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Knowledge graph (KG) is a topic of great interests to geoscientists as it can be deployed throughout the data life
cycle in data-intensive geoscience studies. Nevertheless, comparing with the large amounts of publications on
machine learning applications in geosciences, summaries and reviews of geoscience KGs are still limited. The aim
of this paper is to present a comprehensive review of KG construction and implementation in geosciences. It
consists of four major parts: 1) concepts relevant to KG and approaches for KG construction, 2) KG application in

data collection, curation, and service, 3) KG application in data analysis, and 4) challenges and trends of geo-
science KG creation and application in the near future. For each of the first three parts, a list of concepts,
exemplar studies, and best practices are summarized. Those summaries are synthesized together in the challenge
and trend analyses. As artificial intelligence and data science are thriving in geosciences, we hope this review of
geoscience KGs can be of value to practitioners in data-intensive geoscience studies.

1. Introduction

Artificial intelligence (AI) has received increasing attention in geo-
sciences in the past decade (Gil et al., 2019). In particular, for
data-intensive geosciences there has been a significant growth of ma-
chine learning (ML) and deep learning (DL) applications in recent years
(Lary et al., 2016; Bergen et al., 2019; Karpatne et al., 2018; Reichstein
et al., 2019). Besides ML and DL, knowledge engineering, logic, and
reasoning are also essential topics in AI (Russell and Norvig, 2021),
among which the knowledge graph (KG) rises as a unique subject. A KG
is a graphical representation of structured knowledge from the real
world, in which the nodes represent entities of interest and the edges
represent relationships between those entities (Sheth et al., 2019b;
Hogan et al., 2020). In a data life cycle (Wing, 2019), such as the
data-intensive geoscience research (Gil et al., 2019), the associated
works of KG connect the upstream work of knowledge engineering and
representation, the midstream work of data curation and integration,
and the downstream work of data analysis and result communication.
For instance, the OneGeology-Europe project (Laxton, 2017) illustrated
intelligent applications of KGs in geologic map integration and service.
About 20 European countries participated in the project to share na-
tional geologic map services, but many of them were originally recorded
in their national official languages. The project has built multi-lingual
vocabularies to mediate across those map services. On the data portal
of OneGeology-Europe, a user can write a query with English labels of
rock age or type, then the functions based on the vocabularies can
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translate the query into different languages and send them to the cor-
responding services. The records returned from multiple services are
organized in a consistent form just like they are returned from a single
European geologic map service.

As a reflection, earlier publications in geoinformatics and geo-
mathematics have addressed the importance of machine-readable
knowledge models in the cyberinfrastructure (e.g., Loudon, 2000,
2009) and the flexible application of data-driven and knowledge-driven
approaches in data analysis (e.g., Bonham-Carter, 1994; Carranza,
2009). Very recently, Gutierrez and Sequeda (2021) reviewed the
interweaving of data and knowledge since the advent of modern
computing in the 1950s, to reveal the historical roots of the KGs in
nowadays. They suggested that both statistical and logical methods
contribute to the convergent work of data science, and the
next-generation scientists should be aware of the KG developments in
addition to the overwhelming ML and DL studies. However, comparing
with the many recent review papers on ML and DL in geosciences, there
is a shortage of summary and review of KGs in geosciences. Although
there has been some progress in geoscience KG construction and appli-
cation in the past decades, such as the work on geospatial semantics
(Compton et al., 2012; Janowicz et al., 2012; Tandy et al., 2017), the
entrance barrier to KG still seems high to many geoscientists, especially
newcomers.

The history of KG can be traced back to ancient people’s idea of
representing knowledge in a diagrammatic form (Gutierrez and
Sequeda, 2021). The Google Knowledge Graph released in 2012,
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together with similar ideas at Microsoft, Facebook, eBay, and IBM,
significantly increased the visibility of KG as an Al approach to re-
searchers and the public (Noy et al., 2019b). Yet, for KG practitioners in
geosciences, it is necessary to realize that KG is rooted in several areas in
computer science. At the 2019 U.S. Semantic Technologies Symposium
(Durham, NC), there was an active discussion on the statement that “In
the 1990s, we talked about vocabularies; in the 2000s, we talked about
ontologies; and in the 2010s, we began to talk about knowledge graphs.”
There have been several initiatives on building vocabularies, ontologies
and KGs in geosciences and applying them to improve the data life cycle
in geosciences. The Commission for Geoinformation within the Inter-
national Union of Geological Sciences (IUGS-CGI) is a facilitator of
standardized geoscience vocabularies and schemas for geologic data
(Asch and Jackson, 2006). Part of the IUGS-CGI outputs were adapted in
the OneGeology, OneGeology-Europe and the INSPIRE programs to
harmonize geologic data from distributed sources (Laxton, 2017). Fed-
eral agencies in U.S. such as USGS and NASA have also invested efforts
on KGs for geoscience data management and analysis (e.g., Zhang et al.,
2016; USGS NCGMP, 2020). The EarthCube, an NSF initiated program,
has led to many recent progresses on geoscience vocabularies, ontol-
ogies and KGs (e.g., Richard et al., 2014; Gupta et al., 2015; Zhou et al.,
2020). Two recent reports released by the World Wide Web Consortium
(W3C) summarized the best practices for publishing data on the Web:
one focused on the open data in its broad sense (Loscio et al., 2017) and
the other specifically on spatial data (Tandy et al., 2017). Those best
practices show a clear trend that KGs will take an essential role for better
data services on the Web. It is also encouraging to see that a few ex-
amples from geosciences were included in the two reports.

Geoscience KG is an interdisciplinary subject. Despite those above-
mentioned progresses of KG in geosciences, the gap between geo-
science and computer science still makes it hard for many real-world
practitioners to see a roadmap to incorporate KGs into data-intensive
geoscience research. Semantic technologies (Berners-Lee et al., 2001;
Bizer et al., 2011) are a key topic of KG in existing studies. Narock and
Wimmer (2017) conducted a bibliometric analysis of semantic tech-
nologies with literature from the American Geophysical Union (AGU)
Fall Meetings (i.e., a representative geoscience conference) and the In-
ternational Semantic Web Conference (ISWC) series (i.e., a representa-
tive computer science conference). Their results show that the overlap
between AGU and ISWC is minimal. While computer scientists focus
more on the precision of their algorithms and the efficiency in big data
processing, geoscientists and geoinformaticians focus on the actual
improvement enabled by semantic technologies in their geoscience work
(cf. Hogan 2020; Hitzler 2021). Comparing with the KG construction
and application in biology and biomedical studies (e.g., Ashburner et al.,
2000; Gene Ontology Consortium, 2019; Nicholson and Greene, 2020),
most existing geoscience KGs focus on lightweight semantics, and their
applications are limited to data harmonization and integration. Com-
puter scientists can see the potential of deeper applications of KGs in
geosciences, but geoscientists would like to see a list of KG technologies
that can guide them from simple to sophisticated applications (4D
Initiative, 2018; Gil et al., 2019; NASEM, 2020; Wang et al., 2021).

The purpose of this paper is to review the existing work of KGs in
geosciences, summarize the best practices, and discuss the trends of KG
construction and application. The remainder of the paper is organized as
follows. Section 2 summarizes the concepts associated with KG and ways
to construct a KG in geosciences. Section 3 focuses the progress of KG
applications in geoscience data collection, curation, and service. Section
4 summarizes KG applications in geoscience data analysis, including
topics of data mining processes, social media and literature data, image
analysis, vector data, and integrated applications. Section 5 discusses
the trends in the near future. Finally, Section 6 concludes the paper. We
hope this review will be beneficial to many geoscientists who would like
to deploy KGs in their data-intensive studies.
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2. Knowledge graph construction: associated concepts and
approaches

A KG, in its broad sense, can be envisioned as a group of nodes
connected by edges, where the nodes represent entities in the real world
and edges for the relationships between those entities. This is a good
way to lower the barrier of entrance for geoscientists to work on KG.
However, it is important to note that a graphic conceptual map is just the
beginning stage. A more functional part of KG is the logical assertations
we can add to the nodes and edges and the capability of reasoning and
inference enabled by them.

