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Hyperbolic lattices are a revolutionary platform for tabletop simulations of holography and quantum physics in
curved space and facilitate efficient quantum error correcting codes. Their underlying geometry is non-Euclidean,
and the absence of Bloch’s theorem precludes the straightforward application of the often indispensable energy
band theory to study model Hamiltonians on hyperbolic lattices. Motivated by recent insights into hyperbolic
band theory, we initiate a crystallography of hyperbolic lattices. We show that many hyperbolic lattices feature a
hidden crystal structure characterized by unit cells, hyperbolic Bravais lattices, and associated symmetry groups.
Using the mathematical framework of higher-genus Riemann surfaces and Fuchsian groups, we derive a list of
example hyperbolic {p, q} lattices and their hyperbolic Bravais lattices, including five infinite families and several
graphs relevant for experiments in circuit quantum electrodynamics and topolectrical circuits. This dramatically
simplifies the computation of energy spectra of tight-binding Hamiltonians on hyperbolic lattices, from exact
diagonalization on the graph to solving a finite set of equations in terms of irreducible representations. The
significance of this achievement needs to be compared to the all-important role played by conventional Euclidean
crystallography in the study of solids. We exemplify the high potential of this approach by constructing and
diagonalizing finite-dimensional Bloch wave Hamiltonians.
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Hyperbolic geometry plays a paramount role at the fron-
tier of both theoretical and experimental physics. It underlies
holographic descriptions of strongly coupled systems and
models for quantum chaos, quantum gravity, and quantum
entanglement [1–4]. It is fundamental to modern computa-
tional many-body techniques [5–11] and forms the basis for
powerful quantum error correcting codes [12–16]. Recent
experimental realizations of hyperbolic lattices [17–19] in
circuit quantum electrodynamics [20–24] and topolectrical
circuits [25–30] have set the stage for the quantum sim-
ulation of curved space physics using discrete geometries
[31–42]. The corresponding non-Euclidean graphs are suited
to be implemented in various other topological photonics plat-
forms [43]. These cutting-edge efforts complement important
previous experimental simulations of curved space using opti-
cal metamaterials [44–50], ultracold quantum gases [51–61],
electromagnetic waveguides [62], trapped ions [63], and other
platforms [64,65].

Stimulated by these intimate connections to outstanding
open problems in physics, strong interest in the properties of
hyperbolic space resurged in the last two decades. However,
while many important results have been obtained since the
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19th century [66–70], several critical questions about hyper-
bolic space that are relevant to physicists remain unanswered.
Most strikingly, perhaps, due to the absence of Bloch’s the-
orem, the energy spectrum of a single particle hopping on
a hyperbolic lattice can only be obtained by exact numer-
ical diagonalization of the Hamiltonian. This preempts any
treatment of macroscopically large systems even in the nonin-
teracting limit. One way around this issue is to concentrate on
long-wavelength excitations, where a continuum approxima-
tion can capture several features of the discrete spectrum [33].
To also resolve excitations with higher energies, an alternative
approach is to study Bloch waves on hyperbolic tessellations,
which leads to the hyperbolic band theory of Ref. [37]. To
develop a complete band structure theory for hyperbolic lat-
tices that can capture all single-particle eigenstates, on the
other hand, it is mandatory to first identify the crystallographic
symmetries of the lattice and then construct wave functions
from their representations [71]. In this paper, we address the
first part of the problem and outline a Bloch wave theory to
answer aspects of the second part.

The hyperbolic lattices we consider are of {p, q} type,
which means that they are tessellations of the plane by regular
p–gons such that each lattice site has coordination number
q. For (p − 2)(q − 2) = 4, such lattices are tilings of the Eu-
clidean plane by regular polygons, which can only be achieved
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FIG. 1. We consider {p, q} lattices, which are made from regular
p-gons such that the coordination number of each lattice site is q.
The well-known triangular ({3, 6}), square ({4, 4}), and hexagonal
({6, 3}) lattices (first row) constitute tessellations of the Euclidean
plane. Hyperbolic lattices, defined by (p − 2)(q − 2) > 4, are tes-
sellations of the hyperbolic plane of constant negative curvature.
We show three examples (second row), with hyperbolic space rep-
resented by the Poincaré disk model, reviewed in Sec. I, where the
non-Euclidean metric is such that the distance between any two
neighboring sites in a hyperbolic lattice is equal. Lattice sites are
connected by geodesic lines, which are circular arcs that (when ex-
tended) intersect the disk boundary orthogonally. The circular nature
of geodesics in the {7, 3} and {8, 3} lattices is less easily visible
compared to the {8, 4} lattice, but nonetheless present.

by triangles, squares, and hexagons, corresponding to the
solutions {3, 6}, {4, 4}, and {6, 3}, see Fig. 1. On the other
hand, for (p − 2)(q − 2) > 4, we obtain a tessellation of the
hyperbolic plane which we call a hyperbolic lattice. Some
examples are shown in Fig. 1. Obviously, there are infinitely
many integer solutions p and q to this inequality, implying
striking lattice properties. For instance, hyperbolic lattices
can have any p-fold rotation symmetry, in stark contrast to
Euclidean lattices. The high connectivity of such lattices also
implies that their number of sites grows exponentially in the
graph diameter (which is the shortest number of steps to get
from one end of the lattice to the other). To embed these lat-
tices into hyperbolic space, i.e., assign a complex coordinate
to each lattice site, we use the Poincaré disk model, which is
reviewed in Sec. I.

The immense value of crystallography in the theory of
solids stems from the ability to utilize crystal symmetries to
divide macroscopic numbers of lattice sites into unit cells
that are arranged in a well-known manner in a Bravais lat-
tice. In fact, in a bottom-up approach, we may construct
every two-dimensional Euclidean lattice from a finite set of
points {z(1), . . . , z(N )}, called the unit cell, which is repeated
periodically in a Bravais lattice specified by two primitive
translation vectors a1 and a2. (We are restricting ourselves to
symmorphic space groups here for simplicity.) Every lattice
site is then uniquely defined by a pair of numbers (a,n), where
a ∈ {1, . . . , N} is the position inside the unit cell and n =

(n1, n2) ∈ Z2 locates the unit cell within the Bravais lattice
at position n1a1 + n2a2. An analogous construction applies to
Euclidean lattices in higher dimensions, and it is a famous
result that the number of distinct Euclidean Bravais lattices is
finite in every dimension. In two and three dimensions, there
are five and 14 Bravais lattices, respectively.

Once the unit cell and Bravais lattice of a given Euclidean
lattice are identified, the single-particle eigenstates can be
constructed from representations of the translation operators
T̂n of the Bravais lattice, mapping the origin to n1a1 + n2a2.
Due to Bloch’s theorem, all of these representations are one-
dimensional and labeled by crystal momenta q = (q1, q2),
which have as many components as there are primitive transla-
tion vectors, yielding N energy bands. It is important to realize
that Bloch’s theorem, although convenient in the construction
of the eigenstates, is not a necessary piece. If the translations
T̂n were not mutually commuting, then their representations
would not all be one-dimensional. Still we could find these
representations, label them by certain quantum numbers, and
use this structure to construct N energy bands. A well-known
example is, of course, the eigenstates of a particle in a three-
dimensional spherically symmetric potential, where states are
labeled by the usual quantum numbers (n, �, m), with the
dimension of each eigenspace or representation being 2� + 1,
since three-dimensional rotations generally do not commute.

To solve the spectral problem for hyperbolic lattices, it is
therefore crucial to first generalize the concepts of the unit cell
and Bravais lattice to hyperbolic lattices. Only as the second
step do we need to worry about the representations of the
generators of the Bravais lattice. It may not be obvious that
the first step can be taken at all. The central result of this
paper is to provide a comprehensive list of infinitely many
and experimentally relevant examples of {p, q} lattices with
their unit cells and corresponding Bravais lattices. In Fig. 2,
we illuminate the example of the {10, 3} lattice, with a unit
cell of ten sites, whose Bravais lattice is the {10, 5} lattice.
As expected, the generators of the hyperbolic Bravais lattice,
which are constructed explicitly in Sec. III C, do not commute.
More examples of {p, q} lattices and their unit cells and Bra-
vais lattices are collected in Tables III and IV.

Finally, let us have a glimpse at the Bloch wave band
structure that is implied by the crystallography presented in
this paper. The tight-binding Hamiltonian we would like to
diagonalize is

Ĥ = −
∑
i, j

Ai j â
†
i â j, (1)

where the sum runs over the sites of the lattice, â†
i is the

creation operator of a particle at site i, and Ai j is the adjacency
matrix of the hyperbolic lattice. (A is the matrix with entry
1 if i and j are connected by an edge, and zero otherwise.)
Following the idea of Ref. [37], we further assume that some
eigenstates transform as one-dimensional representations un-
der the generators of the Bravais lattice and, therefore, are
simply Bloch waves. Roughly speaking, when going from
one unit cell to the other, Bloch waves ψk(zi ) pick up a phase
factor eikμ , see Fig. 3 for an illustration on the example of the
{10, 3} lattice discussed earlier. The number of independent
momentum components of such a Bloch wave is 2g, where
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FIG. 2. In this paper, we develop the formalism how to apply
the crystallographic notions of unit cell and Bravais lattice to hy-
perbolic lattices. Here we give an example. Top left: The unit cell
of the {10, 3} lattice consists of ten lattice sites (marked red). The
associated analog of the Wigner–Seitz cell or fundamental domain is
the decagon of the {10, 5} lattice (shown in orange). Bottom left:
Therefore, the {10, 5} lattice constitutes the Bravais lattice of the
{10, 3} lattice. Right: By filling the decagons of the {10, 5} lattice
with the ten sites of the unit cell, we obtain all sites of the {10, 3}
lattice.

g � 2 is the unique genus of a Riemann surface that can be
covered by the fundamental domain, see Sec. III. Projecting
the operator âi to the space spanned by Bloch waves, we arrive

FIG. 3. In hyperbolic band theory, Bloch waves pick up a phase
factor eikμ when going from one unit cell to the other or, equivalently,
when traversing the boundary of the fundamental domain. Left: Con-
tinuing the example of the {10, 3} lattice from Fig. 2, we endow the
unit cell with periodic boundary conditions and obtain a graph with
ten sites and coordination number 3 (red circles). The ten edges of
the fundamental domain (orange) give rise to five naive momentum
components, (k1, k2, k3, k4, k5), only four of which are independent.
(A similar redundancy occurs in the Euclidean hexagonal lattice,
see Sec. III B.) Right: We show the band structure of the associated
Bloch wave Hamiltonian in four-dimensional momentum space along
the k = (k1, k2, k3, k4)T = k(1, 1, 1, 1)T direction as a function of k.
Strikingly, position space and momentum space do not have the same
dimension for hyperbolic Bloch waves.

at the problem of diagonalizing the Bloch wave Hamiltonian,

ĤBW = −
∑
k

N∑
a,a′=1

Āaa′ (k)â†
kaâka′ , (2)

with Ā(k) the N × N adjacency matrix of the unit cell en-
dowed with periodic boundary conditions, whose edges are
labeled by entries 1 and eikμ in a well-specified manner. The
eigenvalues of the matrix Ā(k) yield N energy bands that
constitute the Bloch wave spectrum of the given {p, q} lattice.
An example band structure is shown in Fig. 3, with the cor-
responding matrix Ā(k) given by Eq. (60). The construction
of Bloch wave Hamiltonians and their spectra are discussed in
Sec. V B.

We emphasize that every Bloch wave is a solution to
the tight-binding problem on the hyperbolic lattice and thus
yields a valid eigenenergy. We merely lack the informa-
tion on the fraction of eigenstates that transform under a
higher-dimensional representation. Some first steps toward
a complete classification of irreducible representations and
hence a Bloch theorem for hyperbolic Bravais lattices have
been taken in Ref. [72] for finite patterns of the {8, 8} type.
One remarkable finding is that for many choices of such finite
patterns, all irreducible representations are one-dimensional
and hence Bloch wave theory is exact. On the other hand,
instances where two-dimensional representations play a role
could also be identified.

