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Controlling Segregation in Social Network
Dynamics as an Edge Formation Game
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Abstract—This paper studies controlling segregation in social networks via exogenous incentives. We construct an edge formation
game on a directed graph. A user (node) chooses the probability with which it forms an inter- or intra- community edge based on a
utility function that reflects the tradeoff between homophily (preference to connect with individuals that belong to the same group) and
the preference to obtain an exogenous incentive. Decisions made by the users to connect with each other determine the evolution of
the social network. We explore an algorithmic recommendation mechanism where the exogenous incentive in the utility function is
based on weak ties which incentivizes users to connect across communities and mitigates the segregation. This setting leads to a
submodular game with a unique Nash equilibrium. In numerical simulations, we explore how the proposed model can be useful in
controlling segregation and echo chambers in social networks under various settings.

Index Terms—Segregation, network formation game, directed stochastic block model, weak ties, mechanism design.
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1 INTRODUCTION

SOcial networks provide a platform for people to ex-
change information and form online communities. So-

cial network users tend to connect with others with similar
opinions or views (known as the homophily effect [1]), and
this leads to segregation of the network into distinct parts.
For example, Fig. 1 illustrates how the Twitter users are
segregated into two groups based on their political opinions
before the 2020 presidential election. Impacts of segregation
in social networks include limiting the exposure to diverse
perspectives [2] and amplifying economic inequality [3].

1.1 Background
The goal of this research is to use exogenous incentives
to regulate social network segregation by increasing the
number of intercommunity edges. To that purpose, we
employ a game-theoretic model to study social network
users’ interactions and devise mechanisms to encourage
inter-community connections. Game theory has been widely
used for social network analysis. Jackson and Wolinsky
[6] analyzed the stability and efficiency of social networks
when self-interested users can form or cut links in a game
setting. Bramoullé et al. [7] studied the edge formation
as individual players choosing their partners in a 2-by-
2 anti-coordination games. Avin et al. [8] constructed an
evolutionary network formation game and demonstrated
that preferential attachment is the unique Nash equilibrium.
Alon et al. [9] formulated a game-theoretic model to deal
with the incentives of interested parties outside the network
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Fig. 1. The figure shows that Twitter users’ political opinions are segre-
gated into two highly polarized communities before the 2020 presidential
election. Nodes represent Twitter users and edges represent retweets
during the one-month period before election (Oct. 1 to Nov 1). The
graph is laid out using DrL (a force-directed graph layout) and the nodes
are assigned different colors and shapes (blue circles and red triangles)
according to the two communities detected by the Louvain method [4].
A detailed explanation is in [5].

in information diffusion. Mele [10] proposed a potential
game on a network where user’s payoff depends on both
directed links and link externalities. Game theoretic models
have also been applied to structure identification of indus-
trial cyber-physical systems [11], conflict mitigation through
third party interventions [12], and trust management mech-
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anism in mobile ad hoc network [13].
Specifically, we construct an edge formation game which

models users’ interactions on social networks. In this game,
users are strategic decision makers. When deciding with
who to connect, i.e., what edges to form, each user faces a
trade off: staying connected to others within the same com-
munity vs. obtaining an exogenous incentive for making
inter-community connections. The link externalities [10] in-
spire the idea of inter-community friend recommendations
in our model, as explained in Section 3.1.

By showing that segregation is a natural consequence of
the game, we then design a mechanism, named Algorith-
mic Recommendation Mechanism (ARM), which is based on
the weak-tie theory [14] and encourages inter-community
connections by offering exogenous incentives. With ARM
incorporated in the game, we show that connecting with
users both in the same community and different community,
i.e., integration, is the only rational choice for users in
the game to maximize their utilities, which leads to a less
segregated network.

1.2 Related Work

Previous works that identify and control segregation in
social networks can be considered under two categories:
(1) Social network segregation: Agent-based opinion dynamics
models [15], [16], [17], [18] are the mainstream approach to
study the segregation on social networks. Sasahara et al.
[15] introduced social influence and unfriending into their
model, where users can change both their opinions and con-
nections based on the received information. Baumann et al.
[16] proposed a radicalization mechanism which reinforces
extreme opinions from moderate initial conditions. Banisch
and Olbrich [17] considered the social feedback’s effect
on users expressing alternative opinions and analyzed the
sufficient conditions for stable bi-polarization on a stochas-
tic block model-structured network. Blex and Yasseri [18]
proposed a network-based solution to the Schelling’s model
and derived that algorithmic bias in the form of rewiring is
incapable of preventing segregation.

In this work, we adopt a game-theoretic model instead
of opinion dynamics to analyze users’ decision of forming
connections with others, which captures the psychological
features of decision-making.

(2) Weak Ties and segregation mitigation strategies: Granovet-
ter’s work [14] on Weak Ties-theory demonstrates that a
person’s weak contacts are more likely to bring novel infor-
mation such as job opportunities to him compared with his
close contacts. Liu et al. [19] discussed the increased online
weak ties with the emergence of new media platforms and
functions such as ”follow the post”, and ”retweet”. Mele
[10] proposed a network formation model involving indirect
connections, which is an extended version of weak tie.

In this work, we propose an Algorithmic Recommendation
Mechanism (ARM) which incorporates the positive effect of
weak ties; an overview of the framework is shown in Fig. 2.

1.3 Main Contributions and Organization

(1) By representing the social network as a directed stochastic
block model (DiSBM) [20], Section 2 formulates an edge for-

Fig. 2. This figure illustrates the proposed algorithmic recommendation
mechanism (ARM) (details in Algorithm 1). (a) Inside the same commu-
nity, b1 is followed by b2 and b4, and r1 is followed by r2. (b) Across
different communities, r1 follows b1 (i.e., forms an inter-community
edge). (c) ARM recommends inter-community links (from r1 to b2 and
b4, from b1 to r2) indicated by the three dashed arrows with probability
according to (9). (d) The inter-community recommendations convert into
edges (from b1 to r2, from r1 to b4) with some acceptance probability
(defined as C in Algorithm 1) and increase users’ utility. Therefore,
ARM incentivizes users to proactively form inter-community edges and
mitigates segregation in social networks.

mation game and shows that it leads to a Nash equilibrium
where the network is segregated.

(2) Section 3 proposes an Algorithmic Recommendation Mecha-
nism (ARM) which offers users additional rewards by inter-
community recommendation. Incorporating this mechanism
leads to a Bertrand-like game [21] with a unique Nash
equilibrium where segregation is mitigated.