2.1. A spectrum of knowledge graphs

As introduced in Hogan et al. (2020), Abu-Salih (2021), and
Gutierrez and Sequeda (2021), the work on KGs in Al has close rela-
tionship to scientific advancements in Semantic Web, databases,
knowledge engineering, natural language processing, and ML. In the
past decades, the approach of an ontology spectrum (Welty, 2002;
McGuinness, 2003; Obrst, 2003; Uschold and Gruninger, 2004) has
established a roadmap for many researchers to build vocabularies,
schemas, and ontologies to meet the needs of various applications.
Intuitively, we can adapt that approach to establish a KG spectrum
(Fig. 1) to guide KG construction in geosciences.

For all the KG types in Fig. 1, there are existing examples in geo-
sciences. Here we will give an inter-comparison about the characteristics
of those types by using those real-world examples. Catalog and glossary
are often seen at the end of a book. They are normally an alphanumerical
list of keywords for the content of the book. In some glossaries, each
keyword is appended by all the page numbers where the keyword ap-
pears, which offer readers a quick overview about the major subjects of a
book. Some glossaries are also published independently, such as the
Glossary of Geology (Neuendorf et al., 2011). Taxonomy is the classifi-
cation of concepts, which often shows a supergroup-subgroup structure.
For example, paleobiologists use the taxonomy of domain, kingdom,
phylum, class, order, family, genus, and species in the classification of
life. In the geologic time scale, there is a hierarchal structure of eon, era,
period, epoch and age. The periodic table arranges chemical elements by
their atomic number and electron configuration, and it demonstrates the
periodic trends in the rows and columns of the table. Thesaurus,
sometimes called controlled vocabulary, is like a mixture of glossary and
taxonomy, in which the terminology is organized within a hierarchy.
The Glossary of Geology (Neuendorf et al., 2011), although organized in
an alphabetical structure, shows such taxonomical information in the
annotation of some terms. There are more typical examples of geo-
science thesaurus (e.g., AQSIQ, 1988; Rassam et al., 1988; Gravesteijn
etal., 1995; CCOP and CIFEG, 2006), and an interesting pattern of them
is the inclusion of multilingual labels. Recently, many thesauri (e.g.,
Caracciolo et al., 2013; Stevens, 2019) were also encoded with semantic
technologies, such as the Simple Knowledge Organization System
(SKOS) (Miles and Bechhofer, 2009).

Conceptual schemas, also called conceptual models, are often seen in
the design of data structures for relational databases. Sometimes there
will be formal relationship of superclass-subclass for two entities in a
schema, where a subclass inherits all the properties of the superclass.
The Unified Modeling Language (UML) is widely used in the design of
conceptual schemas. A good example is the conceptual model for the
geologic maps in North America (NADM Steering Committee, 2004).
There were also conceptual schemas designed for data exchange on the
Internet, such as GeoSciML (Sen and Duffy, 2005). The INSPIRE pro-
gram, a pan-European spatial data infrastructure, is developing data and
metadata schemas for 34 subjects in Earth and environmental sciences,
with the full implementation aimed by 2021 (Bartha and Kocsis, 2011).
Ontology with formal logical assertions is the last type on the KG
spectrum (Fig. 1). Each ontology is the formal specification of a shared
conceptualization of a domain (Gruber, 1995). Semantic technologies
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Fig. 1. A spectrum of knowledge graphs (from Welty, 2002; McGuinness, 2003; Obrst, 2003; Uschold and Gruninger, 2004).

such as Resource Description Framework (RDF) (Klyne and Carroll,
2004) and Web Ontology Language (OWL) (McGuinness and van Har-
melen, 2004) are widely used to add logical assertations on classes and
properties in an ontology, such as disjoint classes, equivalent classes,
transitive properties, and more. A well-known ontology in Earth and
environmental sciences is SWEET (Raskin and Pan, 2005). There are also
ontologies built for themed geoscience subjects, such as geologic time
(Cox and Richard, 2015), hydrology (Brodaric et al., 2019), hydroge-
ology (Tripathi and Babaie, 2008), structural geology (Babaie et al.,
2006), fractures (Zhong et al., 2009), and sensor networks (Compton
et al., 2012), just to name a few.

As reflected by the spectrum in Fig. 1, A KG in the real-world geo-
science applications is often seen as a mixture of TBox and ABox. The
former is the classes and properties representing a domain (cf. logical
assertion statements at the right part of Fig. 1), and the latter is the in-
stances of those classes (cf. terminology statements at the left part of
Fig. 1). To which level should we detail the semantics of a KG is decided
by the needs of research activities.

2.2. How to build knowledge graphs

KG construction is an iterative engineering process where many
methods and tools can be applied (Fox and McGuinness, 2008). The
existing approaches can be grouped in two clusters: top-down and
bottom-up. The top-down approach stems from the modeling process in
database construction (Fig. 2). First, a subject domain and a list of
research needs are identified. Second, a conceptual model will be
designed to collect the entities of interest, their inter-relationships, and
the categories. A useful tool for conceptual modeling is the CmapTools
(Cmap, 2021). Third, the logical and physical models will add logical
representation and assertions to the collected entities and relationships.
Fourth, the technical development and implementation need to consider
the coding language to use (e.g., RDF and OWL), the serialization for-
mats (e.g., RDF/XML, Turtle, and JSON-LD), and the KG development
platforms such as Protégé (Tudorache et al., 2008) and DOGMA (Spyns

et al., 2008). The last step is to deploy the KG as a service to allow the
community reuse and provide feedback. In general, this is a process to
transform the knowledge in the domain experts’ brain to a
machine-readable representation. Many existing geoscience KGs were
constructed through this approach, such as the schema for mineral
classification (Garvie, 1995), the SWEET ontology (Raskin and Pan,
2005), the GeoCore ontology (Garcia et al., 2020), and the other ex-
amples mentioned in Section 2.1. Recently, the Deep-time Digital Earth
(DDE) Big Science Program of the International Union of Geological
Sciences built its own platform for building and serving KGs (Shi et al.,
2020; Wang et al., 2021). KG practitioners can also refer to summaries
and reviews of KG development tools (e.g., Corcho et al., 2003; Slimani,
2015; W3C, 2015) to find a good match to their work.

The bottom-up approach of KG construction is based on crowed-
sources data, such as social media and the literature legacy. Earlier
discussions include mining Web content to build knowledge bases
(Craven et al., 2000) and use an observation-driven approach in
geo-ontology engineering (Janowicz, 2012). The thriving social media
and open access to published literature further extend the scope of data
sources to be used in KG construction. The number of publications
following this bottom-up approach has increased significantly in recent
years. For example, Gao et al. (2017) used Hadoop to process geotagged
data in Flickr and successfully built gazetteers in geography. Zhu et al.
(2017), Wang et al. (2018b) and Fan et al. (2020) used natural language
processing (NLP) and text mining to process geoscience literature (re-
ports, books, and journal papers, etc.) and then use the results to guide
the process of KG construction. Although the bottom-up approach is able
to process a large number of datasets and quickly build a big KG, a
remaining challenge is the precise logical representation and asserta-
tions for the entities and relationships in the resulting KG. Very often,
they still need to be specified by the domain experts and knowledge
engineers, where existing KGs can be reused.

