Proceedings of Machine Learning Research vol 107:847-867, 2021 2nd Annual Conference on Mathematical and Scientific Machine Learning

Reduced Order Modeling using Shallow ReLU Networks with
Grassmann Layers

Kayla Bollinger KBOLLING @ ANDREW.CMU.EDU
and
Hayden Schaeffer HSCHAEFF @ ANDREW.CMU.EDU

Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA, USA

Editors: Joan Bruna, Jan S Hesthaven, Lenka Zdeborova

Abstract

This paper presents a nonlinear model reduction method for systems of equations using a structured
neural network. The neural network takes the form of a “three-layer” network with the first layer
constrained to lie on the Grassmann manifold and the first activation function set to identity, while
the remaining network is a standard two-layer ReLU neural network. The Grassmann layer deter-
mines the reduced basis for the input space, while the remaining layers approximate the nonlinear
input-output system. The training alternates between learning the reduced basis and the nonlin-
ear approximation, and is shown to be more effective than fixing the reduced basis and training
the network only. An additional benefit of this approach is, for data that lie on low-dimensional
subspaces, that the number of parameters in the network does not need to be large. We show that
our method can be applied to scientific problems in the data-scarce regime, which is typically not
well-suited for neural networks approximations. Examples include reduced order modeling for
nonlinear dynamical systems and several aerospace engineering problems.

Keywords: Reduced Order Modeling, Grassmann Manifold, ReLLU neural networks, Surrogate
Models.

1. Introduction

Deep neural networks (DNN) are a popular approximation technique for problems in image pro-
cessing, computer vision, natural language processing, and other data-based applications. Their
popularity and success is due to their high accuracy, in particular, when trained with a sufficiently
large training set. It has been shown that the expressive power of a neural network is a function of
the number of trainable parameters, or equivalently for DNN, the number of layers Cybenko (1989);
Yarotsky (2017), and thus one can obtain a given level of accuracy by using a large enough set of
parameters. However, this can come with potential issues, especially when applied to problems in
scientific computing and high-consequence decision making. Specifically, using a large set of train-
able parameters often comes at the cost of longer training times, unnecessary model complexity, and
more expensive evaluations. The increase of complexity and evaluation cost can make the network
impractical for applications that require repeated queries, like uncertainty analysis and optimization.
In addition, expressiveness itself is not the only requirement for applicability of a model, one must
also consider stability, robustness, and interpretability which all depend on the structure and size of
the network.

The goal of this work is to construct a reduced order model (ROM) for approximating high-
dimensional functions by incorporating a model reduction layer within a shallow neural network.
The hope is to maintain the expressiveness of the neural network, but lower the overall complexity

© 2021 K. Bollinger & H. Schaeffer.

BOLLINGER SCHAEFFER

through the introduction of these new layers. Since the cost and complexity often increases dra-
matically with the dimension of the input space, the so called curse of dimensionality, reducing
the effective dimension of the initial layer should lead to large gains. In addition, this creates a
blend between interpretability (through the model reduction layers) and expressiveness (through the
neural network), which can be beneficial for many applications.

ROMs are used to approximate high-dimensional complex systems by simpler, and often in-
terpretable, low-dimensional functions which capture the overall dominant behavior of the high-
dimensional system. Projection-based model reduction techniques often construct a low-dimensional
approximation directly on the data. One popular approach is the Proper Orthogonal Decomposition
(POD), which learns a low-dimensional subspace using the dominant principal components of the
data-matrix Berkooz et al. (1993); Holmes et al. (2012). Then, the original system of equations are
transformed to the reduced-space by projecting onto the low-dimensional subspace. Some other ap-
proaches for approximating a reduced basis includes: global sensitivity analysis Saltelli et al. (2008),
sliced inverse regression Li (1991), and a compressive sensing based approach from Fornasier et al.
(2012). In many cases, it is advantageous to learn both the reduced basis and the governing equa-
tions in the reduced domain. For dynamical systems, the dynamic mode decomposition (DMD)
extracts a reduced order model by projecting the data onto a low-dimensional subspace and learning
a linear evolution equation on the reduced basis Rowley et al. (2009); Schmid (2010). The operator
inference technique Peherstorfer and Willcox (2016) can be used to learn a polynomial governing
system on the reduced basis, which can better capture the nonlinear behavior on the reduced space,
in particular, when the original high-dimensional function is also a polynomial.

For certain problems in scientific computing, both point queries and gradient information can
be made available. Gradient-based model reduction algorithms often use the dominate eigenspace
of the second moment matrix as a way of finding the reduced basis. This approach is called the
active subspace method Russi (2010); Constantine et al. (2014); Constantine (2015) and has been
applied to the identification and analysis of structures in hypersonic flow Constantine et al. (2015a),
transonic flow Lukaczyk et al. (2014), hydrological models Jefferson et al. (2015, 2017), and ion
batteries Constantine and Doostan (2017). Active subspaces can also be used to improve the cost
of solving Bayesian inverse problems, see for example Cui et al. (2014); Constantine et al. (2016).
If the input space has ambient dimension m, then under mild assumptions on the function, the
error associated with using the k-dimensional active subspace (for k < m) is given by the tail sum
of the eigenvalues from k£ + 1 to m. Thus, when the eigenvalues of the second moment matrix
decay rapidly, the active subspace method will be accurate. These methods depend on estimating
the spectra accurately using gradient measurements of the high-dimensional function. To avoid
the need for many accurate measurements, multifidelity methods Lam et al. (2020) can be used to
reduce the overall cost by utilizing both high-fidelity and low-fidelity gradient evaluations.

There are several challenges related to reduced order modeling (ROM). Consider the scalar
case: f : R™ — R, where m > 1 and where we have constructed the low-dimensional subspace
associated with the matrix U € R™** and projected the function onto the reduced basis, i.e. F :
R* — R with F(y) = f(Uy), where y € R¥. Even though the input to F is k-dimensional, if we
are required to evaluate f directly, then we may not have reduced the overall cost. Instead, one can
build a surrogate function g : R¥ — R so that g(U”'z) is an approximation to f(z) over a set of
given samples. In this way, an evaluation of g has complexity depending on &k and not the ambient
dimension m Rowley et al. (2009); Schmid (2010); Peherstorfer and Willcox (2016); Constantine
et al. (2017); Hokanson and Constantine (2018). Note that in this work, we look at general maps

848

REDUCED ORDER MODELING USING NEURAL NETWORKS WITH GRASSMANN LAYERS

f:Q CR™ — R", where m and n are not necessarily equal, and we do not assume that the data is
obtained in a particular way. This is in contrast to the DMD method which obtains a ROM for the
output space when the data is obtained sequentially (i.e. time snapshots of a dynamical system).

Additionally, we focus on the data-scarce setting, where the number of samples of the data
may be smaller than required to get an accurate approximation to the second moment matrix or
needed for an accurate approximation in the ambient dimension. This leads to several potential
sources of errors throughout the modeling process. First, inaccuracies in the second moment matrix
can be viewed as “noise” to the active subspace approximation and thus can lead to an inaccurate
approximation of the dominate eigenspace. Secondly, there is error in the dataset from having both
low-fidelity and limited samples. Lastly, in this setting, over-parameterized functions could lead to
overfitting and inconsistent results.

