviwhwlwi-R-R R R R Rl

level of echo chambers on a social network. We justify our
conclusion on a real-world Twitter dataset where a polarization
score is defined on the Twitter retweet network. We deter-
mine the model parameters (i.e., the transition matrix) from
maximum-likelihood algorithm, which is derived in Appen-
dix C. We apply the HMB filter to estimate the polarization
score. The filter’s estimation accuracy outperforms an HMM
filter regarding mean-squared error. We also verify that the
observation noise can be approximated as a Gaussian distrib-
ution based on statistical hypothesis testing.

1) Construction of Retweet Network and Polarization Score:
We leverage a publicly available dataset that encompasses
240 million tweets related to the 2020 U.S. presidential elec-
tion. The dataset captured tweets with specific user mentions
and accounts (57 in total) that are tied to president candidates
and politicians. A sample of such accounts is shown in Table I.
The column of political party denotes the party to which
this account belongs to (D-democratic and R-republican).
We select and sample tweets from October 1 to November 1,
spanning a 30-day period before the election day (Nov. 3),
which is about 7 million tweets in total (see Appendix B for
data collection and sampling procedure).

From this subset of tweets, we constructed a dynamic
retweet graph GO(V, E®), t = 1,...,30, where the nodes
represent |V | Twitter accounts, directed and unweighted edges

Ei(]’.) from node i to node j if user j retweets a message®
originally posted by user i on day . We filtered out nodes with
out-degree fewer than 2 (which means that they only retweet
once during the 30-day period). In summary, the retweet
network has |V| = 1399644 vertices and 2321 |[EO| =
5047498 edges during the specified period. In Fig. 6, we take
a sample of the retweet graph and plot four snapshots of
its largest weakly connected component. It clearly shows the
pattern of partitioning into two polarized echo chambers.

To study the evolution of political opinion polarization
during the 30-day period, we define a temporal variable
named polarization score. We select users who have retweeted

4Here, we do not consider “quote tweets” (retweet with a comment added)
to avoid the use of “quote tweets” for ironic or criticizing purposes.
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2020/10/08 23:59:33

2020/10/24 02:08:55 2020/10/31 23:59:42

Fig. 6. Snapshots of a dynamic retweet network with two communities at
four different timestamps before the Nov. 3 presidential election. The ratio
of intracommunity connections and total connections (sum of intracommunity
and intercommunity connections) evolves and is modeled as an MB in (14).
The graph is laid out using DrL (the same as in Fig. 1).

election-related accounts from both political parties. We esti-
mate these users’ political leaning (interchangeably referred
to as ideology) as follows. Every retweet to accounts from
either political party increases the count for that side by +1.
The user’s political leaning is classified as the side with more
accumulated retweets. We dismiss the users whose retweets are
equally sourced from two political parties. After this ideology
classification, we denote D = {vy,...,v,,} C V be the set of
m left-leaning users, and R = {041, ..., 0m+n} C V is the
set of n right-leaning users. We then define the polarization
score of the retweet network on day ¢ as the ratio of the
amount of intraideological retweets (e.g., user from D retweets
an election-related account who is from the Democratic party)
to the amount of intraideological retweets plus the amount
of cross-ideological retweets (e.g., user from D retweets an
election-related account who is from the Republican party) on
day t. We collected 28 such 30-day sequences of polarization
scores, which are used for training the transition matrix and
computing the empirical distribution of the observation error

()
e

y(’) _ (viv;)eD v (viv;)eR
(1)
E

. (14)

V(v,- ,v‘,v)

2) HMB Filter Estimation Results: We formulate x) as
an HMB with y® as its observation. The hidden states
form an arithmetic sequence with maximum and minimum
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Fig. 7. Empirical cdf of the observation noise for polarization score on the
Twitter dataset and the cdf of a Gaussian distribution of four hidden states
(states 2-5) in the six-state model. The p-value of KS test indicates that the
observation noise can be approximated by the Gaussian noise.
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Fig. 8. Mean-squared estimation error of the polarization score on the Twitter
dataset. It shows that the proposed HMB filter outperforms an HMM filter in
estimating the level of polarization in a social network.

corresponding to those of the observation. We anticipate a
high-level opinion polarization near or on election day since
people are required to vote for one candidate from one party.
Therefore, we set the destination, i.e., the final state to be the
maximal state.

x® follows transition probabilities as depicted by (2) with
¢ as the maximal state and transition matrix P derived from
maximum-likelihood algorithm in Appendix C. The obser-
vation noise is hypothetically verified to follow a Gaussian
distribution, as shown in Fig. 7.

