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Scalable Monte Carlo inference and rescaled
local asymptotic normality
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In this paper, we generalize the property of local asymptotic normality (LAN) to an enlarged neighborhood, under
the name of rescaled local asymptotic normality (RLAN). We obtain sufficient conditions for a regular parametric
model to satisfy RLAN. We show that RLAN supports the construction of a statistically efficient estimator which
maximizes a cubic approximation to the log-likelihood on this enlarged neighborhood. In the context of Monte
Carlo inference, we find that this maximum cubic likelihood estimator can maintain its statistical efficiency in the
presence of asymptotically increasing Monte Carlo error in likelihood evaluation.
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1. Introduction

We firstly give the background and motivation in Section 1.1 and then state our contributions in Sec-
tion 1.2, followed with the organization of the paper in Section 1.3.

1.1. Background and motivation

The classical theory of asymptotics in statistics relies heavily on certain local approximations to the
logarithms of likelihood ratios, where “local” is meant to indicate that one looks at parameter values
close to a point [12]. The classic theory of local asymptotic normality (LAN) of [11] concerns a “local
neighborhood” {θ + tnn

−1/2} around a true parameter θ in an open subset � ⊂R, where tn is a bounded
constant and n is the number of observations. We suppose the data are modeled as a real-valued sample
(Y1, . . . , Yn), for n ∈ N, from the probability distribution Pθ on the probability space (�,A,μ) where
μ is a fixed σ -finite measure dominating Pθ . Let

p(θ) = p(·; θ) = dPθ

dμ
(·), l(θ) = logp(θ), (1.1)

be the density and log-likelihood of Pθ , respectively. Define the log-likelihood of (Y1, . . . , Yn) by

l(θ) =
n∑

i=1

l(Yi; θ). (1.2)

The LAN states as follows:

l
(
θ + tnn

−1/2)− l(θ) = tnSn(θ) − 1

2
t2
nI(θ) + o(1), (1.3)

where I(θ) is a finite positive constant, Sn(θ) → N [0,I(θ)] in distribution, and o(1) is an error term
goes to zero in Pθ probability as n goes to infinity.
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We form a grid of equally spaced points with separation n−1/2 over R and define θ∗
n as the mid-

point of the interval into which θ̃n has fallen, where θ̃n is a uniformly
√

n-consistent estimator whose
existence is established in Theorem 1 on page 42 of [2]. Then θ∗

n is also uniformly
√

n-consistent. In
practice, for θ∗

j,n = θ∗
n + jn−1/2 where j ∈ {−1,0,1}, the quadratic polynomial of equation (1.3) can

be interpolated by (θ∗
j,n, l(θ

∗
j,n))j , and Sn(θ

∗
n ) and I(θ∗

n ) can be estimated. Here and in the sequel, we

set θ∗
0,n = θ∗

n . The one-step estimator θ̂A
n defined in [2], using the estimated Sn(θ

∗
n ) and I(θ∗

n ),

θ̂A
n =θ∗

n + √
n × Sn(θ

∗
n )

I(θ∗
n )

, (1.4)

maximizes the interpolated quadratic approximation to the log-likelihood.
The one-step estimator θ̂A

n can be generalized to θ̂B
n , using the estimated Sn(θ

∗
n ) and I(θ∗

n ) gener-
ated through a quadratic fit to (θ∗

j,n, l(θ
∗
j,n))j∈{−J,...,J } with J ≥ 1. When the likelihood can be com-

puted perfectly, there may be little reason to use θ̂B
n over θ̂A

n . However, when there is Monte Carlo
uncertainty or other numerical error in the likelihood evaluation, then θ̂B

n with J > 1 may be pre-
ferred. Taking this idea a step further, we can construct a maximum smoothed likelihood estimator
(MSLE), proposed in [8], by maximizing a smooth curve fitted to the grid of log-likelihood evaluations
(θ∗

j,n, l(θ
∗
j,n))j∈{−J,...,J }. If the smoothing algorithm preserved quadratic functions then the MSLE is

asymptotically equivalent to a one-step estimator under the LAN property, while behaving reasonably
when the log-likelihood has a substantial deviation from a quadratic.

The motivations of a rescaled LAN property arise from both the methodological side and the theo-
retical side:

• Monte Carlo likelihood evaluations calculated by simulating from a model, are useful for con-
structing likelihood-based parameter estimates and confidence intervals, for complex models [5].
However, for large datasets any reasonable level of computational effort may result in a non-
negligible numerical error in these likelihood evaluations, and the Monte Carlo methods come at
the expense of “poor scalability”. Specifically, on the classical scale of n−1/2, when the number of
observations n is large, the statistical signal in the likelihood function is asymptotically overcome
by Monte Carlo noise in the likelihood evaluations, as the Monte Carlo variance growing with
n. In line with [9] (page 4), let the statistical error SEstat stand for the uncertainty resulting from
randomness in the data, viewed as a draw from a statistical model, and let the Monte Carlo error
SEMC stand for the uncertainty resulting from implementing a Monte Carlo estimator of a statis-
tical model. That is, in the context of Monte Carlo inference, we desire a general methodology to
suffice SE2

MC /SE2
stat → 0.

• From a theoretical point of view, LAN has been found to hold in various situations other than
regular independent identically distributed (i.i.d.) parametric models, including semiparametric
models [3], positive-recurrent Markov chains [7], stationary hidden Markov models [3], stochas-
tic block models [1], and regression models with long memory dependence [6]. There are very
close linkages between LAN established in regular i.i.d. parametric models and LAN established
in models such as hidden Markov models and stochastic processes, for example Theorem 1.1 in
[3]. We anticipate that comparable results could be derived for RLAN. To motivate future in-
vestigations of contexts where RLAN arises, it is necessary to rigorously establish RLAN as a
worthwhile statistical property.

An idea on rescaling is to consider the n−1/4 local neighborhoods instead, since the existence of a
uniformly

√
n-consistent estimator implies the existence of a uniformly n1/4-consistent estimator and

then in the n−1/4 local neighborhoods we have θ∗
n uniformly n1/4-consistent. Figure 1 verifies and
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Figure 1. Illustration on the Monte Carlo estimation effects via different values of n and δn. The columns correspond
to δn = n−0.5, n−0.25 and the rows correspond to n = 102,104,106. The red solid curve is the log-likelihood given by
l(θ) = −nθ2. The black circles are Monte Carlo log-likelihood evaluations, l(θ∗

j,n
) ∼ N [l(θ∗

j,n
), n/m] with a sample size

m = n1/2, evaluated at 21 equally spaced values {θ∗
j,n

}j in the range [−δn, δn].

illustrates the enlarged neighborhood idea, by showing a Gaussian likelihood function for n observa-
tions that is evaluated by a Monte Carlo estimator having variance scaling linearly with n/m, where
m = √

n is the number of Monte Carlo simulations per observation. Monte Carlo evaluations of the
log-likelihood were conducted at a grid of points {θ∗

j,n = θ∗
n + jδn}j∈{−10,−9,...,0,...,9,10}, evenly spaced

on [−δn, δn], for δn = n−1/2 and δn = n−1/4, respectively. We see from Figure 1 that on the classical
scale of n−1/2, when the number of observations n is large, the statistical signal in the likelihood func-
tion is asymptotically overcome by Monte Carlo noise in the likelihood evaluations, as the Monte Carlo
variance growing with n even though there is just modest growth in the Monte Carlo effort (m = n1/2).
However, on the n−1/4 scale, the form of the likelihood surface is evident despite the growing Monte
Carlo uncertainty. That is, the classical local n−1/2 neighborhood does not provide a useful estimate in
this limit, but the rescaled local n−1/4 neighborhood enables a quadratic likelihood approximation to
be successfully fitted. Then, we aim to establish the LAN property in the rescaled local n−1/4 neigh-
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borhood, based on which, an estimator extended the classical one-step estimator in [11] and the MSLE
in [8] can be designed.

