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SUMMARY: 

The toughness of composite materials is size dependent below a critical load transfer length (lT) 

and maximizing the toughness at considerably small length scales is important towards developing 

robust, size-limited applications. Fiber-reinforced viscoelastic polymers are uniquely qualified to 

study the size-limited regime because the lT of these soft composites can be as high as several 

centimeters, in contrast to traditional composites where lT is extremely small, allowing a large 

window for macroscale characterization. In this work, we elucidate the parameters that influence 

the toughness of soft composites when failure is governed by a fiber-pullout induced matrix-

fracture mechanism. Under these conditions, composite toughness (T) follows an empirical relation 

T = 0.5·K·Tm·(w-wcc) + Tm, where K is the fiber bundle geometry factor, Tm is the matrix toughness, 

w is the composite width, and wcc is the center-to-center distance between adjacent fiber bundles. 

Through this work, we demonstrate three important points: 1) fiber-reinforced viscoelastic 

polymers can possess high toughness even at dimensions well below lT, 2) significant toughness 

amplification occurs due to the presence of fibers, even when the fracture process consists solely 

of matrix rupture, and 3) the composite toughness in the fiber-pullout region can be predicted from 

easily attainable component parameters. 

 

Keywords: Fiber-reinforced soft composites, toughness amplification, fiber pullout, fracture 

toughness, size dependence 

 

  



  

3 
 

1. INTRODUCTION 

Cutting-edge applications in the fields of soft robotics and advanced medical devices require 

materials with a combination of small size, high strength, low flexural stiffness, and high crack 

resistance. Molecular-scale composites, such as double-network materials, hybrid viscoelastic 

hydrogels, and nanocomposites have shown promise in achieving some of these requirements.[1-6] 

However, integrating all of these required yet often contradicting properties into one material 

system is still a daunting challenge. 

 Soft fiber-reinforced polymers (FRPs) are promising materials due to their unique mechanical 

and physical properties.[7-14] Traditional soft FRPs are made by laminating or curing rubbery 

polymers with stiff fabrics, and have found use in large-size structural and load-bearing 

applications such as flexible aircraft fuel tanks and pneumatic tires.[14, 15] These materials however 

are often plagued by poor crack resistance due to delamination and interfacial failure. Recently, 

extraordinarily crack-resistant soft FRPs have been developed by combining strong and stiff fibers 

with viscoelastic hydrogels or elastomers as matrices, [17-19] exhibiting fracture energy up to 2500 

kJ m−2.[21-26] These soft composites show extremely high toughness due to the synergetic effect of 

three features of the soft matrix: strong bonding to fibers, low modulus (104~105 orders lower than 

the fibers), and high work to rupture (comparable to that of the fibers). As a result, these soft 

composites have a very large load transfer length (lT), on the centimeter-scale, and high energy 

dissipation density due to concurrent fracture of the fiber and matrix. We have shown that for a 

sufficiently large specimen size, w > lT, the tearing energy (toughness) of the soft composites, Γ, is 

quantitatively related to the volume-weighted average of the work to rupture of the two components, 

W, and the load transfer length, lT, as Γ = W·lT,[20, 27, 28] where lT scales with the square root of the 

fiber/matrix modulus ratio and can be explicitly calculated for a given component combination and 

geometry.[29, 30] At large size-scales, these materials show extraordinary crack resistance, even 
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exceeding metals, with significantly reduced weight and low cost.[31, 32] 

 When the size, w, of these soft composites is decreased below lT, the toughness decreases from 

the plateau value and becomes size-dependent due to a change in fracture mechanism (Figure 

1a).[19, 20] The apparent size dependence in Figure 1a can be divided into three regions (Figure 1b) 

according to the failure process. A transition from fiber and matrix concurrent fracture at the 

saturated toughness (Region III) to a mixed-mode fiber fracture/pullout mechanism (Region II) 

occurs at w ≈ lT. For sufficiently small composites, the failure mechanism consists of only fiber 

pullout with no fiber fracture (Region I). The width at which this transition occurs is referred to as 

w1. Composites with specimen size below lT are not able to fully utilize the fiber fracture energy 

dissipation mechanism, resulting in reduced toughness. However, if we compare the toughness of 

the composites observed in Region I to the neat matrix and fabric, we see that within this region 

they are still capable of exhibiting toughness much greater than either neat component (Figure 1c). 

The energy dissipation mechanism that governs Region I where only fiber-pullout occurs is 

currently unknown, yet these composites fulfill many of the complex mechanical requirements for 

small-scale soft material devices, making them worthy of further study. 