Domain

| What is the purpose? H

H Identify subject areas and needs |

¥

| What to be included? H Conceptual Model H Collect & define major entities and categoriesl

¥

| How to design them? H Logical Model H Logical assertions of entities & relationships |

¥

| How to implement them? H Physical Model H Encoding language & mapping to other KGs |

¥

| Which platform to deploy? H Implementation H Platforms for KG development & application |

¥

I Address the purpose? H Update

H Feedback from users in that domain |

Fig. 2. A top-down approach for knowledge graph construction and implementation.
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2.3. Best practices in knowledge graph construction

Researchers have summarized workflows and recommendations for
KG construction, and some of them are based on examples from geo-
sciences (Fox and McGuinness, 2008; Kendall and McGuinness, 2019).
They highlighted a use case-driven iterative approach to leverage
existing resources and improve the usability of the resulting KG. Fig. 3
put together those recommendations together with the approaches dis-
cussed in Sections 2.1 and 2.2 to present a suggested workflow for
building and applying KGs in geosciences. Each use case has a specific
topic relevant to the domain, such as discovering datasets with one or a
few keywords, recommending algorithms to analyze a certain type of
data, and finding researchers who share the same research interests.
Domain experts (e.g., geoscientists) will work together with knowledge
engineers to analyze each use case to get a draft list of entities, re-
lationships, categories, and structures. If necessary, the bottom-up
approach can also be used to augment the list. Based on the first one
or two use cases, a KG prototype can be established and tested. Then
more use cases will be analyzed in an iterative process to enrich the KG.
In this process, some ontology design patterns (Gangemi, 2005; Gang-
emi and Presutti, 2009; Blomqvist et al., 2016) can be reused and
adapted from community standards (e.g., the mineral classification
chart, the nomenclature of petrology, and the geologic time scale) as
well as existing ontologies and vocabularies (e.g., the SWEET ontology).
Ontology design patterns are distinctive and repetitive invariants across
the various models, data and processes of a domain. Reusing them will
improve the interoperability and usability of the resulting KG.

There is a 3C (Correct, Consistent, and Complete) guideline (Asch
and Jackson, 2006) to determine an appropriate termination point for
the use case analyses. The practitioners need to verify that the entities
and relationships collected in the KG are correctly defined and anno-
tated, and they are organized in a consistent structure. Moreover, the
established entity and relationship lists and the logical assertations are
complete enough to address the subject areas and research questions
proposed in the beginning of the whole work. Once a relatively stable
version of the KG is generated, a service can be set up for it, either
through an individual server or a community portal (right part of Fig. 3).
As workflow platforms such as Jupyter (2021) and RMarkdown (RStu-
dio, 2021) are increasingly used by geoscientists in nowadays for
data-driven discoveries, for the KG service it is a good practice to
develop a Python or R package as the interface to access the KG server.
Then users can apply the KG from workflow platforms together with
many other data and model resources in the open science world. They
can also provide feedback to the KG developers. As the FAIR (findable,
accessible, interoperable, and reusable) data principles (Wilkinson et al.,

)
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2016) are widely accepted in the open data endeavors of various disci-
plines, there were also discussions on how to build FAIR KGs. For
example, Cox et al. (2020) proposed “Ten Simple Rules” towards FAIR
vocabularies: 1) Verify the license for repurposing a legacy vocabulary;
2) Determine the governance model and custodian for the legacy vo-
cabulary; 3) Check minimal term definition completeness; 4) Select a
domain and service for the Web identifiers; 5) Design a pattern for the
identifier scheme; 6) Reuse semantic standards for the vocabulary to
increase its interoperability; 7) Add rich metadata to increase reus-
ability; 8) Register the vocabulary to increase findability; 9) Make the
Web identifiers resolvable to increase accessibility; and 10) Implement a
mechanism for maintaining the FAIR vocabulary.

3. Knowledge graphs in geoscience data collection, curation and
service

Geoscientists have realized the importance of using machine-
readable standards in data collection and management since the 1950s
when they began to use digital computers. Many publications have
discussed topics associated with KG, such as consensus on data models
(Dillon, 1964; Hubaux, 1970, 1972, 1973), semantic symbols and nets
(Dixon, 1970; Garvie, 1995), controlled vocabularies (Rassam and
Gravesteijn, 1982; Shimomura, 1989), rules for spatial data manipula-
tion (Buttenfeld and McMaster, 1991; Chung and Fabbri, 1993), and
more. Now, in the era of the Internet and Web, KG still takes an essential
role in geoscience data management, and there are new progresses on
applying KGs for open and FAIR data.

3.1. Knowledge graphs and FAIR data

While almost all geoscientists are using computers in their work,
many people are spending about 80% of their time on data preparation
before analysis (i.e., the 80/20 rule) (Press, 2016; Mons, 2018; Fox,
2019).

The FAIR data principles (Wilkinson et al., 2016) emphasize the
machine-readability and machine-actionability of data, i.e., improving
the capacity of computer systems to find, access, interoperate, and reuse
data. In that way, the manual intervention and operation from human
scientists will be reduced to the minimum and, thus, to mitigate or even
reverse the 80/20 rule. The FAIR principles have been well received by
researchers in various disciplines in the past five years. In particular, the
geoscience communities have not only showed the support but also
analyzed the challenges and drafted action items towards FAIR data in
geosciences (Stall et al., 2018, 2019). Here we would like to address the
close relationship between the FAIR principles and the theories and

_,(
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Fig. 3. A workflow for constructing and implementing knowledge graphs.
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technologies of KG (Table 1). The findability and accessibility rely on the
cyberinfrastructure for persistent and stable identifiers and the protocols
and interfaces to resolve those identifiers and retrieve the metadata
associated with them. Most of the principles under those two themes
have light to medium relevance to KG. In comparison, most items under
interoperability and reusability can be directly supported by KGs (Mons,
2018; Guizzardi, 2020). The FAIR principles can also be compared to the
Five-Star Open Data scheme proposed by Berners-Lee (2009). Hasnain
and Rebholz-Schuhmann (2018) conducted a detailed mapping between
the FAIR principles and the Five-Star scheme, and showed that they
share topics on identifiers, metadata, vocabularies and community
standards.

Although the FAIR principles were recently proposed, there have
been many earlier efforts working on various items covered in the
principles, and some of them highlighted the use of KGs. For example, in
the Virtual Solar-Terrestrial Observatory (Fox et al., 2009), a set of
OWL-based ontologies were developed to represent the concepts, re-
lationships and attributes in the fields of solar physics, space physics and
solar-terrestrial physics. The ontologies were then used to reconcile
distributed and heterogeneous datasets and present them to the end
users in an organized form. In the EarthCube Geolink project (Krisnadhi
et al., 2015; Cheatham et al., 2018), the method of ontology design
patterns (Gangemi, 2005) was used to develop a modular ontology to
support data integration from seven geoscience data repositories. The
Google Dataset Search was released in 2018. It is based on Schema.org,
which provides metadata schemas to markup datasets shared on the
Web (Noy et al., 2019a). Numerous geoscience datasets can already be
discovered on the Google Dataset Search. Researchers in the EarthCube
GeoCODES project have been conducting more case studies to adapt and
extend Schema.org, with the aim to build best practices to enable
cross-domain discovery and access to geoscience data and research tools
(Shepherd et al., 2019). Another interesting work is using ontologies to
represent the FAIR principles and evaluate the FAIRness of open data.
Examples can be seen in Alowairdhi and Ma (2019) and Brewster et al.

Table 1
FAIR data principles and their relevance to knowledge graphs.

FAIR data principles (F-Findable, A-Accessible, I- Relevance to KG

Interoperable, R-Reusable)

Strong  Medium  Light

F F1 (Meta)data are assigned a globally unique X
and persistent identifier
F2 Data are described with rich metadata X
(defined by R1 below)
F3 Metadata clearly and explicitly include the X
identifier of the data they describe
F4 (Meta)data are registered or indexed in a X
searchable resource

A Al (Meta)data are retrievable by their identifier X
using a standardized communications protocol
A1.1 The protocol is open, free, and universally X
implementable
A1.2 The protocol allows for an authentication X
and authorization procedure, where necessary
A2 Metadata are accessible, even when the data  x
are no longer available

I 11 (Meta)data use a formal, accessible, shared, X
and broadly applicable language for knowledge
representation.
12 (Meta)data use vocabularies that follow FAIR  x
principles
I3 (Meta)data include qualified references to X
other (meta)data

R R1 (Meta)data are richly described with a X
plurality of accurate and relevant attributes
R1.1 (Meta)data are released with a clear and X
accessible data usage license
R1.2 (Meta)data are associated with detailed X
provenance
R1.3 (Meta)data meet domain-relevant X
community standards
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(2020).