1.1. Contribution of this work

We propose a joint optimization method for simultaneously learning the reduced basis and the surro-
gate model from point-queries. Since the low-data setting can lead to inaccuracies in the eigenspace
of the second moment matrix, rather than using the active subspace method directly, we will use it
as an initial guess within our method. To approximate the nonlinear system on the reduced basis, we
build a surrogate function parameterized by a two-layer fully connected ReLU network. The two-
layer network with the subspace reduction layer can be thought of as a “three-layer” network with
the first layer constrained to be a low-dimensional projection layer and the first activation function
to be identity.

Although the data-scarce regime is typically not well-suited for neural networks, since we are
jointly optimizing the low-dimensional projection within the network structure, the number of free
parameters is far fewer than a full network in the ambient dimension. Thus, this approach potentially
avoids some of the generalizability issues associated with over-parameterization on small datasets,
at least for the applications in this work. We show empirically that this approach is robust to the
sample-size and can be applied to various aerospace engineering problems.

Several works have proposed various neural network based ROMs, or ROMs to enhance neural
networks. For example, the POD method can be used with a neural network in order to construct a
non-linear ROM for applications in fluid flows Hesthaven and Ubbiali (2018); Lui and Wolf (2019).
For applications in PDEs, Bhattacharya et al. (2020) proposed a PCA-based approach that utilized
a neural network to map reduced spaces. In Daniel et al. (2020), neural networks are used to
pick models from a dictionary of local ROMs (constructed via a POD based approach). The POD
based approaches differ from our work since they reduce the output space, rather than the model’s
dependencies on the input variables. Alternatively, neural networks can serve as ROMs when using
an encoder/decoder structure, for example Hinton and Salakhutdinov (2006); Ravi (2017). In a
related direction, several works have studied (low-dimensional) manifold learning using deep neural
networks Shaham et al. (2018); Chui and Mhaskar (2018); Zhu et al. (2018). While encoder/decoder
networks seem to perform well empirically, they do lack interpretability, which may limit their use
in scientific computing. As mentioned in O’Leary-Roseberry et al. (2020), unless the dimension of
the reduced basis is known a priori, it may be difficult to find this in a systematic way within the
encoder/decoder framework. In contrast, with a linear method (like active subspaces), the dimension
of the reduced basis is given by the decay of the spectral values. In our proposed algorithm, we
balance between these two perspectives by making the encoder linear with an interpretable reduced

849

BOLLINGER SCHAEFFER

order basis based on a theoretical foundation (through the active subspace approach) and improve
the accuracy of the ROM by using a neural network decoder. It is also worth mentioning that
our network is small relative to what would be needed for a full encoder/decoder network, which
typically utilizes a deep network structure. So while our network decoder is still a black-box, by
using a shallow network with a small number of parameters we can better probe into the intrinsic
dependencies.

Lastly, we note that in a concurrent work O’Leary-Roseberry et al. (2020), a similar approach
for constructing ROMs using neural networks is used. However, a notable difference is that while
O’Leary-Roseberry et al. (2020) uses the active subspace method to construct a (fixed) low dimen-
sion basis for the input space, our proposed algorithm uses it as an initial guess and optimizes the
the low dimensional basis simultaneously with the surrogate model.

2. Problem Statement

Given a function f : 2 C R™ — R"”, where m > 1, the goal is to construct a surrogate model of
the form:

f(x) = g(UT),

where U € R™** is a matrix that maps the input space to a k-dimensional subspace k < m and
g : R¥ — R™ is the approximation of the function with respect to k-dimensional inputs. Therefore,
the problem is to approximate f =~ g o U by learning both U and g from a set of M-samples
{xy }évi 1 (with respect to a sampling measure p) in order to find a model that depends on fewer
inputs than the ambient dimension.

For our approach, we represent the lower dimensional function g by a shallow neural network
and we construct U by a gradient-based dimensional reduction method (inspired by the active sub-
space technique). In particular, we write g = gy where # € R is the set of trainable parameters that
define the shallow neural network and constrain the range of U to be on the Grassmann manifold
Gr(k,m). To learn the parameters 6 and U, we solve the following minimization problem:

: 1 & T |12 2

st Ry BT 2 1770) = 90U 20|+ ALl (M
where the first term is the empirical risk and the second term is a regularizer on the parameters
of the neural network, with A > 0. To solve Equation (1), we use an alternating minimization
strategy between minimizing the fit of the network for a fixed matrix U and minimizing over U
with fixed parameters . The algorithm is detailed in Section 3. In Sections 2.1-2.2, we describe the
construction of g and U, and recall some of the theory related to the active subspace methods.

2.1. Active Subspaces

We first recall some of the theory of active subspaces (see Constantine et al. (2014)), its application
to vector-valued functions, and its connection to our problem.
Consider a domain 2 C R™ (centered at the origin) equipped with a probability density p, that
is
p(x) >0forx € Q, p(x)=0forz ¢ Q.

850

REDUCED ORDER MODELING USING NEURAL NETWORKS WITH GRASSMANN LAYERS

Let f be continuously differentiable, square integrable with respect to p, and let the pairwise prod-
ucts of its partial derivatives also be integrable with respect to p. Consider the symmetric and
positive semidefinite matrix C' € R™*™ defined by

C:=E[Df"Df]

_ 0fi T = Ofr, Ofn
where (Df(@))j = gt (e) and (DT @DI@),; =32 55 o)
Its eigenvalue decomposition can be written as C' := WAW” with A = diag(\1, ..., \m), where

Al > Ay > --- >)\, > 0. Define the block-wise structure as follows: Wi € R™*F W, ¢
Rmxm—k:’ A € kak’ and Ay € RM—kxm=k and thus:

W—Wlm},A_F1M}

As in Constantine et al. (2014), we define the rotated coordinates y € R* and z € R™ % by
Yy = WIT rand z = WQT x. We next prove an extension of Lemma 2.2 from Constantine et al. (2014)
related to the rotated coordinates of vector-valued functions.

Lemma 1 The sum of the mean-squared gradients of each f; with respect to the rotated coordinates
y and z satisfy:

Z]E f’LTv (fz)]:)\1+"'+/\k

ZE V()] = My 4o+ A

where \; for i € [m] are the ordered eigenvalues of C = E [D D f]

The proof of Lemma 1 is in Appendix A.1. Since A; are non-negative and ordered, Lemma 1
provides a comparison between the amount that f varies on each of the subspaces associated to W;.
In particular, if A;1 is relatively small, then f depends mainly on the subspace associated with
Wi, ie {y:y=Wir,z € Q} C R*. If Ajy1 = 0, then f is invariant to the subspace Ws.
Note that we have assumed that each component of f = [f1,--- , f,]? depends jointly on the same
lower dimensional subspace. This means that obtaining a reduced order model for the function f
can be done simultaneously in all components. If this is not the case, then the model reduction must
be applied to each component f; for i € [n] separately, i.e. a sequence of parallel optimization
problems for f; : & C R™ — R. The results in this section still hold in this setting, since they
degenerate to the one-dimensional case discussed in Constantine et al. (2014).
For a fixed U, the minimizer of the risk:

min Z / fi(x) — gs(UT2))? p(x)da (2)

g=lg1,,9n]T

is given by the conditional expectation:

G(WTz) = gily) == E [fi(Way + Waz)ly] = / Fi(Way + Waz)p(zly) dz 3)

851

BOLLINGER SCHAEFFER

where p(z|y) is the conditional probability density. As we see in the following theorem, we have
that indeed f is close to g o Wi whenever A1 is small.