The main result of this paper is to provide a concrete list
of example {p, q} lattices with their unit cells and Bravais
lattices, including several cases for genus g = 2, 3 and five
infinite families. We give a comprehensive introduction to
the mathematical toolbox required to work with hyperbolic
crystallography in practice. We expect these concepts from
topology and geometry, although covered in mathematics text-
books, to be less known to the wider physics community. In
particular, our construction is strongly built on the notion of
patterns on higher-genus Riemann surfaces from Ref. [73].
Our identification of hyperbolic Bravais lattices parallels the
study of periodic boundary conditions on the hyperbolic plane
of Ref. [74].

This paper is organized as follows. We first review hyper-
bolic geometry and the Poincaré disk model in Sec. I. We
then discuss the notion of patterns on higher-genus Riemann
surfaces in Sec. II, which, in particular, allows us to identify
all potential regular hyperbolic Bravais lattices. In Sec. III,
we construct the generators of hyperbolic Bravais lattices and
study the associated Fuchsian groups. In Sec. IV, we discuss
a selection of {p, q} lattices with their unit cells and Bravais
lattices. In Sec. V, we apply our findings to tight-binding
Hamiltonians on infinite hyperbolic lattices. In Appendix A,
we describe a method to efficiently generate large lattices.
Further technical details are collected in Appendices B–E and
referenced in the main text.

I. HYPERBOLIC GEOMETRY

In this section, we introduce the Poincaré disk model
of hyperbolic space and discuss its distance preserving
maps. Using hyperbolic trigonometry, we construct regular
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hyperbolic polygons, which are the basic building block of
our crystallography.

For the study of hyperbolic lattices, we employ the
Poincaré disk model of hyperbolic space [1,69], which con-
sists of all points in the unit disk D = {z ∈ C, |z| < 1}
equipped with the hyperbolic metric:

ds2 = (2κ )2 dx2 + dy2

(1 − |z|2)2
. (3)

Herein, κ is the curvature radius, which sets the relevant
length scale in hyperbolic space. The corresponding constant
negative curvature is K = −κ−2. We denote z = x + iy =
reiφ . The hyperbolic distance between two points z, z′ ∈ D is
given by

d (z, z′) = κ arcosh

(
1 + 2|z − z′|2

(1 − |z|2)(1 − |z′|2)

)
. (4)

The angle between two intersecting lines in D is given by
the usual Euclidean angle. The geodesics of the Poincaré
disk model are circular arcs that intersect the boundary of D
orthogonally. This includes straight lines through the origin.

The isometries of D are the maps that preserve the
hyperbolic distance. They may either preserve or change
orientation. The orientation preserving ones are given by frac-
tional linear transformations

z �→ Mz := az + b

b∗z + a∗ (5)

with complex numbers a and b satisfying |a|2 − |b|2 = 1.
Identifying M with the SU(1, 1)-matrix

M =
(

a b
b∗ a∗

)
, (6)

the orientation preserving-maps form the group

P = PSU(1, 1) = SU(1, 1)/{±1}. (7)

In the following, we denote the unit element of P by 1P . The
statement X = 1P means X = ±1 in the two-dimensional
representation of Eq. (6). Note that if we embedded the
hyperbolic lattice into the Poincaré upper-half plane H in-
stead, the group of orientation preserving isometries would
be PSL(2,R), which is isomorphic to P .

A typical orientation reversing map in the plane is given
by complex conjugation, z �→ z∗. The group of all orientation
reversing isometries of D is given by linear fractional trans-
formations

z �→ az∗ + b

b∗z∗ + a∗ , (8)

and so is also isomorphic to P . Thus, every isometry of
the Poincaré disk can be uniquely decomposed into an
orientation-preserving one that is either combined or not com-
bined with the map z �→ z∗. Formally, the full isometry group
of D is, therefore, the semi-direct product P � Z2. An anal-
ogous, but potentially more familiar situation arises for the
Euclidean orthogonal group O(2) = SO(2) � Z2, as every el-
ement from O(2) can be uniquely written as a proper rotation
from SO(2) that is either combined or not combined with a
reflection (x, y) �→ (x,−y).

The central building blocks of the crystallography pre-
sented in this paper are regular geodesic polygons. A polygon
is called regular if its internal angles are equal and its side
lengths are equal. It is called geodesic if its vertices are
connected by (uniquely determined) geodesic lines. The cir-
cumradius, or simply radius hereafter, of the polygon is the
distance from the center to any of its vertices. In the Euclidean
plane, the internal angles of a regular p-gon sum up to (p −
2)π , whereas the radius can be of arbitrary size. In contrast,
in the Poincaré disk, the internal angles can have any value,
as long as they sum up to a number smaller than (p − 2)π ,
while the radius is uniquely determined by the values of the
angles. Generally, smaller internal angles imply larger radii.
An extreme example is a polygon with all internal angles
approaching zero, so the vertices of this polygon approach
the boundary of D. In the {p, q} lattice, the internal angles
of each p-gon are 2π/q. Consequently, to give another useful
example, a decagon in the {10, 3} lattice has smaller radius,
and thus smaller area, than a decagon in the {10, 5} lattice, as
can be seen in Fig. 2.

We now compute the characteristic lengths of regular p-
gons in {p, q} lattices. It is important to notice that we can
express lengths either in terms of hyperbolic distances, given
by Eq. (4) with the natural unit of length being κ , or in terms of
their coordinates in the Poincaré disk, with the natural length
scale given by the disk radius, which we set to unity. Denote
the vertices of the polygon by z j = r0ei(2π j/p+δ), j = 1, . . . , p,
with δ an arbitrary phase. Then the radius r0 of the polygon in
units of the disk radius is given by

r0 =
√√√√cos( π

p + π
q )

cos( π
p − π

q )
. (9)

The corresponding hyperbolic radius is C = d (r0, 0). Two
other lengths of interest are the shortest hyperbolic distance
from the center of the polygon to an edge, denoted A, and the
hyperbolic side length, denoted 2B, see Fig. 4. Then A, B,C
form a hyperbolic right triangle with internal angles π/p,
π/q, and π/2, and the rules of hyperbolic trigonometry yield
the relations

cos
(π

p

)
= tanh(A/κ )

tanh(C/κ )
, (10)

sin
(π

p

)
= sinh(B/κ )

sinh(C/κ )
. (11)

If the polygon is oriented such that A lies along the positive
real axis, and accordingly z1 = r0eiπ/p is the first vertex, then
Eq. (10) implies that the edge intersects the positive real axis
at a real coordinate a ∈ D, with A = d (a, 0), determined by

cos
(π

p

)
= tanh[2 artanh(a)]

tanh[2 artanh(r0)]
. (12)

Note that tanh[2 artanh(x)] = 2x/(1 + x2). Equations (10)–
(12) reproduce the Euclidean result for a, r0 � 1, because the
hyperbolic metric in Eq. (3) becomes flat for |z| � 1.

We conclude this section with a parametrization of the
geodesic arcs that comprise the edges of a regular hyperbolic
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FIG. 4. Regular hyperbolic polygon, exemplified here by the
central octagon of the {p, q} = {8, 8} lattice. The hyperbolic lengths
A, B,C enclose a right triangle with interior angles π/p (red shaded),
π/2, and π/q. They obey the relations of hyperbolic trigonometry in
Eqs. (10) and (11). The Euclidean distance between the origin and the
vertices is r0 from Eq. (9), with C = d (r0, 0). The polygon intersects
the positive real axis orthogonally at a ∈ D, with a given by Eq. (12)
and A = d (a, 0). The orange lines are parametrized by Eq. (13).

p-gon. Denote the p sides by

Cμ = {(c − ρeiθ )ei2π (μ−1)/p, θ ∈ [−θ0, θ0]}, (13)

with μ = 1, . . . , p. The parameters c, ρ, θ0 are determined by
c − ρ = a and c − ρe−iθ0 = z1 = r0eiπ/p. This is solved by

ρ = a2 − 2ar0 cos(π/p) + r2
0

2r0 cos(π/p) − 2a
, (14)

c = a + ρ, sin(θ0) = r0

ρ
sin(π/p). (15)

The value of the internal angles (2π/q) is arbitrary and en-
ters through r0. In principle, q could be noninteger valued,
although this situation does not arise in the applications con-
sidered here. The formulas derived in this section are also
valid for odd values of p, say, for a regular hyperbolic 7-gon.

II. PATTERNS

In this section, we discuss the concept of patterns, which
are finite hyperbolic graphs embedded into closed Riemann
surfaces, and which determine the size and shape of the unit
cell of hyperbolic lattices. For this purpose, we first recall
the classification of Riemann surfaces M via their number
of holes. We then describe how to determine which patterns
can be drawn onto which surfaces and identify those patterns
that cover the surface with a single face because they are
particularly important for hyperbolic crystallography.

Let M be a two-dimensional connected Riemannian man-
ifold. We call M a Riemann surface in the following. The
uniformization theorem states that every such surface M is
conformally equivalent to a surface with constant curvature
being either +1, 0, or −1. (This means that, when expressed

FIG. 5. Euclidean patterns on the torus of genus g = 1. (a),
(b) {4, 4} patterns and (c), (d) {6, 3} patterns, which are tessellations
of the torus by regular squares and hexagons with the appropriate
coordination number. In stark contrast to hyperbolic surfaces, a torus
can be tessellated with an arbitrary number of faces of a Euclidean
pattern. Indeed, if (F, E ,V ) is a solution of Eq. (16) with χ =
2(1 − g) = 0, then every integer multiple thereof also has χ = 0 and
so also can tessellate the torus. The pattern in (a) is made from 100
squares and 100 vertices, the pattern in (c) from 72 hexagons and 144
vertices. The patterns in (b) and (d) are special because they use only
one face. For the {4, 4} pattern, this requires one vertex; for the {6, 3}
pattern it requires two vertices, see Eq. (21).

in so-called isothermal coordinates, the Riemannian metric
takes the form ds2 = �(x)(dx2 + dy2), where �(x) is such
that the curvature is constant.) If M is simply connected, i.e.,
has no holes, it is thus equivalent to either the sphere S2, the
complex plane C, or the Poincaré disk D. If M has holes,
which can only happen for curvature 0 and −1, then it is either
equivalent to a torus with genus g = 1 (curvature 0) or it is
a hyperbolic surface (curvature −1) of the form D/�, where
� is a so-called Fuchsian group, introduced in Sec. III C. If
the hyperbolic surface is compact, it is fully characterized by
its number of holes, which coincides with its genus g � 2.
Every compact hyperbolic Riemann surface can, therefore, be
thought of as a surface with at least two holes.

Following Ref. [73], we define a {p, q} pattern on a closed
Riemann surface M as a tessellation of M by regular p-gons
such that the coordination number of each vertex is q. Closed
here means that M has no boundary, and therefore such a
pattern is necessarily a q-regular graph without a boundary.
Examples are shown in Figs. 5 and 6. The dual pattern is
obtained by putting a vertex onto each face of the original
pattern. It is easy to see that the dual pattern is then a {q, p}
pattern on M.

Every {p, q} pattern on a closed surface satisfies

pF = 2E = qV, (16)

where F , E , V are the number of faces, edges, and vertices of
the pattern, respectively. It is easy to prove this relation: De-
note the adjacency matrix of the pattern by a, then

∑
i, j ai j =

2
∑

〈i, j〉 1 = 2E and
∑

i, j ai j = q
∑

i 1 = qV . The equality to
pF follows from going to the dual graph, which has the same
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FIG. 6. Hyperbolic {8, 8} pattern on a surface of genus g = 2.
This pattern corresponds to the minimal solution (F0, E0,V0) =
(1, 4, 1) of Eq. (16) for p = q = 8. We use four different colors to
visually distinguish the four edges. We can construct this pattern
by gluing together two tori from Fig. 5(b) and merging the vertices
from each torus into one vertex. Importantly, this pattern uses only
one face. We could not draw two faces of a {8, 8} pattern onto this
surface. Indeed, since the minimal solution has χ = 2(1 − g) = −2,
the doubled solution (2F0, 2E0, 2V0 ) can only be embedded into a
surface with χ = −4 or genus g = 3. Similar restrictions on the
number of faces for a given surface of genus g � 2 apply to all
hyperbolic {p, q} patterns.

number of edges, but faces exchanged for vertices. The Euler
characteristic χ of the pattern is given by

χ = F − E + V. (17)

If χ is even, then the pattern can be embedded into an ori-
entable surface M of genus g [73] with

χ = 2(1 − g). (18)

On the other hand, if χ is odd, then the pattern can be embed-
ded into a nonorientable surface M, but this case will not be
of relevance to us.