(3) Section 4 considers the case where ARM’s recommenda-
tion acceptance probability evolves as a semi-Markov pro-
cess. Analysis within a stochastic game framework shows
that users in the network reach the time-evolving Nash
equilibrium of the resulting game.

(4) Finally, Section 5 presents numerical simulations to
illustrate how the proposed ARM mitigates segregation
and increases inter-community connections. The numerical
study also suggests that higher recommendation acceptance
probability is effective during polarizing events where the
level of segregation is high.

2 DIRECTED NETWORK EDGE FORMATION GAME

In this section, we first define the segregation in social
networks and provide a measure to quantify it. We then
propose an edge formation protocol followed by users in the
social network. This protocol results in a directed stochastic
block model (DiSBM) where, the parameters correspond to
the actions of users. The edge formation protocol is based
on a best response strategy followed by users i.e., users
respond to what others did in the previous time instant
in order to maximize a utility function. By analyzing the
game that corresponds to the best response-based edge
formation protocol, our main result of the section shows
that it has a unique Nash equilibrium that corresponds
to a segregated network (network with two disconnected
communities), and the best response-based edge formation
protocol converges to this Nash equilibrium.
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TABLE 1
Symbols Used in This Article

Symbols Description
G(t) the directed graph representing the

network at time t
V the fixed set of users in the network
E(t) the set of directed edges at time t
R the fixed set of red users *

B the fixed set of blue users
N the number of red users, which also

equals the number of blue users
p
(t)
R the probability that a red user follows**

another red user at time t
p
(t)
B the probability that a blue user follows

another blue user at time t
P (t) the probability matrix of the DiSBM

corresponding to the network
U

(t)
i user i’s utility at time t in the original

game
U

(t)
ARMi user i’s utility at time t in the game with

ARM
Dt(i, j) whether user j follows user i from the

different community at time t
St(i, j) whether user j follows user i from the

same community at time t
C the probability that a recommendation by

ARM is accepted

* ”Red users” is abbreviation for the users from the red
community. So is ”blue users”.
** Throughout the table and the rest of this paper, we use
”follow” interchangeably with ”connect with” to denote
initiating a directed edge with others, with the edge from
the ”friend” pointing to the initiator (i.e., ”follower”).

2.1 DiSBM Based Edge Formation Protocol
In social networks, users are naturally partitioned into
communities based on nodal attributes such as geographic
locations, party affiliations, and personal interests [22]. The
community structure often leads to segregation in the net-
work, if there is sparse connection among different com-
munities. For example, [23] demonstrates that the network
of political communication on Twitter exhibits a highly
segregated partisan structure.

A formal definition of segregation in social networks
is as follows. Consider a social network represented by a
directed graph G = (V,E) without loops or multiple edges,
where V = R ∪ B is a partition of the set of users into red
(R) community and blue (B) community. Let Ed be the set of
edges connecting nodes in different communities. We define
the segregation measure as:

s = 1− |Ed|
2|R||B|

(1)

This segregation measure compares the actual number and
the maximal possible number of inter-community edges.
When the network is completely segregated, s = 1. Similar

definition of segregation can be found in the segregation index
defined in [15] and the assortativity coefficient defined in [24].

The directed stochastic block model (DiSBM) [20] is fre-
quently used to represent the structure of such networks
with communities. We consider a time-varying version of
the DiSBM model with two communities (N red users and
N blue users1) where the model parameters correspond to
the actions taken by users in each community in a repeated
game (i.e., a normal form game which is repeated via a best
response strategy adopted by the players). More specifically,
at each time instant t, user i chooses the edge formation
probabilities (i.e., its actions) in a manner that maximizes
the expected value of the utility function,

U
(t)
i =

∑
j∈R∪B

[
D(t)(i, j)−D(t)(j, i)

]
. (2)

where,

D(t)(i, j) =

{
1 (i, j) ∈ E(t) and i, j in different communities
0 (i, j) /∈ E(t) or i, j in the same community.

(3)

The utility function U (t)
i consists of two components. The

first component
∑

j∈R∪B
D(t)(i, j) is i’s number of followers

in a different community i.e., its popularity in another
community. The second component

∑
j∈R∪B

D(t)(j, i) is i’s

number of friends in different community, representing its
efforts in maintaining inter-community connections2. Thus,
the utility function (2) represents how users face a trade-off
between popularity in different community and homophily
in its own community when forming connections in social
networks.

With this notation, the DiSBM based edge formation via
utility maximization is given in Protocol 1.

Protocol 1. DiSBM Based Network Edge Formation

Input: G(t)={V,E(t)} where V =R ∪B, t = 0, 1, 2, · · ·
Output: p(t)R , p

(t)
B

Process:

1) p(0)R , p
(0)
B ∼ Unif[0, 1] (i.e., the initial parameters of the

model are sampled from a uniform distribution).
2) At each odd time instant (i.e., t = 1, 3, 5, · · · ), red users

take actions according to steps 2.1 and 2.2 below while
the blue users adhere to the action they adopted at time
t− 1.

2.1) ∀i, j ∈ R, i connects with j with probability3

p
(t)
R = argmax

p
(t)
R ∈(0,1]

E
{
U

(t)
i

}
(4)

1. We assume equal numbers of red and blue users to simplify the
expressions and analysis in the following sections, and this assumption
can be relaxed easily.

2. A similar formulation of social network users’ utility functions
was used in [25], where the author defines the cut size (i.e., the
number of inter-community edges) as part of the utility function. The
corresponding network is undirected.

3. As will be discussed in the proof of Theorem 1 (Appendix A.1),
E
{
U

(t)
i

}
is identical for any i ∈ R and is a function of p(t)R .
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where E is the expectation with respect to the prob-
ability distribution induced by the DiSBM model,
and U (t)

i is the utility function defined in (2).
2.2) ∀i ∈ R, j ∈ B, i connects with j with probability

1−p(t)R

N .

3) At each even time instant (i.e., t = 2, 4, 6, · · · ), blue users
take actions according to steps 3.1 and 3.2 below while
the red users adhere to the action they adopted at time
t− 1.

3.1) ∀i, j ∈ B, i connects with j with probability

p
(t)
B = argmax

p
(t)
B ∈(0,1]

E
{
U

(t)
i

}
(5)

3.2) ∀i ∈ B, j ∈ R, i connects with j with probability
1−p(t)B

N .