Theorem 2 Assume a given probability density p is such that the probabilistic Poincaré inequality
with respect to p(z|y) holds, that is, assuming that the gradient of ¢ : R"™ — R is square integrable,
then:

E[(6 - Eloly))?[y] < B [IV-0l13 |y]

for some constant ¢ > 0 depending on the domain § and p. Then the mean-squared error of go Wi
satisfies

E[[[f = g0 W] < eOusr+ - Am),

where \; for i € [m] are the ordered eigenvalues of C = E [D D f].

The proof of Theorem 2 is in Appendix A.2. This is a vector-valued version of Theorem 3.1 from
Constantine et al. (2014). Note that if the eigenvalues decay sufficiently rapidly, then the risk will
be small.

Since we are given a set of M-samples {x,} é\i 1» We obtain an approximation to C' by the Monte
Carlo estimate C' € R™*™ defined by:

N 1 M _ . 1 & () 9
CrC:= MZDf(l‘g)TDf(l‘g), ie. Cjj= MZ (Z ailz(xg)af;(xg)>

=1 /=1

where 2y € are M independent and identically distributed (i.i.d.) samples with respect to the
sampling measure p. To approximate the matrix W1, we apply the eigenvalue decomposition to C,
ie. C = WAWT, where W1 € R™*k W, € R™*™m~k are the block-matrices as defined earlier
in this section. To compute W;, we use the SVD approach. Let A € R™*"M be defined by:

A= jM [Df(e)" - Df(aa)] . @)

whose SVD is given by A = ULV7. Since AAT = C, we then have that U = W.

2.2. Network Approximation and Alternating Approach

We propose the following minimization problem for obtaining a reduced order model g(U” z) given
a set of M-samples {z¢}2”:

M

T
0cR4, RangeUGGr (k,m) MZ 99 U v HQ_'_AHQHQ (5)
=1

To solve this minimization problem, we alternate between the following two subproblems:

M

o1 2 o

min g | f (ze) —gg(UTxg)Hg—i-)\HGH% (NN Approximation)
=1

852

REDUCED ORDER MODELING USING NEURAL NETWORKS WITH GRASSMANN LAYERS

and

M
Z gg(U xy) H; (Subspace Approximation).

Range UEGT (k,m) M =

First, to approximate the nonlinear function over the subspace, we write gg as a shallow neural
network with trainable parameters # € RY. The shallow neural network takes the form of a two-
layer ReLU network:

90(y) = A2(ReLU(A1y + b1))) + b2

where the first fully connected linear layer is defined by the matrix A; : R¥ — R’ and bias
b1 € R" and the second fully connected linear layer is defined by the matrix Ay : R® — R™ and
bias by € R"™. We use the ReLU activation function: (ReLU(z)), = max(z;,0). The trainable
parameter vector # € R? is defined as the vector of parameters after concatenating all elements of
Ay, Ag, by, and by. The total number of learnable parameters is d = h(k +n + 1) + n.

In Section 2.1, it was shown that the minimizer over all functions g is obtained by the condi-
tional expectation; however, approximating the conditional expectation (e.g. via the Monte Carlo
approximation), would not necessarily be beneficial since the approximation would require eval-
uations in the ambient dimension m. Instead, we want to provide a nonlinear surrogate model in
the smaller dimension £ < m, whose complexity depends on k not m. This is one motivation for
learning the model through regression.

The other reason to use regression is to deal with the various sources of noise. In the applications
discussed in Section 1, the noise can arise from multiple sources involving computational errors
or inaccuracies. The first is that the underlying function f may not be invariant to the subspace
{z:z2=Wlz,2€Q}C R™~* (or in a related sense, the decay of the eigenvalues from Theorem
2 is slow) and thus the model may incur “noise” from the information lost during the subspace
reduction. Other sources of noise can come from the training data itself. For example, if the data pair
(z, f(z)) is obtained by a numerical simulation of some complex system with modeling parameter
x, then f(z) is only an approximation to some underlying function. The numerical accuracy (or
inaccuracy in this case) would appear as “noise” in the surrogate approximation. Additionally, when
using a small sample set, which is the case for some of the experiments in Section 4, the error in
approximating the data distribution (for example, the error between C and C) can appear as “noise”.
And lastly, if the data is obtained from an experiment or real-world observations, then measurement
and/or acquisition noise may be present. This motivates the use of regularized regression, and in
particular, the utilization of shallow neural networks to simultaneously fit the data and denoise the
system.

To obtain U, we fix gy and then optimize over the Grassmann manifold Gr(k, m)—a compact
manifold of all k-dimensional linear subspaces in R™. We use Gr(k,m) since we are only con-
cerned with obtaining a k-dimensional subspace, which is represented by the matrix U, and not with
the representation itself (i.e. the choice of coordinates). When gradient information is available, we
use the procedure described by Equation (4) to obtain an approximation to the active subspace Wi
and use it as the initial guess to U. When we only have function evaluations (and are unable to
obtain the active subspace), then a random initialization scheme is used. An experimental com-
parison between different initializations is provided in Section 4.1. In general, experiments that
use the active subspace as the initializer perform better (in terms of accuracy/generalizability). The
minimization problem in U is nonconvex, and thus good initialization can be very helpful.

853

BOLLINGER SCHAEFFER

3. Methodology

The optimization of Equation (5) is done via the alternating minimization approach described in
Section 2.2. The pseudocode for this algorithm is given in Algorithm 1, and is described in detail
below. We initialize the trainable parameters of the shallow neural network, i.e. 8, using the standard
Xavier initialization. In particular, each fully connected layer is comprised of weight matrices
Ay € Rk Ay € R™¥" and biases b; € R”, by € R™, which are initialized uniformly at random:

(A1)ij, (01)i ~ U {—ﬁ, ﬁ} and (As2); j, (b2)i ~ U [—ﬁ, ﬁ} We note that our model takes
k as a hyperparameter, which can be inferred using the spectral decay and the theory of active
subspace. For the experiments presented in this paper either the appropriate value for k is known a
priori (Experiment 1, Section 4.1), or a range of values for k are tested (Experiments 2-5, Sections

4.2-4.5).

For the reduced basis subproblem, if Jacobian-information is given, i.e. measurements of
Df(xp) over a set of samples, then we initialize U using the active subspace method, that is,
U = W described in Section 2.1. When the Jacobian is not available, we use two additional
initialization methods for U (see also Constantine et al. (2017)). The first is to initialize U as the
identity operator on the first k-coordinates of the input space, i.e.