To assess the performance of the proposed filter in (13),
we compare its mean-squared error with an HMM filter.
Results show that the proposed HMB filter outperforms the
HMM filter for all considered number of hidden states and
reduces the mean-squared error by 10% (see Fig. 8).
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C. Discussion on the Experiment With Real-World Twitter
Data

Section V explored modeling and estimation of segregation
in social networks. For the first social media marketing exam-
ple, we proposed a tractable model for segregation based on
MB processes of the connection strength between company
and customers. We also proposed a Bayesian filter (named
HMB filter) to estimate the level of segregation (as measured
by graph conductance) by polling some random pairs of
neighbors (i.e., edges) in the network.

To validate the proposed model with real-world data,
our second opinion polarization example studied Twitter
users’ retweet behavior before the 2020 presidential election.
We anticipated a high level of polarization near the election
and modeled the portion of retweets between users of the
same political ideology as an MB process. To evaluate the
computational complexity and the scalablity to large networks
of the proposed filter, we provide a discussion as follows.

1) Computational Complexity of the Proposed Filter: The
computational complexity of the proposed HMB filter can be
decomposed into two parts. The first part is the computation
of the MB transition probability (2), which requires computing
P!, i.e., the power of the n x n Markov transition matrix.

1.1) If P is diagonalizable and P = Q~'DQ, then com-
puting P’ is equivalent to computing Q' D’ Q. It takes
O(n?) to diagonalize P (using, e.g., QR iteration) and
O(nlogt) to take each diagonal element to the tth
power. Therefore, the computational complexity is

O(nS).

1.2) If P is not diagonalizable,’ then computing P’ can be
done in time

O (n’logt).

Above are cases where we do not consider memory. Suppose
that we have memory for P’~!, and then computing P’ will
only require O (n?) time for both cases.

The second part is the computation cost of filtering,
i.e., computing the posterior probability of the true polarization
score according to (13). Writing (13) in matrix—vector notation

gt +1) = 70%),5 (f)(t) (15)

where
Oz =diag[p(@UVIp D =1), ..., p(BUV]p" D =n)]
(16)
qt+D = +1),....q.(t + DY (17)

which requires O (n?) time for computing the posterior.

To summarize, the proposed filter imposes a natural tradeoff
between estimation accuracy (i.e., how fine-grained is the state
space) and computational complexity. Furthermore, the filter
is scalable to large networks, provided that an efficient sam-
pling (pooling) approach is implemented.

555 while the

SAn example is P = %|:

NSRS

21
2 1i|, which has eigenvalues 1,
13

eigenspace of % is 1-D.

2) Future Directions: One major limitation of the study
is that we equally weight each retweet. The model and the
approaches presented in this article can be made more practical
via the following directions.

2.1) Incorporating Tweet’s Temporal Effect: We could for-
mulate the influence of tweets to decrease exponen-
tially after posted so that newer tweets would be more
informative of user’s political opinion. While many
tweets spread within a limited time window, some
could achieve high virality. Therefore, we could assign
different decay rates for each tweet as well.

Defining User’s Political Ideology as a Time-Evolving
Variable: Although a user is typically unchanged as to
his favorable party, his political leaning might change
due to personal experience and external information.
We could adapt the correspondence analysis or the
maximum-likelihood logit model in [33] to obtain users’
political ideology at different times and assign political
scores accordingly to the user-related tweets.
Incorporating the Content and Sentiment of Tweets: It is
found in [34] that tweets with negative emotion tend to
get reposted more rapidly and frequently than positive
and neutral messages. Taking one step forward, we could
decompose each tweet’s popularity into its political
effect and content effect and mitigate the unbalance of
different sentiments or wording among different tweets.
Combining Information From Multilevel Social Graphs:
In addition to retweet network, we could construct
other types of social network from Twitter data, includ-
ing mention, follow, and comment. We could certainly
analyze the trend of polarization separately on these
networks and average the results, and however, it is more
promising to construct a multilevel heterogeneous graph
to learn a structural representation of polarization.