2.2 Discussion of Protocol 1
Protocol 1 induces a DiSBM characterised by best re-
sponse strategy:
In Protocol 1, red users and blue users take actions alter-
natively by maximizing utility functions. More specifically,
at each odd time instant t, red users choose the probabil-
ity p

(t)
R via maximizing the expected utility of a sample

uniformly drawn from the red community R, while blue
users keep the probability p

(t)
B = p

(t−1)
B . Blue users choose

their parameters at even time steps according to similar
steps. Therefore, Protocol 1 can be viewed as a DiSBM with
time varying parameters resulting from the best response
strategies played by users in the network. In other words,
Protocol 1 corresponds to a DiSBM with the probability
matrix

P (t) =

 p
(t)
R

1−p(t)R

N
1−p(t)B

N p
(t)
B

 (6)

where p(t)R , p
(t)
B are the best response strategies taken by the

red and blue users at each time instant, respectively.

Protocol 1 corresponds to the regime with dense intra- and
sparse inter-community edges:
In the context of real world social networks, Protocol 1
corresponds to the regime with sparse inter-community
edges and dense intra-community edges.4 In other words,
the the probability matrix P (t) is of the form,

P
(t)
ab =

{
O(1/N), a 6= b

O(1), a = b
(7)

A connection probability matrix of the form (7) emulates
the structure of many real world social networks where
individuals are densely connected within a community
(i.e., O(N2) edges within a community of size N ) and
sparsely connected between communities (i.e., O(N) edges
between two communities each of size N ).

Connection probability matrices of the form (7) are fur-
ther motivated by the fact that users act differently when

4. Note that P (t) does not need to be symmetric considering that the
edges are directed; also the rows or columns in P (t) (given in (6)) do
not need to sum to 1.

forming intra-community and inter-community edges in
social networks. For example, Twitter users have different
political opinions and tend to follow or retweet users with
similar opinions. Sports forum (e.g. Reddit) users have
different favorite teams and tend to communicate more
frequently with users who support the same team.

Remark 1 (The game corresponding to the protocol). Note that
there exists a normal-form game corresponding to Protocol 1
where, set of nodes V = R ∪ B are the players, the
interval (0, 1] is the set of actions for each player i ∈ V

and, the utility function of each i ∈ V is Ej∈R
{
U

(t)
j

}
or

Ej∈B
{
U

(t)
j

}
, i.e., the expected utility function of users in

one community depending on the community i belongs to
(where U (t)

j is given in (2) and t is any fixed time instant).
When this normal-form game is of a special type (e.g. a
strictly dominant strategy profile, a submodular game), the
best response based Protocol 1 is guaranteed to converge
to the game’s Nash equilibrium. Henceforth, for any such
best response based protocol, we use the term the game
corresponding to the protocol to refer to this induced normal-
form game by that protocol.

2.3 Nash Equilibrium Analysis of the Game Corre-
sponding to Protocol 1
Thus far (in Sec. 2.1 and 2.2) we discussed the intuition
behind the DiSBM based edge formation (Protocol 1) in
which the network parameters arise from each community
maximizing a utility function (i.e., a best response strategy).
In this subsection, we analyze the game that corresponds
to Protocol 1 (recall from Remark 1 that this is the induced
normal-form game) and the main result of this subsection
(Theorem 1) indicates that:

i. Protocol 1 converges to a stationary state i.e., the se-
quence of parameters (p(t)R , p

(t)
B , t = 1, 2, ..) chosen by

individuals from each community converges to fixed
values pR, pB ;

ii. the fixed values at the stationary state are p
(t)
R =

1, p
(t)
B = 1 and they correspond to the unique Nash

equilibrium of the normal-form game corresponding to
Protocol 1 i.e., at the stationary state, the network will
almost surely have no inter-community edges, leading
to echo chambers.

Theorem 1 (Convergence of Protocol 1 to the Nash Equilib-
rium). Consider the best response dynamics given in Protocol 1

(Sec. 2.1). Segregation (i.e., p(t)R =p(t)B =1) is the unique Nash equi-
librium of the corresponding game and p(t)R , p

(t)
B both converge to

it as time t tends to infinity.

Proof. The proof of Theorem 1 is straightforward with the
main idea being that the Nash equilibrium (p(t)R =p(t)B =1) cor-
responds to users’ strictly dominant strategy. The detailed
argument is given in Appendix A.1 for completeness.

3 HOW ALGORITHMIC RECOMMENDATION MECH-
ANISM (ARM) RESHAPES THE SEGREGATION
EQUILIBRIUM

Sec. 2 showed that segregation is the Nash equilibrium of
the game corresponding to Protocol 1. This leads us to the
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following question: how can we augment Protocol 1 such
that,

i. the normal-form game corresponding to the augmented
protocol has a Nash equilibrium that is not segregation;

ii. the strategy profiles of the players converge to the Nash
equilibrium (in the previous point) over time.

To this end, this section presents an algorithmic recom-
mendation mechanism (ARM), which incentivizes users to
form inter-community edges. Then, we illustrate how ARM
changes the Nash equilibrium of the corresponding game
(compared with the segregation result shown in Theorem 1)
and mitigates segregation in the network.

3.1 Algorithmic Recommendation Mechanism (ARM)

The aim of introducing ARM is to reshape the Nash equi-
librium of the game corresponding to Protocol 1 (which
leads to a segregated network as shown in Sec. 2.3) such
that the resulting network is not segregated. To this end,
ARM incentivizes users to form inter-community edges by
providing exogenous rewards. More specifically, if i follows
j in the different community, and j has not yet followed i,
ARM will recommend i to j with a probability proportional
to the number of 2 hop connections from i to j. Then, the
link recommendation is accepted by j with some probability,
thus increasing i’s popularity in another community and its
utility (as indicated in the utility function (2)). Fig. 2 shows
an example of ARM recommending links.

Recall the function D(t) defined in (3) to count the
number of edges between different communities. Similarly,
we define another function:

S(t)(i, j) =

{
1 (i, j) ∈ E(t) and i, j in the same community
0 (i, j) /∈ E(t) or i, j in different communities.

(8)

Thus, for a given pair of nodes i, j, S(t) indicates whether
an edge (i, j) exists and whether it is between the same
community. With this notation, we are now equipped to
present the ARM.