Tk]
U= .
|:Om—k:><k

The second way is to initialize U at random with the constraint that is remains orthogonal. This
is done by creating a random Gaussian matrix of size m x k whose elements are chosen from the
normal distribution with mean zero and standard deviation 1, and then setting U to be the orthogonal
matrix () computed via the reduced QR factorization of the random Gaussian matrix.

To optimize Equation (5) we alternate between optimizing over 6, then over U. When the
active subspace is used as the initial guess, this ordering can lead to dramatic gains in the early
training phase. For the NN approximation subproblem, we use the ADAM method Kingma and
Ba (2014) with an initial learning rate 7. For the subspace approximation subproblem, we use the
Pymanopt package (Townsend et al. (2016)) to solve the Grassmann manifold-constrained least-
squares problem using a steepest descent method. We refer to any iteration carried out in these
optimization steps as an inner iteration, and we refer to the completion of one-sweep of optimizing
over both # and U as an outer iteration.

For the NN approximation subproblem (see Section 2.2), we set a fixed number of Ny inner
iterations. The number of inner iterations can be set by the users (and thus included as a hyperpa-
rameter), or it can be determined by a stopping condition on the loss function for each subproblem.
In the experimental results in Section 4, we chose a sufficiently large number of steps, Ng = 5000,
to ensure plateauing of the loss functions for these examples. Some tests showed that early stopping
(with a relaxed stopping condition) can reduce the training time while resulting in a similar overall
loss (for the full optimization problem). After each outer iteration the learning rate decays, i.e. we
reinitialize the hyperparameters in the ADAM method with a reduced learning rate 7 <— 0.97. We
set a fixed number of P outer iterations based on empirical tests, in particular, P should be large
enough to allow the loss in Equation (5) to plateau. We define 6" and UP" to be the computed
values of 6 and U after p outer iterations and n (of their respective) inner iterations.

854

REDUCED ORDER MODELING USING NEURAL NETWORKS WITH GRASSMANN LAYERS

Algorithm 1 Shallow neural-network/active subspace-based alternating minimization scheme
Given: M input/output tuples (zy, f(x¢), Df(x¢))
Initialize: § € R?, U € R™** learning rate = 7, iteration counts Ny and P
while p < P do
(1) Compute 6PV¢ starting with #70 and applying the ADAM method to:

min MZW) — go((UP)T0) |2 + Al|6)]13

for Ny steps. Then update gP+10 = grNo,
(2) Compute UP-NU as the solution to the Grassmann manifold-constrained least squares prob-
lem:

M
1 2
. 1 - o |
Range IUnelgr(k’m) M z:: Hf(xﬁ) Jor+1 0(J}g)HQ
Then update UP+1-0 = yp-Nu
3) Update. 7=091
end while

4. Experimental Results and Applications

The model contains several hyperparameters, which we list here: the dimension of the reduced basis
k, the hidden dimension of the shallow network h, the regularization weight A, and the learning rate
7. For simplicity, let X7,qin, Xvalidation, and X be the training, validation, and entire available
dataset (respectively) and we define their cardinalities by |X7rainl|, | XVatidation|» and |X|. Note
that | X7rain| + | Xvatidation] < |X|, and that typically this holds with strict inequality in most
experiments. Since we are randomly sampling a subset from X, we typically use fewer samples
than available.

4.1. Experiment 1: U initialization comparison

We provide a comparison between the various initializations for U. In particular, we show that
using an approximation to the active subspace, Wi, as our initial guess for U will produce an
overall small loss at the end of the training, as compared to the other initializers. We compare the
three initializations for U that were discussed in Section 3 on the problem of learning a reduced
order model for a nonlinear dynamical system. In particular, define the function f : R? — R3 by

and the dynamical system to be the autonomous differential equation Lx(t) = f(xz(t)). This
example is related to the sparsity-promoting methods for learning unknown governing equations
from data, see for example Brunton et al. (2016); Schaeffer (2017); Rudy et al. (2017); Raissi et al.
(2018); Wu and Xiu (2019); Sun et al. (2020). However, in this work, we would like to learn both a

855

BOLLINGER SCHAEFFER

reduced basis and a nonlinear governing system approximation, as done in the DMD methodology
and in Peherstorfer and Willcox (2016).
In this toy example, the system can be reduced to f(z) = g(U” x) = g(y) where

1 3

ﬁ 0 y% :
S M R i COR

V2 Ys

The dataset was constructed using a randomized approach, similar to Schaeffer et al. (2018, 2020).
The dataset is generated by collecting 500 trajectories starting from a uniformly random initial
state 20 centered at 70 = [4,3, —2]7 with width 2, i.e. 20 € U[7° — 2,7° + 2]. The trajectories
were generated using the RK45 method with 202 equally spaced time-stamps over the time interval
[0, 5]. The Jacobian can be extracted directly from f(x). The entire data set X consists of | X| =
101,000 samples. For training our model, we use 150 trajectories for our training set X7,4;, and
30 trajectories for our validation set Xy gidation (i-€- | X7rain| = 30,300, | Xvaiidation| = 6,060).
We used a batch size of 16 trajectories in the NN approximation subproblem. The hyperparameters
for our model were set to: k =2, h =8, A =10"",and 7 = 1073,

Using 100 randomized trials for training our model, we record our results in Figure 1. In Fig-
ure 1, we plot the epochs (which are the inner iterations for the NN approximation subproblem over
the entire training process) versus the relative error, which we define as:

1 T A2\ 2
Ko oweXyatiaion 1 (£) = goon (UP0))|

1 Saex @)

RelError, , =

The mean-squared errors are normalized separately by the number of points. Comparing the identity
and random initializations, which do not use Jacobian-information, we see that the methods have
similar relative errors and will plateau at roughly the same relative error (taking another 10° epochs).
The active subspace initialization leads to more dramatic gains in the initial training process, and
overall faster convergence. Note that there are still variations on the reduced basis in the training
process, i.e. the final subspace may not directly agree with the active subspace that was used to
initialize the training. In all cases, the ‘jumps’ in the error occur due to the new estimate of UP°.
The jumps in the solid purple curve in Figure 1 indicate that the alternating minimization leads to a
lower relative error than just using the active subspace as the reduced basis.