The size-dependent behavior for composites at length-scales smaller than lT has never before 

been the focus of investigation. For traditional rigid composites, the fracture behavior in the sub-lT 

region cannot be studied through macroscopic mechanical tests, because in these materials lT is 

extremely small (less than the mm-scale).[33-35] On the other hand, although traditional soft 

composites made from laminated rubbers can theoretically have very large lT that implies the 

existence of a size-appropriate sub-lT region, interfacial delamination between the matrix and fibers 

results in a separate failure mechanism, preventing this study.[36-39] Therefore, fiber-reinforced  
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Figure 1. Size-dependent fracture behavior and toughness of soft FRPs. a) Toughness of the soft FRPs 
(M1-0.2/CF as an example, see Figure S1 for the nomenclature of soft FRPs) with different widths. The 
composite toughness in this work is calculated using the fabric thickness (see Figure S2 and related 
appendix in Supporting Information for details). When the sample is sufficiently large (w > lT), the toughness 
is size-independent. When the specimen size is small (w < lT), the toughness is size-dependent. b) Illustration 
and typical photo images of fractured composites in the three regions. In Region I (w < w1) failure is due to 
fiber pullout and matrix rupture. Region II (w1 < w < lT) shows a mixed mode of fiber pullout and 
matrix/fiber concurrent failure. Region III (w > lT) shows only matrix/fiber concurrent fracture. The white 
ellipses in b) are zoomed in to clearly indicate the areas where fiber fracture and fiber pullout occur. c) 
Enlarged plot highlighting Region I, where fracture only occurs by fiber pullout. The average toughness of 
the neat matrix and fabric in this Region is 19.0 and 0.4 kJ m-2, respectively. Error bars represent standard 
deviation for n ≥ 3 samples. The background grid size represents 5 mm. 
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viscoelastic polymers are uniquely qualified for investigating this region. Discerning the material  

and structural parameters governing the fracture mechanism in the sub-lT region is of great 

significance and will facilitate the rational design and development of materials for use in size-

limited applications that require high strength and crack resistance.[40, 41] 

In this work, we establish a quantitative empirical relationship to show that the tearing 

toughness of soft composites, T, scales with the sample width, w, matrix toughness, Tm, and fiber 

bundle geometry factor, K. This relationship is based upon a simple fiber reinforced soft composites 

model with a perfect interface and can accurately calculate T for the limiting case that the soft 

composites fail through a single-mode fiber-pullout mechanism due solely to matrix fracture, with 

no fiber fracture or interfacial debonding. The relationship is proven experimentally for a variety 

of elastomers, fabrics, sample widths, and testing rates, with a total of 76 composite testing 

combinations. The results demonstrate that the presence of a stiff, reinforcing phase can result in 

significant toughness amplification when compared to a neat soft elastomer, even when both 

materials fracture solely through matrix rupture. We believe that the results of this study should 

give insight into the failure mechanism of other traditional FRPs in which lT is too small to study 

the size-dependent fracture behavior experimentally. This work also provides a clear guide towards 

the future design of miniaturized soft materials devices by exploiting the benefits of FRPs at size-

scales that have previously been ignored.  

2. RESULTS 

2.1. Microstructural Analysis of the Region I Soft FRPs 

Viscoelastic matrices are synthesized through a copolymerization of ethylene glycol phenyl ether 

acrylate (PEA, M1) or 2-(2-phenoxyethoxy) ether acrylate (PDEA, M2) as a soft segment, and 

isobornyl acrylate (IBA) as a hard segment (Figure S1). Tensile and tearing mechanical properties 

of the matrices are shown in Figure S3, and Figure S4, respectively, and the results are summarized 
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in Table S1. Two types of carbon fiber fabrics with the same weave pattern but different fiber 

bundle geometries are used (Figure S5), which we refer to as thick carbon fiber (CF) and thin 

carbon fiber (t-CF) fabric, respectively. The structural parameters of the fabrics are summarized in 

Table S2. Soft FRPs made from different matrices and fabrics are coded as x-f/y, where x represents 

the soft segment chemistry, f represents the molar fraction of the hard segment, IBA, to the total 

monomer concentration, and y represents the type of fabric. 