Algorithm 1. Algorithmic Recommendation Mechanism
(ARM)

Input: E(t) – the edge set at time t and R,B – the two
node sets representing two communities.
Output: {(i, j)} – the set of recommendation links.
Process: At time t, for any ordered pair (i, j) such that i, j
are in different communities, ARM forms an edge from i to
j according to steps below:
1) If j follows i, i.e., (i, j) ∈ E(t), then stop recommenda-

tion; otherwise proceed to step 2.
2) For any user j′ such that S(t)(j′, j) = 1, count the

total number of edges between such j′ and i, i.e.,∑
j′ D

(t)(i, j′)+D(t)(j′, i). Recommend i to j with prob-
ability ∑

j′∈R∪B

[
D(t)(i, j′) +D(t)(j′, i)

]
S(t)(j′, j)

N − 1
(9)

where ∑
j′∈R∪B

[
D(t)(i, j′) +D(t)(j′, i)

]
S(t)(j′, j) (10)

Fig. 3. This figure illustrates how ARM (Sec. 3.1 Algorithm 1) recom-
mends an inter-community link from red user r1 to blue user b1 based
on the existing 2 hop connections. The dashed arrow curves denote
the possible 2 hop connections from r1 to b1. The solid arrow line on
top denotes the probability that b1 already follows r1 (i.e., edge (r1, b1)
already exists), in which case ARM will not recommend r1 to b1. If
edge (r1, b1) does not exist yet, ARM will recommend r1 to b1 with a
probability proportional to the number of 2 hop connections between
r1 and b1. Labels on solid arrow lines denote corresponding edges’
formation probabilities.

is the number of 2 hop connections from i to j, and
N − 1 is used to offset the linear growth of 2 hop
connections (between two users) to the number of users
in the network.

3) If i was recommended to j in step 2, j accepts the recom-
mendation (i.e., the edge (i, j) is formed) according to a
Bernoulli random variable with probability of success C,
where C is the acceptance probability.

Discussion of Algorithm 1:
(1) Step 1 considers the fact that an edge ARM recommends
may already exist. In that case, no further steps are taken by
ARM.
(2) Step 2 recommends inter-community links with prob-
ability according to (9), which favors recommending links
between users with more 2 hop connections. To justify how
2 hop connections increase the recommendation probability,
suppose i is a red user and j a blue user, then as indicated
in (10),

∑
j′∈R∪B

D(t)(i, j′)S(t)(j′, j) specifies the case that i

is followed by j’s blue friends;
∑

j′∈R∪B
D(t)(j′, i)S(t)(j′, j)

specifies the case that i, j share blue friends in common. In
both cases, the bigger the value is, the more likely that ARM
will recommend i to j.
(3) Step 3 considers the fact that each recommended link
turns into an actual edge according to a Bernoulli random
variable. In practice, the probability of success depends on
the amount of incentive provided by the network adminis-
trator in the form of exogenous reward.
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(4) We provide the complexity analysis of ARM as follows.
Step 2 queries the union of j’s follower list and i’s follower
list/friend list. With hash table based data structure, the
query takes O(1) time and the space complexity of the hash
table is O(N). The overall time complexity and space com-
plexity are both O(N2). There are specialized data structure
for real-world large-scale graphs which is out of scope in
this work, and we refer interested readers to a survey of
graph database models [26].

3.2 Edge Formation Protocol with ARM
To explore how ARM affects segregation, we first augment
the utility function (2) in a manner that reflects the trade-
off between staying connected within the same community
and obtaining exogenous incentives provided by ARM. The
augmented utility function is

U
(t)
ARMi

=

∑
j∈R∪B

[
D(t)(i,j)−D(t)(j,i)

]
+

∑
j∈R∪B

{
C
[
1−D(t)(i,j)

]
∑

j′∈R∪B

[
D(t)(i,j′)+D(t)(j′,i)

]
S(t)(j′,j)

N−1

}
+

∑
j∈R∪B

∑
i′∈R∪B

{
C
[
1−D(t)(j,i′)

][
S(t)(i,i′)D(t)(j,i)

N−1
]}
.

(11)

In (11), the first summation term is the original utility as in
(2). The second summation term

∑
j∈R∪B

{
C
[
1−D(t)(i,j)

] ∑
j′∈R∪B

[
D(t)(i,j′)+D(t)(j′,i)

]
S(t)(j′,j)

N−1

}
(12)

is the expected number of inter-community edges formed
by ARM for user i. The third summation term∑

j∈R∪B

∑
i′∈R∪B

{
C
[
1−D(t)(j,i′)

][
S(t)(i,i′)D(t)(j,i)

N−1
]}

(13)

is the reward for connecting users from two communities
(e.g. a red user connects its red followers to its blue friends)
in ARM recommendations. These two summation terms
represent ARM’s exogenous incentives, where the users’
benefit of connecting with others depends on the compo-
sition of friends of friends5.

The edge formation via maximizing the augmented util-
ity (11) is given in Protocol 2 below.

Protocol 2. DiSBM Based Network Edge Formation with
ARM

Input: G(t)={V,E(t)} where V =R ∪B, t = 0, 1, 2, · · ·
Output: p(t)R , p

(t)
B

Process:
1) p(0)R , p

(0)
B ∼ Unif[0, 1].

2) At each odd time instant (i.e., t = 1, 3, 5, · · · ), red users
take actions according to steps 2.1 and 2.2 below while
the blue users adhere to the action they adopted at time
t− 1.

2.1) ∀i, j ∈ R, i connects with j with probability6

5. A similar assumption was used in [10] and [27], where the value
of indirect links (i.e., weak ties) affects users’ cost of linking.

6. As will be discussed in the proof of Theorem 2 (Appendix A.2),
E
{
U

(t)
ARMi

}
is identical for any i ∈ R and is a function of p(t)R .

p
(t)
R = argmax

p
(t)
R ∈(0,1]

E
{
U

(t)
ARMi

}
(14)

where E is the expectation with respect to the prob-
ability distribution induced by the DiSBM model,
and U

(t)
ARMi is the augmented utility function de-

fined in (11).
2.2) ∀i ∈ R, j ∈ B, i connects with j with probability

1−p(t)R

N .

3) At each even time instant (i.e., t = 2, 4, 6, · · · ), blue users
take actions according to steps 3.1 and 3.2 below while
the red users adhere to the action they adopted at time
t− 1.

3.1) ∀i, j ∈ B, i connects with j with probability

p
(t)
B = argmax

p
(t)
B ∈(0,1]

E
{
U

(t)
ARMi

}
(15)

3.2) ∀i ∈ B, j ∈ R, i connects with j with probability
1−p(t)B

N .

4) At each time instant, ARM forms inter-community edges
according to Algorithm 1.

3.3 Nash Equilibrium Analysis of the Game with ARM

In the previous subsection (Sec. 3.2), we proposed Protocol 2
where users play the best response in a network incorpo-
rated with ARM. In this subsection, we analyze the game
corresponding to Protocol 2 (recall Remark 1) and show that:

i. the game has a submodular structure similar to the
Bertrand game [21], which guarantees that Protocol 2
converges to a fixed value (pR, pB);

ii. the fixed value at the steady state depends on the accep-
tance probability C (defined in Algorithm 1). If C > 1

2 ,
the Nash equilibrium of the corresponding game leads
to social integration, i.e., the only rational choice for
users to maximize their utilities is to connect with both
users in the same community and different community.