1.2. Our contributions

The contributions of the paper are two-fold:

(1) Our first contribution is the rescaled local asymptotic normality (RLAN) property defined as
follows:

Definition 1.1. Let P := {Pθ : θ ∈ �} be a regular parametric model in the probability space
(�,A,μ). We say that P has RLAN if uniformly in θ ∈ K compact ⊂ � and |tn| ≤ M ,

l
(
θ + tnn

−1/4)− l(θ) = n1/4tnSn(θ) − 1

2
n1/2t2

nI(θ) + n1/4t3
nW(θ) +O(1) (1.5)

and

l
(
θ + tnn

−1/2)− l(θ) = tnSn(θ) − 1

2
t2
nI(θ) + o(1), (1.6)

under Pθ , with I(θ) being a finite positive constant, W(θ) being a finite constant, Sn →
N [0,I(θ)] in distribution, O(1) denoting an error term bounded in Pθ probability, and o(1)

denoting an error term converging to zero in Pθ probability.

To develop the key ideas, we work in a one-dimensional parameter space. However, the ideas
naturally generalize to � ⊂R

d for d ≥ 1. The widely studied property of LAN [11,12] is defined
by (1.6), so RLAN implies LAN. The LAN property asserts a quadratic approximation to the
log-likelihood function in a neighborhood with scale n−1/2, whereas RLAN additionally asserts
a cubic approximation on a n−1/4 scale. In Section 2, we present sufficient conditions for a
sequence of i.i.d. random variables to satisfy RLAN. Complex dependence structures fall outside
the i.i.d. theory of Section 2, except in the situation where there is also replication. Panel time
series analysis via mechanistic models is one situation where i.i.d. replication arises together
with model complexity requiring Monte Carlo approaches [4,16,17].

(2) Our second contribution is the scalable Monte Carlo inference. Suppose RLAN (Definition 1.1)
holds. Then, with θ∗

j,n = θ∗
n + jn−1/4 for j in a finite set J , we can write

l
(
θ∗
j,n

)= β0 + β1
(
jn−1/4)+ β2

(
jn−1/4)2 + β3

(
jn−1/4)3 + εj,n, (1.7)

where β1 = O(n1/2), β2 = O(n) and β3 = O(n), and εj,n = O(1). In practice, the cubic poly-
nomial of equation (1.7) can be interpolated by (θ∗

j,n, l(θ
∗
j,n))j∈J , and {βι}ι∈{1,2,3} can be es-

timated. Based on the linear least squares estimated {βι}ι∈{1,2,3}, we can define the maximum
cubic log-likelihood estimator (MCLE) when it is finite, as

θ̂MCLE
n = θ∗

n + n−1/4arg max
χ∈R

{
β1
(
χn−1/4)+ β2

(
χn−1/4)2 + β3

(
χn−1/4)3}. (1.8)

The MCLE defined above is general, while in this paper we apply it in the context of Monte
Carlo inference with i.i.d. data samples, under the situation that one does not have access to
the likelihood evaluation l(θ∗

j,n) but instead can obtain the Monte Carlo likelihood evaluation

l(θ∗
j,n).
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We firstly illustrate how l(θ∗
j,n) may be generated. We suppose the data are modeled as an

i.i.d. sequence Y1, . . . , Yn drawn from a density

p(y; θ) = pY (y; θ) =
∫

pY |X(y|x; θ)pX(x; θ) dx. (1.9)

For each Yi and θ∗
j,n, independent Monte Carlo samples (X

(1)
i,j , . . . ,X

(m)
i,j ) for m ∈ N are

generated from an appropriate probability density function q(·; θ∗
j,n). Then, we approximate

p(Yi; θ∗
j,n) with p(Yi; θ∗

j,n) using an importance sampling evaluator,

p
(
Yi; θ∗

j,n

)= 1

m

m∑
τ=1

pY |X
(
Yi |X(τ)

i,j ; θ∗
j,n

)pX(X
(τ)
i,j ; θ∗

j,n)

q(X
(τ)
i,j ; θ∗

j,n)
,

which is unbiased by construction. We construct

l
(
θ∗
j,n

)= n∑
i=1

lnp
(
Yi; θ∗

j,n

)
(1.10)

as the estimated log-likelihood.
Recalling that n is the number of observations, suppose that m = m(n) is the number of

Monte Carlo simulations per observation, and take O(
√

n) 
 m(n) 
 O(n). Then the Monte
Carlo log-likelihood theory gives that

l
(
θ∗
j,n

)= l
(
θ∗
j,n

)+ γ
(
θ∗
j,n

)+ ε̃j,n, (1.11)

where ε̃j,n is i.i.d. such that m
n
ε̃j,n convergences in distribution to a normal distribution with

mean zero and positive finite variance, and the bias term γ (θ∗
j,n) satisfies

γ
(
θ∗
j,n

)= γ
(
θ∗
n

)+ Cγ

n

m
jn−1/4(1 + o(1)

)
, (1.12)

where Cγ is a finite constant. Plugging equation (1.7) in equation (1.11), we can obtain that

l
(
θ∗
j,n

)=β0 + β1
(
jn−1/4)+ β2

(
jn−1/4)2 + β3

(
jn−1/4)3 + εj,n + γ

(
θ∗
j,n

)+ ε̃j,n.

Organizing the terms in the above equation, we have the Monte Carlo meta model

l
(
θ∗
j,n

)= β0 + β1
(
jn−1/4)+ β2

(
jn−1/4)2 + β3

(
jn−1/4)3 + εj,n, (1.13)

where θ∗
j,n = θ∗

n + jn−1/4 for j in a finite set J , β1 = O(n1/2), β2 = O(n), β3 = O(n), and
εj,n is i.i.d. such that m

n
εj,n convergences in distribution to a normal distribution having mean

zero and positive finite variance.
The proposed general methodology takes advantage of asymptotic properties of the likeli-

hood function in an n−1/4 neighborhood of the true parameter value. In Section 4, we will see
that θ̂MCLE

n is efficient with the desired property that SE2
MC /SE2

stat → 0 as the number of data
samples n → ∞. The statistically efficient simulation-based likelihood inference is achieved
with a computational budget of size essentially n3/2 for a dataset of n observations and

√
n

Monte Carlo simulations per observation. In sum, despite substantial Monte Carlo uncertainties
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Table 1. Table of Notation

s(θ) = s(·; θ) := √
p(·; θ) Square root of density p(·; θ), Eqn. (2.1).

l(θ) =∑n
i=1 l(Yi ; θ) Log-likelihood of samples (Y1, . . . , Yn), Eqn. (1.2).

İ(θ) = 2 ṡ(θ)
s(θ)

1{s(θ)>0} Variable defined in Definition 2.1.

Ï(θ) = 2 s̈(θ)
s(θ)

1{s(θ)>0} Variable defined in Definition 2.1.
...
I (θ) = 2

...
s (θ)
s(θ)

1{s(θ)>0} Variable defined in Assumption 2.2.
....
I (θ) = 2

....
s (θ)
s(θ)

1{s(θ)>0} Variable defined in Assumption 2.2.

I(θ) = Eθ [İ(θ)]2 The second moment of İ(θ), Definition 2.1.

Tn = { s(θ+δnt)
s(θ)

− 1 − δnṡ(θ)t
s(θ)

}1{s(θ)>0} Key variable in this paper, Eqn. (3.1).

An = {max1≤i≤n |Tni + 1
2 δntnİ(θ)| < η} Truncated variable, Eqn. (3.2).

Ã = Ãn(ε) = {max1≤i≤n |Tni | < ε} Truncated variable, Eqn. (3.11).
Sn(θ) = 1√

n

∑n
i=1 İ(Yi ; θ) Variable defined in Eqn. (2.2).

Vn(θ) = 1√
n

∑n
i=1[Ï(Yi ; θ) − Eθ [Ï(θ)]] Variable defined in Eqn. (2.3).

Un(θ) = 1√
n

∑n
i=1[İ2(Yi ; θ) − I(θ)] Variable defined in Eqn. (2.4).

θ̂A
n = θ∗

n + √
n × Sn(θ∗

n )

I(θ∗
n )

Estimator defined in Eqn. (1.4).

θ̂C
n = θ∗

n + δn ×
√

nδnSn(θ∗
n )

nδ2
nI(θ∗

n )
Estimator defined in Eqn. (4.3).