4.2. Experiment 2: Comparing methods using NACA0012

This experiment demonstrates the robustness of our model in the scarce-data setting as compared to
other approaches. In this test, we find a reduced basis and surrogate model for the drag coefficient
associated with the NACAOO012 airfoil with respect to 18-shape parameters. The drag coefficient
was computed using Stanford University Unstructured (SU2) computational fluid dynamics code
Economon et al. (2016); Hokanson and Constantine (2018). The results and comparisons are plot-
ted in Figure 2. We compare our model to the degree-5 polynomial ridge regression model from
Hokanson and Constantine (2018) using subspaces of dimensions one, three, and five. In addition,
we compare our approach with a Gaussian process regression Rasmussen and Williams (2005); Pe-
dregosa et al. (2011) the LASSO problem (with cross-validation) with a dictionary of monomials

856

REDUCED ORDER MODELING USING NEURAL NETWORKS WITH GRASSMANN LAYERS

Initialization of U

—— identity
0.5 — random
10 AS
g
S
=
g 10°
10‘05 E | | | |
0.2 0.4 0.6 0.8 1
Epochs 105

Figure 1: Experiment 1: The plot compares the relative error over the training epochs for the three
initialization schemes described in Section 3: identity initialization (in blue), random
initialization (in green), and the active subspace initialization (in purple). The median
value over 100 trials is displayed as the solid line, and the shaded region encloses the
25" to 75" percentile. Note that the active subspace initialize reduces the error faster
than the other schemes.

up to degree 3 Pedregosa et al. (2011); and a standard quadratic regression problem. The Gaussian
process, LASSO, and quadratic regression do not perform model reduction on the input parame-
ters. For each model, we ran 100 trials using randomly chosen data points for the training set using
the sizes {10, 25, 50, 100, 250, 500, 1000} (except for the quadratic model, in which we only use
{250, 500, 1000} since it becomes ill-conditioned for smaller sets). For each trial, we calculate
their relative errors over the entire dataset X, which is defined by:

5o £ - Feo
Seex 7@

RelErrory =

where f represents the trained model for a given approach. For our model, we used P = 10 outer it-
erations, batch size of 16 in the NN approximation subproblem, and the remaining hyperparameters
were setto: h =8, A= 10"7,and 7 = 1073,

We use the quadratic model as a baseline since it has no dimension reduction and seems to obtain
accurate results when given a sufficient number of samples (see also Hokanson and Constantine
(2018)). This success may be attributed to the model having access to all 18 input variables, and
having 190 free parameters to tune in the data-abundant setting. In the data-scarce setting, we see
that our model outperforms the others, supporting our claim of it being a robust alternative in this
data regime. As we increase the training set size, the reduced basis of dimensions 3 and 5 begin

857

BOLLINGER SCHAEFFER

NACAO0012 Drag Coefficient

100

1-D Our Model
—— 3-D Our Model
—— 5-D Our Model
—— 1-Dridge P°
—— 3-Dridge P°
—— 5-Dridge P°
—— Gaussian Process
— LASSO
_ Quadratic

RelError x

1071

L1l L1
10! 10? 103
Training Set Size

Figure 2: Experiment 2: Comparison of various methods for approximating the NACAO0012 drag
coefficient with respect to 18 shape parameters. Our method is labelled as “k-D Our
Model” where the reduced basis dimensions are £k = 1,3,5. The “k-D ridge” curves
correspond to the degree-5 polynomial ridge regression model from Hokanson and Con-
stantine (2018) using active subspaces of dimensions £ = 1, 3, 5. We also compare to the
Gaussian process regression Rasmussen and Williams (2005); Pedregosa et al. (2011), the
LASSO problem with a dictionary of monomials up to degree 3 Pedregosa et al. (2011);
and a standard quadratic regression problem. The median relative error is displayed as
the solid curves, and the shaded region encloses the 25" to 75" percentile (using 100
random trials).

to outperform the 1D model. The LASSO model is also robust, but does not reduce the input
dimension since sparsity is imposed in the representation (monomials) themselves and not the input
space.

Note also that the computational cost of evaluating each of these models roughly scales with
their respective number of free parameters. Due to its shallow network structure, our model excels
in this regard. To illustrate, we compare the two ROM architectures presented here: ignoring the
dimension reduction step (which both models share), our 5D network approximation uses 57 free
parameters while the 5D polynomial ridge regression approximation uses 252. This is also smaller
than the deep networks mentioned in Section 1.

4.3. Experiment 3: Dependence on Basis Dimension and Hidden Dimension

The number of free parameters in our model depends on the dimension of the reduced basis, denoted
by k, and the hidden dimension of the two-layer neural network, denoted by h. In this experiment,
we apply our method to the NACAOO12 airfoil example and measure the error as a function of
various values for both & and h. Specifically, we vary k € {1,2,3} and h € {8,64,256}, run

858

REDUCED ORDER MODELING USING NEURAL NETWORKS WITH GRASSMANN LAYERS

100 trials using randomly chosen data points, and compare the results in the first table in Table 1.
All other hyperparameters are fixed: P = 10 outer iterations were used, training and validation set
size is 50, batch size is 16, A\ = 10~7, and learning rate 7 = 1073, We see that as the subspace
dimension increases, the number of hidden layers needed to resolve the function also increases.
Outside of the case (k,h) = (1,256), where over-fitting may be occurring, the results seem to
improve as h increases.

4.4. Experiment 4: Comparison with a Bowtie Network

similar network structure can be achieved by using a bowtie network. We compare our model to a
shallow bowtie neural network model defined by f; : R™ — R", where

f3(2) = Ag(ReLU(A;(Aoz) + b1))) + ba.

The main difference between the bowtie network and our model is that the Grassmann layer is
replaced by a fully connected linear layer with Ay : R™ — RF and without a bias term. The
remaining layers are defined as described in Section 2.2: the first fully connected linear layer is
defined by the matrix A; : R¥ — R” and bias b; € R" and the second fully connected linear layer
is defined by the matrizc As : R" — R™ and bias by € R™. The total number of trainable parameters,
ie. thesizeof § € R% isd = km + h(k+ 1) +n(h + 1). Note that this is larger than the number
of free parameters in our model, since we have the added constraint. We compare the bowtie model
with the same set of dimensional parameters: k£ € {1,2,3} and h € {8,64,256}. The bowtie model
was optimized over 50,000 epochs (the same total number of epochs/inner iterations used in the NN
approximation subproblem for the experiment in Section 4.3), with the remaining hyperparameters
were fixed: the training and validation set size was 50, the batch size was 16, A = 1077, and
7 = 1073, We ran 100 trials using randomly chosen data points, and the results are summarized in
the second table in Table 1.

The bowtie network produces about 1.2x larger relative errors than our model. For fixed &, we
see that in Table 1, as h increases the bowtie model can produce worse results. This is likely due to
the lack of structure being imposed onto the system. The diagonal elements of the first table indicate
that our model’s accuracy improves as with the hidden dimension and basis dimension, which is not
the case for the bowtie model. This has two benefits; the first is of practical importance, namely,
that the user does not have to manually optimize the hyperparameters. The second is in terms
of interpretability, the subspace approximation is likely preserving the dominate features and thus
producing an overall model which better fits the dataset.