A comparison can be made between the approaches of Google
Dataset Search and the Linked Open Data. Although they both have
strong relationships with the semantic technologies, the focus of Google
Dataset Search and Schema.org is on the metadata. Accordingly, when a
data repository incorporates Schema.org in its structure, the technical
development is mostly on the metadata schemas. Although domain-
specific vocabularies might also be built to facilitate data annotation
and discovery, the data repository can retain its original data structure
and data format rather than be transformed into RDF. The Linked Open
Data has also been a big success (Auer et al., 2014) on several aspects: 1)
extraction, creation and enrichment of structured RDF data, 2) inter-
linking and fusion of RDF data from different sources, 3) management of
RDF data to a large scale, and 4) exploration and visualization of Linked
Data. It is clear that a big effort of Linked Open Data is the creation and
curation of data in RDF format. Accordingly, specific KGs are needed to
underpin the RDF data and the work is more extensive than the work
focused on metadata. This perhaps is a partial reason that very few
geoscience repositories have fully deployed the Linked Open Data
approach in their technical development. Nevertheless, Linked Open
Data has initiated many discussions on how to improve the visibility and
accessibility of data on the Internet and Web. Many established methods
in Linked Open Data, such as enrichment and interlinking of RDF data,
can also be adapted in the deployment of Schema.org metadata in
geoscience data repositories, to help pursue the goal of FAIR data.

3.2. Knowledge as a service in open data and open science

When the KGs of a domain are established, one way to continue their
maintenance and populate their application is to build a service for them
on the Internet and Web. For example, in the field of biology and
biomedical studies, the BioPortal provides Web services to various on-
tologies, which can be used to drive data integration, information
retrieval, data annotation, natural language processing, and decision
making (Noy et al., 2009; Whetzel et al., 2011). The Web-based concept
browsing and graph visualization allow users quickly see the landscape
of a subject domain of interest, while the logical assertions and rules in
the KGs can be used in the data integration and analysis processes.
Geospatial semantics is another domain where significance progress has
been made on KG development and service in the past decades (Frank,
2001; Kuhn, 2001; Lutz and Klien, 2006; Janowicz et al., 2012). Besides
the increasing number of books and journal articles, geospatial seman-
tics has also been a long-lasting theme in many scientific communities
and their conferences, such as the American Association of Geographers,
the International Society for Photogrammetry and Remote Sensing, the
International Cartographic Association, and the Conference on Spatial
information Theory, just to name a few. Relevant committees and/or
working groups have also been established in big computer science
communities such as those in the Institute of Electrical and Electronics
Engineers (IEEE) and the Association for Computing Machinery (ACM).
Several KG outputs were formally released by W3C and/or the Open
Geospatial Consortium (OGC), such as GeoSPARQL (Battle and Kolas,
2011) and the Semantic Senor Network ontology (Compton et al., 2012).
Many of the established technologies in geospatial semantics have been
used in geoscience for data and knowledge service. For instance, in the
W3C Working Group Note “Spatial Data on the Web Best Practices” (i.e.,
Tandy et al., 2017), examples from several geoscience disciplines were
introduced.

The geoscience communities have also taken initiatives to build
similar services. For instance, NASA is leading the maintenance and
service of the SWEET ontology (Raskin and Pan, 2005) and the GCMD
keywords (Stevens, 2019). The former is a foundational ontology that
covers more than 200 subject areas and over 6,000 concepts in Earth and
environmental sciences. The latter is a hierarchical set of controlled
vocabularies covering 14 categories of keywords in Earth science, and it
has been used in NASA’s Earth Observing System Data and Information
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System (EOSDIS). USGS has been developing and maintaining thesauri
in the past two decades with semantic technologies. The current USGS
thesaurus service (USGS, 2021b) hosts a long list of controlled vocabu-
laries that provide category terms for data and information products of
USGS. IUGS-CGI has also built a website to host the services of the
geoscience schemas and vocabularies built by its international working
groups (IUGS-CGI, 2021). Researchers have also discussed methods for
building service structures of geoscience KGs and best practices (Cox and
Richard, 2015; Zhao et al., 2019; Cox et al., 2020; Ma et al., 2020). Very
recently, the Semantic Technologies Committee of the Federation of
Earth Science Information Partners (ESIP) has established a community
ontology repository (COR) (ESIP, 2021) to host KGs from the geoscience
communities, coordinate collaboration, and promote best practices.

A recent topic of high interest among the geoinformatics community
is Knowledge as a Service (KaaS). Besides the service capabilities
mentioned in the above paragraph, another key advantage of KaaS is to
provide context information for data and data science processes. A key
work in the Semantic Web community, the Provenance Ontology
(PROV-O) (Lebo et al., 2013), has been widely applied in the past years
to enable the documentation of context information. Provenance liter-
ally means the origin of something. In data science it means to chain up
scientific results and findings with the various data, methods, platforms,
instruments, people, organizations involved in research (Groth et al.,
2012). For example, in the Global Change Information System (GCIS) of
the U.S. Global Change Research Program, a PROV-O-based GCIS
ontology was built to capture the provenance of global change research.
The collected information was published on the GCIS portal (Tilmes
etal., 2013; Ma et al., 2014b). In the work on Essential Climate Variables
in Europe, approaches similar to GCIS have also been taken to enable
traceability of scientific results (Zeng et al., 2019). The granularity of
provenance can go even deeper to steps in algorithms and data analytics
workflows. For instance, The METACLIP R package developed by Bedia
et al. (2019) was able to capture the detailed steps in an R workflow (e.
g., raw data input, derived data, packages import, functions, and vari-
ables, etc.) that leads to a resulting image. In the work of Stasch et al.
(2014), KGs were used to suggest appropriate steps in spatial statistics
for certain structures and patterns in the input data. An increasingly
discussed topic in computer science of nowadays is explainable Al
(Hagras, 2018; Lundberg et al., 2020). Provenance, semantic technolo-
gies, and KGs will make solid contributions to that field of work (cf.
Goebel et al., 2018; Palmonari and Minervini, 2020; Kale et al., 2022).

3.3. Best practices of applying knowledge graphs for data curation in the
data ecosystem

Researchers have argued that the power of machine learning and big
data processing does not mean we can simply dump all the digital re-
cords without any structure and order and rely on machine to find
patterns out of the chaos - If the data is the train, then semantics will be
the rail (Janowicz et al., 2015). An essential goal of the Web is to pro-
mote interconnection, interaction, and intercreation among different
people, resources, and facilities (Berners-Lee and Fischetti, 2000). Now,
the open data and open science activities have created a data ecosystem
on the Internet and Web (Berman, 2008; Wing, 2019). This is a
socio-technical system of many interacting factors. The technical part
covers many topics relevant to data collection, curation, distribution,
analysis, and communication. The social part covers topics of data pri-
vacy, license, ethics in data access and reuse, citation guidelines, feed-
back from data consumers, trustworthiness, informed decision making,
and more. Appropriate handling of those issues will help establish a
virtuous cycle in the data ecosystem to facilitate data-driven science.

The W3C community have summarized a list of best practices about
the publication and application of data on the Web and their benefits to
the data ecosystem (Loscio et al., 2017). Table 2 puts the list together
with the FAIR data principles and shows the relevance of each best
practice to KGs. As reflected in the table, those items have strong
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Table 2
Best practices of publishing and using data on the Web, their benefits to the data
ecosystem and FAIR data principles, and their relevance to knowledge graphs.