 For each matrix and fabric combination, the occurrence of at least one fiber bundle fracture was 

the criterion for determining the transition point from Region I to Region II. This critical width is 

denoted as w1, and the corresponding value for each sample is listed in Table S3. By utilizing the 

mechanical and structural parameters of the matrix and fiber bundle (Figure S3, Figure S6, and 

Table S2), we can also estimate w1 through a force balance between the force applied to a single 

fiber bundle and the shear resistance by the surrounding matrix during fiber pullout (See Figure 

S7a and related appendix in Supporting Information for details). The experimental w1 is plotted as 

a function of the theoretical w1 in Figure S7b. The result shows that the experimental w1 follows 

an empirical relationship: 

𝑤!,#$% = 0.76𝑤!,&'#( = 0.76 )!*!
)"+

 (1) 

where sf and sm are the fracture stress of a fiber bundle and the matrix, respectively, and Af and c 

are the cross-sectional area and circumference of a fiber bundle, respectively. Note that a coefficient 

of 0.76 exists in the equation, indicating that the theoretical w1 is overestimated. Because Af and c 

are intrinsic geometry factors of a fiber bundle, we anticipate that the utilization of sf and sm 

obtained by testing individual components could be the source of the overestimation of theoretical 

w1. The equation only considers a unidirectional fiber-reinforced soft composite, whereas the 

practical soft composites have a woven structure. sf is the tensile fracture stress of a neat fiber 
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bundle, however during the tearing of a soft composite, stress applied to the transverse fiber bundles 

exists in two directions: tensile stress is directly applied to the fiber bundle, along with 

perpendicular compressive stresses from the longitudinal fiber bundles. The additional 

compressive stress could lead to premature fracture. sm is the uniaxial tensile fracture stress of the 

neat matrix. However, during the tearing of a soft composite, the matrix experiences shear, rather 

than tensile deformation, since it is confined by the woven fiber structure. The practical fracture 

stress of the matrix could therefore also differ slightly. Since every parameter of the matrix and 

fiber bundle is measurable, we can estimate w1 for any material combination using Equation 1, 

ensuring that all samples fall within Region I. 

 A composite sheet is formed when the monomers are synthesized in the presence of the carbon 

fiber fabric, as shown in the SEM images taken from a cross-section of an as-prepared M1-0.2/CF 

sample (Figure 2). Since fiber fracture does not occur at limited specimen size, it is important to 

explicitly demonstrate that the fibers and matrix are strongly adhered, which ensures effective load 

transfer. The cross-section was made by cutting the sample with scissors. As a control sample, we 

first examined the morphology of the two interlaced fiber bundles in a neat CF fabric without 

matrix. Figure S8 shows that there is an obvious gap between the longitudinal (parallel to crack) 

and transverse (perpendicular to crack) fiber bundles, and that numerous voids exist within the 

longitudinal fiber bundle, providing space for the precursor monomer solution to enter. For the soft 

composite, the SEM observation shows two interwoven fiber bundles that are surrounded by matrix 

(Figure 2a). A corresponding illustration is given in Figure 2b for clarity. Inside the longitudinal 

fiber bundle, individual fibers are encompassed by matrix (Figure 2c). The matrix also exists 

within the crossover region of the two perpendicularly aligned and interwoven fiber bundles 

(Figure 2d). The SEM observation reveals that the fibers are thoroughly imbedded in the soft 
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matrix to form strong bonding, owing to the good wettability of the precursor monomers onto the 

fabric. 

After confirming the structure and interface, we aimed to clarify the fracture mechanism for 

soft FRPs that exhibit only fiber pullout (Region I). The typical fiber-pullout failure behavior of a 

soft FRP before, during, and after a tearing test is shown in Figure 3. For the tearing test, the sample 

Figure 2. The microstructure of the soft FRPs by SEM observation. a) A cross-sectional view of the 
fiber bundles of the soft FRP made from P(PEA-co-IBA) (f=0.2) and thick carbon fiber fabric. (b) 
Corresponding illustration of the SEM image in (a). (c) SEM image of a longitudinal fiber bundle at the 
position “c” as shown in (b). Magnified image shows that individual fibers inside the fiber bundle are fully 
surrounded by the matrix. (d) SEM image of two interlaced fiber bundles at the position “d” shown in (b). 
Magnified image shows that the interlaced fiber bundles are connected by the matrix with some voids. 
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was cut to the required geometry with a laser cutter. One leg was fixed to the bottom of the tensile 

tester, and the other leg was fixed to the crosshead with mechanical grips. Displacement was 

applied at 50 mm min-1 and the force was measured until the sample completely failed. The 

resulting force-displacement curve is shown in Figure 3a, and SEM images were taken at the crack 

tip region at different tearing times (Figure 3b-d). Before the test, the longitudinal fiber bundles 

appeared intimately connected with the transverse fiber bundle through matrix (Figure 3b). When 

the transverse fiber bundle undergoes pullout, the matrix existing within the crossover region 

becomes greatly deformed, resulting in prominent fibrillation (Figure 3c). Owing to the strong 

interface between components (resulting from two physical effects: van der Waals adhesion and 

topological interlocking),[20] cracks tend to be initiated in the matrix between the fiber bundles, 

rather than at the fiber-matrix interface, and propagate as fiber pullout proceeds. SEM images of a 

longitudinal and a transverse fiber bundle after pullout are shown in Figure 3d (i) and (ii), 

respectively. The fiber bundles remain intact while the matrix between the bundles is fractured with 

residual matrix still bonded to the fiber bundle surface. The above results confirm that the 

fiber/matrix interface is strong and the failure behavior of the soft FRPs with w < w1 is fiber-pullout-

induced matrix rupture. 