4.5. Experiment 5: Applications to Model Reduction for ONERA and HyshotII

In this experiment, we show that our approach can be applied to other datasets. Specifically, we
compute a reduced order model for the drag coefficient associated with the ONERA-M6 wing with
respect to 50-shape parameters Lukaczyk et al., and for the normalized integral of pressure over
the end of the scramjet engine of the HyShot II vehicle with respect to 7-input parameters Con-
stantine et al. (2015b). For the ONERA-M6 dataset, we have | X| = 297, | X7,qin| = 50, and
| XV atidation] = 50. This dataset includes derivative-information, thus we use the active subspace
initialization for U. As in Experiments 3 (Section 4.3) and 4 (Section 4.4), we vary the same set
of dimensional parameters: k& € {1,2,3} and h € {8,64,256} and measure the relative error. The

859

BOLLINGER SCHAEFFER

Our Model Bowtie Model
h=8 h=64 h=256 h=8 h=64 h=256
10411 | 0411 | 0484 10469 | 0474 | 0.468
2 | 0.408 | 0.373 | 0.370 2 | 0.497 | 0.481 | 0.523
3 | 0.403 | 0.374 | 0.331 3 | 0.486 | 0.508 | 0.505

W‘ﬁw
W‘ﬁw

Table 1: Experiment 3 and 4: This table contains the relative error in the drag coefficient associated
with the NACAOO012 airfoil with respect to 18-shape parameters, comparing our model
using various dimensional parameters and a bowtie network of the same size. Specifically,
the relative error being shown is the median of the minimum relative error calculated over
100 trials. The dimension of the reduced basis is denoted by k and the hidden dimension
of the two-layer neural network is denoted by h.

remaining hyperparameters were set to: P = 10 outer iterations, batch size of 16, hidden dimension
h=8k=1,A=10"7,and 7 = 10~3. We ran 100 trials using randomly chosen data points, and
the results are summarized in Table 2. We see that for large hidden dimension (i.e. h = 256) this
model begins to overfit, likely due to the size of the training set. However, similar to the results of
Experiment 3 (Section 4.3), the model does improve as the pair (h, k) increases.

For the HyShotlI dataset, we show that a one-dimension subspace can be used as an accurate
approximation for the 7D parameter system as was done in Constantine et al. (2015a). For this
dataset, we have | X | = 52, | X7pain| = 10, and | Xv aridation| = 10. This dataset does not include
derivative information, so we used random initialization for U. This system has built in “noise”
due to the possible errors in the numerical solvers used to generate the dataset. Using the hyperpa-
rameters: P = 10 outer iterations, batch size of 16, hidden dimension h = 8, k = 1, A = 1077,
and 7 = 1073, our model produces an approximation with a relative error of 0.211. Using these
hyperparameters, we ran 100 trials using randomly chosen data points. We observed that for the
Hyshotll test, overfitting was observed when we used i > 64. From the various trials, we found
that we only need a hidden dimension of h = 8, since the training set is very small. This also results
in a more compact, and possibly more interpretable, approximation.

ONERA-M6
h=8 h=64 h=256
k=1 | 0.115 | 0.121 | 0.150
k=2 | 0.110 | 0.088 | 0.096
k=3 | 0.113 | 0.076 | 0.079

Table 2: This table contains the relative error in the drag coefficient associated with the ONERA-
M6 wing with respect to 50-shape parameters Lukaczyk et al. using our model with hidden
dimension A and a reduced basis dimension k. Specifically, the relative error being shown
is the median of the minimum relative error calculated over 100 trials. The dataset sizes
are: ’X’ = 297, XTTam’ =50, and ‘XValidation’ = 50.

860

REDUCED ORDER MODELING USING NEURAL NETWORKS WITH GRASSMANN LAYERS

5. Conclusion

We proposed an approach for constructing reduced order models using shallow neural networks
with structured layers. The first fully connected layer is constrained to lie on the Grassmann man-
ifold in order to map the input data onto a low dimensional subspace. Experimental results on
the NACAOO012 airfoil show that this constrained layer produces more robust results than a fully
connected layer with the same dimensions. When gradient-information is available, the method is
initialized using the active subspace method, which outperforms the standard initializers. In addi-
tion, it was shown that training the reduced basis jointly with the neural network produces smaller
error than using a pre-trained, fixed basis. The method is applied to model reduction of nonlin-
ear dynamical systems and aerospace engineering problems. In several examples, even though the
number of samples is relatively small, our method is able to produce meaningful and (relatively)
accurate surrogate models. Since the initial layer can dramatically decreases the dimension of the
input space, this approach is easy to train and has smaller complexity than a neural network in the
ambient dimension. This is beneficial in applications where the model must be queried many times.
In addition, the mixture of a shallow and low-complexity neural network with the added constrained
layers leads to more interpretable models than a standard neural network.

Acknowledgments

The authors would like to acknowledge the support of AFOSR, FA9550-17-1-0125 and the support
of NSF CAREER grant #1752116. The authors would like to thank Jeffrey Hokanson for his help.

References

Gal Berkooz, Philip Holmes, and John L. Lumley. The proper orthogonal decomposition in the
analysis of turbulent flows. Annual review of fluid mechanics, 25(1):539-575, 1993.

Kaushik Bhattacharya, Bamdad Hosseini, Nikola B Kovachki, and Andrew M Stuart. Model reduc-
tion and neural networks for parametric pdes. arXiv preprint arXiv:2005.03180, 2020.

Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Discovering governing equations from data
by sparse identification of nonlinear dynamical systems. Proceedings of the national academy of
sciences, 113(15):3932-3937, 2016.

Charles K. Chui and Hrushikesh N. Mhaskar. Deep nets for local manifold learning. Frontiers in Ap-
plied Mathematics and Statistics, 4:12, 2018. ISSN 2297-4687. doi: 10.3389/fams.2018.00012.
URL https://www.frontiersin.org/article/10.3389/fams.2018.00012.

Paul G Constantine. Active subspaces: Emerging ideas for dimension reduction in parameter stud-
ies. SIAM, 2015.

Paul G Constantine and Alireza Doostan. Time-dependent global sensitivity analysis with active
subspaces for a lithium ion battery model. Statistical Analysis and Data Mining: The ASA Data
Science Journal, 10(5):243-262, 2017.

Paul G. Constantine, Eric Dow, and Qiqi Wang. Active subspace methods in theory and practice:
Applications to kriging surfaces. SIAM Journal on Scientific Computing, 36(4), Jan 2014. ISSN
1095-7197. doi: 10.1137/130916138. URL http://dx.doi.org/10.1137/130916138.

861

https://www.frontiersin.org/article/10.3389/fams.2018.00012
http://dx.doi.org/10.1137/130916138

BOLLINGER SCHAEFFER

Paul G Constantine, Michael Emory, Johan Larsson, and Gianluca laccarino. Exploiting active
subspaces to quantify uncertainty in the numerical simulation of the HyShot ii scramjet. Journal
of Computational Physics, 302:1-20, 2015a.

Paul G Constantine, Carson Kent, and Tan Bui-Thanh. Accelerating markov chain monte carlo with
active subspaces. SIAM Journal on Scientific Computing, 38(5):A2779-A2805, 2016.

Paul G. Constantine, Armin Eftekhari, Jeffrey Hokanson, and Rachel A. Ward. A near-stationary
subspace for ridge approximation. Computer Methods in Applied Mechanics and Engineering,
326, Nov 2017. ISSN 0045-7825. doi: 10.1016/j.cma.2017.07.038. URL http://dx.doi.
0rg/10.1016/j.cma.2017.07.038.