θ̂MCLE
n Estimator defined in Eqn. (1.8).

involved in the proposed general Monte Carlo based method, MCLE is efficient and able to scale
properly. The proposed methodology sheds light on tackling “poor scalability” issues in related
Monte Carlo based approaches, such as the Monte Carlo adjusted profile methodology of [9]
which has been used in various scientific studies [15–17,19]. However, the extension to profile
likelihood estimation, analogous to the LAN-based profile likelihood theory of [13], is beyond
the scope of this paper.

1.3. Organization of the paper

The rest of the paper proceeds as follows: Section 2 derives the RLAN property in the context of a
regular parametric model, leading to a theorem which is proved in Section 3; In Section 4, based on the
RLAN property, we investigate the performance of the proposed MCLE in the context of Monte Carlo
inference. The notations used throughout this paper are listed in Table 1.

2. RLAN for regular parametric models

In this section, we show that parametric models with sufficient regularity enjoy the RLAN property,
for n i.i.d. observations.

2.1. Model setup

We suppose the data are modeled as a real-valued i.i.d. sample (Y1, . . . , Yn), for n ∈ N, from the proba-
bility distribution Pθ on the probability space (�,A,μ) where μ is a fixed σ -finite measure dominating
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Pθ . We seek to infer the unknown “true” parameter θ which is situated in an open subset � ⊂ R. We
suppose the parameterization θ → Pθ has a density and log-likelihood which can be written as

p(θ) = p(·; θ) = dPθ

dμ
(·), l(θ) = logp(θ).

For P = {Pθ : θ ∈ �} being the set of all the probability measures induced by the parameter θ in the
whole parameter set �, we metrize P with the variational distance. Let v : P → R be a Euclidean
parameter, and suppose that v can be identified with the parametric function q : � → R defined by

q(θ) = v(Pθ ).

Let ‖·‖ stand for the Hilbert norm in L2(μ), i.e., ‖f ‖2 = ∫ f 2 dμ. It is convenient to view P as a subset
of L2(μ) via the embedding

p(·; θ) → s(·; θ) :=√p(·; θ). (2.1)

The generalization from the classical theory of LAN in the scale O(n−1/2) to RLAN in the scale
O(n−1/4), requires additional smoothness assumptions. We start with the following definition.

Definition 2.1. We say that θ0 is a fourth-order regular point of the parametrization θ → Pθ , if θ0 is
an interior point of �, and

(1) The map θ → s(θ) from � to L2(μ) is fourth-order differentiable at θ0: there exist first-order
derivative ṡ(θ0), second-order derivative s̈(θ0), third-order derivative

...
s (θ0), and fourth-order

derivative
....
s (θ0) of elements of L2(μ) such that∥∥∥∥ s(θ0 + δntn) − s(θ0) − ṡ(θ0)δntn

δ2
n

− 1

2
s̈(θ0)t

2
n

∥∥∥∥→ 0,

∥∥∥∥ s(θ0 + δntn) − s(θ0) − ṡ(θ0)δntn − 1
2 s̈(θ0)δ

2
nt

2
n

δ3
n

− 1

3!
...
s (θ0)t

3
n

∥∥∥∥→ 0,

∥∥∥∥ s(θ0 + δntn) − s(θ0) − ṡ(θ0)δntn − 1
2 s̈(θ0)δ

2
nt

2
n − 1

3!
...
s (θ0)δ

3
nt

3
n

δ4
n

− 1

4!
....
s (θ0)t

4
n

∥∥∥∥→ 0,

for any δn → 0 and tn bounded.
(2) The variable İ(θ) := 2 ṡ(θ)

s(θ)
1{s(θ)>0} has non-zero second moment I(θ) := Eθ [İ(θ)]2 and non-

zero fourth moment.
(3) The variable Ï(θ) := 2 s̈(θ)

s(θ)
1{s(θ)>0} has non-zero second moment.

Assumption 2.2. We assume the following:

(1) Every point of � is a fourth-order regular point.
(2) The map θ → ....

s (θ) is continuous from � to L2(μ).
(3) Define

...
I (θ) := 2

...
s (θ)
s(θ)

1{s(θ)>0} and
....
I (θ) := 2

....
s (θ)
s(θ)

1{s(θ)>0}. We have

Eθ

∣∣İ(θ)
∣∣6 < ∞, Eθ

∣∣Ï(θ)
∣∣3 < ∞, Eθ

∣∣...I (θ)
∣∣2 < ∞, Eθ

∣∣....I (θ)
∣∣< ∞.

Remark 2.1. We have the following comments regarding Assumption 2.2:
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(1) The conditions Eθ [İ(θ)]2 
= 0, Eθ [İ(θ)]4 
= 0 and Eθ [Ï(θ)]2 
= 0 hold unless for random vari-
ables that are zero almost sure.

(2) The condition (3) in Assumption 2.2 holds for all bounded random variables, such as truncated
normal distributed random variables and finite discrete distributed random variables.

(3) The condition (3) in Assumption 2.2 holds for some unbounded random variables at least, such
as the centered normal distributed random variable with θ ∈ {1,

√
2,

√
3}, whose probability

density function is given by p(y; θ) = 1√
2πθ2

e
− y2

2θ2 .

(4) In this section, we suppose the data are modeled as a real-valued i.i.d. sample (Y1, . . . , Yn).
Assumption 2.2 still may apply on stochastic process with very desired conditions, such as the
basic Ornstein–Uhlenbeck process ([20]) that is stationary, Gaussian, and Markovian, evolving
as dXt = −ρXt dt + σ dWt , where ρ and σ are finite constants, and Wt is the standard Brow-
nian motion with unit variance parameter. Its stationary distribution is the normal distribution

with mean 0 and variance θ2 = σ 2

2ρ
.

2.2. The main result

Define

Sn(θ) = 1√
n

n∑
i=1

İ(Yi; θ), (2.2)

Vn(θ) = 1√
n

n∑
i=1

[
Ï(Yi; θ) − Eθ Ï(θ)

]
, (2.3)

Un(θ) = 1√
n

n∑
i=1

[
İ2(Yi; θ) − I(θ)

]
. (2.4)

We have the following theorem for RLAN, whose rigorous proof is provided in Section 3.3.

Theorem 2.3. Suppose that P = {Pθ : θ ∈ �} is a regular parametric model satisfying Assumption 2.2.
When δn =O(n−1/4), write

l(θ + δntn) − l(θ)

= tn
{√

nδnSn(θ)
}+ t2

n

{√
nδ2

n

[
1

2
Vn(θ) − 1

4
Un(θ)

]
− 1

2
nδ2

nI(θ)

}
+ t3

n

{
nδ3

n

[
1

12
Eθ

[
İ3(θ)

]− 1

8
Eθ

[
Ï(θ)İ(θ)

]+ 1

6
Eθ

[...
I (θ)

]]}
+ t4

n

{
nδ4

n

[
− 1

32
Eθ

[
İ4(θ)

]− 1

16
Eθ

[
Ï(θ)

]2 − 1

12
Eθ

[...
I (θ)İ(θ)

]+ 1

24
Eθ

[....
I (θ)

]]}
+ Rn(θ, tn).

Then uniformly in θ ∈ K compact ⊂ � and |tn| ≤ M , one has Rn(θ, tn)
p−→ 0 in Pθ probability, and in

the weak topology

Lθ

(
Sn(θ)

)→ N
(
0,I(θ)

)
,
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Lθ

(
Vn(θ)

)→ N
(
0,Varθ

[
Ï(θ)

])
,

Lθ

(
Un(θ)

)→ N
(
0,Varθ

[
İ2(θ)

])
,

where N(μ,σ 2) is the normal distribution with mean μ and variance σ 2, and Lθ is the law under θ .

Remark 2.2. The equation in Theorem 2.3 with δn = O(n−1/2) instead of δn = O(n−1/4) implies the
classical LAN result (Proposition 2 on page 16 of [2]), which can be seen as follows:

(1) For the tn term,

{√
nδnSn(θ)

}= 2√
n

n∑
i=1

ṡ(Yi; θ)

s(Yi; θ)
1{s(Yi ;θ)>0}.