Given a solution (F, E ,V ) of Eq. (16), we can generate
more solutions by multiplying the first solution by an arbitrary
integer. Crucially, for hyperbolic {p, q} patterns, the number
of faces F and the genus g � 2 of the surface are not indepen-

dent. This can be understood purely algebraically or, possibly
more intuitively, geometrically.

Algebraically, multiplying a solution (F, E ,V ) of Eq. (16)
by an integer n yields a pattern with (nF, nE , nV ) on a surface
with characteristic nχ . For g � 2, this corresponds to a surface
of higher genus than the original one. Increasing the number
of faces is thus equivalent to increasing the genus for hyper-
bolic patterns. For Euclidean patterns, with g = 1 and χ = 0,
on the other hand, the number of faces is not restricted. We
show some instructive examples in Figs. 5 and 6.

Geometrically, it is clear that the combined area of the
faces of the pattern needs to match the area of the closed
Riemann surface. In the Euclidean case, the size of squares
or regular hexagons is arbitrary, and a matching is possible
for any number of faces. For regular hyperbolic polygons in a
{p, q} pattern, on the other hand, the area of a single polygon
is fixed to A(p, q) = (p − 2)π − p2π

q . The area of the hyper-
bolic surface is 4π (g − 1) via the Gauß–Bonnet theorem, and
so we arrive at the necessary condition

FA(p, q) = 4π (g − 1), (19)

which relates F and g. This condition is satisfied if (F, E ,V )
solves Eq. (16).

For every {p, q}, there exists a minimal solution
(F0, E0,V0) with the smallest number of faces F0 (and there-
fore smallest E0 and V0). To find the minimal solution, start
with F0 = 1 and check whether pF0 is divisible by 2 and q and,
if not, increase F0 by one unit. We restrict admissible minimal
solutions to even values of χ , thus orientable surfaces, multi-
plying by two if the algorithm described above yields an odd
χ . We present a selection of minimal solutions in Table I.

Among the minimal solutions of patterns, the ones with
F0 = 1 stand out. If a {p, q} pattern can be embedded into
a closed surface with only one face, then this implies that
we can consistently define periodic boundary conditions on
the associated regular p-gon with interior angles 2π/q. This
connection has been explained in detail in Ref. [74]. Every
solution with F0 = 1 satisfies

(F0, E0,V0) = (1, p/2, p/q), (20)

TABLE I. Selection of minimal solutions (F0, E0,V0 ) to Eq. (16) with even χ0 = F0 − E0 + V0 for q = 3, 4, 5. For a given {p, q}, the list
gives the smallest genus g0 such that a {p, q}-pattern with F0 faces, E0 edges, and V0 vertices can be drawn onto an orientable surface of genus
g0. Every integer multiple of (F0, E0,V0 ) also yields a {p, q} pattern, but on a surface with higher genus. (An exception is the Euclidean case
with χ0 = 0, where the number of squares or hexagons that can be used to cover a torus is arbitrary.) We highlight in boldface solutions that
constitute a pattern with a single face, since these correspond to potential regular Bravais lattices.

{p, q} F0 E0 V0 χ0 g0 {p, q} F0 E0 V0 χ0 g0 {p, q} F0 E0 V0 χ0 g0

{6, 3} 1 3 2 0 1 {4, 4} 1 2 1 0 1 {4, 5} 10 20 8 −2 2
{7, 3} 12 42 28 −2 2 {5, 4} 8 20 10 −2 2 {5, 5} 4 10 4 −2 2
{8, 3} 6 24 16 −2 2 {6, 4} 4 12 6 −2 2 {6, 5} 5 15 6 −4 3
{9, 3} 4 18 12 −2 2 {7, 4} 8 28 14 −6 4 {7, 5} 20 70 28 −22 12
{10, 3} 3 15 10 −2 2 {8, 4} 2 8 4 −2 2 {8, 5} 10 40 16 −14 8
{11, 3} 12 66 44 −10 6 {9, 4} 8 36 18 −10 6 {9, 5} 20 90 36 −34 18
{12, 3} 2 12 8 −2 2 {10, 4} 4 20 10 −6 4 {10, 5} 1 5 2 −2 2
{13, 3} 12 78 52 −14 8 {11, 4} 8 44 22 −14 8 {11, 5} 20 110 44 −46 24
{14, 3} 3 21 14 −4 3 {12, 4} 1 6 3 −2 2 {12, 5} 10 60 24 −26 14
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TABLE II. All possible {p, q} patterns that can be drawn on
orientable compact surfaces of genus g = 2, 3 with a single face [i.e.,
such patterns are solutions to Eq. (16) with F0 = 1]. The number of
these solutions varies with g. For instance, there are four admissible
patterns for g = 4, 6, but six solutions for g = 5.

{p, q} F0 E0 V0 χ0 g0

{8, 8} 1 4 1 −2 2
{10, 5} 1 5 2 −2 2
{12, 4} 1 6 3 −2 2
{18, 3} 1 9 6 −2 2
{12, 12} 1 6 1 −4 3
{14, 7} 1 7 2 −4 3
{20, 4} 1 10 5 −4 3
{30, 3} 1 15 10 −4 3

hence p must be even and must satisfy p � q. It is easy to see
that four infinite families of such patterns are

{4g, 4g} : (F0, E0,V0) = (1, 2g, 1),

{2(2g + 1), 2g + 1} : (F0, E0,V0) = (1, 2g + 1, 2),

{4(2g − 1), 4} : (F0, E0,V0) = (1, 2(2g − 1), 2g − 1),

{6(2g − 1), 3} : (F0, E0,V0) = (1, 3(2g − 1), 2(2g − 1)),
(21)

where g � 1 is the genus of the embedding surface. These
families obviously generalize the square and hexagonal lat-
tices, {4, 4} and {6, 3}, to higher genus. One can show that
every solution with F0 = 1 and even χ is contained in one of
the following two families: (i) Either q is a multiple of 4, then
the associated pattern is of type

{4m(2n + 1), 4m}, (22)

or (ii) q is odd, so the pattern is of type

{2(2m + 1)(2n + 1), 2m + 1}. (23)

In both cases, m � 1 and n � 0 are integers, and the genus is
g = (2n + 1)m − n. For (m, n) = (g, 0) and (m, n) = (1, g −
1), we recover the four patterns from Eq. (21). For a given
g, more than the four patterns in Eq. (21) may exist. We
summarize the solutions for g = 2, 3 in Table II.

The fact that a {4g, 4g} pattern can be drawn onto a surface
of genus g � 1 using one face and one vertex gives an elegant
way to construct higher-genus surfaces by taking a single
hyperbolic 4g-gon in the Poincaré disk [with interior angles
2π/(4g)] and identifying opposite edges to obtain a closed
manifold. For g = 1, identifying opposite sides of a square
yields a torus, while for g = 2, identifying opposite sides of
an octagon yields a genus-2 surface, and so on. The octagon
case is visualized in Fig. 7. If we wish to equip a hyperbolic
p-gon (with interior angles 2π/q) with periodic boundary
conditions by identifying certain edges, then this is possible
if and only if the corresponding {p, q} pattern can be drawn
onto a closed surface using only a single face. This shows
how the solutions with F0 = 1 are crucial for identifying a
periodic pattern in general hyperbolic lattices. We illuminate
this setup with examples in the next sections. Finally, we note
that we need not necessarily identify opposite edges of the

(1) (2)

(3) (4)

(5) (6)

FIG. 7. Identifying opposite sides of an octagon yields a closed
genus-2 Riemann surface. We show one possible set of steps to
arrive at this well-known result. We only consider the topology and,
therefore, are free to deform the surface in any way. (1) Opposite
edges of the octagon which are to be identified are represented by
the same color. (2) Gluing together the blue edges, we obtain a
prism with triangular base. (3) Identifying the red edges, we obtain
a torus with a rectangular window. The sides of the window are the
yet unidentified green and pink edges. (4) Gluing together the green
edges, we arrive at a torus with a tunnel on its surface. The entrance
and exit of the tunnel are the pink edges. (5) Topologically, this is
equivalent to a torus with two chimneys. (6) Eventually, identifying
the pink rims of both chimneys, we obtain a surface with two handles.

p-gon. Other side-pairings are possible, but not relevant for
our considerations [66,67].

III. HYPERBOLIC CRYSTALLOGRAPHY

In this section, we generalize the basic notions of Eu-
clidean crystallography to the hyperbolic case. For this
purpose, we first discuss unit cells and Bravais lattices in sym-
morphic space groups. We formulate the translation groups in
the square and hexagonal lattice in a fashion that generalizes
to higher genus. We then present the discrete symmetry and
translation groups for hyperbolic lattices with regular Bravais
lattices of the types {4g, 4g} and {2(2g + 1), 2g + 1}. We close
this section with a remark on the order of the point group in
hyperbolic lattices.

A. Unit cell and Bravais lattice

We first recall the crystallographic notions of unit cell
and Bravais lattice. For a detailed introduction, we refer to
Ref. [71]. Given a discrete set of points  = {zi} that consti-
tutes the lattice, there exists a maximal group G acting on the
coordinates that leaves the lattice invariant, called the space
group. We assume in the following that this space group is
symmorphic [71]. The lattice can then be split into unit cells
and a Bravais lattice in the following manner. Each site zi ∈ 
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FIG. 8. Euclidean Bravais lattices have two independent genera-
tors of translations. This implies that momentum space in Euclidean
Bloch wave theory is two-dimensional. Left: In the {4, 4} lattice,
translations are generated by the two primitive translations γ1 and
γ2 from Eq. (28). Both operations commute, which can be written as
γ1γ

−1
2 γ −1

1 γ2 = 1. The latter relation represents the fact that going
(right) around a vertex four times brings one back to where one
started. Right: In the {6, 3} lattice, three generators γ1, γ2, γ3 can be
defined naively, see Eq. (31). However, only two of them are indepen-
dent, since γ1γ

−1
2 γ3 = 1. The remaining two satisfy γ1γ

−1
2 γ −1

1 γ2 = 1
as in the square lattice case.

can be uniquely written as

zi = γ z(a), (24)

where z(a) is an element from a reference unit cell D =
{z(1), . . . , z(N )} ⊂ , which consists of a finite number of
sites, and where γ is an element from a discrete translation
group � ⊂ G, which is the symmetry group of the Bravais
lattice. Roughly speaking, a translation is a symmetry trans-
formation without fixed point. The split in Eq. (24) allows us
to uniquely write the index of zi as i = (γ , a), where γ and a
specify the location of zi in the Bravais lattice and unit cell,
respectively. For such a split to exist, � needs to be a normal
subgroup of G, which follows from the assumption that G is
symmorphic. The corresponding quotient group G = G/� is
the point group of the lattice.

As an example of how to construct a lattice with a given
unit cell and Bravais lattice, consider the Euclidean {4, 4}
lattice in Fig. 8. We decorate a single fundamental square
with a finite number of sites, D = {z(1), . . . , z(N )}, each site
placed within the same square. Since the fundamental square
can cover a torus, we could endow it with periodic boundary
conditions by identifying opposite sides, and the unit cell
would now be embedded on a torus. On the other hand, instead
of covering a torus with a single face, we may also use the
fundamental square to tessellate the Euclidean plane. In this
alternative point of view, when leaving one square by applying
one of the primitive translation vectors of the square lattice,
say γ1, we do not enter the same square but rather enter
the neighboring square. We iterate this translation procedure,
using all sides of the fundamental domain. In this way, we
tessellate the Euclidean plane with repetitions of D and the
resulting periodic set of sites {zi} is a Euclidean lattice with
unit cell D and Bravais lattice {4, 4}.