Category Best Practice Benefits to Benefits Relevance
Data to FAIR to KG
Ecosystem Data

Metadata Provide metadata C,D,P,R F,R S
Provide descriptive C,D,R F,R S
metadata
Provide structural C, P, R F,R S
metadata

License Provide data license R, T R M
information

Provenance Provide data CR,T R S
provenance
information

Quality Provide data quality R, T R S
information

Versioning Provide a version R, T R S
indicator
Provide version R, T R S
history

Identifier Use persistent URIs D,LLL,R F,LR L
as identifiers of
datasets
Use persistent URIs D,LL,R F,LR M
as identifiers within
datasets
Assign URIs to D,R, T F,R M
dataset versions and
series

Format Use machine- P,R LR M
readable
standardized data
formats
Use locale-neutral C R LR M
data representations
Provide data in P,R LR M
multiple formats

Vocabulary Reuse vocabularies, C,LPRT LR S
preferably
standardized ones
Choose the right C LR LR S
formalization level

Access Provide bulk AR AR L
download
Provide subsets for A, L,P,R AR L
large datasets
Use content AR AR M
negotiation to serve
data in multiple
formats
Provide real-time AR AR L
access
Provide data up to AR AR L
date
Provide an R, T R L
explanation for data
that is not available
Make data available A, ILP,R A LR L
through an API
Use Web standards A,D,LL,P, F,A,LR S
as the foundation of R
APIs
Provide complete R T R S
documentation for
your API
Avoid breaking LT LR L
changes to your API

Preservation Preserve identifiers R, T R L
Assess dataset R, T R M
coverage

Feedback Gather feedback GR,T R L
from data consumers
Make feedback R, T R L
available

Enrichment C,PRT R M

(continued on next page)
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Table 2 (continued)

Category Best Practice Benefits to Benefits Relevance
Data to FAIR to KG
Ecosystem Data
Enrich data by
generating new data
Provide A, CRT AR M
complementary
presentations
Republication ~ Provide feedback to LR T LR L
the original
publisher
Follow licensing R, T R M
terms
Cite the original D,R,T F,R L
publication

Benefits to the data ecosystem: A-Access, C-Comprehension, D-Discover-
ability, I-Interoperability, L-Linkability, P-Processability, R-Reuse, and T-Trust.
Benefits to FAIR data: F-Findable, A-Accessible, I-Interoperable, and R-Reus-
able.

Relevance to KG: S-Strong, M-Medium, and L-Light.

relevance to KGs: metadata and annotation, provenance of data source
and origin, standards and vocabularies, and data structure and formats.
For data on the Web, vocabularies, models and ontologies enabled by
semantic technologies will be a big advantage to increase machine
accessibility and readability. We currently mark a light relevance be-
tween KGs and data identifiers. However, there are many interacting
factors in the data ecosystem, such as platforms and instruments, people,
organizations, research programs, models and algorithms, software
packages and functions, workflows and model-runs, with others. If we
want to offer formal definition for the categories and properties of those
factors and then assign unique identifiers for all of them, then KGs will
also take a fundamental role in that work.

4. Knowledge graphs in geoscience data analysis

A good way to envision the role of KG in geoscience data manage-
ment and analysis is to put it in the context of the data-information-
knowledge-wisdom (DIKW) model (Fig. 4). Conventionally, people
think DIKW is a one-direction process, and the steps of knowledge and
wisdom rely more on human experience and decision-making. KGs will
complement the DIKW process by encoding human knowledge in
machine-readable formats, which can be applied to aid data manage-
ment and analysis. Section 4 has given a summary of KGs in geoscience
data management. This section will focus on KGs in geoscience data
analysis. In geoinformatics and geomathematics, researchers have dis-
cussed the studies of embedding qualitative Al methods in quantitative
data analysis models since decades ago (e.g., Bugaets et al., 1991;
Dimitrakopoulos, 1993). Now, the big geoscience data such as literature
and crowd-sourced records, remote sensing images, and accumulated
digital maps pose both challenges and opportunities for the application
of KGs in data analysis.

—— Support to data curation :}—

A 4

Data

Wisdom

A 4

Information » Knowledge

A 4

 Support to data analysis i—

Fig. 4. The role of machine-readable knowledge graphs in the data-
information-knowledge-wisdom model.
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4.1. Knowledge graphs and literature and crowd-sourced data analysis

Textural records are a unique type of big data in geosciences, and
they are widely distributed in published literature and the crowd-
sourcing data platforms. KGs such as community-level dictionaries and
ontologies have been used to aid NLP and text mining in geoscience
literature analysis. Typical use cases include: 1) To summarize and
visualize the key information of a document in a graph; 2) Inter-
comparison of themes and writing patterns of chapters/sections in a
long document; 3) Domain-specific gazetteer or corpus construction;
and 4) KG augmentation and iterative usage in text mining. Wang et al.
(2018b) used community-level standards, including geological dictio-
naries and terminology classification schemes (AQSIQ, 1988) to build a
large corpus, then used it to train word segmentation rules and applied
them together for processing geologic reports. The results included word
frequency diagrams, word clouds, bigrams showing clusters of key
content-words, and chord graphs showing inter-relationships between
content words. The results can uncover the key subjects and structure of
a document and show the potential of KG augmentation based on
multi-document analysis. In Qiu et al. (2020a), spatial and temporal
gazetteers were built to support the process of information extraction for
literature. The spatial gazetteer included place names and spatial re-
lationships well known in geosciences, and the temporal gazetteers
included both geologic time scale and the general temporal expressions
in the Gregorian calendar form. In Qiu et al. (2020b), a geoscience
dictionary matching step was used to guide the bidirectional long
short-term memory (LSTM) neural network in text classification.

In the field of geoscience literature mining, the work of GeoDeepDive
(Zhang et al., 2013; Peters et al., 2017b) is worth a special note. Geo-
DeepDive is a machine learning package and digital library for discov-
ering data and knowledge from published literature. Many publishers in
the field of geosciences, such as Elsevier, Wiley, Taylor & Francis, USGS,
the Society for Sedimentary Geology, the Geological Society of America,
Canadian Science Publishing, and PubMed have signed agreements to
set up full-text access to GeoDeepDive. By March 2021, GeoDeepDive
has preprocessed more than 13.4 million documents, and set up in-
terfaces and guidelines to allow other researchers to use the data. Peters
et al. (2014) have successfully used GeoDeepDive to extract fossil re-
cords and enhance the Paleobiology Database, which in turn has
benefited several recent data-driven studies (e.g., Peters et al., 2017a;
Muscente et al., 2018). The workflow of GeoDeepDive (Peters et al.,
2017b) shows that a good way to rescue dark data from literature is by
ingesting a structured vocabulary with specific scientific foci. Then the
terms in the vocabulary can be indexed against the preprocessed liter-
ature in GeoDeepDive to create a subset of documents for data
extraction.

Another type of textual data is collected through the crowd-sourcing
mode, such as social media platforms, news reports, and citizen science
Web portals. They have been increasingly used in hazard mitigation,
public health surveillance in space and time, and other themed geo-
science studies. A review of social media data analysis (Ravi and Ravi,
2015) shows that lexica are functional in opinion mining and sentiment
analysis. In the context of that paper, a lexicon is a controlled vocabulary
of sentiment words with respective sentiment polarity and strength
value. Lexica can be used together with ontologies to enable reasoning
and inference tasks. A similar technical approach was seen in Wang and
Stewart (2015), but on a different scientific topic: hazard information
extraction from news reports. In their work, ontologies were used
together with natural language gazetteers to improve the quality of
hazard event extraction from online news reports. Then, the spatio-
temporal patterns (i.e., occurrence and evaluation) of those events were
analyzed. In Jayawardhana and Gorsevski (2019), ontologies were used
for similarity computation, with the aim to tackle the heterogeneous
labels in Tweets and maximize the detection of influenza. Another
interesting example of crowd-sourcing data and KG construction and
application is Mindat (2021). It is a leading web portal on minerals and
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their localities, deposits and mines worldwide. By March 2021, Mindat
has more than 55,000 users and about 6,000 of them have contributor
rights. Many Mindat data such as alternative names of mineral species
and literal records of localities depend on users with local expertise of a
certain region to cleanse and reconcile the records. In the meantime, the
Mindat team has applied community standards such as nomenclatures in
mineralogy and petrology, taxonomy in paleobiology, and terminology
in geologic time, and has set up mappings between community stan-
dards and the alternative names. Mindat has underpinned many
data-driven geoscience studies in recent years (Hazen et al., 2019).