(2) For the t2
n term,{√

nδ2
n

[
1

2
Vn(θ) − 1

4
Un(θ)

]
− 1

2
nδ2

nI(θ)

}

= 1

2n

n∑
i=1

[
Ï(Yi; θ) − Eθ Ï(θ)

]− 1

4n

n∑
i=1

[
İ2(Yi; θ) − I(θ)

]− 1

2
I(θ).

By Chung’s uniform strong law of large number and Lemma 3.2, one can obtain that

1

n

n∑
i=1

[
Ï(Yi; θ) − Eθ

[
Ï(θ)

]] a.s.−−→ 0

and

1

n

n∑
i=1

[
İ2(Yi; θ) − I(θ)

] a.s.−−→ 0,

uniformly in θ ∈ K compact ⊂ � and |tn| ≤ M . Then the t2
n coefficient is asymptotically equiv-

alent to

−1

2
I(θ) = −2Eθ

[
ṡ(Yi; θ)

s(Yi; θ)
1{s(Yi ;θ)>0}

]2

.

(3) For the t3
n term, since Eθ [İ3(θ)], Eθ [Ï(θ)İ(θ)] and Eθ [...I (θ)] are finite constants, and nδ3

n → 0
as n → ∞, {

nδ3
n

[
1

12
Eθ

[
İ3(θ)

]− 1

8
Eθ

[
Ï(θ)İ(θ)

]+ 1

6
Eθ

[...
I (θ)

]]}→ 0.

(4) Similarly, for the t4
n term, since Eθ [İ4(θ)], Eθ [Ï(θ)]2, Eθ [....I (θ)] and Eθ [...I (θ)İ(θ)] are finite

constants, and nδ4
n → 0 as n → ∞,{

nδ4
n

[
− 1

32
Eθ

[
İ4(θ)

]− 1

16
Eθ

[
Ï(θ)

]2 − 1

12
Eθ

[...
I (θ)İ(θ)

]+ 1

24
Eθ

[....
I (θ)

]]}→ 0.
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Remark 2.3. Theorem 2.3 implies the RLAN property in Definition 1.1. The case δn = n−1/2 is already
covered in Remark 2.2. When δn = n−1/4, the terms

t2
n

{√
nδ2

n

[
1

2
Vn(θ) − 1

4
Un(θ)

]}
=O(1)

and

t4
n

{
nδ4

n

[
− 1

32
Eθ

[
İ4(θ)

]− 1

16
Eθ

[
Ï(θ)

]2 − 1

12
Eθ

[...
I (θ)İ(θ)

]+ 1

24
Eθ

[....
I (θ)

]]}=O(1).

Hence, we have, uniformly in θ ∈ K compact ⊂ � and |tn| ≤ M ,

l(θ + δntn) − l(θ) = √
nδntnSn − 1

2
nδ2

nt
2
nI + nδ3

nt
3
nW +O(1), (2.5)

where I = I(θ) is a finite positive constant, Sn → N [0,I] in distribution, and

W =
[

1

12
Eθ

[
İ3(θ)

]− 1

8
Eθ

[
Ï(θ)İ(θ)

]+ 1

6
Eθ

[...
I (θ)

]]
is a finite constant.

3. Developing a proof of Theorem 2.3

In this section, we work toward a proof of Theorem 2.3. Throughout this section, we suppose As-
sumption 2.2 holds and consider δn = O(n−1/4). We first use a truncation method on a Taylor series
expansion of l(θ + δntn) − l(θ) in Section 3.1, and then conduct preliminary analysis in bounding
l(θ + δntn) − l(θ) in Section 3.2, both of which prepare for the proof of Theorem 2.3 in Section 3.3.

3.1. A truncatated Taylor series remainder

Set

Tn =
{

s(θ + δntn)

s(θ)
− 1 − 1

2
δntnİ(θ)

}
1{s(θ)>0}. (3.1)

Let {Tni}i=1,...,n denote the n i.i.d. copies of Tn corresponding to Y1, . . . , Yn, and for η ∈ (0,1) define

An =
{

max
1≤i≤n

∣∣∣∣Tni + 1

2
δntnİ(θ)

∣∣∣∣< η

}
. (3.2)

In the following, we use a truncation method similar to [2], but our definition of Tn differs from that
in [2] (page 509). Compared to the corresponding one in [2], here Tn additionally incorporates the
first-order derivative of s(θ), since we have to resort to a higher order derivative of s(θ) for analysis on
the δn = O(n−1/4) scale. By Proposition 3.4 following, uniformly in θ ∈ K ⊂ � for K compact and
|tn| ≤ M , Pθ(A

c
n) → 0 where Ac

n is the complement of An. On the event An, we have

l(θ + δntn) − l(θ) =
n∑

i=1

log

{
p(Yi; θ + δntn)

p(Yi; θ)

}
= 2

n∑
i=1

log

(
Tni + 1 + 1

2
δntnİ(Yi; θ)

)
.
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By a Taylor expansion,

l(θ + δntn) − l(θ)

= 2
n∑

i=1

(
Tni + 1

2
δntnİ(Yi; θ)

)
−

n∑
i=1

(
Tni + 1

2
δntnİ(Yi; θ)

)2

+ 2

3

n∑
i=1

(
Tni + 1

2
δntnİ(Yi; θ)

)3

− 1

2

n∑
i=1

(
Tni + 1

2
δntnİ(Yi; θ)

)4

+ Rn, (3.3)

where

|Rn| ≤ 2C(η)

5

n∑
i=1

(
Tni + 1

2
δntnİ(Yi; θ)

)5

,

for C(η) < (1 − η)−5 a finite constant that depends on η only.

3.2. Preliminary analysis

In this subsection, we develop a sequence of lemmas and propositions needed for the proof in
Section 3.3. Specifically, we conduct a series of preliminary analyses to bound the quantities
(Tni)

α(δntnİ(Yi; θ))β for α,β ∈ {0,1,2,3,4,5} such that α + β = 5.

Lemma 3.1. One has

Eθ

∣∣∣∣Tn − 1

4
(δntn)

2Ï(θ)

∣∣∣∣2 = o
(
δ4
n

)
, (3.4)

Eθ

∣∣∣∣Tn − 1

4
(δntn)

2Ï(θ) − 1

12
(δntn)

3...
I (θ)

∣∣∣∣2 = o
(
δ6
n

)
, (3.5)

Eθ

∣∣∣∣Tn − 1

4
(δntn)

2Ï(θ) − 1

12
(δntn)

3...
I (θ) − 1

48
(δntn)

4....
I (θ)

∣∣∣∣2 = o
(
δ8
n

)
, (3.6)

as δn → 0, uniformly in θ ∈ K ⊂ � for K compact and |tn| ≤ M ,

Proof. See the supplementary material [14]. �

Lemma 3.2. One has

lim
λ→∞ sup

θ∈K

Eθ

[∣∣Ï(θ)
∣∣21{|Ï(θ)|≥λ}

]= 0, (3.7)

lim
λ→∞ sup

θ∈K

Eθ

[∣∣İ(θ)
∣∣41{|İ(θ)|≥λ}

]= 0, (3.8)

lim
λ→∞ sup

θ∈K

Eθ

[∣∣....I (θ)
∣∣1{|....I (θ)|≥λ}

]= 0, (3.9)

lim
λ→∞ sup

θ∈K

Eθ

[∣∣...I (θ)İ(θ)
∣∣1{|...I (θ)İ(θ)|≥λ}

]= 0. (3.10)
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Proof. See the supplementary material [14]. �

Recall that {Tni}i=1,...,n denote the n i.i.d. copies of Tn corresponding to Y1, . . . , Yn. Define

Ãn(ε) =
{

max
1≤i≤n

|Tni | < ε
}
, (3.11)

for every ε > 0.

Proposition 3.3. Uniformly in θ ∈ K ⊂ � for K compact and |tn| ≤ M ,

Pθ

(
Ãc

n

)→ 0,

where Ãc
n is the complement of Ãn.