Clearly, if we started with a fundamental hexagon of the
{6, 3} lattice in the previous example, we would have obtained
a lattice in the Euclidean plane with Bravais lattice {6, 3},
see Fig. 8. It is then very natural to ask whether starting

FIG. 9. Left: The {8, 8} lattice, shown in orange, is a hyperbolic
Bravais lattice with g0 = 2. The eight edges of its central octagon
define four generators of translations, which we call γ1, γ2, γ3, γ4.
Each face of the {8, 8} lattice is reached from the central polygon
by applying a product of the four generators and their inverses. The
Euclidean analog of this construction is shown in Fig. 8. Right: The
unit cell of the {8, 3} lattice has 16 sites (red dots). The corresponding
Bravais lattice is the {8, 8} lattice, with the fundamental octagon
shown in orange. By applying on the original 16-site unit cell each
of the generators γ1, γ2, γ3, γ4 of the {8, 8} lattice and their inverses
once, we generate 8 × 16 = 128 new sites (blue dots). Iterating this
procedure we eventually generate the whole {8, 3} lattice, see Fig. 13.

from a fundamental pB-gon we obtain a lattice whose Bravais
lattice is {pB, qB} for some qB. This expectation turns out to
be true, but not every pair of integers (pB, qB) qualifies for
a potential Bravais lattice. In fact, the construction described
in the previous paragraph relies on assigning consistent peri-
odic boundary conditions to the fundamental polygon. This
is possible if and only if (pB, qB) allows for a solution of
Eq. (16) with F0 = 1, i.e., the fundamental domain can cover
a closed surface with a single face. Obviously, this condition
is satisfied for the Euclidean examples {4, 4} and {6, 3}. In
the hyperbolic case, we see that only certain {pB, qB} lattices,
such as the infinite families {4g, 4g} or {2(2g + 1), 2g + 1},
constitute valid Bravais lattices. Remarkably, there are in-
finitely many Bravais lattices in the hyperbolic plane. We
demonstrate the construction of the {8, 3} lattice by decorat-
ing the fundamental octagon of the {8, 8} Bravais lattice in
Appendix A. The idea is outlined in Fig. 9.

A Bravais lattice will be called regular if its fundamental
domain is a regular polygon, and so is a {pB, qB} lattice for
some pB and qB. This is a severe constraint. For instance,
the internal angles of the fundamental polygon may not all be
equal, while still yielding a valid Bravais lattice. We will see,
however, that many examples that are important for experi-
ments and applications fall into the class of regular Bravais
lattices.

B. Euclidean case

In the next few paragraphs, we return to the Euclidean
example from the previous section and explicitly construct
the translations that facilitate the tessellation of the Euclidean
plane. It is well-known that Euclidean lattices in two dimen-
sions are constructed from five Bravais lattices and 17 possible
space groups, the latter called wallpaper groups in this context
[71]. The five Bravais lattices can be characterized by their
two primitive translation vectors, a1 and a2. Let θ denote the
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angle between a1 and a2. Among the five Bravais lattices,
only the square lattice and hexagonal lattice are regular, i.e.,
|a1| = |a2|, with θ = 90◦ and θ = 120◦, respectively. The
remaining three (oblique, rectangular, centered rectangular)
have |a1| �= |a2| and so are not regular. As elucidated before,
the appearance of the {4, 4} and {6, 3} lattices as regular Bra-
vais lattices in the Euclidean plane is deeply rooted in the fact
that these lattices can cover a genus-one torus with a single
face.

Let us explicitly construct the translation group � for the
{4, 4} Bravais lattice. For a 2 × 2 matrix M, we define its
action on z ∈ C, denoted Mz, through the generalization of
Eq. (6) by (

a b
c d

)
z := az + b

cz + d
, (25)

assuming, of course, that M is such that the denominator is
nonzero. The square lattice shall be aligned as in Fig. 8. We
choose the side length or lattice constant to be a0 = 1. Every
translation of the fundamental square is generated by the maps

z �→ γ1z = z + 1, (26)

z �→ γ2z = z + i, (27)

corresponding to the two primitive translation vectors a1 = 1
and a2 = i in complex notation, and matrices

γ1 =
(

1 1
0 1

)
, γ2 =

(
1 i
0 1

)
. (28)

Clearly, the two operations commute, γ1γ2 = γ2γ1, which can
be written as

γ1γ
−1
2 γ −1

1 γ2 = 1. (29)

We call γ1 and γ2 the generators of the translation group.
Every translation connecting one point of the Bravais lattice
to another can be written as a suitable product of γ1, γ2, and
their inverses. Consequently, Eqs. (28) specify a particular
representation of the translation group � of the {4, 4} lattice.
The abstract presentation of the same group reads

�g=1 = 〈γ1, γ2 | γ1γ
−1
2 γ −1

1 γ2 = 1〉  Z2. (30)

Here we use the standard notation 〈A, B, . . . |X = Y = · · · =
1〉 for a group generated by some A, B, . . . and their inverses
that satisfy the constraints X = Y = · · · = 1. An element of
�, which is a certain ordered product of the generators and
their inverses, is called a word. The group �g=1, of course, is
isomorphic to Z2.

Next we construct the translation group � for the Euclidean
{6, 3} Bravais lattice. The lattice shall be aligned as in Fig. 8.
Translations through the sides of the hexagon are generated
by z �→ γμz = z + eμ, with lattice constant a0 = 1, primitive
vectors e1 = 1, e2 = eiπ/3, e3 = e2iπ/3, and translation gen-
erators

γ1 =
(

1 e1

0 1

)
, γ2 =

(
1 e2

0 1

)
, γ3 =

(
1 e3

0 1

)
. (31)

Note that we have e1 − e2 + e3 = 0 and so

γ1γ
−1
2 γ3 =

(
1 (e1 − e2 + e3)
0 1

)
= 1. (32)

Hence the number of independent generators is two, not three,
just as for the {4, 4} lattice. The translation group of the {6, 3}
lattice is thus given by

�{6,3} = 〈γ1, γ2, γ3 | γ1γ
−1
2 γ3 = γ1γ

−1
2 γ −1

1 γ2 = 1〉
= 〈γ1, γ2 | γ1γ

−1
2 γ −1

1 γ2 = 1〉 = �g=1. (33)

Since γ3 can be expressed in terms of γ1 and γ2, every word
in γ1,2,3 is also a word in γ1,2. The two Euclidean translation
groups are, therefore, isomorphic and fully characterized by
the genus g = 1.

The two Euclidean lattices discussed here are the special
case of g = 1 for the genus-g lattices {4g, 4g} and {2(2g +
1), 2g + 1} analyzed in the following. Although similarities
between the Euclidean and hyperbolic cases remain, the most
striking difference for g � 2 is the fact that the generators
γμ no longer commute. The proper framework to discuss
these noncommuting translations is the language of Fuchsian
groups.

C. Fuchsian groups

A discrete subgroup of P = PSU(1, 1) is called a Fuch-
sian group. It is very natural to expect symmetry groups of
hyperbolic lattices to be Fuchsian groups [1,66,67,70]. In-
deed, under a symmetry transformation of the lattice, two
neighboring sites zi and z j , separated by a hyperbolic distance
d (zi, z j ) = d0 that is determined by p and q, should be mapped
to two neighboring points separated by the same hyperbolic
distance. Since P is precisely the group of transformations
that preserve the hyperbolic distance, the symmetry group
must be made from elements of P . On the other hand, clearly
only a discrete set of transformations will leave the lattice
invariant.

The full space group of the hyperbolic {p, q} lattice is given
by the triangle group:

�(p, q, 2) = 〈 x, y, z | x2 = y2 = z2 = (xy)p

= (yz)q = (zx)2 = 1 〉. (34)

The geometric meaning of the generators x, y, z is not im-
portant for this paper. Suffice to say that this group contains
a reflection along a symmetry axis and thus orientation-
reversing elements, hence is not a subgroup of P , but more
generally referred to as non-Euclidean crystallographic group
[67,70]. On the other hand, we can consider the quotient
�+(p, q, 2) = �(p, q, 2)/Z2 of transformations modulo this
reflection, which consists of orientation-preserving automor-
phisms and thus is a Fuchsian group. Equivalently, the full
space group is given by the semidirect product �(p, q, 2) =
�+(p, q, 2) � Z2. Due to this simple nature of the factor Z2,
we will often ignore the reflection symmetry. We refer to
�+(p, q, 2) ⊂ P as proper triangle group. It has the presen-
tation

�+(p, q, 2) = 〈 A, B | Ap = Bq = (AB)2 = 1P 〉, (35)

with A = xy, B = yz. A particular representation of
the generators A and B through P matrices is given
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by

A =
(

eiα/2 0
0 e−iα/2

)
, (36)

B = 1

1 − r2
0

(
eiβ/2 − r2

0e−iβ/2 r0(1 − eiβ )ei (α−β )
2

r0(1 − e−iβ )e−i (α−β )
2 e−iβ/2 − r2

0eiβ/2

)
,

(37)

with r0 from Eq. (9) and

α = 2π

p
, β = 2π

q
. (38)

Geometrically, A is a rotation by α through the center of a
face (here chosen to be the origin), whereas B is a rotation by
β through a vertex (here chosen to be z1 = r0eiα/2).

The elements of a Fuchsian group are classified as elliptic,
parabolic, or hyperbolic if their trace is less than, equal to,
or greater than 2. A typical elliptic element is given by the
rotation matrix

R(φ) =
(

eiφ/2 0
0 e−iφ/2

)
, (39)

with φ �= 0. Indeed, under R(φ) we have z �→ eiφz and φ is
the angle of rotation. Elliptic elements have one fixed point,
which here is the center of the rotation. A typical hyperbolic
element is given by the matrix

T (τ ) =
(

cosh (τ/(2κ )) sinh (τ/(2κ ))
sinh (τ/(2κ )) cosh (τ/(2κ ))

)
, (40)

with τ > 0. The significance of the parameter τ can be under-
stood from applying T (τ ) to the origin z = 0. We have

0 �→ T (τ )0 = tanh (τ/(2κ )). (41)

Now note that Eq. (4) implies d (z, 0) = (2κ )artanh(|z|). Con-
sequently, under T (τ ), the origin is mapped to the coordinate
on the real axis that is at hyperbolic distance τ from the
origin. This finding, together with the form of T (τ ) that
closely resembles a Lorentz transformation, motivates us to
call T (τ ) a boost transformation and τ the boost parameter
or rapidity. Importantly, like every hyperbolic element of a
Fuchsian group, boosts do not have fixed points. In this sense,
they generalize Euclidean translations to the hyperbolic case.
The generators A and B can be expressed in terms of rotations
and boosts via

A = R(α), (42)

B = R(α/2)T (τ0)R(β )T (−τ0)R(−α/2), (43)

with τ0 = (2κ )artanh(r0).
We are now in a position to characterize the translation

groups associated to Bravais lattices in hyperbolic space. We
define a Fuchsian translation group � as a torsion-free Fuch-
sian group. Torsion-free means that no element γ �= 1 from �

satisfies γ n = 1 for some suitable integer n. In our case, this
is ensured by � being strictly hyperbolic, which means that
all elements are hyperbolic. Obviously, �+(p, q, 2) is not a
Fuchsian translation group, because the generators A and B
satisfy Ap = 1 and Bq = 1.

Let us pause here for a word on notation. The intrinsic
properties of a {p, q} lattice are fully specified by the integers

p and q. This includes, for instance, the value of r0 in Eq. (9),
the hyperbolic distance d0 = d (zi, z j ) between any two neigh-
boring points zi and z j , or the parameters of the regular
geodesic p-gon {Cμ, μ = 1, . . . , p} with internal angles 2π/q
in Eq. (13). In what follows, we will discuss {p, q} lattices and
their associated {pB, qB} Bravais lattices. To distinguish these
two, we denote parameters of the Bravais lattice by a subscript
B, which indicates that we need to replace {p, q} → {pB, qB}
in the corresponding formula.

It is rather easy to construct a representation of the Fuch-
sian translation group � for the regular {pB, qB} Bravais
lattice. We restrict ourselves to the {4g, 4g} and {2(2g +
1), 2g + 1} Bravais lattices in the following. From Eq. (16), it
follows that solutions with F0 = 1 necessarily have even pB.
The fundamental domain is a regular pB-gon, with internal
angles βB, and with edges parametrized by Cμ,B from Eq. (13).
(An example of the fundamental polygon of the {8, 8} Bravais
lattice is shown in Fig. 4.) We center the fundamental polygon
at the origin and align it such that C1,B intersects the posi-
tive real axis orthogonally. Opposite sides of the polygon are
identified. The first generator of �, γ1, is a boost that translates
one fundamental polygon through side C1,B to the neighboring
polygon on the right. Consequently, the transformation

γ1 = T (τ1) (44)

shifts the center of the original polygon to the center of
the neighboring polygon, which again lies on the real axis.
Hence the boost parameter is given by τ1 = 2AB with AB from
Eq. (10). This yields the explicit form

γ1 = 1√
1 − σ 2

(
1 σ

σ 1

)
, (45)

with σ = √
(cos αB + cos βB)/(1 + cos βB) and αB =

2π/pB, βB = 2π/qB. The full set of generators γμ results
from conjugating this boost with a rotation by αB and reads

γμ = R((μ − 1)αB)γ1R( − (μ − 1)αB), (46)

with μ = 1, . . . , pB/2. Since pB is even, the generators are
well-defined.