4.2. Knowledge graphs and geographic object-based image analysis

The Geographic Object-based Image Analysis (GEOBIA) is a new
paradigm for remote sensing image analysis in addition to the conven-
tional “per-pixel paradigm” (Blaschke et al., 2014). Here the
image-objects are meaningful entities or scene components that are
distinguishable in an image, such as a house, a tree, or a vehicle
(Blaschke, 2010). Ontologies and semantics are key components in the
workflow of GEOBIA as they provide a machine-readable representation
of objects in the real world (Fig. 5). Blaschke et al. (2014) addressed that
there are no one-fit-all ontology solutions even for the same types of
objects in GEOBIA. As reflected in Fig. 5, the GEOBIA workflow is nor-
mally an iterative process. For the domain of the image-objects, ontol-
ogies will be constructed to capture the knowledge of domain experts
and will be used together with a rule set in image analysis. The initially
generated image-objects will be classified and enhanced iteratively by
applying the ontology and the rule set. In this process, the ontologies can
also be extended or updated. Although the focus of Fig. 5 is image
analysis, the iterative workflow in it can be compared to Fig. 3. Another
thought is that the KG engineering workflow in Fig. 3 can be used to
extend the ontology engineering step in GEOBIA.

GEOBIA, the “per-object paradigm”, and the methodology of incor-
porating ontologies and semantics in image analysis have received
significantly increasing attention in the past two decades (Liu et al.,
2007; Arvor et al., 2013, 2019; Blaschke et al., 2014; Gu et al., 2017).
There have been successful applications of this new paradigm of remote
sensing image analysis in many geoscience domains. In Dragut and
Blaschke (2006), a list of nine classes were built to represent landform
elements based on the surface shape and the altitudinal position of ob-
jects. The classes were defined using flexible fuzzy membership func-
tions and were successfully used for automated classification of
landform elements in two case studies. To detect and classify off-shore
oil slicks, Akar et al. (2011) applied object-based classification with
fuzzy membership functions derived from the features of categorized
scenes in the ENVISAT Advanced Synthetic Aperture Radar (ASAR)
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Fig. 5. An overview of the iterative workflow in GEOBIA (adapted from
Blaschke et al., 2014).
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imagery. The parameters of the detection algorithms were tuned for
each category to improve the quality of results. In de Bertrand de
Beuvron et al. (2013), an ontology was built to represent urban objects
and the spatial relationships between them, which came to be a powerful
support for object-based image analysis in urban environment studies.
Kohli et al. (2012, 2013) built ontologies of slums by using indicators
related to the morphology of the built environment, and successfully
used them for slum identification from high-resolution imagery (i.e.,
GeoEye-1). In Belgiu et al. (2014), an ontology was created to represent
three classes of building types, and then used in an GEOBIA process to
identify buildings extracted from airborne laser scanning data. The
Random Forest classifier was applied to select the relevant features for
predicting the classes of interest. An interesting finding of their work is
using the Random Forest classifier to predict the explanatory power of
the input variables (i.e., Variable Importance), which was addressed
again in a review article later (Belgiu and Dragut, 2016). From our point
of view, the Variable Importance can also be used to augment ontology
engineering in the iterative GEOBIA process (cf. Janowicz, 2012).

4.3. Knowledge graphs and digital map analysis

If remote sensing images are the big raster data, then the digital maps
and associated databases are the big vector data. In the domain of
cartography and GIScience, the incorporation of semantics and KGs to
spatial data service and analysis has been an active research topic for
decades (Liischer et al., 2009; Janowicz et al., 2010; Li et al., 2014;
Gould and Mackaness, 2016). Many of them have been mingling with
the standards and building blocks established by OGC, W3C, and other
communities. Yue et al. (2007, 2011) have done extensive work to
establish online spatial data processing service chains by integrating
semantic technologies and spatial data services. Stasch et al. (2014)
incorporated KGs to estimate the correspondence between data sets and
analysis functions, and they developed a prototype of meaningful spatial
statistics. Scheider et al. (2017) examined the role of semantic tech-
nology in data-driven analysis and workflow platforms and proposed
eight challenging questions for future work. Very recently, Geographic
Question Answering (GeoQA) became a new topic of interest in GIS-
cience. Mai et al. (2021) gave a comprehensive review of that domain,
including the role of KG. Scheider et al. (2021) also reviewed the same
subject, but with a standpoint in computation and automation of
workflows. Now, the FAIR data principles (Wilkinson et al., 2016) and
the Five-Star Open Data scheme (Berners-Lee, 2009) are driving spatial
data to be made open in more structured and interoperable forms. OGC
and W3C are also working on more powerful fundamental KGs for
spatial data. For example, the GeoSPARQL (Battle and Kolas, 2011) has
incorporated spatial topology and the Time Ontology (Cox and Little,
2020) has included temporal topology. Those endeavors together have
laid the foundation for more innovative approaches of online spatial
data analysis (Varanka and Usery, 2018).

Geologic mapping is a fundamental work in geosciences and has seen
many studies on developing and implementing KGs. When GIS software
was first introduced to the work of field geologic mapping in the early
2000s, geoscientists already began to use ontologies to maintain
consistent data structure and facilitate interoperability between data-
bases (e.g., Brodaric, 2004; De Donatis and Bruciatelli, 2006). As the
digital geologic maps were increasingly shared online, researchers also
began to implement ontologies to mediate multi-source geologic map
services, such as those produced at different states in US (Lin and
Ludascher, 2003). In the OneGeology map data portal (Jackson, 2007), a
common geologic data schema GeoSciML (Sen and Duffy, 2005) was
used to mediate distributed map services from more than one hundred
countries across the world. In OneGeology-Europe (Laxton, 2017),
multilingual vocabularies were developed for rock age and type, and
were used to support federated data queries sent to map services in
different languages. With the multilingual vocabularies, functions were
developed to match the query keywords with the map services in their
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original languages. Although there are multiple map service providers
across the European countries, the front end of OneGeology-Europe is
built like an integrated data portal with harmonized map services, which
is a great advantage for end users. Using the open geologic map services,
researchers were able to incorporate data visualization techniques and
other open data and knowledge resources to build themed data analysis
functions (e.g., Ma et al., 2012; Ma, 2017; Wang et al., 2018a). Similar to
the active discussion in cartography and GIScience, KGs in geologic map
service and analysis will be a long-lasting research topic (cf. Mantovani
et al., 2020).

4.4. Integrated application of knowledge graphs and machine learning

Comparing with KG construction and KGs for geoscience data cura-
tion, the application of KGs in geoscience data analysis is still in the early
stage, and it is hard to list the best practices. However, we can sum-
marize some integrated applications of the above-mentioned technolo-
gies. A common question from many geoscientists is how KGs and KG-
enabled capabilities could be used to drive new discoveries in geo-
science, either on scientific or engineering topics. In particular, geo-
scientists would like to see platforms and applications that are able to
lower the access requirements of semantic and Al technologies to them,
such as the Google Dataset Search engine (Noy et al., 2019a) and the
Question Answering systems (Hoffner et al., 2017). The highlights of a
few recent examples from both industry and academia are summarized
below.