Theorem 2 (Convergence of Protocol 2 to the Nash Equilib-
rium). Consider the best response dynamics given in Protocol
2 (Sec. 3.2). If the acceptance probability (i.e., C defined in
Algorithm 1) is greater than 1

2 , then segregation is mitigated
(i.e., p(t)R < 1, p

(t)
B < 1) at the unique Nash equilibrium of

the corresponding game, and p(t)R , p
(t)
B both converge to the Nash

equilibrium as time t tends to infinity.

Proof. The main idea behind the proof of Theorem 2 is to
show that the game corresponding to Protocol 2 is sub-
modular, which guarantees the convergence of users’ best
response dynamics to the Nash equilibrium. The detailed
proof is given in Appendix A.2.

Theorem 2 illustrates how the proposed ARM reshapes
the segregation equilibrium of the game and results in an
integrated network, where users are incentivized to form
inter-community connections.
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4 STOCHASTIC GAME WITH MARKOVIAN ARM
PARAMETER

Recall that in Protocol 2 (Sec. 3.2) we assume ARM’s link rec-
ommendation is accepted according to a Bernoulli random
variable with fixed acceptance probability C. In this section
we relax the assumption by allowing C to evolve over time
as the sample path of a semi-Markov process. We then
modify Protocol 2 to account for this time-variant effect,
and illustrate that the modified protocol (Protocol 3) induces
best response dynamics which tracks the Nash equilibrium
evolving with the time-variant C.

4.1 Edge Formation Protocol with Markovian Accep-
tance Probability
Motivation: Real world social networks have time-variant
level of segregation. We justify this phenomenon by the two
motivating examples used in Sec. 2.2 as follows. During
a politically polarizing event (e.g. election or legislation),
Twitter users tend to segregate and reduce their connections
with others from a different community. Similarly, on sports
forums such as Reddit’s related channels, users’ online com-
munication tend to be more polarized during sports league’s
season (e.g. NBA’s playoff or NCAA’s March Madness),
while less polarized during off-season. In the literature,
[28] models Twitter users’ emotion dynamics as a Markov
process. [5], [29] characterize the pattern of Twitter users’
retweets during the presidential election using a Markov
bridge model. [30], [31] utilize Twitter users’ messages as
signals to a hidden Markov model to determine when
an anticipated event (e.g. social activities, sports, weather)
starts.

The seasonal pattern of segregation requires the network
administrator to spend time-varying efforts to control it, i.e.,
spend different efforts on recommendation at different times
to encourage inter-community connections. We capture this
temporal pattern by modeling the acceptance probability C
(defined in Algorithm 1) as a semi-Markov process C(t), t =
0, 1, · · · .

The semi-Markov process of the acceptance probability is
Markovian only at specified jump instants, i.e., when C(t)

transits. As C(t) transits into the next state, it stays there for
a state holding time Th, which we assume is a constant. Th
measures the interval between two consecutive transitions
of C(t) (i.e., how often the network administrator changes
its operation condition), thus it is much longer than (e.g.
100×) the time scale of user’s action in the protocol. More
precisely, we define the semi-Markov process as follows:

C(t) takes value in a finite state space SC =
{C1, C2, · · · , Cn}, has an initial state C(0) ∈ SC , and a
Markov transition probability matrix P conditionally inde-
pendent of users’ actions

P (C(t+1) = j|C(t) = i, p
(t)
R , p

(t)
B ) = P (C(t+1) = j|C(t) = i)

=


Pij , t+ 1 mod Th = 0

1, t+ 1 mod Th 6= 0 and i = j

0, t+ 1 mod Th 6= 0 and i 6= j

(16)

where p(t)R , p
(t)
B are respectively red and blue users’ actions

at time t. With these notations, the protocol with Markovian
acceptance probability is given in Protocol 3.

Protocol 3. DiSBM Based Network Edge Formation with
Markovian Acceptance Probability

Input: G(t)={V,E(t)} where V =R ∪B, t = 0, 1, 2, · · ·
Output: p(t)R , p

(t)
B

Process:
1) p(0)R , p

(0)
B ∼ U [0, 1];C(0) is the initial acceptance probability.

2) At each odd time instant (i.e., t = 1, 3, 5, · · · ), red users
take actions according to steps 2.1 and 2.2 below while
the blue users adhere to the action they adopted at time
t− 1.

2.1) ∀i, j ∈ R, i connects with j with probability

p
(t)
R = argmax

p
(t)
R ∈(0,1]

E
{
U

(t)
ARMi

}
(17)

where E is the expectation with respect to the prob-
ability distribution induced by the DiSBM model,
and U

(t)
ARMi is the augmented utility function de-

fined in (11).
2.2) ∀i ∈ R, j ∈ B, i connects with j with probability

1−p(t)R

N .

3) At each even time instant (i.e., t = 2, 4, 6, · · · ), blue users
take actions according to steps 3.1 and 3.2 below while
the red users adhere to the action they adopted at time
t− 1.

3.1) ∀i, j ∈ B, i connects with j with probability

p
(t)
B = argmax

p
(t)
B ∈(0,1]

E
{
U

(t)
ARMi

}
(18)

3.2) ∀i ∈ B, j ∈ R, i connects with j with probability
1−p(t)B

N .

4) At each time instant, C(t) evolves according to the
transition rule (16). ARM forms inter-community edges
according to Algorithm 1 with acceptance probability C(t).

4.2 Nash Equilibrium Analysis of the Game Corre-
sponding to Protocol 3
In Protocol 3, we consider the edge formation process in
an infinite horizon where users aim to maximize their
discounted sum of payoff. We study Protocol 3 by analyz-
ing a corresponding stochastic game, with the Markovian
acceptance probability C(t) as the state of the game. The main
result of this subsection (Theorem 3) indicates that:

i. Protocol 3 captures user’s best response dynamics,
which converges to a steady state dependent on C(t).
Once C(t) transits to a new state, user’s best response
will converge to a new steady state;

ii. user’s optimal strategy is to myopically optimize its
one-stage payoff at each round of the game (with C(t)

as the state of the game).