2.2. A simple model for understanding toughness in the fiber-pullout limit 

Since the fracture behavior of soft FRPs in Region I is governed by fiber-pullout-induced matrix 

rupture and the fiber is much stiffer than the matrix, we can estimate the fracture energy (toughness) 

of the composites by only considering the energy dissipation of the matrix as:[19] 

𝑇 = ,-
&
 (w < w1)              (2) 
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where W (J) is the energy required to pull out one transverse fiber bundle, r (m-1) is the number of 

transverse fiber bundles per unit length in the soft FRPs, and t (m) is the relevant thickness. Samples 

fabricated with different matrix thicknesses showed no change in work to fracture, thus 

demonstrating that the fabric thickness is the relevant thickness (Figure S2). Because the energy 

dissipation stems from the fracture of matrix that has a fracture energy of 𝑇. (J m-2), W can be 

related to 𝑇. roughly as 𝐴 · 𝑇., where A (m2) is the fracture area of the matrix surrounding one 

fiber bundle. Assuming fracture occurs solely on the exterior of fiber bundles, the fracture area (A) 

of the matrix is equal to the circumference of the fiber bundle c, multiplied by the pullout length, 

which gives +/
0
 (m2). Note that the pullout length is /

0
 since only a half-length of the transverse 

bundles is pulled out (Figure 4). Therefore, the energy required to pull out one fiber bundle is 𝑇. ·

Figure 3. The fiber-pullout fracture behavior of the soft FRPs around the crack tip. a) Force-
displacement curve of the tearing test of the soft FRP (w = 10 mm). The b, c, d denoted on the curve 
correspond to the figures (b), (c), and (d), respectively. The first peak of this curve indicates the onset of 
fiber pullout. b) SEM image of two interlaced fiber bundles in the original soft FRP before loading at point 
b. c) SEM image and corresponding magnified region of two interlaced fiber bundles during deformation at 
point c. Significant fibrillation of the matrix is observed in the interlaced region, which accounts for large 
energy dissipation. d) SEM images of a longitudinal (i) and a transverse (ii) fiber bundle after pullout at 
point d. The fractured matrix remains adhered to the fiber bundles, indicating strong bonding at the 
fiber/matrix interface.  
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𝐴 = 𝑇. · +/
0
 (J). Consequently, the energy of fiber pullout (i.e., the energy to fracture the soft FRP) 

by matrix rupture per unit area of the soft FRP in Region I should be +/
0
𝑇.

-
&
 (J m-2). A simplified 

form is given as:[35] 

𝑇 ≅ 𝐾𝑇.𝑤 (w < w1)  (3) 

where the parameter 𝐾 = +-
0&
 is termed the fiber bundle geometry factor. For a composite with a 

center-to-center distance between adjacent fiber bundles, wcc and fabric thickness, t, 𝜌 = !
/##
 (See 

Figure S9 and related appendix for the calculation of r), so 𝐾 = +
0&/##

 (Figure 4). The fibers are 

much stiffer than the soft matrix, and do not deform significantly during pullout. Therefore, the 

mechanical response of the fibers is not explicitly included in Equation 3. We will use this equation 

as a guide to systematically explore how each variable influences T. 

2.3. Experimental Investigation 

To investigate the suitability of Equation 3, we performed two series of experiments: 1) soft FRPs 

were made from the same matrix (fixed Tm) but different fabrics to investigate the relationship 

Figure 4. Photograph and illustration of two halves (left and right) of a soft FRP after tearing with w 
= 10 mm. Fiber-pullout occurs, and the transverse fiber bundles remain in one half of the sample, shown by 
the left (L) sample in the photograph and illustration. Crack initiation and propagation occurs through the 
matrix. The fiber pullout length is equal to w/2. The background grid size is 5 mm. 
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between T and K at different w; and 2) soft FRPs were made from the same fabric (fixed K) but 

different matrices to investigate the relationship between T and Tm at different w. From these results, 

we can understand the w-dependence of T for different K and Tm. 