Proof. We firstly note that

Pθ

(
Ãc

n

)≤ n∑
i=1

Pθ

(|Tni | ≥ ε
)= nPθ

(|Tn| ≥ ε
)
.

Then, it suffices to show that

Pθ

(|Tn| ≥ ε
)= o(1/n).

But

Pθ

(|Tn| ≥ ε
)≤ Pθ

(∣∣∣∣Tn − 1

4
(δntn)

2Ï(θ)

∣∣∣∣≥ 1

2
ε

)
+ Pθ

(∣∣∣∣14 (δntn)
2Ï(θ)

∣∣∣∣≥ 1

2
ε

)

≤ 4

ε2
Eθ

∣∣∣∣Tn − 1

4
(δntn)

2Ï(θ)

∣∣∣∣2 + 4

ε2
Eθ

∣∣∣∣14 (δntn)
2Ï(θ)

∣∣∣∣21{|(δntn)2 Ï(θ)|≥ε}

≤ o
(
δ4
n

)+ 1

4ε2
(δntn)

4Eθ

∣∣Ï(θ)
∣∣21{|(δntn)2 Ï(θ)|≥ε}

= o
(
δ4
n

)
, (3.12)

where the second to the last step is by Lemma 3.1, and the last step is by Lemma 3.2. �

Recall that for η ∈ (0,1)

An =
{

max
1≤i≤n

∣∣∣∣Tni + 1

2
δntnİ(θ)

∣∣∣∣< η

}
. (3.13)

Proposition 3.4. Uniformly in θ ∈ K ⊂ � for K compact and |tn| ≤ M ,

Pθ

(
Ac

n

)→ 0,

where Ac
n is the complement of An.

Proof. We first note that

Pθ

(
Ac

n

)≤ n∑
i=1

Pθ

(∣∣∣∣Tni + 1

2
δntnİ(θ)

∣∣∣∣≥ η

)
= nPθ

(∣∣∣∣Tn + 1

2
δntnİ(θ)

∣∣∣∣≥ η

)
.
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Then, it suffices to show that

Pθ

(∣∣∣∣Tn + 1

2
δntnİ(θ)

∣∣∣∣≥ η

)
= o(1/n).

But

Pθ

(∣∣∣∣Tn + 1

2
δntnİ(θ)

∣∣∣∣≥ η

)
≤ Pθ

(
|Tn| ≥ 1

2
η

)
+ Pθ

(∣∣∣∣12δntnİ(θ)

∣∣∣∣≥ 1

2
η

)
≤ o
(
δ4
n

)+ 1

η2
(δntn)

4Eθ

∣∣İ(θ)
∣∣41{|δntn İ(θ)|≥ε}

= o
(
δ4
n

)
,

where the second to the last step is by equation (3.12) and the last step is by Lemma 3.2. �

Proposition 3.5. For any r ≥ 0, we have

n∑
i=1

∣∣∣∣T 2
ni − 1

16
δ4
nt

4
nEθ

[
Ï(θ)

]2∣∣∣∣1+r
p−→ 0,

uniformly in |tn| ≤ M and in θ ∈ K ⊂ � for K compact, in Pθ probability.

Proof. See the supplementary material [14]. �

Proposition 3.6. We have, for any k ≥ 1,

n∑
i=1

|Tni |2+k p−→ 0,

uniformly in |tn| ≤ M and in θ ∈ K ⊂ � for K compact, in Pθ probability.

Proof. Let a(ε′) be a real valued function on any ε′ > 0 satisfying ( ε′
a(ε′)+ 1

16 nδ4
nt4

nEθ [Ï(θ)]2 ) ∈ (0,1).

The proof can be completed by noting that by Propositions 3.3 and 3.5, uniformly in |tn| ≤ M and in
θ ∈ K ⊂ � for K compact,

Pθ

(
n∑

i=1

T 2
ni > a

(
ε′)+ 1

16
nδ4

nt
4
nEθ

[
Ï(θ)

]2)→ 0,

Pθ

(
max

1≤i≤n
|Tni | >

(
ε′

a(ε′) + 1
16nδ4

nt
4
nEθ [Ï(θ)]2

)1/k)
→ 0.

�

Proposition 3.7. We have, for m ∈ {5,6},
n∑

i=1

∣∣(δntnİ(Yi; θ)
)m∣∣ p−→ 0,

uniformly in |tn| ≤ M and in θ ∈ K ⊂ � for K compact, in Pθ probability.
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Proof. By Assumption 2.2 and Markov inequality, for |tn| ≤ M , ε′ > 0, and m ∈ {5,6},

Pθ

(
n∑

i=1

∣∣δntnİ(Yi; θ)
∣∣m > ε′

)
≤ 1

ε′ Eθ

(
n∑

i=1

∣∣δntnİ(Yi; θ)
∣∣m)

≤ n(δn)
mMm

ε′ Eθ

∣∣İ(Yi; θ)
∣∣m

→ 0. �

Proposition 3.8. We have, for any l ≥ 2 and any k ≥ 1,

n∑
i=1

∣∣T l
ni

(
δntnİ(Yi; θ)

)k∣∣ p−→ 0,

uniformly in |tn| ≤ M and in θ ∈ K ⊂ � for K compact, in Pθ probability.

Proof. See the supplementary material [14]. �

Proposition 3.9. We have, uniformly in |tn| ≤ M and in θ ∈ K ⊂ � for K compact,

n∑
i=1

(
δntnİ(Yi; θ)

)4 − nδ4
nt

4
nEθ

[
İ(θ)

]4 a.s.−−→ 0,

n∑
i=1

(δntn)
4....
I (Yi; θ) − nδ4

nt
4
nEθ

[....
I (θ)

] a.s.−−→ 0,

n∑
i=1

(δntn)
4...
I (Yi; θ)İ(Yi; θ) − nδ4

nt
4
nEθ

[...
I (θ)İ(θ)

] a.s.−−→ 0,

n∑
i=1

(δntn)
4Ï(Yi; θ)İ2(Yi; θ) − nδ4

nt
4
nEθ

[
Ï(θ)İ2(θ)

] a.s.−−→ 0.

Proof. We complete the proof by noting that, by Chung’s uniform strong law of large number which
can be seen in Theorem A.7.3 in [2] and Lemma 3.2, one has(

1

n

n∑
i=1

(
İ(Yi; θ)

)4 − Eθ

[
İ(θ)

]4) a.s.−−→ 0,

(
1

n

n∑
i=1

....
I (Yi; θ) − Eθ

[....
I (θ)

]) a.s.−−→ 0,

(
1

n

n∑
i=1

...
I (Yi; θ)İ(Yi; θ) − Eθ

[...
I (θ)İ(θ)

]) a.s.−−→ 0.
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Furthermore, noting that Ï(Yi; θ)İ2(Yi; θ) ≤ 1
2 Ï

2(Yi; θ) + 1
2 İ

4(Yi; θ), Eθ Ï2(Yi; θ) < ∞ and Eθ İ4(Yi;
θ) < ∞ (Assumption 2.2), by Chung’s uniform strong law of large number and Lemma 3.2, one has(

1

n

n∑
i=1

Ï(Yi; θ)İ2(Yi; θ) − Eθ

[
Ï(θ)İ2(θ)

]) a.s.−−→ 0.
�

Proposition 3.10. We have

n∑
i=1

(
Tni − 1

4
δ2
nt

2
n Ï(Yi; θ) − 1

12
(δntn)

3...
I (Yi; θ) − 1

48
(δntn)

4....
I (Yi; θ)

)
p−→ 0,

uniformly in |tn| ≤ M and in θ ∈ K ⊂ � for K compact, in Pθ probability.