The Fuchsian translation group of the regular Bravais lat-
tice is given by

�{pB,qB} = 〈γ1, . . . , γpB/2 | X{pB,qB} = 1P〉, (47)

with X{pB,qB} a constraint. For practical purposes, this con-
straint is often unimportant, since the representation of the
generators in terms of the matrices γμ in Eq. (46) automat-
ically satisfies the constraint. We derive this constraint in
Appendix B. The important outcomes of this analysis are (i)
that only 2g of the generators are independent and (ii) that
X{pB,qB} only depends on g and is given by

Xg = γ1γ
−1
2 · · · γ2g−1γ

−1
2g γ −1

1 γ2 · · · γ −1
2g−1γ2g. (48)

Intuitively, this condition means that going (right) around a
vertex 4g times brings one back to where one started. Hence,
the Fuchsian translation group

�g = 〈 γ1, . . . , γ2g | Xg = 1P 〉 (49)

is fully determined by the genus g = g0 of the Bravais lattice.
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D. Point groups

Having identified the Fuchsian translation group �, the
point group is given by G = �(p, q, 2)/�, with �(p, q, 2)
from Eq. (34) being the full space group of the hyperbolic
lattice. Since �(p, q, 2) has a trivial Z2 factor, the same is
true for G, and we could define the point group of orientation-
preserving transformations G+ = G/Z2. Since this is not
common in crystallography, however, we work with G in the
following. We denote the order (number of elements) of G by
|G|. The number |G| = |�(p, q, 2)/�| is also called the index
of � in �(p, q, 2).

In mathematical terms, �g is the surface group of a closed
Riemann surface M with genus g, i.e., it is isomorphic to the
first homotopy group of the surface, �g  π1(M ). The order
of the point group then follows from the following proposition
(8.3) of Ref. [73]: Let P be a {p, q}-pattern on a closed
surface M, and let � ⊂ �(p, q, 2) be an associated subgroup
such that �  π1(M ). Then the index of � in �(p, q, 2) is
|G| = 2pF, where F is the number of faces of P. This allows
us to determine the size of the point group, which, since the
number of finite groups of a certain size is limited, often
determines the point group G and closed surface M. The factor
of 2 corresponds to the Z2 factor in G = G+

� Z2. Examples
of point groups that arise for hyperbolic lattices are given in
the next section.

IV. REGULAR HYPERBOLIC BRAVAIS LATTICES

In this section, we discuss hyperbolic {p, q} lattices with
regular {pB, qB} Bravais lattices. Such a discussion involves,
for a given suitable p and q, specifying the location of sites
in the unit cell and the corresponding integers pB and qB. The
size of the unit cell is denoted by N .

We limit the presentation to those cases where the Bravais
lattice is either of the form {4g, 4g} or {2(2g + 1), 2g + 1},
and we call g the genus of the Bravais lattice for short. (More
accurately, however, it is the genus of the closed Riemann
surface that can embed the unit cell with periodic bound-
ary conditions.) Within this restricted set, several remarkable
infinite families arise that are relevant for experiments with
hyperbolic lattices and applications such as hyperbolic band
theory. Furthermore, for g = 2 and g = 3, we show that be-
sides the members of these infinite families, a few exceptional
cases exist, a behavior that potentially extends to higher gen-
era.

The examples collected in this section have been found
through a systematic search, but via a case-by-case study.
Hence, although we believe that the list within the restrictions
specified is rather complete, we cannot exclude that we missed
outliers. Given the novelty of having a list of experimentally
relevant examples, we believe that such a potential incom-
pleteness can be tolerated. Our search method is described in
Appendix E. For future work, it will be exciting to specify
criteria which are both necessary and sufficient for a {p, q}
lattice to have a regular Bravais lattice of the above kind.

A. Infinite families

We first discuss five infinite families of {p, q} lattices and
their according regular Bravais lattices. They are constructed

TABLE III. We identify five infinite families of {p, q} lattices
whose Bravais lattices are regular {4g, 4g} or {2(2g + 1), 2g + 1}
lattices. The number of corresponding sites in the unit cell is denoted
by N . The construction of these families, namely, the placement of
the unit cell inside the fundamental domain of the Bravais lattice, is
shown in Figs. 10 and 11.

{p, q} {pB, qB} N

{4g, 4g} {4g, 4g} 1
{2g + 1, 2(2g + 1)} {2(2g + 1), 2g + 1} 1
{2(2g + 1), 2g + 1} {2(2g + 1), 2g + 1} 2
{4g, 4} {4g, 4g} 2g
{2(2g + 1), 3} {2(2g + 1), 2g + 1} 2(2g + 1)

from systematically placing unit cell sites in the fundamen-
tal polygons of either the {4g, 4g} or the {2(2g + 1), 2g + 1}
Bravais lattices. Here, systematically means that the placing
naturally extends to arbitrarily large genus g. Furthermore, the
well-known Euclidean cases are recovered in the limit g = 1.
The five families are listed in Table III. We have explicitly
verified the entries in this table for all g � 8, which is much
beyond what is experimentally relevant. It is very plausible
that their construction applies to g > 8. Therefore, we will
continue to call these families infinite.

The first family is obtained by placing a single unit cell site
(N = 1) into the center of each face of the {4g, 4g} Bravais
lattice, see Fig. 10. Applying the Fuchsian translation group
to this single site, we generate the dual lattice of the Bravais
lattice, which is again the {4g, 4g} lattice. In the Euclidean

FIG. 10. The {4g, 4g} and {2(2g + 1), 2g + 1} Bravais lattices
give rise to the first three infinite families in Table III in a simple
fashion. By placing a single site into the center of the fundamental
polygon, we generate the dual {4g, 4g} (left column) and {2g +
1, 2(2g + 1)} lattices (middle column) with a unit cell of size N = 1.
Furthermore, the {2(2g + 1), 2g + 1} lattice is generated from the
{2(2g + 1), 2g + 1} Bravais lattice by placing the two unit cell sites
onto vertices of the fundamental polygon (right column). All three
constructions directly generalize the Euclidean case (g = 1) to higher
genus.
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case, this generates the {4, 4} lattice from the {4, 4} regular
Bravais lattice. The size of the point group, due to F0 = 1 for
{p, q} = {4g, 4g}, is |G| = 2p. The corresponding point group
is the dihedral group Dp, consisting of rotations by 2π/p and
reflections along a symmetry axis.

The second family is obtained in a similar fashion by
placing a single unit-cell site (N = 1) into the center of each
face of the {2(2g + 1), 2g + 1} Bravais lattice. The {p, q}
lattice obtained in this manner is the {2g + 1, 2(2g + 1)} lat-
tice, see Fig. 10. For g = 1, this construction generates the
triangular {3, 6} lattice from the {6, 3} lattice. Since {p, q} =
{2g + 1, 2(2g + 1)} implies F0 = 2, the size of the point group
is |G| = 4p and the point group is the dihedral group D2p.

The third family is generated by placing two unit cell sites
(N = 2) on two neighboring vertices of the fundamental poly-
gon of the {2(2g + 1), 2g + 1} Bravais lattice. Applying the
Fuchsian translation group, we arrive at the {2(2g + 1), 2g +
1} lattice, see Fig. 10. In the Euclidean example, we generate
the hexagonal {6, 3} lattice from the {6, 3} lattice. The point
group of the {p, q} = {2(2g + 1), 2g + 1} lattice is, again, the
dihedral group Dp. It is well-known that the triangular lattice
is the sublattice of the hexagonal lattice. How this result gen-
eralizes to the hyperbolic case is discussed in Appendix C.

The fourth family generalizes the Euclidean case in a way
less obvious than the previous examples. Given the fundamen-
tal 4g-gon of the {4g, 4g} Bravais lattice, we place N = 2g
unit cell sites on the centers of its first 2g edges, see Fig. 11.
This generates the {4g, 4} lattice with coordination number
4. For g = 1, we obtain the {4, 4} lattice from the {4, 4}
Bravais lattice, mutually rotated by an angle of π/4, with a
nonminimal unit cell. Indeed, in the Euclidean case, we could
identify the smaller squares as the fundamental domain and
so obtain a unit cell with one site. This is because the {4, 4}
lattice is itself a Bravais lattice. In the hyperbolic case with
g > 1, the {4g, 4} lattice is a Bravais lattice only if g is odd
so we can write g = 2g′ − 1. In this case, we can identify a
smaller fundamental domain for a Bravais lattice of genus g′,
as explained in the caption of Fig. 11, whereas for even g this
is not possible. The order of the point group is |G| = 2pF0

with F0 = 1 (F0 = 2) for g odd (even). In the first case, the
point group is the dihedral group Dp.

The fifth family is obtained from the {2(2g + 1), 2g + 1}
Bravais lattice. By placing N = 2(2g + 1) unit cell sites, at
radius r0, facing the edges of the fundamental polygon of the
Bravais lattice, we obtain the {2(2g + 1), 3} lattice with coor-
dination number 3, see Fig. 11. The {10, 3} lattice discussed
in Fig. 2 falls into this family. The Euclidean case corresponds
to placing a smaller hexagonal lattice into a larger hexagonal
Bravais lattice and, again, in this case a smaller unit cell can
be identified because the {6, 3} lattice is itself a Bravais lattice.
In the hyperbolic case, as explained in the caption of Fig. 11,
this is only possible if 2g + 1 is a multiple of 3. The order
of the point group is |G| = 2pF0, with F0 = 1 (F0 = 3) for g
a multiple of three (else). For F0 = 1, the point group is the
dihedral group Dp.

B. Exceptional cases for g = 2 and g = 3

The list of all {p, q} lattices for g = 2 and g = 3 with a
regular Bravais lattice of type {4g, 4g} or {2(2g + 1), 2g + 1}

FIG. 11. Top row: The infinite family of {4g, 4} lattices has a unit
cell of 2g sites (red dots), which are placed in the edge centers of
the fundamental polygon of their {4g, 4g} Bravais lattice. If g is odd,
we can write g = 2g′ − 1. In this case, the lattices are themselves
{4(2g′ − 1), 4} Bravais lattices of genus g′ and a smaller unit cell can
be identified. For even g, on the other hand, such a reduction is not
possible. Bottom row: The infinite family of {2(2g + 1), 3} lattices
has a unit cell of 2(2g + 1) sites (red dots) that are facing the edges of
the fundamental polygon of their {2(2g + 1), 2g + 1} Bravais lattice.
If 2g + 1 is a multiple of 3, we can write 2g + 1 = 3(2g′ − 1) and
the lattices are {6(2g′ − 1), 3} Bravais lattices with a reduced unit
cell and smaller fundamental domain. For other values of g, again,
such a reduction is not possible.

is presented in Table IV. The five infinite families from
Table III yield ten of the entries, but four entries are excep-
tional, because they do not fall into the infinite families. In the
future, it will be important to study the exceptional cases for
g > 3 and see if they generalize to infinite families or whether
they are genuinely exceptional.

For Bravais lattices of genus g = 2, the {8, 3} and {4, 8}
lattices are exceptional, see Fig. 12. The {8, 3} lattice, as
also discussed in Fig. 9, has a 16-site unit cell inside the
fundamental octagon of the {8, 8} Bravais lattice. The number
of unit cell sites matches V0 = 16 obtained from Eq. (16) for
(p, q) = (8, 3). The order of the point group follows from
F0 = 6 to be |G| = 2 × 48. The ensuing pattern tessellates the
so-called Bolza surface and the point group coincides with the
full automorphism group of the latter, which is known explic-
itly. The {4, 8} lattice has a unit cell of two sites that are placed
on specific edges of the fundamental octagon of the {8, 8}
Bravais lattice. Again, the number of unit-cell sites matches
the prediction V0 = 2 from Eq. (16) for (p, q) = (4, 8). The
size of the point group with F0 = 4 is |G| = 2 × 16.