P.G. Constantine, M. Emory, J. Larsson, and G. laccarino. Exploiting active subspaces to
quantify uncertainty in the numerical simulation of the hyshot ii scramjet. Journal of Com-
putational Physics, 302:1 — 20, 2015b. ISSN 0021-9991. doi: https://doi.org/10.1016/].
jcp-2015.09.001. URL http://www.sciencedirect.com/science/article/pii/
S002199911500580X.

Tiangang Cui, James Martin, Youssef M Marzouk, Antti Solonen, and Alessio Spantini. Likelihood-
informed dimension reduction for nonlinear inverse problems. Inverse Problems, 30(11):114015,
2014.

G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of Control,
Signals and Systems, 2:303-314, 1989.

Thomas Daniel, Fabien Casenave, Nissrine Akkari, and D. Ryckelynck. Model order reduction
assisted by deep neural networks (rom-net). Advanced Modeling and Simulation in Engineering
Sciences, 7, 12 2020. doi: 10.1186/s40323-020-00153-6.

Thomas D. Economon, Francisco Palacios, Sean R. Copeland, Trent W. Lukaczyk, and Juan J.
Alonso. Su2: An open-source suite for multiphysics simulation and design. AIAA Journal,
54(3):828-846, 2016. doi: 10.2514/1.J053813. URL https://doi.org/10.2514/1.
J053813.

Massimo Fornasier, Karin Schnass, and Jan Vybiral. Learning functions of few arbitrary linear
parameters in high dimensions. Foundations of Computational Mathematics, 12(2):229-262,
2012.

J.S. Hesthaven and S. Ubbiali. Non-intrusive reduced order modeling of nonlinear problems us-
ing neural networks. Journal of Computational Physics, 363:55-78, 2018. ISSN 0021-9991.
doi: https://doi.org/10.1016/j.jcp.2018.02.037. URL https://www.sciencedirect.
com/science/article/pii/S0021999118301190.

G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks.
Science, 313(5786):504-507, 2006. ISSN 0036-8075. doi: 10.1126/science.1127647. URL
https://science.sciencemag.org/content/313/5786/504.

Jeffrey M. Hokanson and Paul G. Constantine. Data-driven polynomial ridge approximation using
variable projection. SIAM Journal on Scientific Computing, 40(3), Jan 2018. ISSN 1095-7197.
doi: 10.1137/17m1117690. URL http://dx.doi.org/10.1137/17M1117690.

862

http://dx.doi.org/10.1016/j.cma.2017.07.038
http://dx.doi.org/10.1016/j.cma.2017.07.038
http://www.sciencedirect.com/science/article/pii/S002199911500580X
http://www.sciencedirect.com/science/article/pii/S002199911500580X
https://doi.org/10.2514/1.J053813
https://doi.org/10.2514/1.J053813
https://www.sciencedirect.com/science/article/pii/S0021999118301190
https://www.sciencedirect.com/science/article/pii/S0021999118301190
https://science.sciencemag.org/content/313/5786/504
http://dx.doi.org/10.1137/17M1117690

REDUCED ORDER MODELING USING NEURAL NETWORKS WITH GRASSMANN LAYERS

Philip Holmes, John L Lumley, Gahl Berkooz, and Clarence W Rowley. Turbulence, coherent
structures, dynamical systems and symmetry. Cambridge university press, 2012.

Jennifer L Jefferson, James M Gilbert, Paul G Constantine, and Reed M Maxwell. Active subspaces
for sensitivity analysis and dimension reduction of an integrated hydrologic model. Computers
& Geosciences, 83:127-138, 2015.

Jennifer L Jefferson, Reed M Maxwell, and Paul G Constantine. Exploring the sensitivity of photo-
synthesis and stomatal resistance parameters in a land surface model. Journal of Hydrometeorol-
ogy, 18(3):897-915, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Remi R Lam, Olivier Zahm, Youssef M Marzouk, and Karen E Willcox. Multifidelity dimension
reduction via active subspaces. SIAM Journal on Scientific Computing, 42(2):A929—A956, 2020.

Ker-Chau Li. Sliced inverse regression for dimension reduction. Journal of the American Statistical
Association, 86(414):316-327, 1991.

Hugo F. S. Lui and William R. Wolf. Construction of reduced-order models for fluid flows us-
ing deep feedforward neural networks. Journal of Fluid Mechanics, 872:963-994, Jun 2019.
ISSN 1469-7645. doi: 10.1017/jfm.2019.358. URL http://dx.doi.org/10.1017/jfm.
2019.358.

Trent W. Lukaczyk, Paul Constantine, Francisco Palacios, and Juan J. Alonso. Active Subspaces
for Shape Optimization. doi: 10.2514/6.2014-1171. URL https://arc.aiaa.org/doi/
abs/10.2514/6.2014-1171.

Trent W Lukaczyk, Paul Constantine, Francisco Palacios, and Juan J Alonso. Active subspaces for
shape optimization. In 10th AIAA multidisciplinary design optimization conference, page 1171,
2014.

Thomas O’Leary-Roseberry, Umberto Villa, Peng Chen, and Omar Ghattas. Derivative-informed
projected neural networks for high-dimensional parametric maps governed by pdes, 2020.

Fabian Pedregosa, Ga€l Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas,
Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Edouard Duch-
esnay. Scikit-learn: Machine learning in python. Journal of Machine Learning Research, 12(85):
2825-2830,2011. URL http://jmlr.org/papers/v12/pedregosalla.html.

Benjamin Peherstorfer and Karen Willcox. Data-driven operator inference for nonintrusive
projection-based model reduction. Computer Methods in Applied Mechanics and Engineering,
306:196-215, 2016.

Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Multistep neural networks for data-
driven discovery of nonlinear dynamical systems. arXiv preprint arXiv:1801.01236, 2018.

863

http://dx.doi.org/10.1017/jfm.2019.358
http://dx.doi.org/10.1017/jfm.2019.358
https://arc.aiaa.org/doi/abs/10.2514/6.2014-1171
https://arc.aiaa.org/doi/abs/10.2514/6.2014-1171
http://jmlr.org/papers/v12/pedregosa11a.html

BOLLINGER SCHAEFFER

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine Learning
(Adaptive Computation and Machine Learning). The MIT Press, 2005. ISBN 026218253X.

Sujith Ravi. Projectionnet: Learning efficient on-device deep networks using neural projections,
2017.

Clarence W Rowley, Igor Mezi¢, Shervin Bagheri, Philipp Schlatter, and Dans Henningson. Spectral
analysis of nonlinear flows. Journal of fluid mechanics, 641(1):115-127, 2009.

Samuel H Rudy, Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Data-driven discovery of
partial differential equations. Science Advances, 3(4):¢1602614, 2017.

Trent Michael Russi. Uncertainty quantification with experimental data and complex system mod-
els. PhD thesis, UC Berkeley, 2010.

Andrea Saltelli, Marco Ratto, Terry Andres, Francesca Campolongo, Jessica Cariboni, Debora
Gatelli, Michaela Saisana, and Stefano Tarantola. Global sensitivity analysis: the primer. John
Wiley & Sons, 2008.