Proof. For any ε′ > 0, by Markov inequality, Jensen’s inequality, and Lemma 3.1,

Pθ

{∣∣∣∣∣
n∑

i=1

(
Tni − 1

4
δ2
nt

2
n Ï(Yi; θ) − 1

12
(δntn)

3...
I (Yi; θ) − 1

48
(δntn)

4....
I (Yi; θ)

)∣∣∣∣∣> ε′
}

≤ n

ε′ Eθ

∣∣∣∣Tn − 1

4
(δntn)

2Ï(θ) − 1

12
(δntn)

3...
I (θ) − 1

48
(δntn)

4....
I (θ)

∣∣∣∣
→ 0. �

Proposition 3.11. We have

n∑
i=1

∣∣∣∣(Tni − 1

4
δ2
nt

2
n Ï(Yi; θ)

)(
δntnİ(Yi; θ)

)2∣∣∣∣ p−→ 0,

uniformly in |tn| ≤ M and in θ ∈ K ⊂ � for K compact, in Pθ probability.

Proof. For any ε′ > 0, by Markov inequality, Hölder’s inequality, and Lemma 3.1,

Pθ

{
n∑

i=1

∣∣∣∣(Tni − 1

4
δ2
nt

2
n Ï(Yi; θ)

)(
δntnİ(Yi; θ)

)2∣∣∣∣> ε′
}

≤ n

ε′ Eθ

∣∣∣∣(Tn − 1

4
δ2
nt

2
n Ï(θ)

)(
δntnİ(θ)

)2∣∣∣∣
≤ n

ε′

[
Eθ

(
Tn − 1

4
δ2
nt

2
n Ï(θ)

)2]1/2[
Eθ

(
δntnİ(θ)

)4]1/2

→ 0. �

Proposition 3.12. We have

n∑
i=1

∣∣∣∣(Tni − 1

4
δ2
nt

2
n Ï(Yi; θ) − 1

12
(δntn)

3...
I (Yi; θ)

)(
δntnİ(Yi; θ)

)∣∣∣∣ p−→ 0,

uniformly in |tn| ≤ M and in θ ∈ K ⊂ � for K compact, in Pθ probability.
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Proof. For any ε′ > 0, by Markov inequality, Hölder’s inequality, and Lemma 3.1,

Pθ

{
n∑

i=1

∣∣∣∣(Tni − 1

4
δ2
nt

2
n Ï(Yi; θ) − 1

12
(δntn)

3...
I (Yi; θ)

)(
δntnİ(Yi; θ)

)∣∣∣∣> ε′
}

≤ n

ε′ Eθ

∣∣∣∣(Tn − 1

4
δ2
nt

2
n Ï(θ) − 1

12
(δntn)

3...
I (θ)

)(
δntnİ(θ)

)∣∣∣∣
≤ n

ε′

[
Eθ

(
Tn − 1

4
δ2
nt

2
n Ï(θ) − 1

12
(δntn)

3...
I (θ)

)2]1/2[
Eθ

(
δntnİ(θ)

)2]1/2

→ 0. �

Proposition 3.13. We have, for any k ≥ 3,

n∑
i=1

∣∣Tni

(
δntnİ(Yi; θ)

)k∣∣ p−→ 0,

uniformly in |tn| ≤ M and in θ ∈ K ⊂ � for K compact, in Pθ probability.

Proof. Note that

n∑
i=1

∣∣Tni

(
δntnİ(Yi; θ)

)k∣∣≤1

2

n∑
i=1

(Tni)
2
∣∣δntnİ(Yi; θ)

∣∣2k−5 + 1

2

n∑
i=1

∣∣δntnİ(Yi; θ)
∣∣5.

By Proposition 3.8 and Proposition 3.7, we complete the proof. �

Proposition 3.14. Define

U(θ) = U(Yi; θ) = İ2(Yi; θ) − I(θ).

We have

Lθ

(
1√
n

n∑
i=1

U(Yi; θ)

)
→ N

(
0,Varθ

[
İ2(θ)

])
, (3.14)

uniformly in θ ∈ K for compact K ∈ � in the weak topology, where N(0,Varθ [İ2(θ)]) is the normal
distribution with mean 0 and covariance matrix Varθ [İ2(θ)].

Proof. See the supplementary material [14]. �

Proposition 3.15. Define

V (Yi; θ) = Ï(Yi; θ) − Eθ

[
Ï(Yi; θ)

]
.

We have

Lθ

(
1√
n

n∑
i=1

V (Yi; θ)

)
→ N

(
0,Var

[
Ï(θ)

])
, (3.15)

uniformly in θ ∈ K for compact K ∈ � in the weak topology, where N(0,Var[Ï(θ)])) is the normal
distribution with mean 0 and covariance matrix Var[Ï(θ)].



2548 N. Ning, E.L. Ionides and Y. Ritov

Proof. See the supplementary material [14]. �

Proposition 3.16. We have, uniformly in |tn| ≤ M and in θ ∈ K ⊂ � for K compact, in Pθ probability,

n∑
i=1

δ3
nt

3
n İ

3(Yi; θ) −
n∑

i=1

δ3
nt

3
nEθ

[
İ3(Yi; θ)

] p−→ 0, (3.16)

n∑
i=1

δ3
nt

3
n

...
I (Yi; θ) −

n∑
i=1

δ3
nt

3
nEθ

[...
I (Yi; θ)

] p−→ 0, (3.17)

n∑
i=1

δ3
nt

3
n Ï(Yi; θ)İ(Yi; θ) −

n∑
i=1

δ3
nt

3
nEθ

[
Ï(Yi; θ)İ(Yi; θ)

] p−→ 0. (3.18)

Proof. We firstly prove equation (3.16). Since Eθ(İ6(θ)) is finite by Assumption 2.2, we have
Varθ (İ3(θ)) < ∞. By Chebyshev’s inequality and independence of data samples, we have that for
any ε′ > 0

Pθ

[∣∣∣∣∣
n∑

i=1

(
δntnİ(Yi; θ)

)3 −
n∑

i=1

Eθ

(
δntnİ(Yi; θ)

)3∣∣∣∣∣> ε′
]

≤ 1

(ε′)2
Varθ

[
n∑

i=1

(
δntnİ(Yi; θ)

)3]= nδ6
nM

6

(ε′)2
Varθ

(
İ3(θ)

)→ 0,

uniformly in θ ∈ K and |tn| ≤ M . Equation (3.17) can be proved similarly, since Eθ(
...
I (θ))2 is finite

by Assumption 2.2.
Next we prove equation (3.18). By Hölder’s inequality,

Eθ

(
Ï(θ)İ(θ)

)2 ≤ (Eθ

[
Ï(θ)

]2×3/2)2/3(
Eθ

[
İ(θ)

]2×3)1/3
.

By Assumption 2.2 we know that Ï(θ) has finite third moment and İ(θ) has finite sixth moment, which
implies

Varθ
(
Ï(Yi; θ)İ(Yi; θ)

)
< ∞.

By Chebyshev’s inequality and independence of data samples, we have that ε′ > 0

Pθ

[∣∣∣∣∣
n∑

i=1

δ3
nt

3
n Ï(Yi; θ)İ(Yi; θ) −

n∑
i=1

δ3
nt

3
nEθ

[
Ï(Yi; θ)İ(Yi; θ)

]∣∣∣∣∣> ε′
]

≤ 1

(ε′)2
Varθ

[
n∑

i=1

δ3
nt

3
n Ï(Yi; θ)İ(Yi; θ)

]
= nδ6

nM
6

(ε′)2
Varθ

(
Ï(Yi; θ)İ(Yi; θ)

)→ 0,

uniformly in θ ∈ K and |tn| ≤ M . �
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3.3. Proof of Theorem 2.3

By Propositions 3.6, 3.7, 3.8, and 3.13, equation (3.3) can be rewritten as

l(θ + δntn) − l(θ)

= 2
n∑

i=1

Tni +
n∑

i=1

δntnİ(Yi; θ) −
n∑

i=1

T 2
ni −

n∑
i=1

(
Tniδntnİ(Yi; θ)

)
− 1

4

n∑
i=1

(
δntnİ(Yi; θ)

)2 + 1

12

n∑
i=1

(
δntnİ(Yi; θ)

)3 + 1

2

n∑
i=1

Tni

(
δntnİ(Yi; θ)

)2
− 1

32

n∑
i=1

(
δntnİ(Yi; θ)

)4 + Rn(θ, tn). (3.19)

Here and in the sequel, Rn(θ, tn)
p−→ 0 in Pθ probability, uniformly in θ ∈ K compact ⊂ � and |tn| ≤

M , while the explicit expression of Rn(θ, tn) may change line by line. The proof proceeds by tackling
the terms in equation (3.19) one by one, which all hold uniformly in θ ∈ K compact ⊂ � and |tn| ≤ M ,
as follows:

(1) For the term 2
∑n

i=1 Tni , by the result of Proposition 3.10,

n∑
i=1

(
Tni − 1

4
δ2
nt

2
n Ï(Yi; θ) − 1

12
(δntn)

3...
I (Yi; θ) − 1

48
(δntn)

4....
I (Yi; θ)

)
p−→ 0.