Theorem 3 (Convergence of Protocol 3 to the time-varying
Nash Equilibrium). Consider the best response dynamics given
in Protocol 3 (Sec. 4.1). If the acceptance probability (i.e., C(t))
evolves as a semi-Markov process specified in (16), then p(t)R , p

(t)
B

both converge to the Nash equilibrium dependent on C(t) before
C(t) transits.
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Proof. The proof of Theorem 3 is based on the assumption
that the transition dynamics of C(t) are conditionally inde-
pendent of users’ actions as shown in (16). Therefore before
C(t) transits to the next state, users’ best response dynamics
is similar to that of Protocol 2, i.e., converges to the Nash
equilibrium corresponding to C(t) (which is fixed during
the state holding time Th). The detailed argument is given
in Appendix A.3 for completeness.

Theorem 3 indicates that user’s best response dynamics
will converge and reach the time-evolving Nash equilibrium
in the game corresponding to Protocol 3.

5 NUMERICAL EXAMPLES OF THE EDGE FORMA-
TION GAME

In this section, we provide numerical results to illustrate
how incorporating ARM (Algorithm 1) into the edge for-
mation protocol (Protocol 2) reduces segregation, i.e., users
form both intra- and inter-community edges at the Nash
equilibrium of the corresponding game. We also illustrate
that higher acceptance probability C moves the corresponding
game’s Nash equilibrium closer towards social integration,
i.e., users form more inter-community edges at the Nash
equilibrium.

5.1 Convergence of Best Response Strategies Corre-
sponding to Protocol 2
Recall that in Protocol 2, we propose that users alternatively
play their best response strategies. In the following numeri-
cal example, we illustrate how users’ best response dynam-
ics converges to the Nash equilibrium of the corresponding
edge formation game. We consider two communities each
with N = 20 users, and they play the edge formation game
according to Protocol 2 for T = 20 time steps. The ARM’s
acceptance probability C (defined in Algorithm 1) is set to
be 0.8. Fig. 4 displays the convergence of two users’ best
responses to the unique Nash equilibrium (0.75, 0.75).

The steady state indicates that with ARM incorporated
in the protocol and acceptance probability C > 1

2 , users are
incentivized to connect with users in different community,
which illustrates the usefulness of ARM in mitigating segre-
gation.

5.2 The Effect of Varying Recommendation Accep-
tance Probability
Recall that we set ARM’s acceptance probabilities to be a
fixed value in Protocol 2. In order to visualize the effect
of different acceptance probabilities (defined in Algorithm
1) on the edge formation game, we vary the acceptance
probability from 2

3 to 1 and compare the resulting network
structure sampled from the model at the Nash equilibrium.
Fig. 5 shows the social network at the Nash equilibrium
under different acceptance probabilities, indicating that inter-
community edges become denser with higher acceptance
probability.

We use the segregation measure defined in (1) as a quan-
titative measurement of segregation. Networks with high
segregation measure have dense intra-community connec-
tions but sparse inter-community connections. Fig. 6 shows

Fig. 4. This figure shows the convergence rate of best responses of
red player and blue player to the unique Nash equilibrium. With ARM
(defined in Algorithm 1) implemented and the acceptance probability
set to C = 0.8, users from both communities are incentivized to have
1
4

of their total retweets to users from a different community at the
equilibrium. The figure indicates that the best response strategy of the
players converges to the Nash equilibrium in less than 10 iterations.

Fig. 5. This figure shows the network structure of two communities
after the edge formation game reaches Nash equilibrium with different
acceptance probability C (defined in Algorithm 1). The green curved
inter-community edges represent the friend recommendations provided
by ARM (Algorithm 1). Viewing the four sub-figures in the order of left-
to-right then top-to-bottom, the denser inter-community edges and lower
modularity (discussed in Sec. 5.2 and Fig. 6) indicate that users are
more willing to involve in inter-community connections with higher C.
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Fig. 6. The figure shows that the segregation measure of the network
(defined in (1)) drops with the increase of the acceptance probability C
(defined in Algorithm 1). Higher segregation measure represents denser
intra-community connections and sparser inter-community connections.
The figure illustrates that higher acceptance probability will better miti-
gate segregation in social networks.

that segregation measure decreases with higher acceptance
probability values, which agrees with our observation of the
network structure.

The results indicate that, during polarizing events when
users tend to be more segregated, the network administra-
tor can mitigate segregation by spending more efforts on
friend recommendations (i.e., to achieve a higher acceptance
probability C) so that more inter-community edges can be
formed. The results prove ARM’s capability under different
social settings.

5.3 Validation of ARM in Opinion Dynamics Model

To verify the efficacy of ARM in mitigating segregation, we
implement it on the opinion dynamics model proposed in
[17]. In the model, there are two opinions that agents can
adopt and express. More precisely, an agent i can adopt
oi ∈ {1,−1}. The model also accounts for how confident i
is about the two opinions by two real-valued terms Qi(1)
and Qi(−1). At each step, an agent (say i) is chosen at
random and expresses its opinion oi to a randomly chosen
neighbor j, and j responds to i’s expression with agreement
or disagreement depending on oj . The Qi(o) represents
an internal evaluation of the opinions based on the social
response i obtains on expressing them. The value is updated
as

Qi(o) =

{
(1− α)Qi(o) + αri if o = expression
Qi(o) else

(19)

where
ri = oioj (20)

leading to a positive feedback for oi = oj and to a negative
one if oi 6= oj . The parameter α represents learning rate.

We incorporate ARM into this model as follows. When
agent i’s expression is disagreed by j, i will be recom-
mended to connect with j’s neighbors who share the same
opinion with i. Similar to ARM, the recommendation will

Fig. 7. The figure shows the trend of the segregation measure (defined
on a network in (1)) when agents follow the opinion dynamics model
without and with ARM (defined in Section 5.3). When agents follow
the model without ARM, the segregation measure of the network keeps
increasing and maintains at a high level in the final stage, whereas the
segregation measure remains at a lower level when agents follow the
model with ARM.

be accepted with an acceptance probability C. Therefore
although i experiences disagreement with j, it will gain
some confidence in its expression through agreement with
j’s neighbors. The Qi(o) is updated as

Qi(o) =

{
(1− α)Qi(o) + αri if o = expression
Qi(o) else

(21)

where

ri =

{
oioj if oi = oj
oioj + C

∑
k∈N(j),k 6=i,ok=oi oiok if oi 6= oj

(22)

We use the parameters provided by the authors7. The
network is a random geometric graph with neighborhood
radius r = 0.175. There are N = 100 agents. Q take
random initial values in Unif(−0.5, 0.5). The learning rate
α = 0.05. Follow the authors’ implementation, we also set
an exploration rate ε = 0.1, which measures the probability
that agents express their less favorable opinions. We set the
recommendation acceptance probability C = 0.9.