 First, the effect of fiber bundle geometry factor (K) on the toughness of soft FRPs is investigated. 

Composite samples are made with M1-0.25 as the matrix and have a width within Region I (w = 7 

mm) to ensure the soft FRPs fail via single-mode fiber pullout (Table S3). Both CF and t-CF fabrics 

are utilized, which have K of 3070 m-1 (CF) and 5310 m-1 (t-CF), respectively. Note that K 

represents the ratio of the perimeter length of fiber bundles to cross-sectional area of a composite, 

and thus higher K results in more surface area per volume of fabric. The tearing tests were 

performed at a velocity of 50 mm min-1. The force versus displacement curves during tearing for 

the M1-0.25/CF and M1-0.25/t-CF samples with w = 7 mm can be seen in Figure 5a as the black 

and blue curves, respectively. Composite toughness, T, can be obtained by integrating the force 

versus displacement curves and then dividing by the cross-sectional area of fractured composite 

(Experimental Section). The soft composite prepared from t-CF exhibits higher tearing force and 

fracture toughness compared to the CF reinforced composite, although both composites contain the 

same matrix. Even without fiber fracture, the presence of the fabric influences the toughening 

mechanism. The role of matrix toughness (Tm) on composite toughness (T) for various w in Region 

I was subsequently investigated. For this purpose, the fabric is fixed as CF, while the matrix 

properties are varied. A third sample with higher Tm than M1-0.25 was introduced (M2-0.5/CF) as 

the red curve in Figure 5a and can be compared to the M1-0.25/CF sample from above. Similar to 

the fabric effect, we observe that at the same width, modifying the toughness of the matrix 

influences the force of the tearing curves, which consequently results in different T. Similar results 

are obtained by adjusting the testing velocity for a specific composite composition. Since the matrix 

used in this work is highly viscoelastic, the Tm can be tuned by adjusting the testing velocity (Figure 
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S4, Table S1). As another example shown in Figure S10, the toughness of the M1-0.1/CF 

composite with a width of 10 mm increases with testing velocity, proving that the matrix toughness 

has a significant effect on the composite toughness. These results are also in agreement with our 

previous work for soft composites made from hydrogels, which demonstrates that the toughness of 

hydrogel composites with fixed width increases with increasing Tm.[18] 

 

Figure 5. Factors influencing the toughness, T, of soft FRPs. a) Force-displacement curves of soft FRPs 
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(w = 7 mm) made from varied CF fabrics or matrices. The testing velocity of the tearing test was 50 mm 
min-1. b) Tearing energy (toughness), T, of the soft FRPs made from varied CF fabrics or varied matrices, 
versus sample width, w. The horizontal red and black lines represent the toughness of neat matrix M2-0.5 
and M1-0.25, respectively. c) The slope of the relationship T ~ w (from b), versus KTm (measured from 
components) for different combinations and testing velocities of soft composites. Error bars represent 
standard deviation for n ≥ 3 samples. The results of curve-fitting to tested data in (b) and (c) are summarized 
in Table S4. 

 For each sample configuration introduced above, numerous sample widths were tested within 

Region I. Figure 5b shows a linear plot of T as a function of w for these three sets of soft composites. 

For each data point, n≥3 specimens were tested to obtain the average value and standard deviation. 

Linear regressions of these data (dashed lines) show a good fit, with R2 values of 0.964 (blue), 

0.985 (red), and 0.987 (black) (Table S4). The curve-fitting results reveal a linear relationship 

between T and w for each sample combination, acting to confirm the relationship expressed in 

Equation 3. Two interesting results are observed. First, the intercepts for all fits are negative, rather 

than passing through the origin. This finding indicates that there should be a lower bound of T for 

soft FRPs when the sample width is sufficiently small. We anticipate that when the sample width 

of soft FRPs is too small, the role of the fabric to transfer the load no longer influences T 

significantly. In this case, the soft FRP fracture process is similar to merely rupturing the neat 

matrix. Therefore, Tm is expected to be the lower bound of T for the soft FRPs with considerably 

small width. The values of Tm for the two different matrices are plotted as horizontal lines in Figure 

5b. The M1-0.25/CF composite with w = 3 mm reaches nearly T = Tm, and extrapolation of the 

trend lines for the other samples show an intersection with Tm at similar w, supporting our 

hypothesis. We consider that for very small samples, at least two partial longitudinal bundles should 

exist for fiber pullout to occur. Therefore, we expect Region I to have a minimum bound at a width 

equal to the center-to-center distance between adjacent fiber bundles, wcc. Based on this result, we 

modify Equation 3 as 

𝑇+ ≅ 𝐾𝑇.(𝑤 − 𝑤++) + 𝑇.     (wcc < w < w1) (4) 
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CF and t-CF have wcc of 2.07 and 1.32 mm, respectively, which agrees well with the intercept 

points shown in Figure 5b. Based on the above considerations, wcc will be considered the lower 

bound of Region I, and we will focus our remaining experiments on w that falls within the fiber-

pullout region (wcc < w < w1).  