The interweaving between KGs and machine learning has generated
successful applications in the industry. Marr (2019) listed several latest
works at Google, Oracle, Facebook, Netflix, Siemens, and described the
trends of integrating KGs and machine learning in the field of financial
services. For the field of oil and gas exploration, there has been solid
progress of using KGs to boost big data processing and aid decision
making (Kimbleton and Matson, 2018; Sumbal et al., 2017). Specific
examples can be seen in the capabilities enabled by IBM. In Guichet et al.
(2019), the IBM Watson was used to identify documents relevant to
source rock characterization in petroleum exploration. Two types of
machine learning algorithms were tested. The first was trained to
identify images and charts in literature, and the second was trained to
understand the semantic framework of textual records related to source
rocks. The two algorithms were applied to extract information from
many documents and save the result in a database. Finally, a user
interface was built to translate natural language questions into computer
queries to the database. The work showed promising performance in
finding the most relevant documents. In another work (Bekas and Staar,
2019), aKG was built based on large amounts of geological, physical and
geochemical data. Geoscientists then were able to use the KG to
contextualize questions and retrieve relevant information. The work was
useful in the identification and verification of alternative exploration
scenarios, and it can help geoscientists to improve decision making.

Putting those examples from industry together with the progress
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mentioned in above sections, we can see the application of KG in data
analysis is often an iterative approach of dual benefits (cf. Ristoski and
Paulheim, 2016). KGs can be used to improve data analysis workflows,
and in turn KGs themselves can also be extended and enhanced when
more patterns and information are discovered in data analysis. Recent
work on mineral evolution resonates with this approach. Mineral evo-
lution is the study of mineral diversity and distribution through the
Earth’s long history (Hazen, 2010). Abductive (i.e., exploratory),
deductive (i.e., knowledge-driven), and inductive (i.e., data-driven)
approaches (Fig. 6) have all been used in recent studies of this field
(Hazen, 2014; Hazen et al., 2019). A typical example that demonstrates
the dual benefits to both KG and data analysis is the natural kind clus-
tering of mineral species. This is a subfield of mineral evolution with the
aim to amplify the current mineral taxonomy. The present mineral
classification system is based on idealized major element chemistry and
crystal structure, which lacks consideration on time and cannot reflect
planetary evolution or formational conditions (Hazen, 2019a,b; Cleland
et al.,, 2021). Natural kind clustering relies on the many attributes of
mineral samples to relate each sample to its paragenesis and thereby
develop a scheme for classifying the origin of mineral samples when
their context is unknown. Two recent studies of natural kind clustering
have demonstrated impressive results. The first is classifying forma-
tional environments of pyrite based on geochemical information (Zhang
et al., 2019), and the second is analyzing the presolar silicon carbide
grains (Boujibar et al., 2020).

5. A vision for geoscience knowledge graphs in the near future

With data science thriving in geosciences, we anticipate more KGs
will be built and implemented. Several recent review and survey articles
(Noy et al., 2019b; Hogan et al., 2020; Abu-Salih, 2021; Gutierrez and
Sequeda, 2021) have discussed the challenges that KG practitioners face,
which are synthesized below:

e KG entity disambiguation and identification, and quality measure:
Synonyms, homonyms, entity types are still active research topics,
especially for KG construction from un-structured literature. To
sustain KGs in the cyberinfrastructure, the unique, persistent and
Web-resolvable identifier of each entity needs more coordination
among different communities. A system of metrics is also needed to
measure the quality and usability of KGs.

e Semantic enrichment and reasoning capability: KGs and data are
increasingly bound together. A topic worth attention in KGs is the
granularity of semantics in the definition and annotation of entities
and relationships, as well as how it will address the needs of data
curation. Another topic is the reasoning capability enabled by the
logic assertions in KGs, which will be necessary to further leverage
KG usage in data analysis.

e KG evolution and versioning: Our knowledge is evolving with the
progress of scientific discoveries and new understanding of the
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Fig. 6. Inter-comparison of key characteristics of the abductive, deductive, and inductive approaches in data science.
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world. Also, there will be new encoding languages for KGs as well as
new KG management systems. Method and technologies are needed
to organize KG evolution and versioning, and to provide KG as a
stable service in the cyberinfrastructure.

Interconnection among KGs and scaling up in big data applications:
The works on KG construction and application are scaling up, and
interconnection will be needed between high-level and domain-
specific KGs, as well as between KGs of different domains and sub-
jects. Multilingualism is another topic to be addressed when KGs are
scaled up and used together with big data analysis.

Security, privacy and ethics: Similar to the community recommen-
dations and best practices in open data and open science, KGs will
also need a system of licenses for sharing and reuse. Also needed are
the regulations and guidelines for protecting privacy and sensitive
information, and recommendations for ethical operation of KGs.

Sections 2 to 4 in this paper summarized the progress of KG con-
struction and application in geosciences. By incorporating the best
practices and exemplar studies from them, this section will discuss the
trends of geoscience KG in the next decade and present a few suggestions
for practitioners to address the challenges listed above.

5.1. Knowledge graph creation and curation in geosciences

An appropriate workflow for ontology engineering in geosciences in
a mixture of the bottom-up and top-down approaches through a use
case-driven, iterative process (Fig. 3). The bottom-up approach can
benefit from the powerful NLP and text mining technologies and the
large amounts of accumulated literature legacy and crowd-sourced data.
The patterns discovered through big data analysis may reflect inter-
esting rules that are outside the existing human expertise. The top-down
approach can bring together researchers sharing the same research in-
terests and leverage existing community standards and ontology pat-
terns. Geoscientists’ verification and control can improve the quality
and precision of the outcomes from the bottom-up approaches. The
adaptation of community standards and ontology patterns can reduce
inconsistency and duplicated efforts in the resulting KGs. The use-case
driven, iterative process has been proven efficient for facilitating the
collaboration between geoscientists and data scientists, as well as
increasing the usability of the resulting KGs. The 3C (Correct, Consis-
tent, and Complete) guideline (Asch and Jackson, 2006) and the Ten
Simple Rules (Cox et al., 2020) for KG construction were proposed by
researchers in the field of geoinformatics, and they are applicable to
many geoscience topics.

Geoscience KG evolution and curation will need more attention. New
entities and relationships can appear in a field of study as our under-
standing deepens. Also possible is the update and revision to existing
definitions and descriptions, as well as the inter-mapping between KGs.
Technical approaches are needed to tackle those different situations and
take actions to update the KG at different levels, such as numeric and
literal attributes, instance records, data properties, object properties,
classes, and even the whole KG. The situation can be more complicated
as KGs are increasingly bound with steps in the data life cycle (Ma et al.,
2014a; BDIWG-NITRD, 2018), such as standardizing the structure of
databases and terminology of records, annotating data products,
providing precise results in data search and discovery, and enabling
innovative operations in data analysis. The goal is that the updated KGs
will benefit the data life cycle, but will that require extra work to update
the data and the steps mentioned above? One possible way is to use
persistent and resolvable Web identifiers for different types of records in
a KG and archive detailed versioning history of any updates. When the
content of that KG is used, the identifiers and version codes can be cited.

Community of practice remains an effective way to facilitate the
creation, evolution, and curation of geoscience KGs. W3C and OGC have
had successful collaborations on large KGs relevant to geosciences, such
as GeoSPARQL (Battle and Kolas, 2011) and the Semantic Sensor
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Network ontology (Compton et al., 2012). The Federation of Earth Sci-
ence Information Partners (ESIP) has created a Community Ontology
Repository (COR) (ESIP, 2021) to host many KGs from the geoscience
community, such as the SWEET ontology (Raskin and Pan, 2005), the
geologic time ontology and vocabularies (Cox and Richard, 2015), the
GCMD keywords (Stevens, 2019), and many others. The ESIP Semantic
Technologies Committee is also coordinating the revision of a few
widely used KGs, such as the SWEET ontology (McGibbney, 2018). The
IUGS-CGI is continuously leading the creation of geoscience schemas
and vocabularies the coordination of their applications across the world
(IUGS-CGI, 2021). The ESIP and IUGS-CGI efforts represent the essential
nature of KGs: from the community, by the community, and for the
community. Geoscientists in different disciplines have also begun to
work with computer scientists to standardize the terminology, data
structures, and data formats in their work. A representative example is
the PaCTS 1.0 data standard in paleoclimatology, in which both the
bottom-up and top-down approaches for KG engineering were applied
(Khider et al., 2019). In the United States, the academia, industry, and
government are jointly promoting a national Open Knowledge Network,
with the aim to establish an open infrastructure that links
cross-disciplinary KGs and underpins the cyberinfrastructure ecosystem
(Guha and Moore, 2016; BDIWG-NITRD, 2018; Baru, 2018; Sheth et al.,
2019b). In that endeavor, community of practice is recommended for
increasing the interoperability and reusability of KGs.