The exceptional cases for g = 3 Bravais lattices are the
{7, 3} and {4, 12} lattices, see Fig. 12. The unit cell of
the {7, 3} features 56 sites. The underlying Bravais lattice
is the {14, 7} lattice. Note that the number of unit cell sites
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TABLE IV. List of hyperbolic {p, q} lattices with regular {4g, 4g}
or {2(2g + 1), 2g + 1} Bravais lattices of genus g = 2, 3. The num-
ber of unit cell sites is denoted by N . The values of V0 and g0

correspond to the minimal solution of Eq. (16) for given (p, q), thus
(N, g − 1) is an integer multiple of (V0, g0 − 1). The unit cells and
fundamental domains of these lattices are shown in Figs. 10–12.

{p, q} {pB, qB} V0 g0 N g

{8, 3} {8, 8} 16 2 16 2
{8, 4} {8, 8} 4 2 4 2
{4, 8} {8, 8} 2 2 2 2
{8, 8} {8, 8} 1 2 1 2
{10, 3} {10, 5} 10 2 10 2
{10, 5} {10, 5} 2 2 2 2
{5, 10} {10, 5} 1 2 1 2
{12, 4} {12, 12} 3 2 6 3
{4, 12} {12, 12} 1 2 2 3
{12, 12} {12, 12} 1 3 1 3
{7, 3} {14, 7} 28 2 56 3
{14, 3} {14, 7} 14 3 14 3
{14, 7} {14, 7} 2 3 2 3
{7, 14} {14, 7} 1 3 1 3

is twice the value of V0 = 28 obtained for (p, q) = (7, 3)
from Eq. (16) and, accordingly, g = 3 is larger than the min-
imal solution g0 = 2. The embedding Riemann surface is the

FIG. 12. Among the 14 hyperbolic lattices listed in Table IV,
four do not fall into one of the five infinite families from Table III.
These four exceptional cases are shown here together with their unit
cell (red dots) and fundamental domain of the Bravais lattice (orange
polygon). The {8, 3} lattice and its unit cell have also been discussed
in Fig. 9

so-called Klein quartic with full automorphism group of order
|G| = 2 × 168, which coincides with the point group here due
to F = 24. For the {4, 12} lattice, the two unit cell sites are
located on specific edges of the fundamental dodecagon of
the {12, 12} Bravais lattice. Again, the number of unit cell
sites is twice the value of V0 = 1 obtained from Eq. (16) from
(p, q) = (4, 12). The size of the point group follows from
F = 6 and is given by |G| = 2 × 24.

V. ENERGY SPECTRA OF TIGHT-BINDING
HAMILTONIANS

In this section, we apply the crystallographic division
of hyperbolic lattices into unit cells and Bravais lattices to
address the problem of determining the energy spectra of
tight-binding Hamiltonians. After discussing the general case,
we specify to Bloch waves and the computation of their en-
ergy bands. The construction crucially relies on the possibility
to uniquely write a lattice site zi, as in Eq. (24), as a product
of a Fuchsian translation, γ ∈ �g, and a site from a reference
unit cell, z(a) ∈ {z(1), . . . , z(N )}, namely,

zi = γ z(a). (50)

A canonical way to enumerate the infinite, but discrete, set of
Fuchsian translations γ is described in Appendix A.

A. Tight-binding Hamiltonians on infinite lattices

In this section, we apply hyperbolic crystallography to dra-
matically simplify the spectral problem for the tight-binding
Hamiltonian Ĥ from Eq. (1) on infinite hyperbolic lattices.
The Schrödinger equation in coordinate representation is
given by

−
∑

j

Ai jψ (z j ) = Eψ (zi ) (51)

for every site i, with the sum on the left extending over all
lattice sites of the infinite lattice, and Ai j the adjacency matrix.
We introduce a function A(z, z′) such that

Ai j = A(zi, z j ). (52)

In the following, we consider an infinite hyperbolic {p, q}
lattice, denoted , with regular {pB, qB} Bravais lattice being
either the {4g, 4g} or {2(2g + 1), 2g + 1} lattice.

We divide  into patches of unit cells, each contained in
a fundamental polygon of the Bravais lattice, and choose a
reference unit cell D = {z(1), . . . , z(N )} ⊂ . In Eq. (51), we
write zi = γ z(a) as in Eq. (50). Furthermore, every neighbor-
ing site of zi must be of the form γ γ ′z(b), with some γ ′ ∈ �

and b ∈ D. Hence we arrive at

−
∑
γ ′∈�

∑
b∈D

A(z(a), γ ′z(b) )ψ (γ γ ′z(b) ) = Eψ (γ z(a) ). (53)

Crucially, although written as an infinite sum over elements
of �, only q terms on the left-hand side of this equation are
nonzero, with A(z(a), γ ′z(b) ) = 1. The nonvanishing contri-
butions correspond to those γ ′ ∈ � that yield a neighboring
site of zi. It is straightforward to determine these q group
elements for each z(a), as they must satisfy d (γ γ ′z(b), γ z(a) ) =
d (γ ′z(b), z(a) ) = d0, with nearest-neighbor distance d0. Here
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we used the invariance of the hyperbolic distance under
isometries.

The Hamiltonian for the infinite lattice is invariant under
a simultaneous Fuchsian translation of all sites, i.e., zi → γ zi

with γ ∈ �. This implies that the choice of the reference unit
cell, i.e., the value of γ , cannot affect the solution of Eq. (53).
Formally, define the group action � on the Hilbert space
of wave functions as (Tγ ψ )(z) = ψ (γ −1z). Then an overall
factor Tγ −1 can be extracted from Eq. (53) and we arrive at

−
∑
γ ′∈�

∑
b∈D

A(z(a), γ ′z(b) )ψ (γ ′z(b) ) = Eψ (z(a) ), (54)

which is equivalent to setting γ = 1P . Equation (54) is one
of the central results of this paper, and the key application of
hyperbolic crystallography to tight-binding Hamiltonians. We
accomplished to reduce the eigenvalue problem in Eq. (51),
which needs to be solved for the infinite number of graph
sites zi, to a set of N coupled equations for the unit cell sites
z(a). Each of these equations features only a finite number
of nonvanishing terms. This reduction needs to be compared
to the significance of Euclidean crystallography in studying
Euclidean lattice models, where the band structure is typically
obtained from a few lines of calculation after the unit cell has
been identified.

As with every symmetry in quantum mechanics, the
translation invariance of the Hamiltonian implies that its
eigenfunctions belong to irreducible representations (irreps)
of �. Assume that these irreps are labeled by k and that ψk is
a wave function in the corresponding eigenspace of dimension
d (k) � ∞ over C with energy Ek . If φkm(z), m = 1, . . . , d (k),
is a basis of the eigenspace, then we write

ψk (z) =
d (k)∑
m=1

cm(z)φkm(z), (55)

and the coefficients cm transform linearly under � as γ : cm �→∑
m′ Dmm′ (γ )cm′ with a matrix D(γ ) satisfying D(γ1γ2) =

D(γ1)D(γ2). Writing c(a)
m = cm(z(a) ), we arrive at

−
∑
γ ′∈�

∑
b∈D

d (k)∑
m′=1

A(z(a), γ ′z(b) )Dmm′ (γ ′)c(b)
m′ = Ec(a)

m . (56)

The corresponding number of linear coupled equations for the
coefficients c(a)

m that determine the energy Ek is N × d (k).
Together, Eqs. (54) and (56) constitute the first step toward
computing the eigenvalues and band structure of the tight-
binding Hamiltonian Ĥ .

B. Bloch wave theory

In this section, we sketch the implications of Eq. (56) for
one-dimensional representations [d (k) = 1]. We find that in
this case, k → k = (k1, . . . , k2g)T . The corresponding eigen-
functions ψk(z) are Bloch waves and lead to an intriguing
band structure. A detailed study of the related Bloch wave
theory for hyperbolic lattices will be presented elsewhere.

For Euclidean lattices, the translation group �g=1 
Z2 is Abelian and so all irreducible representations are
one-dimensional (Bloch’s theorem). We label Euclidean trans-
lations by n ∈ Z2 and have

ψ
(Eucl)
k (γnx) = eik·nψ (Eucl)

k (x), (57)

with the crystal momentum k labeling the irreducible repre-
sentations. For hyperbolic lattices, �g is non-Abelian and so
not all irreducible representations are one-dimensional. On the
other hand, it is natural to expect that some eigenfunctions
ψ (z) of Ĥ transform according to a one-dimensional repre-
sentation, i.e., satisfy

ψk(γμz) = eikμψk(z), (58)

with generalized crystal momentum k = (k1, . . . , kpB/2) and
the index μ = 1, . . . , pB/2 counting the number of mo-
mentum components. We refer to functions ψk(z) satisfying
Eq. (58) as Bloch waves. They are also called automorphic
forms with respect to the group �g ⊂ P . Note that the condi-
tion Xg = 1 from Eq. (48) is automatically satisfied for Bloch
waves. Importantly, the number of independent momentum
components of k is 2g. Hence, for hyperbolic Bloch waves
(g > 1), the dimension of coordinate and momentum space
differ.

The eigenvalue Ek of a Bloch wave with momentum k is
obtained from Eq. (56) by inserting D(γμ) = eikμ . This results
in a Schrödinger equation that can be written as

−
∑
b∈D

Āab(k)c(b) = Ekc(a). (59)

For every k, the possible eigenvalues Ek of Bloch waves fol-
low from diagonalizing the k-dependent N × N matrix Ā(k).
We call the single-particle Hamiltonian ĤBW constructed from
Ā(k) in Eq. (2) the Bloch wave Hamiltonian.

As a nontrivial example, we compute the matrix Ā(k) for
the ten-site unit cell of the {10, 3} lattice shown in Fig. 3 in
the introduction. We have

Ā(k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 eik1 0 0 0 1
1 0 1 0 0 0 eik2 0 0 0
0 1 0 1 0 0 0 eik3 0 0
0 0 1 0 1 0 0 0 eik4 0
0 0 0 1 0 1 0 0 0 eik5

e−ik1 0 0 0 1 0 1 0 0 0
0 e−ik2 0 0 0 1 0 1 0 0
0 0 e−ik3 0 0 0 1 0 1 0
0 0 0 e−ik4 0 0 0 1 0 1
1 0 0 0 e−ik5 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (60)
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The generators of the {10, 5} Bravais lattice satisfy
γ1γ

−1
2 γ3γ

−1
4 γ5 = 1P , see Appendix B, which implies k5 =

−(k1 − k2 + k3 − k4). For any given k = (k1, k2, k3, k4), it
is straightforward to determine the eigenvalues of Ā(k). An
example band structure is shown in Fig. 3 in the introduction.

VI. FINITE-SIZED SYSTEMS AND
EXPERIMENTAL RELEVANCE

The results presented in this paper concern infinitely ex-
tended hyperbolic lattices, where the translation symmetry
is associated to the infinite Fuchsian group of the Bravais
lattice. However, both from an experimental and theoretical
perspective, finite-sized systems are important descendants.
Experimentally, only a finite number of vertices can be re-
alized and we need to understand how well finite-sized graphs
are captured by the crystallography outlined here. On the
theoretical side, only finite systems can be used for compu-
tational many-body techniques such as exact diagonalization.
It is thus imperative to quantify to which extent infinite hyper-
bolic {p, q} lattices can be modeled by finite hyperbolic {p, q}
graphs.

Both demonstrations of hyperbolic lattices in circuit quan-
tum electrodynamics [17] and topoelectric circuits [19]
utilized a flake geometry, consisting of bulk sites with co-
ordination number q and boundary sites with coordination
number < q. We expect the bulk sites to be captured by the
crystallography outlined in this paper, but not the boundary
sites. Crucially, the ratio between boundary and bulk sites
converges to a finite number of order O(1) even for very large
lattices. As a result, the contribution of modes localized on
the boundary onto any observable is always significant. Such
experiments are, therefore, not suited to probe the intrinsic
bulk properties of hyperbolic lattices as described by the crys-
tallography here. It is, however, possible to a posteriori isolate
or remove the boundary contribution to an observable such
as the energy spectrum if a theoretical model for the latter
exists. Such an approach was carried out in Refs. [32,75] for
the Hofstadter butterfly—although performed on numerical,
not experimental data. It was found that some features of the
distinct bulk and boundary contributions can be identified in
this manner.