 The second interesting result of Figure 5b is that the slope for the linear relationship, T ~ w, of 

each combination differs, indicating that both fabric geometry and matrix toughness play important 

roles in controlling the composite toughness. Based on Equation 4, the slope for the linear 

relationship, T ~ w, should be KTm. To verify this, we obtained the values of the slopes from the 

linear regressions of the experimental data (for each data point, n≥3 specimens were tested to 

obtain the average value and standard deviation) for a total of ten different materials combinations 

made from six types of matrices and two types of fabrics (Figure S11) and plotted them as a 

function of KTm as measured from the individual components in Figure 5c. The linear regression 

exhibits a good fit with an R2 value of 0.981 (Table S4), indicating that the slope is linearly 

Figure 6. An empirical law to predict the composite toughness from component parameters. Over 
nearly two orders of magnitude, a good agreement between the experimental data and the semi-empirical 
equation for the composite toughness is observed. The solid line is the prediction according to Equation 5. 
Error bars represent standard deviation for n ≥ 3 specimen. 
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proportional to KTm with a proportionality coefficient of 0.5. Thus, we get a semi-empirical 

relationship: 

𝑇 = 0.5𝐾𝑇.(𝑤 − 𝑤++) + 𝑇.       (wcc < w < w1) (5) 

 Finally, we tested whether Equation 5 can be applied universally to describe the fracture 

toughness of all soft FRPs in the width-dependent fiber-pullout region (wcc < w < w1). In total, 76 

composite combinations, with a total sample size of n = 248 of various K, Tm, w, and testing velocity  

were measured. For each data point, n≥3 specimens were tested to obtain the average value and 

standard deviation. Figure 6 plots the experimental fracture energy (T) of all soft FRPs as a 

function of the quantity 0.5KTm(w-wcc) + Tm. Over two orders of magnitude, the experimental 

values of T follow the linear scaling relation of Equation 5, further validating the semi-empirical 

relationship. The above results indicate that matrix toughness, fiber bundle geometry factor, and 

sample width are the parameters that act to scale toughness of soft FRPs when failure occurs 

without fiber fracture. 

The good fit observed in Figure 6 demonstrates that without any fitting parameter, we can 

calculate the fracture toughness of soft FRPs for Region I. There are a few potential reasons why a 

coefficient of 0.5 appears in Equation 5. First of all, 2D woven fabrics are very complex, and our 

analysis is based upon a simplified 1D fiber pull-out model, like in other previous attempts.[34, 35] 

During testing, significant twisting and distortion of the sample occurs during the failure process 

(Movie S1). Twisting during failure could result in a slower pullout velocity of the fiber bundles 

from the matrix. In this case, Tm would decrease due to decreased deformation rate, leading to 

overestimation of T. Furthermore, Tm was calculated by a Mode III tearing test of the neat 

elastomers, while the fracture process between fiber bundles likely initiates by a Mode II shear 

deformation. Even so, utilizing a constant coefficient of 0.5 results in a simplified model that 

quantitatively describes the fracture energy for many different material combinations and testing 
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conditions. 

Note that in Equation 5 we assume that energy is dissipated solely by fracture of matrix 

surrounding the fiber bundles, and fracture of the matrix along the crack path is ignored. For 

samples of a width w far above wcc, fracture of the elastomer matrix in the crack region accounts 

for less than 10% of the fiber-pullout work, but as the specimen size decreases and w approaches 

wcc, this term increases up to ~45% (Figure S12). To summarize, from Equation 5 one can predict 

the toughness of soft FRPs with high precision in the absence of fiber fracture using geometry 

parameters of fabric 𝐾 = +
0&/##

 and the toughness Tm of the matrix determined experimentally. 