Hayden Schaeffer. Learning partial differential equations via data discovery and sparse optimiza-
tion. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 473
(2197):20160446, 2017.

Hayden Schaeffer, Giang Tran, and Rachel Ward. Extracting sparse high-dimensional dynamics
from limited data. SIAM Journal on Applied Mathematics, 78(6):3279-3295, 2018.

Hayden Schaeffer, Giang Tran, Rachel Ward, and Linan Zhang. Extracting structured dynamical
systems using sparse optimization with very few samples. Multiscale Modeling & Simulation, 18
(4):1435-1461, 2020.

Peter J Schmid. Dynamic mode decomposition of numerical and experimental data. Journal of fluid
mechanics, 656:5-28, 2010.

Uri Shaham, Alexander Cloninger, and Ronald R. Coifman. Provable approximation proper-
ties for deep neural networks. Applied and Computational Harmonic Analysis, 44(3):537-
557, 2018. ISSN 1063-5203. doi: https://doi.org/10.1016/j.acha.2016.04.003. URL https:
//www.sciencedirect.com/science/article/pii/S1063520316300033.

Yifan Sun, Linan Zhang, and Hayden Schaeffer. Neupde: Neural network based ordinary and partial
differential equations for modeling time-dependent data. In Mathematical and Scientific Machine
Learning, pages 352-372. PMLR, 2020.

James Townsend, Niklas Koep, and Sebastian Weichwald. Pymanopt: A python toolbox for opti-
mization on manifolds using automatic differentiation. Journal of Machine Learning Research,
17(137):1-5,2016. URL http://jmlr.org/papers/v17/16-177 .html.

Kailiang Wu and Dongbin Xiu. Numerical aspects for approximating governing equations using
data. Journal of Computational Physics, 384:200-221, 2019.

864

https://www.sciencedirect.com/science/article/pii/S1063520316300033
https://www.sciencedirect.com/science/article/pii/S1063520316300033
http://jmlr.org/papers/v17/16-177.html

REDUCED ORDER MODELING USING NEURAL NETWORKS WITH GRASSMANN LAYERS

Dmitry Yarotsky. Error bounds for approximations with deep relu networks. Neural Net-
works, 94:103 — 114, 2017. ISSN 0893-6080. doi: https://doi.org/10.1016/j.neunet.
2017.07.002. URL http://www.sciencedirect.com/science/article/pii/
S0893608017301545.

W. Zhu, Q. Qiu, J. Huang, R. Calderbank, G. Sapiro, and I. Daubechies. Ldmnet: Low dimensional
manifold regularized neural networks. In 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 2743-2751, June 2018. doi: 10.1109/CVPR.2018.00290.

Appendix A. Proofs
A.l. Lemma 1
Proof The proof generalizes the scalar case, see Lemma 2.2 from Constantine et al. (2014). For
completeness, we prove it here.
For any i € [n], each component of f can be written as:
filx) = i(WWTz) = f;(WiW] 2 + WoWi z) = f;(Wiy + Waz),
and so by the chain rule we have

Vyfi(z) = Vy fiWiy + Waz) = WV, fi(Wiy + Waz) = W'V, fi().

It follows that D, f(z)T = W{' D, f(x), and similarly D, f(z)? = Wi D, f(x)T. Therefore,

D E[Vy(£)"Vy(f)] = E [tr Dy(£)" Dy (1)

= E [tr WID,(f)" Do (f)W1]
— aWIE [D,()TDu(f)] Wi

= tr Wl oW,
=tr A1
=AM+ + A
The same argument can be applied to the z case. |

A.2. Theorem 2

Proof The proof generalizes Theorem 3.1 from Constantine et al. (2014), using our result in Lemma
1. For completeness, we prove it here.

865

http://www.sciencedirect.com/science/article/pii/S0893608017301545
http://www.sciencedirect.com/science/article/pii/S0893608017301545

BOLLINGER SCHAEFFER

Note that by Equation (3), we have that the conditional expectation is zero, i.e. [E [fi —gioW{ |y] =
0 for each 7 € [n]. Therefore, the mean-squared error is controlled by:

E[llf—gowl|| =E[E[|lf - g0 WT31y]] 6)
<cE|D E [I!szzlily}] (@)
=1
=cE ZE [sziTszi\y]]
=1
=c Y E[V.£V.f] (®)
=1
=cMpr1+ -+))]

where (6) and (8) are by the tower property of conditional expectation, (7) is by the Poincaré in-
equality, and (9) follows from Lemma 1. |

A.3. Conditional Expectation and Minimizing Mean-Squared Error

Theorem 3 Let f(y,z) : Q C R™ — Rwithy € R, z € R™ ¥ be a square integrable function
with respect to a joint density function 7(y, z). Then the conditional expectation g(y) = E[f|y]
is the minimizer of the mean-squared error associated to f. That is, E [(f — g)?] < E[(f — h)?]
where h = h(y) is any function of y.

Note that the risk defined in (2) can be rewritten as

g_[gming " Z E [(fi(Wiy + Waz) — g;(y))?)]
=lorgnlT G

where y, z are the rotated coordinates defined is Section 2.1. Theorem 3 then quickly implies that
the function g = [g1,...,gn|’ with each g; defined by (3)-i.e. the conditional expectation of f;
given y—is indeed the minimizer of the risk (2). We prove Theorem 3 now.

Proof Define the marginal density 7y (y) and conditional density 7y (z|y) in the usual way. For
any function h = h(y) of y, consider its mean-squared error:

E[(f-h?=E[(f—g+g—h)]
=E[(f—9)°] +2E[(f—9)(g—h)] +E[(g—h)’] (10)

Given the definition of g, we have that the cross term reduces to zero:

E[(f - g)(g—)] = / / (0, 2) — 90))(9(w) — h(y)m(y, 2) dz dy

-/ ([06w.2) = swmy) dz) (o) — b))y () dy (D
- (12)

866

REDUCED ORDER MODELING USING NEURAL NETWORKS WITH GRASSMANN LAYERS

where (11) utilizes the representation 7(y, z) = 72y (2|y)my (), and (12) follows from the integral
representation of conditional expectation:

/ (0, 2) — 9(u))mzyy (2ly) dz = / £, 2 zpy (2l) dz — g(y) / raiy (2ly) dz

=E[fly] - g(y)
=0

Since this and (10) hold for arbitrary h(y), if follows that E [(f — g)?] < E [(f — h)?] for any
function h = h(y) of y. [|

867

	Introduction
	Contribution of this work

	Problem Statement
	Active Subspaces
	Network Approximation and Alternating Approach

	Methodology
	Experimental Results and Applications
	Experiment 1: U initialization comparison
	Experiment 2: Comparing methods using NACA0012
	Experiment 3: Dependence on Basis Dimension and Hidden Dimension
	Experiment 4: Comparison with a Bowtie Network
	Experiment 5: Applications to Model Reduction for ONERA and HyshotII

	Conclusion
	Proofs
	Lemma 1
	Theorem 2
	Conditional Expectation and Minimizing Mean-Squared Error