5.2. Intelligent geosciences underpinned by knowledge graphs

The thriving Al and data science applications are moving geosciences
into the “intelligent” stage (Merriam, 2004; Ma, 2018; Gil et al., 2019).
As discussed by both computer scientists and geoscientists (Domingos,
2012; USGS, 2021a), data alone are not enough to drive the scientific
discovery. Each data mining, predictive analytics, or machine learning
process needs to embody some knowledge or assumptions besides the
data that are given. The interaction of data and knowledge in the data
science process can be explained with the abductive, deductive, and
inductive approaches (Tukey, 1977; Ho, 1994; Hazen, 2014). For
example, as illustrated in Fig. 6, if there is enough knowledge about the
requested attributes of each class, then a deductive approach can be the
best option to conduct logic inferences. If not, then the data-driven
inductive approach can be applied. The abductive approach is another
useful approach in the open data environment when a study is based on
other people’s data. It means to explore the characteristics of the data
and generate assumptions or hypotheses for the scientific discovery. Ho
(1994) summarized that abduction creates, deduction explicates, and
induction verifies. Brodaric (2012) also discussed abduction, deduction,
and induction as a virtuous cycle for KG creation and evolution in
geosciences.

Geoscience KGs need to enrich their embedded semantics to improve
the capacity of reasoning, inference, and verification in a data science
process. For example, the GeoSPARQL (Battle and Kolas, 2011) defines a
vocabulary for representing spatial data on the Web. More importantly,
it embeds the spatial topology in its design and can describe various
relationships between spatial objects (e.g., points, lines, and polygons).
Based on those, it is able to support both quantitative and qualitative
query and spatial reasoning. Similarly, the Time Ontology (Cox and
Little, 2020) embeds temporal topology in its design and can describe
relationships between temporal objects (e.g., instants and intervals).
They both have been used in many geoscience applications (Ma et al.,
2020). For many other subjects in geosciences, such as rock types,
mineral species, and fossil species, the detailed semantics are already
included in conventional databases and can be transferred into KGs.
Chen et al. (2020) summarized the existing methods of knowledge
reasoning into three categories: rule-based reasoning, distributed
representation-based reasoning and neural network-based reasoning.
They also listed several applications that can be supported by knowledge
reasoning, such as KG completion, question answering, and
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recommender systems. More specifically, Gil et al. (2019) summarized
several geoscience research themes that can benefit from
knowledge-rich intelligent systems, including model-driven sensing,
thrusted information threads, theory-guided learning, and integrative
workspaces.

KGs will take active roles in machine learning processes to tackle the
challenge of big data. Geosciences are facing a boost of machine learning
and deep learning applications (Lary et al., 2016; Bergen et al., 2019;
Karpatne et al., 2018; Reichstein et al., 2019), and there is a big potential
for deploying KGs in those applications. Sheth et al. (2019a) discussed
three types of knowledge-infused learning, shallow, semi-deep, and
deep. The shallow infusion means using KGs to improve the semantics
and conceptual processing of data. The semi-deep infusion means
congruent integration of KGs in machine learning techniques, and deep
infusion means combining the bottom-up statistical intelligence with the
top-down symbolic intelligence for hybrid intelligent systems. Hogan
et al. (2020) presented similar perspectives, and pointed out the inte-
grated machine learning processes can also be a way to update, extend,
and improve the KGs. A unique topic in those hybrid, integrated pro-
cesses is using machine learning to analyze knowledge graphs and/or
data in graph forms, which has also been incorporated into the workflow
of big data processing (e.g., Li and Chen, 2013; Nickel et al., 2015;
Martinez-Rodriguez et al., 2020). The perspectives presented by Sheth
et al. (2019a) and Hogan et al. (2020) as well as the recent discussion of
Al approaches in GIScience (Li, 2020; Gahegan, 2020) all resonate with
the above-mentioned integration of abductive, deductive, and inductive
approaches. A few innovative examples of those knowledge-infused
intelligent systems have already appeared in geosciences, such as min-
eral grains recognition (Maitre et al., 2019), rock classification (Ran
et al., 2019), petrographic microfacies classification (de Lima et al.,
2020), and map service theme classification (Wei et al., 2021). Such
systems and applications will significantly increase in the coming years.

KGs are also able to provide support to explainable AI (XAI), which
recently has received a lot of attention. For opaque machine learning
processes such as neural networks and genetic algorithms, KGs can help
document the provenance of the workflow and improve the interpret-
ability of results. A key feature of KGs is their capability of defining
groups or clusters and their associated attributes, which can be lever-
aged to add a semantic layer to many machine learning algorithms
(Lecue, 2020). For example, by explicating typical attributes of instances
in a subgroup, KGs can explain the grouping process in a machine
learning process and demonstrate the meaning of results (Ristoski and
Paulheim, 2016). Geoscientists have used the W3C PROV-O ontology
(Lebo et al., 2013) for documenting provenance of data and scientific
workflows (e.g., Tilmes et al., 2013; Bedia et al., 2019). Those studies
share common topics with XAIL With the wide use of workflow platforms
such as Jupyter and RMarkdown in geosciences, there will be more
studies of using KGs to improve XAL

6. Concluding remarks

Data-intensive geosciences often rely on the collaboration of re-
searchers from different disciplinary backgrounds, such as computer
science, statistics, information science, and the various sub-disciplines in
geosciences. KGs have been proved to be an efficient way to bridge the
gap between those disciplines and facilitate communication and
collaboration within a team. First, KGs can present a quick overview of
the major entities, relationships, and structures of the scientific subjects
in research. Second, there can be smart functions that chain up data,
software, research topics, and researchers in the cyberinfrastructure
underpinned by KGs, such as those in recommender systems. Third, KGs
can be used into data analysis workflows to improve the quality and
interoperability of results. Together with the open data environment,
advanced data science methods, and innovative data visualization
techniques, KGs will make solid contribution to data-intensive, multi-
disciplinary geoscience studies.
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This review paper shows that there is a lot of space and flexibility for
the future work of KG creation and application in geosciences. In the
field of Semantic Web, there is a famous slogan “A little semantics goes a
long way”, which is also true for KGs in geosciences. Any KG-based
updates to the data life cycle, such as metadata annotation, data dis-
covery, data cleansing and integration, and KG-infused machine
learning will benefit the data-intensive geosciences. Usually, researchers
need to balance three factors relevant to a KG: expressivity, imple-
mentability, and maintainability (Ma and Fox, 2013). Expressivity is the
granularity of semantics in a KG; implementability is the usability and
usefulness of the KG in the real-world applications; and maintainability
is the evolution and upgrading of the KG in a long-term perspective.

A higher visibility of KGs in geosciences rely on the appearance of
more innovative research results as well as the education of this topic
among geoscience practitioners, especially students. The Living Text-
book developed by geoscience researchers and educators (Augustijn
et al,, 2018; Lemmens et al., 2018) demonstrate several interesting
features by using KGs. It deploys a concept map to visualize the key
knowledge items and their relationships in a course, together with
wiki-style text to show the details. Several interactive functions are
made available for teachers and students. Teachers can create mind
maps to customize the clusters and learning paths of subjects in a course.
Students can explore the concept map of the whole course, follow the
learning paths created by teachers, and make notes in the text. The
Living Textbook not only creates a better learning experience of geo-
sciences but also demonstrates the advantage of KGs to students.

We hope the concept descriptions, exemplar studies, best practices,
and trend analyses presented in this paper will be of benefit to both
geoscientists and computer scientists, especially those who are working
on the creation and implementation of KGs in geosciences.
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