3. DISCUSSION 

A simple rearrangement of Equation 5 allows us to directly study the impact that the fabric has 

on the composite. We define η as the toughness amplification factor, which describes the relative 

increase in toughness of the composite compared to the neat matrix: 

𝜂 = 1
1"
− 1 = 0.5𝐾(𝑤 − 𝑤++) (6) 

Since both K and wcc are directly defined by the characteristics of the fabric, we can isolate the 

fabric contribution. A plot of η versus (w - wcc) is shown in Figure 7. We can see that for the 

materials fabricated in this work, we can achieve η up to a factor of ~41, demonstrating a clear 

synergistic increase in toughness. The toughness amplification factor scales with w, while the slope 

of the relation (linear regression with R2 values of 0.962 (black), 0.965 (red), as shown in Table 

S4) changes for different fabrics due to variations in K. This result means that for samples of the 

same width, a larger geometric factor, K, results in stronger toughness amplification. 𝐾 = +
0&/##

 is 

determined by the ratio of the perimeter length (c) of a bundle and the cross-sectional area of the 

crack that contains one fiber bundle, t·wcc. These two terms are related, and thus a change in fiber 

bundle shape is required to substantially change K. In comparing the two fabrics tested here, the 
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cross-sectional area of the t-CF bundles is only 30% of the CF bundles, yet they possess 55% of 

the perimeter length. Such a synergy generates a higher K for the t-CF. These results show that the 

geometric parameters making up the fabric plays an important role in determining the degree of 

toughness enhancement, even though the fibers do not contribute to the energy dissipation through 

fracture. 

 Within the fiber-pullout limits discussed here, fracture occurs only within the matrix. Despite 

not directly rupturing to dissipate energy, the presence of fibers dramatically increases the 

toughness of these soft FRPs. Generally, such a soft matrix itself can only dissipate energy in a 

highly limited zone because its intrinsic load transfer length is on the scale of hundreds of 

microns.[20, 33, 42-44] Through the incorporation of a stiff woven fabric, we have modified the neat 

elastomer to include a reinforcing foundation that at the sample scale investigated here cannot 

fracture, but can move, significantly increasing the load transfer length. During tearing the 

viscoelastic matrix experiences large deformation and the fibrillation at the interlaced region might 

Figure 7. The toughness amplification factor (η) of all soft FRPs as a function of composite width, w. 
The result shows that the toughness amplification factor scales with w, while the slope of the relation is 
dominated by the fiber bundle geometry factor (K) of different fabrics. The results of curve-fitting of the 
tested data are shown in Table S4. 
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dissipate large amount of energy. To fracture the sample, the crack must propagate around the 

cylindrical plane of each bundle undergoing pullout due to the strong fiber/matrix interface, 

running perpendicular to the nominal fracture plane. The rigid/soft combination enables the force 

to be transferred along the entire sample width, giving rise to a greatly improved energy dissipation 

zone. This significant modification of the matrix fracture plane from a 2D-straight path to a 3D-

serpentine path results in the high toughness amplification factor seen here. 

 The establishment of the quantitative relationship shown by Equation 5 gives a design 

principle for tough, soft FRPs at considerably limited sizes when fracture is governed solely by 

fiber pullout. For an application utilizing soft composites that has explicit requirements of fracture 

toughness and specimen size, an engineer or manufacturer can easily balance the matrix properties 

and fabric geometry according to Equation 5. Depending on the situation, the designer can either 

first determine a suitable matrix (with appropriate bending stiffness, for example) and then select 

the reinforcing fabric (based on tensile strength and fiber bundle geometry factor) that will provide 

sufficient toughness. On the other hand, if the application merely stipulates the specimen size, then 

the fracture toughness can be optimized by maximizing the fiber bundle geometry factor and 

utilizing high-toughness matrices. As an example, we show that combining a tough matrix 

poly(PEA-co-IBA) (M1-0.15, Tm=17.3 kJ m-2) with a thin carbon fiber (t-CF) fabric that possesses 

large K (5.3×103 m-1) enables a size-limited soft FRP (width = 10 mm) to achieve a high tearing 

toughness of over 500 kJ m-2 (Table S3). Due to the high in-plane stiffness of carbon fiber, these 

materials possess very high tensile modulus, yet are extremely flexible and soft to the touch. This 

unique combination of contrasting properties makes them especially suitable for advanced soft 

materials devices currently being developed. 

Also, note that Region II from w1 < w < lT (Figure 1c) is width-sensitive. In this region, 

toughness is initially governed by fiber fracture that transforms into fiber pullout after a certain 
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number of fibers are broken. This mixed-mode fracture process is not well described by either the 

fiber-pullout model in this work or our preceding fiber-fracture model. We expect that this region 

can be modeled through a serial combination of both fracture mechanisms, and we will investigate 

this mixed-mode region in future work. 