Then by Propositions 3.16 and 3.9,

n∑
i=1

(
Tni − 1

4
δ2
nt

2
n Ï(Yi; θ) − 1

12
(δntn)

3Eθ

[...
I (θ)

]− 1

48
(δntn)

4Eθ

[....
I (θ)

]) p−→ 0.

By the result of Proposition 3.15, we have,

2
n∑

i=1

Tni = 1

2
t2
n

√
nδ2

nVn(θ) + 1

2
δ2
nt

2
nnEθ

[
Ï(θ)

]+ 1

6
(δntn)

3nEθ

[...
I (θ)

]
+ 1

24
(δntn)

4nEθ

[....
I (θ)

]+ Rn(θ, tn),

where Vn(θ) is defined in equation (2.3) and distributed as

Lθ

(
Vn(θ)

)→ N
(
0,Varθ

(
Ï(θ)

))
.

(2) For the term
∑n

i=1 δntnİ(Yi; θ), we have

n∑
i=1

δntnİ(Yi; θ) =tn
√

nδnSn(θ),

where Sn(θ) is defined in equation (2.2) and distributed as

Lθ

(
Sn(θ)

)→ N
(
0,I(θ)

)
,

in the weak topology, by Proposition 2.2 of [2].
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(3) For the term −∑n
i=1 T 2

ni , by Proposition 3.5, we have

−
n∑

i=1

T 2
ni = −

n∑
i=1

(
T 2

ni − 1

16
δ4
nt

4
nEθ

[
Ï(θ)

]2)−
n∑

i=1

1

16
δ4
nt

4
nEθ

[
Ï(θ)

]2
= − 1

16
nδ4

nt
4
nEθ

[
Ï(θ)

]2 + Rn(θ, tn).

(4) For the term −∑n
i=1(Tniδntnİ(Yi; θ)), we have

−
n∑

i=1

(
Tniδntnİ(Yi; θ)

)
= −

n∑
i=1

(
Tni − 1

4
δ2
nt

2
n Ï(Yi; θ) − 1

12
δ3
nt

3
n

...
I (Yi; θ)

)(
δntnİ(Yi; θ)

)
− 1

4

n∑
i=1

δ3
nt

3
n Ï(Yi; θ)İ(Yi; θ) − 1

12

n∑
i=1

δ4
nt

4
n

...
I (Yi; θ)İ(Yi; θ).

By Propositions 3.9, 3.12 and 3.16, we have

−
n∑

i=1

(
Tniδntnİ(Yi; θ)

)
= −1

4
nδ3

nt
3
nEθ

[
Ï(θ)İ(θ)

]− 1

12
nδ4

nt
4
nEθ

[...
I (θ)İ(θ)

]+ Rn(θ, tn).

(5) For the term − 1
4

∑n
i=1(δntnİ(Yi; θ))2, we have

−1

4

n∑
i=1

(
δntnİ(Yi; θ)

)2 = −1

4
δ2
nt

2
n

n∑
i=1

[
İ2(Yi; θ) − I(θ)

]− 1

4
δ2
nt

2
nnI(θ)

= −1

4
t2
nδ2

n

√
nUn(θ) − 1

4
δ2
nt

2
nnI(θ),

where Un(θ) is defined in equation (2.4) and is distributed (Proposition 3.14) as

Lθ

(
Un(θ)

)→ N
(
0,Varθ

[
İ2(θ)

])
.

(6) For the term 1
12

∑n
i=1(δntnİ(Yi; θ))3, by Proposition 3.16, we have

1

12

n∑
i=1

(
δntnİ(Yi; θ)

)3 = 1

12

n∑
i=1

δ3
nt

3
n

(
İ3(Yi; θ) − Eθ

[
İ3(Yi; θ)

])
+ 1

12
nδ3

nt
3
nEθ

[
İ3(θ)

]
= 1

12
nδ3

nt
3
nEθ

[
İ3(θ)

]+ Rn(θ, tn).
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(7) For the term 1
2

∑n
i=1 Tni(δntnİ(Yi; θ))2, by Proposition 3.11, we have

1

2

n∑
i=1

Tni

(
δntnİ(Yi; θ)

)2 = 1

2

n∑
i=1

(
Tni − 1

4
δ2
nt

2
n Ï(Yi; θ)

)(
δntnİ(Yi; θ)

)2
+ 1

8

n∑
i=1

δ3
nt

3
n Ï(Yi; θ)İ(Yi; θ)

= 1

8
nδ3

nt
3
nEθ

[
Ï(θ)İ(θ)

]+ Rn(θ, tn).

(8) For the term − 1
32

∑n
i=1(δntnİ(Yi; θ))4, by Proposition 3.9, we have

− 1

32

n∑
i=1

(
δntnİ(Yi; θ)

)4
= − 1

32

n∑
i=1

(
δntnİ(Yi; θ)

)4 + 1

32
t4
nnδ4

nEθ

[
İ4(θ)

]− 1

32
t4
nnδ4

nEθ

[
İ4(θ)

]
= − 1

32
t4
nnδ4

nEθ

[
İ4(θ)

]+ Rn(θ, tn).

Now, we can rewrite equation (3.19) as

l(θ + δntn) − l(θ)

= 1

2
t2
n

√
nδ2

nVn(θ) + 1

2
δ2
nt

2
nnEθ

[
Ï(θ)

]+ 1

6
(δntn)

3nEθ

[...
I (θ)

]+ 1

24
(δntn)

4nEθ

[....
I (θ)

]
+ tn

√
nδnSn(θ) − 1

16
nδ4

nt
4
nEθ

[
Ï(θ)

]2 − 1

4
nδ3

nt
3
nEθ

[
Ï(θ)İ(θ)

]− 1

12
nδ4

nt
4
nEθ

[...
I (θ)İ(θ)

]
− 1

4
t2
nδ2

n

√
nUn(θ) − 1

4
δ2
nt

2
nnI(θ) + 1

12
nδ3

nt
3
nEθ

[
İ3(θ)

]+ 1

8
nδ3

nt
3
nEθ

[
Ï(θ)İ(θ)

]
− 1

32
t4
nnδ4

nEθ

[
İ4(θ)

]+ Rn(θ, tn).

Reorganizing the terms, we have

l(θ + δntn) − l(θ)

= tn
{√

nδnSn(θ)
}+ t2

n

{√
nδ2

n

[
1

2
Vn(θ) − 1

4
Un(θ)

]
+ nδ2

n

[
1

2
Eθ

[
Ï(θ)

]− 1

4
I(θ)

]}
+ t3

n

{
nδ3

n

[
1

12
Eθ

[
İ3(θ)

]− 1

8
Eθ

[
Ï(θ)İ(θ)

]+ 1

6
Eθ

[...
I (θ)

]]}
+ t4

n

{
nδ4

n

[
− 1

32
Eθ

[
İ4(θ)

]− 1

16
Eθ

[
Ï(θ)

]2 − 1

12
Eθ

[...
I (θ)İ(θ)

]+ 1

24
Eθ

[....
I (θ)

]]}
+ Rn(θ, tn).



2552 N. Ning, E.L. Ionides and Y. Ritov

We complete the proof by noting that differentiating
∫

s2(θ) dμ = 1 with respect to θ yields∫
ṡ(θ)s(θ) dμ = 0, and further differentiating with respect to θ yields∫

s̈(θ)s(θ) dμ +
∫

ṡ2(θ) dμ = 0,

which gives

2Eθ

[
Ï(θ)

]= 4
∫

s̈(θ)s(θ) dμ = −4
∫

ṡ2(θ) dμ = −I(θ).