We emphasize that the omnipresence of the boundary in
any planar, finite-sized hyperbolic graph is a genuine feature
of hyperbolic lattices. Nonetheless, our paper reveals two
ways an experimental simulation of infinite hyperbolic space
can be achieved in topoelectrical circuits, because they need
not be planar graphs.

(1) Near-term implementation goal. Bloch wave physics of
infinite lattices can be emulated by realizing circuits as the one
shown in Fig. 3 for the ten sites of the unit cell of the {10, 3}
lattice. Each site has a coordination number of three. When
signals pass certain edges, they pick up a complex phase eiφ(k)

corresponding to the crystal momentum k = (k1, k2, k3, k4).
To realize such a lattice, a tunable complex-phase element
needs to be developed such that φ(k) can be varied exter-
nally. The resulting measured spectrum will agree with the
one derived from hyperbolic band theory, i.e., Eq. (60), in
the noninteracting limit. By construction, such a circuit only
realizes the one-dimensional representations of the translation

group. However, by introducing nonlinear, nonreciprocal, or
non-Hermitean topoelectric circuit elements, more complex
situations can be simulated [27]. First steps toward realizing
this near-term goal have been made and will be reported
elsewhere.

(2) Long-term implementation goal. The {p, q} patterns
discussed in this paper truly represent finite hyperbolic lattices
with periodic boundary conditions and thus are ideal candi-
dates to realize genuine hyperbolic bulk systems. It has been
found theoretically in Ref. [75] that spectra on {p, q} patterns
(for fixed p and q) with increasing number of vertices V ∼
O(100) − O(1000) quickly converge to a well-defined limit
that can be taken as the infinite system limit. Hence, realizing
a {p, q} pattern with a few hundred sites in experiment would
constitute an excellent emulation of hyperbolic space. This
number of sites is not unrealistic for topolectrical circuits that
can be scaled easily, but the highly nonplanar nature of the
adjacency graph places these setups beyond what is exper-
imentally feasible right now. We believe, however, that this
obstacle will eventually be overcome and that {p, q} patterns
will play a pivotal role in the simulation of hyperbolic space
in the future. Importantly, experimental realizations of {p, q}
patterns would include all eigenstates, typically transforming
in both one- and higher-dimensional representations of the
translation group. Any deviations between predictions from
Bloch wave theory and measured data then indicates an effect
resulting from the higher-dimensional representations.

Our discussion of (2) revealed that {p, q} patterns are al-
ready at this stage a very valuable computational tool for the
study of bulk hyperbolic physics. Their numerical implemen-
tation in combination with exact diagonalization allows us to
perform a well-defined infinite system limit as the number of
vertices V → ∞, which corresponds to the genus g → ∞.
This technique was applied to obtain the pure bulk contribu-
tion to the Hofstadter butterfly spectrum on hyperbolic lattices
in Ref. [75].

VII. SUMMARY AND OUTLOOK

In this paper, we have developed a crystallography for
infinite hyperbolic {p, q} lattices. By utilizing the notion of
patterns on Riemann surfaces, we identified regular {pB, qB}
lattices that constitute Bravais lattices. We then explicitly con-
structed examples of {p, q} lattices whose Bravais lattices are
of this type and discussed the associated unit cells. Among the
examples are five infinite families and a handful of exceptional
cases for genus two and three, many of which we expect to
be relevant for advancing our understanding of hyperbolic
lattices in future studies. The explicit formulas for Fuchsian
translation groups constructed in this paper bridge the gap
between abstract mathematics and concrete calculations, and
will be crucial in practical applications. The present paper,
therefore, lays the foundation for applying powerful concepts
of solid state physics, such as crystal momentum or Bloch
waves, to hyperbolic lattices.

A number of pressing questions are raised by the results
presented here. Here, as an outlook, we point out two of them.

(1) Classification of {p, q} lattices. In the present paper,
we only searched for hyperbolic lattices with regular Bravais
lattices. We do not know whether every {p, q} lattice has a
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regular Bravais lattice. Given the small set of lattices we iden-
tified from our systematic search, we expect that large classes
of {p, q} lattices have irregular Bravais lattices. For instance,
such a Bravais lattice can have a fundamental domain that
is a polygon whose internal angles are not all equal. This
expectation is also supported by the Euclidean case, where
only two out of five Bravais lattices are regular. Furthermore,
even within the set of regular Bravais lattices, we only dis-
cussed those of type {4g, 4g} or {2(2g + 1), 2g + 1}, because
their Fuchsian translation group �g is easily constructed. On
the other hand, more regular Bravais lattices such as {4(2g −
1), 3} and {6(2g − 1), 3} follow from F0 = 1. We found that
some {p, q} lattices seem to feature these Bravais lattices, but
leave a conclusive study for future investigation.

(2) Representation theory. Equation (56) constitutes the
first step toward solving the spectral problem for the tight-
binding Hamiltonian on an infinite hyperbolic lattice, i.e.,
determining the single-particle energy band structure. We
have outlined how one-dimensional representations of the
group �g lead to Bloch wave theory for hyperbolic lattices.
It will be extremely exciting to study higher-dimensional
representations of spatial isometries in the future. First, impor-
tant results in this direction have been obtained in Ref. [72].
Therein, all possible finite-sized patterns (or clusters) of the
{8, 8} Bravais lattice with up to Vmax = 25 sites have been
determined together with their ensuing translation groups
�′ ⊂ �g, which are normal subgroups of the Fuchsian group
of the infinite {8, 8} lattice. If the factor group �/�′ for a
given pattern is an Abelian group, then all its representations
are one-dimensional and Eq. (58) is true for all eigenstates—
hyperbolic band theory is exact on these patterns. If, on
the other hand, �/�′ is a non-Abelian group, then higher-
dimensional representations typically occur. A remarkable
finding of Ref. [72] is that a sizable fraction of groups �/�′ is
Abelian. Importantly, regardless of the commutation proper-
ties of �/�′, every Bloch wave with a suitable k is a solution
to the Schrödinger Eq. (51) on the hyperbolic lattice or pat-
tern, and hence studying the one-dimensional representations
is always important.
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APPENDIX A: GENERATING FINITE
HYPERBOLIC LATTICES

In this Appendix, we show how to efficiently and systemat-
ically create large hyperbolic lattices by applying the Fuchsian
translation group to a single unit cell.

One way of computing the coordinates of a large, regular
hyperbolic tessellation of the Poincaré disk is to start with
a single p-gon and apply products of the generators A and
B of the proper triangle group �+(p, q, 2) in Eq. (35). This
method is conceptually simple and can be applied for any
{p, q} lattice. However, since elements from �+(p, q, 2) have
fixed points, this method suffers the drawback that lattice sites
are duplicated several times with every iteration. Therefore, at
the end of the procedure, the duplicated sites need to be identi-
fied and eliminated, which can be numerically challenging as
the sites accumulate close to the Poincaré disk boundary for
large lattices. In addition, creating the lattice this way does not
immediately yield a systematic labeling of sites.

An alternative and efficient way of computing the coor-
dinates of large hyperbolic lattices is implied by the results
presented here. For this, we first need to digress to discuss
the nature of elements of the Fuchsian translation group �g.
Every element of �g is a product of the generators γμ, μ =
1, . . . , pB/2, and their inverses. Since it would be cumber-
some to always mention the inverses separately, we utilize
that (γμ)−1 = γpB/2+μ and will hereafter refer to γμ with
μ = 1, . . . , pB as the generators.

Every γ ∈ �g is then a word of specific length n in the gen-
erators γμ, i.e., a product of n generators with a well-defined
order. For a word of length n, we write

γ = γμ1 · · · γμn , (A1)

with μi ∈ {1, . . . , pB}. The n-tuple or vector �μ =
(μ1, . . . , μn) specifies the element γ . Thus the discrete
but infinite set of nontrivial Fuchsian translations can be
labeled by integer vectors �μ of arbitrary length n � 1, and
the discrete index i in Eq. (50) corresponds to a discrete index
(a, �μ).

To determine the number of words of length n within a
group that is generated by a finite number of generators is
called the word problem for the group. The number of naive
products of length n is pn

B in our case, but the number of
words of length n is smaller. First, whenever the combination
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FIG. 13. We show how to efficiently create large samples of the {8, 3} lattice, without repetitions of sites, by applying the Fuchsian
translation group �2 to the 16-site unit cell. The nth generation consists of all points that are obtained by applying words in the generators of
�2 of length up to n � 0. The corresponding number of sites in the nth generation is 16 (n = 0), 144 (n = 1), 1040 (n = 2), and 7312 (n = 3).
The plots at the bottom show the corresponding eigenvalues ε j of the adjacency matrix. The spectrum of the latter is contained in the interval
(−3, 3). The lowest eigenvalue (highlighted red in each plot) has a sizable gap from −3, a characteristic feature of hyperbolic lattices.

γμγ −1
μ = 1 appears, the word size is reduced. Second, con-

straints like Xg = 1 in �g lead to further reductions. As an
example, for the {8, 8} Bravais lattice with eight generators,
we have γ1γ

−1
2 γ3γ

−1
4 = γ −1

4 γ3γ
−1
2 γ1 and other resulting re-

lations, and the number of words of length n = 1, 2, 3 is
8, 56, 392, whereas the number of naive products is 8n =
8, 64, 512. In practice, solving the word problem is not diffi-
cult when using the particular representation of the generators
γμ from Eq. (46).

Let us now describe our algorithm to create hyperbolic
lattices. Assume the {p, q} lattice has a unit cell of size N
with coordinates {z(1), . . . , z(N )} ⊂ D and a regular {pB, qB}
Bravais lattice. We define the nth generation lattice as the set
of all points that are generated by applying words of length up
to n in the generators of �{pB,qB} to the unit cell. The zeroth
generation is just the unit cell, the first generation contains the
unit cell and all points obtained from applying each generators
once, hence (pB + 1)N total sites, and so on. In Fig. 13 we
show, as an example, how the {8, 3} lattice, with 16-site unit
cell and {8, 8} Bravais lattice, is generated in this manner. The
lowest eigenvalue of the adjacency matrix is found to be larger
than −3 (with coordination number q = 3 in the example) for
all n. This gap is a characteristic feature of hyperbolic lattices
and surfaces and is expected to converge to a nonzero value
for large n [18,33,76,77].

Let us comment on a fine point regarding the number
of independent generators. Clearly, group �g is independent
of pB and always has 4g independent generators. Neverthe-
less, when generating a {p, q} lattice whose Bravais lattice
is the {2(2g + 1), 2g + 1} lattice, one can choose to ei-
ther work with the 4g independent generators or to use all
4g + 2 generators. What changes is the number of words
of length n that can be composed from these generators,
and hence the number of sites in the nth generation lattice,

but the procedure is not afflicted otherwise. Using all 4g +
2 generators has the advantage of obtaining a radially
symmetric lattice in each generation, which may be favorable
in applications.