As shown in Fig. 7, when agents follow the opinion
dynamics model without ARM, the segregation measure
of the network keeps increasing and maintains at a high
level in the final stage, whereas the segregation measure
remains at a relatively low level when agents follow the
model is incorporated with ARM. Fig. 8 compares the evo-
lution of the network’s community structure. The network
is segregated into nearly disconnected components when
ARM is not incorporated. On the contrary, the network is
less segregated when ARM is incorporated. This numerical
validation in opinion dynamics model verifies the efficacy
of ARM in mitigating network segregation.

7. See Section 3.2 [17] for implementation details.
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Fig. 8. The figure shows the different evolution pattern of community
structure in the model without and with ARM (defined in Section 5.3). (a)
shows that in the model without ARM, the community structure gradually
segregates into nearly disconnected components; (b) shows that in the
model with ARM, the community structure is less segregated.

6 CONCLUSIONS AND EXTENSIONS

Conclusions: This paper considered an edge formation pro-
tocol on social networks represented by a directed stochastic
block model (DiSBM) to describe how users choose to connect
with each other. The edge formation protocol represents
how each individual chooses the connection probabilities
in order to maximize a utility function that represents the
tradeoff between homophily (preference to be connected
with one’s own group) and popularity in the different
community. Analysis of the game that corresponds to the
best response based protocol shows that segregation is the
unique Nash equilibrium. We then proposed an algorithmic
recommendation mechanism (ARM) to mitigate segrega-
tion. ARM recommends users from different communities
to form weak ties and provides incentives to those that
form them. Assuming each recommendation suggested by
the ARM is accepted with an acceptance probability, we show
that the segregation level at the Nash equilibrium of the
corresponding game depends on it. Thus, the segregation of
the network can be controlled by introducing the ARM. We
further extend our results to the case where the acceptance
probability itself has Markovian dynamics and illustrate how
the individuals in the network reach the time-evolving Nash
equilibrium of the resulting game. Thus, our results provide
a novel mechanism design perspective into the problem of
mitigating segregation in social networks.

Limitations and Extensions: The proposed edge formation
game and its analysis can be extended to further contexts in
several directions.

1) The edge formation protocol proposed in this paper as-
sumes homogeneity among users in one community, i.e.,
users’ community information solely determines their
edge formation probabilities. An interesting future di-
rection is to incorporate heterogeneity (e.g., preferential
attachment with fitness) into the network model and
apply methods such as friendship paradox sampling [32],
[33], [34], [35] to assign different weights to the 2 hop
connections between different pairs of users.

2) Another interesting direction is to consider ARM’s pa-
rameter (e.g., the recommendation acceptance probabil-
ity) depends on users’ actions and incorporates a feed-
back law, i.e., ARM raises the acceptance probability
when users become more segregated in network. Such
extensions might be helpful in analyzing the existence of
Markov Perfect Equilibrium (MPE) of the corresponding
stochastic game, which enhances the understanding of
users’ long-term strategy in an evolving social network.

3) The segregation measure (1) based on inter-community
edges can be further applied in other network topics such
as community detection [36], [37], [38], and estimation of
latent network factors [39].

4) The proposed method could be applied to real-world
network systems in the future. We can use ARM to stimu-
late information sharing amongst vehicles traveling over
different alternative paths in vehicular social networks.
Another example is blockchain miner networks, where
the use of ARM can speed up consensus by rewarding
communication between different portions of the net-
work.
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APPENDIX A
PROOFS OF THEOREMS

A.1 Proof of Theorem 1

In Protocol 1, the utility function (2) of each user in the
same community is a random variable with the probability
distribution induced by the DiSBM model, which has the
same expected value. Users in the same community can be
viewed as independent copies of a single player. Thus the
edge formation game can be reduced to a two-player game,
where each player represents users in one community. The
utility of the two players, U (t)

R and U (t)
B , are respectively the

expected value of the utility function (2) for red and blue
users:

U
(t)
R = p

(t)
R − p

(t)
B

(23)

U
(t)
B = p

(t)
B − p

(t)
R

(24)

It is shown from (23) that p(t)R = 1 is red player’s strictly
dominant strategy. This is equivalent to say, at red player’s
turn, it will choose p(t)R = 1 as its best response strategy
regardless of blue player’s previous action, and will never
switch again. Similar result holds for blue player. Therefore
the game converges in 2 time steps, i.e., p(t)R = p

(t)
B = 1 for

all t = 2, 3, · · · .
Thus, the game corresponding to Protocol 1 converges to

its unique Nash equilibrium (p
(t)
R , p

(t)
B ) = (1, 1) after each

player acted once, i.e., users only form intra-community
edges and the social network is segregated into echo cham-
bers after t = 2.

A.2 Proof of Theorem 2

Similar to the proof of Theorem 1, we assume users in one
community are independent copies of a single player and
reduce the game with ARM to a two-player game. Based
on (11), the utility of the red player and blue player in the
two-player game are respectively:

U
(t)
R = p

(t)
R − p

(t)
B + C

[
p
(t)
B (2− p(t)R − p

(t)
B ) + p

(t)
R (1− p(t)R )

]
(25)

U
(t)
B = p

(t)
B − p

(t)
R + C

[
p
(t)
R (2− p(t)R − p

(t)
B ) + p

(t)
B (1− p(t)B )

]
(26)

A detailed derivation can be found in Appendix B.
The second order mixed derivatives of (25, 26) yields

∂2U
(t)
R

∂p
(t)
R ∂p

(t)
B

=
∂2U

(t)
B

∂p
(t)
R ∂p

(t)
B

= −C (27)

Since C > 0, the game is submodular, which guarantees
that players’ best response strategies converge to a Nash
equilibrium [40]. This submodular game also has quadratic
utility, which makes it similar to the Bertrand game [21] and
thus can be analyzed in a similar approach.

Note that

∂U
(t)
R

∂p
(t)
R

= 1− C(2p
(t)
R + p

(t)
B − 1) (28)

∂U
(t)
B

∂p
(t)
B

= 1− C(2p
(t)
B + p

(t)
R − 1) (29)

We apply iterated strict dominance to attain the Nash
equilibrium. Let red player’s initial best response set b(0)R =
(0, 1].

1) If p(t)R < 1
2C , then ∂U

(t)
R

∂p
(t)
R

≥ 0 → any p(t)R < 1
2C is strictly

dominated.
2) If p(t)R > 1

2C + 1
2 , then ∂U

(t)
R

∂p
(t)
R

≤ 0→ any p(t)R > 1
2C + 1

2 is

strictly dominated.

The following analysis depends on two different cases of
the acceptance probability C.