4. Properties of the MCLE methodology

In this section, we firstly elaborate how {βι}ι∈{1,2,3} in equation (1.13) may be obtained in prac-
tice. Recalling that θ∗

j,n − θ∗
n = jn−1/4 for j in a finite set J . We take the classical setting that

J = {−J,−J + 1, . . . ,0, . . . , J − 1, J } for J being an integer greater than 1, where we exclude J = 1
since we need at least 4 values to interpolate a cubic polynomial curve. Write

Y=

⎛⎜⎜⎜⎜⎜⎜⎝

l
(
θ∗−J,n

)
...

l
(
θ∗
n

)
...

l
(
θ∗
J,n

)

⎞⎟⎟⎟⎟⎟⎟⎠ , X=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1
(−Jn−1/4) (−Jn−1/4)2 (−Jn−1/4)3

...
...

...
...

1 0 0 0
...

...
...

...

1
(
Jn−1/4) (

Jn−1/4)2 (
Jn−1/4)3

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

β = (β0, β1, β2, β3)
T , and ε = (ε−J,n, . . . , ε0, . . . , εJ,n)

T , where the superscript “T ” stands for the
transpose operation. Now we fit “data” Y to X by linear regression

Y= Xβ + ε.

By least-squares estimation, we obtain the estimation of regression coefficients as

β̂ = (β̂0, β̂1, β̂2, β̂3)
T = (XT

X
)−1X

T
Y, (4.1)

where

X
T
X=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

J

J∑
j=−J

(
jn−1/4) J∑

j=−J

(
jn−1/4)2 J∑

j=−J

(
jn−1/4)3

J∑
j=−J

(
jn−1/4) J∑

j=−J

(
jn−1/4)2 J∑

j=−J

(
jn−1/4)3 J∑

j=−J

(
jn−1/4)4

J∑
j=−J

(
jn−1/4)2 J∑

j=−J

(
jn−1/4)3 J∑

j=−J

(
jn−1/4)4 J∑

j=−J

(
jn−1/4)5

J∑
j=−J

(
jn−1/4)3 J∑

j=−J

(
jn−1/4)4 J∑

j=−J

(
jn−1/4)5 J∑

j=−J

(
jn−1/4)6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Before we investigate the order of β̂ , let us firstly explore the orders of the determinant and adjugate

matrix of X
T
X in the following two lemmas.
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Lemma 4.1. For J being a fixed integer greater than 1, the determinant ofX
T
X, denoted as det(X

T
X),

is of order O(n−3).

Proof. See the supplementary material [14]. �

Lemma 4.2. For J being a fixed integer greater than 1, the adjugate of X
T
X, denoted as adj(X

T
X),

has that

adj
(
X

T
X
)

22 =O
(
n−5/2) and adj

(
X

T
X
)

33 =O
(
n−2).

Proof. See the supplementary material [14]. �

Recall that in equation (1.13), we have β2 = O(n) and β3 = O(n), and then we can see
that the contribution from the term β3(jn−1/4)3 in finding the desired maximizer in the interval
[−Jn−1/4, Jn−1/4] is asymptotically negligible on the O(n−1/2) scale. The MCLE is therefore close
to the maximizer of the quadratic approximation. Given that the coefficient of the quadratic term is
negative by the RLAN property in equation (1.5), we have

θ̂MCLE
n = θ∗

n + β̂1

−2β̂2
+ o
(
n−1/2), (4.2)

where β̂1 and β̂2 are given in equation (4.1). In the following theorem, we compare the performance of
θ̂MCLE
n with the generalized estimator θ̂C

n , which is defined on the δn = n−1/4 scale as follows:

θ̂C
n =θ∗

n + δn ×
√

nδnSn(θ
∗
n )

nδ2
nI(θ∗

n )
. (4.3)

Note that, θ̂C
n is the generalization of θ̂B

n (Section 1.1), for the reason that equation (4.3) with δn =
n−1/2 instead of δn = n−1/4, gives θ̂B

n .

Theorem 4.3. Suppose that the data are modeled as an i.i.d. sequence Y1, . . . , Yn drawn from a regular
parametric model P = {Pθ : θ ∈ �} satisfying Assumption 2.2. Take m = m(n) Monte Carlo simula-
tions per observation where O(

√
n) 
 m 
 O(n), and take J = {−J,−J + 1, . . . ,0, . . . , J − 1, J }

for J being a fixed integer greater than 1. Then the maximum cubic log-likelihood estimator θ̂MCLE
n is

efficient.

Proof. By the classical results of linear regression (see, e.g., equation (2.13) on page 12 of [18]), we
know that E(β̂1) = β1 and E(β̂2) = β2. By the RLAN property (Definition 1.1) we can see that the
coefficients β1 and β2 are of order

√
n and n, respectively (see Section 1.2 (2) for illustration). Recall

that by least-squares estimation, we have

β̂ = (β̂0, β̂1, β̂2, β̂3)
T = (XT

X
)−1X

T
Y.

By Lemma 4.1, we have det(X
T
X) = O(n−3), and by Lemma 4.2 we can see that adj(X

T
X)22 =

O(n−5/2) and adj(X
T
X)33 =O(n−2). Hence, by the formula that

(
X

T
X
)−1
ij

=
(

1

det(X
T
X)

adj
(
X

T
X
))

ij

,



2554 N. Ning, E.L. Ionides and Y. Ritov

we have (
X

T
X
)−1

22 =O
(
n1/2) and

(
X

T
X
)−1

33 =O(n). (4.4)

By the classical results of linear regression (see, e.g., equation (2.15) on page 12 of [18]), we have that

Var(β̂1) = (XT
X
)−1

22 Var(εj,n) and Var(β̂2) = (XT
X
)−1

33 Var(εj,n).

Then by the delta method (see, Proposition 9.32 in [10]) and by equation (4.4), together with the fact
that m

n
εj,n convergences in distribution to a normal distribution having mean zero and positive finite

variance, one obtains that

Var(β̂1) =O
(

n1/2 × n

m

)
and Var(β̂2) =O

(
n × n

m

)
.

By the covariance inequality that for two random variables ζ1 and ζ2 their covariance

Cov(ζ1, ζ2) ≤√Var(ζ1)Var(ζ2),

we have

β
2
1

4β
2
2

[
Var(β̂1)

β
2
1

− 2
Cov(β̂1, β̂2)

β1β2
+ Var(β̂2)

β
2
2

]
=O

(
n

n2

[
n1/2 × n

m

n

])
=O

(
n1/2 × 1

m

n

)
.

By the delta method, one has that as n → ∞, n

n1/2× 1
m

(
β̂1

−2β̂2
) convergences in distribution to a normal

distribution having positive finite variance. Recall that under the conditions imposed in Theorem 4.3,
we have equation (4.2). Then, in the context of Monte Carlo inference under investigation, we have

SE2
MC =O

(
Var

(
β̂1

−2β̂2

))
=O

(
n1/2 × 1

m

n

)
.

In the context of Monte Carlo inference under investigation, the statistical standard error SEstat is the
standard deviation of the MCLE constructed with no Monte Carlo error. Thus SE2

stat is given by the
variance of the classical efficient estimator θ̂C

n , that is,

SE2
stat = Var

[
θ̂C
n

]= 1

nI(θ)
=O

(
1

n

)
. (4.5)

Hence, given O(
√

n) 
 m(n) 
 O(n), we have SE2
MC /SE2

stat → 0. Furthermore, the gradient of the
bias in the likelihood evaluation, Cγ n/m, leads to a bias of order 1/m in finding the location of θ that
gives the maximum of the metamodel. Taking O(

√
n) 
 m(n) 
O(n) ensures the asymptotic bias in

the estimator is negligible compared SEstat. �
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Supplementary Material

Supplement: Proofs of some of the results (DOI: 10.3150/20-BEJ1321SUPP; .pdf). The supplemen-
tary material contains the proofs of Lemmas 3.1 and 3.2, Propositions 3.5, 3.8, 3.14 and 3.15, and
Lemmas 4.1 and 4.2.
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