2.2)

2.3)

2.4)

VI. CONCLUSION

This article studied the sociological phenomena of segre-
gation and echo chambers in social networks. We proposed
an MB dynamics-based model for evaluating the interaction
between customers and company in a social media marketing
scenario. We then justified the model by looking at the evo-
lution of political opinion polarization on a real-world Twitter
dataset. We formulated an additive Gaussian measurement
noise model for the MB, derived the EM algorithm for esti-
mating parameters of the HMB model, and proposed an HMB
filter to estimate the state of segregation and echo chambers
based on samples of the social network. The numerical results
indicated that our filter outperforms time-homogeneous filters,
such as an HMM filter.

Future directions of this work include further improving
the accuracy of the proposed method using different sam-
pling methods based on friendship paradox (see [28]-[30]),
enriching this framework to handle more sophisticated network
topologies such as heterogeneous graphs, and incorporating
the HMB model with generation models to forecast opinion
dynamics (see [19], [35], [36]).
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APPENDIX A
EXAMPLES OF REAL-WORLD MB DYNAMICS

In the following, we illustrate several motivating examples
(in addition to those provided in Section II-B) whose dynamics
can be well captured by the MB model.

Example 4 (Spread of Coronavirus Fake News): On social
media, people’s perception of Coronavirus evolves during the
outbreak of this pandemic and leaves room for related fake
news. Many factors prevent the spread of fake news, includ-
ing scientific reports from reliable news sources, government
releases, and users’ tendency to share health and prevention
messaging. We can model the user’s tendency x) to share
Coronavirus fake news as an MB process. It will decrease with
the elucidations from reliable sources and also bring down
the probability that fake news echo chambers emerge. This
example is related to Example 2 in Section II-B because it
is found in [37] that partisanship correlates with sentiment
toward government measures. Therefore, the evolution of
Coronavirus fake news echo chambers is correlated with that
of political ideology echo chambers.

Example 5 (Activity Level of Seasonal Sports League):
Sports leagues typically have season and off-season. In dif-
ferent periods of a year, fans will have different involvement
in the sports leagues on social media such as online sports
forums. We can formulate the active level x®) as a hidden
state following an MB process. We can then use the data
of posting, commenting, and time of stay on the forums as
the observation. x) will evolve from a high level to a low
level during the off-season and will evolve back into a high
level in the next sports season and lead to the segregated
fan’s community. Online merchants may take advantage of
this information to maximize their advertisement coverage and
return on investment.

Example 6 (E-Commerce Sequential Recommendation):
Relevance and diversity usually act as two competing objec-
tives in recommender systems, where the former causes
growing concern that it might lead to the self-reinforcing of
user’s interests due to narrowed exposure of similar items.
The existence of echo chambers has been validated on user
clicks, purchases, and browse logs from Alibaba Taobao in [7].
To examine and quantify the echo chambers in recommender
systems, we can use a measure x) to represent the similarity
of recommended items during the interaction with users. For
conventional recommender systems that narrow down the con-
tents provided to users, x® can be modeled as an MB process,
which evolves from a low level to a high level. In this context,
an extended recommendation framework can potentially avoid
such echo chamber emergence by using collaborative filtering
and sequential forecasting to recommend users items that
they may find useful in the future, thus improving both user
satisfaction and E-commerce platform’s revenue.

APPENDIX B
TWITTER DATASET DETAILS

The Twitter dataset used in Section V-B was provided in [4]
and publicly available.® We used Twitter’s streaming API

5The dataset website: https://github.com/echen102/us-pres-elections-2020
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through Tweepy and kept track of tweets with specific keyword
mentions and accounts related to the 2020 U.S. presidential
election since May 2019. The data contain approximately 1%
stream of all tweets in real time.

In obedience to Twitter’s Developer Agreement & Policy,
only tweet’s Tweet ID is shared. The Tweet ID is preserved in
text files in temporal order. We used Doc-Now’s Hydrator’ to
retrieve the tweet objects® with full tweet payloads, including
the tweet poster, content, timestamp, and the author who is
retweeted from.

To reduce the amount of data, we use systematic sampling,
which means that we pick every nth tweets (n = 20) to
comprise the data used in the research. For each tweet, we keep
its poster, author, and timestamp if it is a retweet (if the tweet
object has a “retweeted_status” attribute).