APPENDIX B: FUCHSIAN TRANSLATION GROUPS

The constraint X{pB,qB} = 1 in Eq. (47) generalizes the Eu-
clidean cases from Eqs. (29) and (32) in an interesting manner
to higher genera. We first consider {4g, 4g} Bravais lattices
with g � 2. In this case, the generator γ1 has the simple form

γ
{4g,4g}
1 = 1√

1 − r2
0,B

⎛
⎝

√
1 + r2

0,B

√
2r0,B√

2r0,B

√
1 + r2

0,B

⎞
⎠, (B1)

with r0,B = √
cos(αB). The remaining γμ follow from

Eq. (46). For g = 2, we have

X{8,8} = γ1γ
−1
2 γ3γ

−1
4 γ −1

1 γ2γ
−1
3 γ4, (B2)

which generalizes to

X{4g,4g} = γ1γ
−1
2 · · · γ2g−1γ

−1
2g γ −1

1 γ2 · · · γ −1
2g−1γ2g (B3)

for any g � 2.
For the {2(2g + 1), 2g + 1} Bravais lattices with g � 2, we

have

γ1 = 1√
1 − r2

0,B

⎛
⎝ 1 + r2

0,B r0,B

√
3 + r2

0,B

r0,B

√
3 + r2

0,B 1 + r2
0,B

⎞
⎠, (B4)

and r0,B from Eq. (9). Since the fundamental polygon has
pB = 4g + 2 sides, there are, naively, two more generators
than for the {4g, 4g} Bravais lattice. However, both lattices
tessellate surfaces of genus g and the number of independent
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generators should be equal. The issue is resolved, as in the
case of the hexagonal {6, 3} lattice, by the fact that the trans-
lation γ2g+1 is not independent of the remaining γ1, . . . , γ2g.
We have

γ1γ
−1
2 · · · γ −1

2g γ2g+1 = (−1)g+11. (B5)

The remaining 2g independent generators satisfy the same
constraint as for the {4g, 4g} lattice, i.e., we have

X{2(2g+1),2g+1} = X{4g,4g}, (B6)

and, therefore,

�{2(2g+1),2g+1} = �{4g,4g}. (B7)

APPENDIX C: SUBLATTICE STRUCTURE

An interesting analogy to the Euclidean case can be ob-
served in the third family in Table III with N = 2 sites in the
unit cell. Placing a single site (N = 1) on a vertex of the funda-
mental polygon of the {2(2g + 1), 2g + 1} lattice, we generate
the {2g + 1, 2(2g + 1)} lattice instead. This implies that the
sites of the {2g + 1, 2(2g + 1)} lattice form the sublattice of
the bipartite {2(2g + 1), 2g + 1} lattice. In the Euclidean case,
we obtain the well-known fact that the {3, 6} triangular lattice
is the sublattice of the {6, 3} honeycomb lattice. However, a
subtle difference arises in the hyperbolic case. While the {3, 6}
lattice coincides with the next-to-nearest-neighbor graph of
the {6, 3} lattice, which we define here by connecting any two
sites of the {6, 3} lattice that are separated by two adjacent
edges, this is not true for g > 1 because not all sites that are
separated by two adjacent edges have the same hyperbolic
distance. We visualize the hyperbolic case for g = 2 in Fig. 14.

FIG. 14. The bipartite {2(2g + 1), 2g + 1} lattice can be divided
into two {2g + 1, 2(2g + 1)} lattices. This well-known fact from
Euclidean lattices, where the {3, 6} triangular lattice is the sublattice
of the {6, 3} honeycomb lattice, generalizes to hyperbolic lattices
of higher genus. Here we show the case of g = 2, with the {10, 5}
lattice indicated by the gray geodesics, and a selection of sites of the
two sublattices marked red and blue. One of the {5, 10} sublattices is
indicated by blue geodesics.

APPENDIX D: DISTANCE SPECTRUM

To decide whether a given unit cell D = {z(1), . . . , z(N )}
and regular {pB, qB} Bravais lattice generate the infinite {p, q}
lattice, denoted {p,q}, we have to show that

�{pB,qB}D
!= {p,q}, (D1)

where �{pB,qB} is the Fuchsian translation group of the Bravais
lattice. In the remainder of this section, we write

 := {p,q}, � := �{pB,qB}, ′ := �D, (D2)

and Eq. (D1) becomes ′ != .
Verifying Eq. (D1) may sound simple, as one merely needs

to check that every zi ∈ ′ is contained in  and vice versa.
However, in practice, no parametrization of the coordinates
of the full hyperbolic lattice  exists, rather only powerful
algorithms to construct a finite subset of it. Furthermore, it
is impossible in practice to compute ′, which is an infinite
set and would require applying the generators infinitely often.
Rather, one applies finite-length words in the generators γμ

to D. Due to the exponential proliferation of words, typical
feasible word lengths range from 2 to 5, although this number
depends on p and q. So, in practice, we can only access a finite
subset of either side of Eq. (D1) and neither of these subsets
is strictly contained in the other.

To show that Eq. (D1) is true, we need to confirm that
(1) ′ does not contain additional sites that are not in .

(That is ′ ⊂ .)
(2) No sites in ′ are doubled.
(3) No sites of  are left out in ′: This means that, for

any site zi ∈ , we can make ′ large enough so zi ∈ ′.
(That is  ⊂ ′.)

We imply here that we can only compute large but finite
samples ′. By making these samples large enough and veri-
fying (1) and (3), we obtain reliable evidence that Eq. (D1) is
true. Note that condition (2) is additional; it shows that � is a
normal subgroup and that the unit cell D has been identified
correctly, i.e., the split in Eq. (24) is unique.

The practical solution to verifying (1) and (2) consists of
identifying the distance spectrum, δ{p,q}, as a unique finger-
print of any hyperbolic {p, q} lattice. Given the hypothetical
infinite lattice , we compute the list of values d (zi, z j ), where
i, j runs over all distinct lattice sites. Crucially, only a certain
discrete set of numbers appears in this list, which is fully
specified by p and q. We call this list the distance spectrum.
The first entry is given by the nearest-neighbor distance:

d0 = d (r0, r0e2π i/p). (D3)

Some examples are shown in Table V. Given a sufficiently
large finite subset of either  or ′, we can compute their
truncated distance spectra. (The finite subset needs to be rea-
sonable, i.e., contain at least one pair of nearest neighbors,
next-nearest neighbors, etc.) We call the distance spectrum ob-
tained from the finite sample of  the reference spectrum, and
ignore its difference from the full (infinite) distance spectrum
δ{p,q} in the following.

To verify (1), we then compute the distance spectrum of ′.
It probes the local surrounding of every single site zi ∈ ′.
If there was any site z̃i ∈ ′ that is not part of , then the
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TABLE V. Distance spectra for the {7, 3}, {8, 3}, and {9, 3}
lattices. We display the first low-lying five entries. The distance
spectrum acts as a unique fingerprint of the hyperbolic lattice and
can be used to decide whether a set of points ′ = {zi} could be a
subset of the infinite {p, q} lattice. The first entry, d0, is the hyperbolic
distance between nearest neighbors.

{7, 3} {8, 3} {9, 3}
d0/(2κ ) 0.283128 0.363520 0.409595
d1/(2κ ) 0.496385 0.641645 0.409596
d2/(2κ ) 0.606789 0.806689 0.726012
d3/(2κ ) 0.753167 0.860706 0.927539
d4/(2κ ) 0.887104 0.970155 1.02404

numbers d (z̃i, z j ) appearing in the distance spectrum of ′
would not be contained in δ{p,q}. In practice, we find that this
test is very sensitive to detecting lattice sites that should not be
there, with deviations showing up in the first few entries of the
distance spectra. In contrast, if two lattices seem to match, i.e.,
 = ′, the first deviating entries in their truncated distance
spectra of large samples show up at the hundredths or thou-
sandths position, giving strong evidence that (1) is true. As a
byproduct, by computing the distance spectrum of ′, we can
show that no sites are doubled, i.e., (2) is true, by verifying
that there is no entry d (zi, z j ) = 0 in the distance spectrum.
(The latter is computed for i �= j and so should not contain
zeros.)

The efficiency of the method of comparing distance spectra
stems from the fact that the agreement of the distance spectra
of ′ and  is a necessary condition and, therefore, incompat-
ible (or wrong) Bravais lattices yield a negative result and can
be excluded even for small sample lattices. Let us also point
out that one can decide whether a given {pB, qB} lattice can be
the Bravais lattice of a given {p, q} lattice without the precise
knowledge of the unit cell D. Since the Fuchsian translation
group � is a subgroup of the symmetry group of the {p, q}
lattice, we have

�S ⊂  (D4)

for every subset S ⊂ . By choosing a sufficiently large S
(such that D ⊂ S), we obtain equality in Eq. (D4). However,
S �= D violates (2) and so will create zero-entries in the dis-
tance spectrum of �S.

Let us now comment on condition (3), which is less
straightforward to check. Assuming that (1) and (2) hold, the
validity of (3) ensures that the unit cell has enough elements
to generate the whole lattice . Indeed, if we removed a few
sites z(a) from D, conditions (1) and (2) would still be satisfied
but, nonetheless,  �= ′. This implies a method how to test
(3): Assume our choice of D = {z(1), . . . , z(N )} satisfies (1)
and (2). Condition (3) can only be violated if there is a lattice
site z(N+1) /∈ D such that the union D ∪ {z(N+1)} still satisfies
(2). Reasonable choices for z(N+1) are limited in practice. In
all cases we identified, the unit cell is either made from a
connected graph, i.e., every z(a) in D is nearest neighbor to at
least one z(b) in D or the sites from D are taken from the central
p-gon of the {p, q} lattice. Thus we only need to consider the

finite set:

D′ = {zi ∈  : d (zi, z(a) ) = d0 for some z(a) ∈ D}
∪ {r0e2π in/peiχ , n = 1, . . . , p}. (D5)

The phase eiχ is for adjusting the overall rotation of the lat-
tice within the unit cell and is easily found in each case. If
condition (2) fails for the enlarged unit cell D ∪ {z(N+1)} for
every z(N+1) ∈ D′, then D is big enough to generate the whole
lattice . [Since z(N+1) ∈ , it is trivial that �z(N+1) satisfies
(1).] We carried out this test of condition (3) for all lattices
discussed here and found that no sites are missing in the listed
unit cells.

An alternative way to test for condition (3) is to use a
finite set of elements from � to generate, starting from D, one
p-gon and all its neighboring p-gons of the  lattice. This
implies, iteratively, that all polygons of  can be generated
by applying elements from �. This method can be applied
to almost all cases except, for instance, the {7, 3} lattice with
a very big unit cell. Note that the condition X = 1P ensures
that, after applying sufficiently many generators from �, we
eventually obtain closed p-gons.

APPENDIX E: SYSTEMATIC SEARCH FOR UNIT CELLS
AND BRAVAIS LATTICES

Assume we are given a {p, q} lattice {p,q} and want to
determine its unit cell and Bravais lattice. Assume further that
the Bravais lattice is a regular {pB, qB} lattice. A number of
necessary conditions are implied by this, which can be used
for a systematic search of hyperbolic lattices and their regular
Bravais lattices. For this, note that every generator γμ of the
Bravais lattice maps a center of a Bravais lattice face to a
center of a Bravais lattice face. Put differently, γμ maps a
vertex of the (dual) {qB, pB} lattice {qB,pB} to a vertex in
{qB,pB}. Since the Bravais lattice is rotation symmetric about
the centers of its faces, it is natural to expect that each center
of a Bravais lattice face is also the center of some face of the
{p, q} lattice. Consequently, every site of the {qB, pB} lattice
is also a site of the (dual) {q, p} lattice. We thus formulate the
dual lattice criterion that, if {pB, qB} is the Bravais lattice of
{p, q} under the above conditions, then

{qB,pB} ⊂ {q,p}. (E1)

Although just a necessary condition to match partners {p, q}
and {pB, qB}, it yields a very efficient and selective search
algorithm.

A first consequence of Eq. (E1) is that the distance spec-
trum of {qB, pB} is contained in the distance spectrum of
{q, p}. In particular, this is true for the hyperbolic nearest-
neighbor distance in the {qB, pB} lattice given by

d0{qB,pB} = d (r0B, r0Be2π i/qB ). (E2)

Hence we arrive at the necessary condition

d0{qB,pB} ∈ δ{q,p}. (E3)

For a given (pB, qB), it is numerically straightforward to
identify all potential solutions (p, q) from Eq. (E3), as for
sufficiently large p and q, the smallest entry d0{q,p} on the
right-hand side becomes too large for the inclusion to be valid.
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A second consequence of Eq. (E1) follows from the fact
that the {p, q} lattice is left invariant under rotations by 2π/p
around the centers of its faces. If such a rotation point is also
the center of a face of the Bravais lattice, then we expect it to
leave the Bravais lattice invariant. Hence it must be a rotation
by an integer multiple of 2π/pB. We conclude that

2π

p
= n

2π

pB
(E4)

or
pB = n · p, (E5)

with an integer n � 1.

Taken together, conditions Eqs. (E3) and (E5) yield a small
number of possible candidate {p, q} lattices for a given Bra-
vais lattice {pB, qB}. The possible values for p are bounded
from above by p � pB and the maximal values for q that
need to be considered are effectively limited from above by
Eq. (E3). After the candidate values for (p, q) have been
found, we apply the distance spectrum method described in
Appendix D to probe if the {pB, qB} lattice is truly the Bravais
lattice of the {p, q} lattice. This involves finding the correct
unit cell, which is restricted by a combination of symmetry
considerations and the value of V0. All the examples in Ta-
bles III and IV have been obtained with this search algorithm.
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