1) If 0 < C ≤ 1
2 , then 1

2C ≥ 1, i.e., ∂U
(t)
R

∂p
(t)
R

≥ 0 holds for red

player’s possible actions p(t)R ∈ (0, 1]. Thus red player’s
best response is

bR(p
(t)
R ) = 1 (30)

Similarly, blue player’s best response is

bB(p
(t)
R ) = 1 (31)

Therefore, the Nash equilibrium of the game is

(p
(t)
R , p

(t)
B ) = (1, 1) (32)

i.e., the social network is in segregation.
2) If 1

2 < C ≤ 1, then 1
2C + 1

2 ≥ 1. Thus, after one iteration,
red player’s remaining undominated strategy set, i.e, the
best response set is b1R = [ 1

2C , 1].
Let the set after i iterations be biR = [bi, b̄i], where

bi =
1

2
(

1

C
+ 1− b̄i−1) (33)

b̄i =
1

2
(

1

C
+ 1− bi−1) (34)

We can show that

lim
i→∞

bi = b̄i =
1

3C
+

1

3
(35)

Therefore, by iteratively applying the best responses
and eliminating strictly dominated strategies, the best
response strategy converges to the unique Nash equilib-
rium of the game, which is

(p
(t)
R , p

(t)
B ) = (

1

3C
+

1

3
,

1

3C
+

1

3
) (36)

The Nash equilibrium (p(t)R < 1, p
(t)
B < 1) indicates that

ARM incentivizes both red and blue users to form inter-
community edges, leading to social integration.

A.3 Proof of Theorem 3

Following the proof of Theorem 1 and 2, we assume users
in one community are independent copies of a single player
and reduce the game to a two-player game. We define the
two-player stochastic game resulting from Protocol 3 as
follows:

1) A state of the game, C(t), representing the acceptance
probability at time t.

2) Actions of red player and blue player p(t)R , p(t)B ∈ (0, 1],
representing their best response strategies at time t.
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3) One-stage payoffs for red player and blue player which
are the same as (25) and (26), except that the fixed C is
substituted by the time-variant C(t)

U
(t)
R =p

(t)
R − p

(t)
B

+ C(t)
[
p
(t)
B (2− p(t)R − p

(t)
B ) + p

(t)
R (1− p(t)R )

] (37)

U
(t)
B =p

(t)
B − p

(t)
R

+ C(t)
[
p
(t)
R (2− p(t)B − p

(t)
R ) + p

(t)
B (1− p(t)B )

]
(38)

4) A transition rule of C(t) specified in (16), which is condi-
tionally independent of players’ actions.

5) A discount factor γ ∈ (0, 1).
6) Value functions of red player and blue player represent-

ing their discounted sum of payoff from time t

V
(t)
R =

∞∑
τ=t

γτ−tU
(τ)
R (39)

V
(t)
B =

∞∑
τ=t

γτ−tU
(τ)
B (40)

Based on the above definition of the stochastic game,
we aim to derive the player’s optimal strategy under the
condition that the acceptance probability evolves as a semi-
Markov process. Recall that in Protocol 2 where the accep-
tance probability is fixed, (in the proof of Theorem 2) we
have illustrated the convergence of players’ best response
dynamics to the steady state corresponding to the game’s
Nash equilibrium. Considering that the state holding time
Th (defined in (16)) is large compared with the time that
players take action, we claim that in Protocol 3, players’
best response dynamics converges to the Nash equilibrium
corresponding to C(t) before it transits.

With this claim, what remains to be proved is how
players adapt their actions when C(t) transits. Below we
illustrate players’ strategy at t when C(t) transits to another
state C(t+1).

Bellman’s dynamic programming recursion yields [41]:

V
(t)
R = max

p
(t)
R

U
(t)
R + γ

∑
C(t+1)

P (C(t+1)|C(t))V
(t+1)
R (41)

In (41), V (t)
R and V

(t+1)
R denotes the red user’s value func-

tion at time t and t+1 respectively, assuming that it took the
best response p(t)R at time t, which corresponds to the Nash
equilibrium of the game with C(t).

The transition dynamics of C(t) are conditionally inde-
pendent of players’ actions. Only the first term in (41), i.e.,
the one-stage payoff U (t)

R , depends on players’ actions. Thus
red player’s optimal strategy is to myopically maximize the
one-stage payoff without concerning about the transition of
C(t). Similar result holds for blue player’s optimal strategy.
Based on the Nash equilibrium (36) derived in Sec. 3.3,
( 1
3C(t) + 1

3 ,
1

3C(t) + 1
3 ) are the optimal strategies for red

and blue users. Thus, players’ best response dynamics will
converge to ( 1

3C(t) + 1
3 ,

1
3C(t) + 1

3 ), i.e., they will reach the
time-evolving Nash equilibrium in the resulting game.

APPENDIX B
DERIVATION OF USER’S EXPECTED UTILITY WITH
ARM IN EQUATION (25, 26)
Take red user as an example. The expected number of inter-
community edges formed by ARM for any red user is

E


∑
j∈B

{
C
[
1−D(t)(i,j)

] ∑j′∈B
[
D(t)(i,j′)+D(t)(j′,i)

]
S(t)(j′,j)

N−1

}
= C(1− (1− p(t)B )

N
)N
(1− p(t)R

N
+

1− p(t)B
N

)
p
(t)
B

= CN
(1− p(t)R

N
+

1− p(t)B
N

)
p
(t)
B

= C(2− p(t)R − p
(t)
B )p

(t)
B

(42)

where E denotes expectation over the probability distribu-
tion induced by the DiSBM.

On the second line of (42), C is the acceptance probability,

N is the number of blue users, (1− 1−p(t)B

N ) is the probability
that the recommendation target has not followed i yet,( 1−p(t)R

N +
1−p(t)B

N

)
p
(t)
B is the probability that i is recommended

by ARM to any blue user. The third line satisfies when N is

large, i.e., 1−p(t)B

N ≈ 0.
Similarly, i’s expected reward for connecting users from

two communities (e.g. a red user connects its red followers
to its blue friends) during ARM recommendations is

E

∑
j∈B

∑
i′∈R

{
C
[
1−D(t)(j,i′)

][
S(t)(i,i′)D(t)(j,i)

N−1
]}

= C(1− 1− p(t)R
N

)N
p
(t)
R

1−p(t)R

N (N − 1)

N − 1

= C(1− p(t)R )p
(t)
R

(43)

Combining (42, 43) for the additional reward, and (23,
24) for the expected utility of users in the game without
ARM, we can derive the expected utility of users, i.e., the
utility of red and blue player, in (25, 26).
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