APPENDIX C
EM ALGORITHM FOR HMB PARAMETERS

For real-life application of the MB model proposed in
Section III, we need to obtain the model parameters that are
useful for filtering and forecasting the segregation state of the
social network. This section presents the EM algorithm, which
serves the purpose of finding the maximum-likelihood estimate
of the parameters.

A. Forward-Backward Smoothing Algorithm for HMB

In this section, we derive the forward—backward (also named
Baum—-Welch) algorithm for smoothing the HMB model. Con-
sidler HMB model with parameter 8 = (S, P, O), where
S is an X-state Markov chain with transition matrix P =
(Pap), a,b € S ={s1,...,5x}, and O is the HMB emission
probability function. The HMB model has unknown state
sequence XM = (xM, ... x()) and observation sequence
YD = O, ..., y™). We know the destination of the state
sequence X7 is c € S.

We first go through the forward procedure by defining

ag)(a) = P(x(’) =a,yV,. .., y(’)|<9) = P(x(’) =a, Y(’)|<9)

(18)
which is the probability of seeing the partial sequence
(yP, ..., y") and ending up in state a at time ¢.

The backward procedure is similar by defining a backward
variable

ﬂng)(G) — P(y(f+1),...,y(T)|x(t) :a). (19)
We now define
1a)(a) = P(x® = a, YD|0) (20)

which is the probability of being in state a at time ¢ for
the observation sequence (y",...,y™). It can be derived
in terms of ag) and ﬁét\T)

T
oy @py" (@)

o o B)By ()

b=S]

e (a) =

21

7https://github.com/DocNow/hydrator
8https://developer.twitter.com/en/docs/twitter-api/v1/data-dictionary/object-
model/tweet
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We also define

ye(t)(a, b) = P(x(’) =a,x"D =p, Y(T)|9) (22)

which is the probability of being in state a at time ¢ and being
in state b at time ¢ + 1. This can be expressed in terms of ae
and ﬁ(t IT)

75" (a, b)
a(l)(a)Ba b(l)O( (t+1)’x(t+1) — b)ﬁ(l-‘rlIT)(b)

z,, 3 as) (@) Bay (1) 0 (yH ) =) gD ()
(23)

B. Maximum-Likelihood Estimation Algorithm

We assume that the HMB model is observed in Gaussian
noise, i.e., the emission probability follows a zero-mean
Gaussian distribution

yO =xD 400 2O~ N(0,0%). (24)

The E-step of the EM algorithm finds the expected value of
the complete-data log likelihood with respect to the unknown
state XD = (xM, ..., x™)) given the observation Y =
(WD, ...,yD) and the current parameter estimates 6/ =

(S, P, o). This log likelihood is defined as the Q function
0(6,0")

The second step (the M-step) of the EM algorithm is to
maximize the expectation we computed in the first step, that
is, we find

= E{log (YT, xD19)|yD,0"}.  (25)

6" = argmax Q(0,0"). (26)
0

The joint probability of states X") and observations ¥
given the parameter is formulated as

log P(Y™D, x19)

T
- IOgH P(y(l)|x(f))P(x(l)|x(f—l),x(T) = ¢)
=1

T
z logP (’)lx(t)) +10gP( D=0 5™ = c)]

- ZT: i[l(x(’) =a)log P(y"'1x" = a)]

t=1 a=s|

+ Z Z Z[I(x(’) =qa,x™) = b)

t=1 a=s) b=s,

logP(x(’H) =bx®© = a,xD =¢)]
1
= W =a)|l _
ZZ a Og( 27ra)

t=1 a=s;
Sy Sx
x0 =a,x"D =b)log B, (1)].

D)W

t=1 a=s| b=s;

(0 —a)
202

27)
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The Q function can then be simplified as

T sy
0(0,0") = —glogaz — =33 (6" a0
t=1 a=s
Sx Sx ]
LY b oe B0
t=1 a=s| b=s,
Sx  Sx PT (t+l))
+Z Z Z y(,(,)(a b)log Py jp—r———2 by
t=1 a=s| b=s, ( )ac
(28)

Recursively solving (8Q(0,607)/60) = 0 for the model
parameter #/*!. Each iteration is guaranteed to improve log
likelihood, and the algorithm is guaranteed to converge to a
local maximum.
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