4. CONCLUSION 

In this work, we empirically describe the fracture toughness of soft FRPs made from a combination 

of viscoelastic polymers and fabrics at limited size scales where the failure process is governed by 

a single-mode fiber pullout mechanism by matrix fracture. With the aid of a simple fiber-pullout 

model, we demonstrate that three parameters control the toughness (T) of soft FRPs that fail by 

fiber pullout: matrix toughness (Tm), fiber bundle geometry factor (K), and the size of the composite 

(w). To generate FRPs with high toughness at a fixed small width, both the fiber bundle geometry 

factor and the matrix toughness should be maximized. Based on this strategy, we show how soft 

FRPs with limited size can reach unprecedented levels of crack resistance. This study clarifies the 

energy dissipation mechanism of soft FRPs in the pullout limit and introduces a general principle 

to maximize the fracture toughness of soft FRPs at small length scales, which can guide the design 

of extremely tough yet size limited soft FRPs in industrial applications. 

5. EXPERIMENTAL PROCEDURES 

Materials: Plain weave carbon fiber fabric (CF) and thin carbon fiber fabric (t-CF) were purchased 

from Marukatsu Co., Ltd., Japan. Both fabrics were used as received. The textures and geometric 

parameters of the fabrics are given in Figure S5 and Table S2, respectively. Acrylate monomers, 

ethylene glycol phenyl ether acrylate (PEA), 2-(2-phenoxyethoxy)ether acrylate (PDEA), and 

isobornyl acrylate (IBA) were provided by Osaka Organic Chemical Industry Ltd, Japan. 

Ultraviolet initiator benzophenone (BP) was purchased from KANTO Chemical Co., Inc and used 

without further purification. 
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Fabrication of soft fiber-reinforced polymers (soft FRPs): Samples were prepared by placing two 

spacers with a thickness of 0.5 mm on both sides of the fabric, which was inserted between two 

hydrophobic films supported by glass plates to form a reaction mold. Subsequently two monomers, 

one of ethylene glycol phenyl ether acrylate (PEA) or 2-(2-phenoxyethoxy) ether acrylate (PDEA), 

along with isobornyl acrylate (IBA), containing initiator (0.1 mol% of the total monomer molar 

concentration) was injected into the mold.[45] Random copolymerization was allowed to proceed 

under an argon atmosphere via ultraviolet irradiation (UVP lamp Toshiba-FL15BLB, wavelength 

365 nm, light intensity 4 mW cm-2) for 10 h. 

Uniaxial tensile tests: Tensile tests on neat matrices were conducted using a tensile tester 

(Autograph AG-X, Shimadzu Co., Japan) equipped with a 100 N load cell at room temperature in 

air. Before the tests, the matrices were cut into a dumbbell shape standardized as JIS-K6251-7 (2 

mm in inner width, 12 mm in gauge length) with a cutting machine (Dumb Bell Co., Ltd.). The 

tensile strain rates varied from 0.007, 0.07, to 0.7 s-1, corresponding to testing velocities of 5, 50, 

and 500 mm min-1. 

Trouser tearing tests: Trouser tearing tests were used to measure the tearing fracture energy of soft 

FRPs. The tests were performed using a tensile tester (Autograph AG-X, Shimadzu Co., Japan) 

equipped with a 20 kN load cell. Samples with a width, w, smaller than 30 mm were prepared with 

a length of 50 mm. Samples with a width larger than 30 mm were prepared with a length of w + 20 

mm. An initial notch of 20 mm was made in the middle of the sample along the length direction 

with a laser cutter. For comparison, neat CF fabric was tested under the same experimental 

condition with the soft FRPs. Neat viscoelastic polymers are also tested. Samples were prepared 

with a prescribed width, w, and length of 50 mm. Also, an initial notch of 20 mm was made in the 

middle of the sample along the length direction with a laser cutter. To prevent elongation of the 

legs of polymers during tests, stiff and thin tape was glued on both sides of the samples prior to 
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tests. During testing, one leg of the sample was clamped to the base, and the other was clamped to 

the crosshead, which was displaced at a velocity of 5, 50, or 500 mm min-1 at room temperature in 

the open atmosphere. After testing, the tearing force-displacement curves were obtained to 

calculate the tearing energy of samples by the following equation:[10, 17-19, 46, 47] 

𝑇 = 	 ∫
3	5$

% 6

&·6&'()
  (7) 

where F is the tearing force, t is the fabric thickness for the soft composites or the matrix thickness 

for the neat matrix, L is the displacement, and Lbulk is the projected crack length. 

Scanning electron microscopy: Microscale observation was carried out by scanning electron 

microscopy (SEM) (JEOL JSM-6010LA, Tokyo, Japan). Samples were gold-coated in an ion-

sputtering machine (E-1010, Hitachi, Tokyo, Japan) before observation. The acceleration voltage 

varied from 15 to 20 kV. 
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