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Abstract: When a poroelastic gel is released from a patterned mold, surface stress drives deformation and solvent 

migration in the gel and flattens its surface profile in a time-dependent manner.  Specifically, the gel behaves like 

an incompressible solid immediately after removal from the mold, and becomes compressible as the solvent is 

able to squeeze out of the polymer network.  In this work, we use the finite element method (FEM) to simulate 

this transient surface flattening process.  We assume that the surface stress is isotropic and constant, the polymer 

network is linearly elastic and isotropic, and that solvent flow obeys Darcy’s law.  The short-time and long-time 

surface profiles can be used to determine the surface stress and drained Poisson’s ratio of the gel.  Our analysis 

shows that the drained Poisson’s ratio and the diffusivity of the gel can be obtained using interferometry and high-

speed video microscopy, without mechanical measurement. 
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1. Introduction 

Most conventional engineering materials resist deformation by their bulk mechanical properties, such as 

elasticity, plasticity, and the like.  For these materials, the mechanical role of the surface is utterly negligible. 
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However, when a material is soft enough, surface stress is known to play a significant and sometimes dominant 

role, requiring re-thinking a wide range of mechanical phenomena and properties 1,2.  Surface stress effects are 

typically felt over a characteristic length scale, the elasto-capillary length, ~ /c sl E , where E is Young’s 

modulus of the bulk and s  is the magnitude of the surface stress. For conventional stiff materials (e.g., metals 

and ceramics), the value of elasto-capillary length is immeasurably small, on the order of angstroms. For soft 

solids, such as elastomers and gels with elastic modulus in the MPa to kPa range, respectively, the corresponding 

value of elasto-capillary length is on the order of tens of nanometers to tens of microns or larger. This affects a 

wide range of interesting phenomena and properties. For instance, surface stress can flatten sharp features by 

smoothing corners and undulations 3–5, drive instabilities 6, stiffen fluid-solid composites 7, significantly affect 

the opening of cracks 8–10, invalidate the classical theories of Hertz and Johnson-Kendall-Roberts (JKR) for 

contact mechanics without and with adhesion 11–16, alter solvent flow in porous media 17,18, and invalidate the 

classical Young equation for partial wetting 1,19–28.   

These recent investigations have addressed only the simplest constitutive behavior that a soft solid surface 

can have: the surface behavior is represented by an isotropic, homogeneous, and strain-independent stress, 

equivalent to the surface tension of simple fluid interfaces. This simple surface behavior is assumed in this work. 

It is a reasonable assumption since many soft solids – such as gels, elastomers, and most biomaterials – either 

contain a significant solvent component or have molecular structures that comprise chain-like molecules that 

locally are fluid-like.  However, it must be noted that complex surface properties such as surface elasticity (strain-

dependent resistance to stretching) and surface bending (resistance to surface curvature change) are known to 

exist in many physical systems.  For example, recent experiments by Jensen et al.29 have shown that soft gel 

surfaces can have considerable elasticity.  Similar to lipid bilayers, surfaces of soft solids can also resist surface 

bending moments, e.g., a thin silica film that forms on the surface of an elastomer (e.g., polydimethylsiloxane) 

exposed to ultraviolet ozonolysis (UVO) or oxygen plasma.30,31  Lapinski et al.32 recently demonstrated that, after 

UVO treatment, the surface of a commonly used PDMS has significant surface stress, considerable extensional 

elasticity and surface bending stiffness, and their results were confirmed by a finite element analysis (FEA).  Here 

we note that constitutive theories in which a surface can elastically resist an arbitrary amount of bending, 

stretching and shearing have been proposed by Steigmann and Ogden,33 Gao et al.34, Gurtin and Murdoch35 and 

Green.
36.  A summary of these models and some exact solutions illustrating the different manners in which surface 

stiffening and surface bending affect structural behavior can be found in Liu et al.37 

Much of the work on the role of surface stresses in soft materials has focused on time-independent elastic 

deformations, with few studies that handle time-dependent deformation mechanisms such as flow of solvent or 

viscoelasticity in the bulk 38–44.  Here we note that poroelasticity in soft materials has been studied for a long time 
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and is an active research field 45–49.  However, the interplay between poroelasticity and surface elasticity has 

begun to be considered only recently 17,50,51.  

There are several ways to measure poroelastic properties of gels, such as by confined compression 52,53, 

indentation 48,49, beam-bending 54, fluorescence recovery after photobleaching (FRAP) 55, electronic speckle 

pattern interferometry (ESPI) 56, and nuclear magnetic resonance (NMR) spectroscopy 57. For example, Hu et al. 
48 use the indentation method to determine the shear modulus, Poisson’s ratio and diffusivity of hydrogels. In 

their test, a rigid indenter is pressed into the gel to a fixed depth, and the resulting force is recorded. The measured 

instantaneous force determines the shear modulus, the ratio of instantaneous and equilibrated forces determines 

the drained Poisson’s ratio, and the force relaxation curve determines the diffusivity. However, none of these 

methods considers the effect of surface stress on the measurements. 

The present work is partially motivated by our recent interest in developing a technique to measure surface 

rheology in soft solids 5,32.  This technique is shown schematically in Fig. 1(a-c). Gel samples are created by 

replica-molding a soft gelatin-based organogel with 70/30 glycerol/water as solvent into a much stiffer patterned 

PDMS master consisting of periodic ridges, as shown in Fig. 1(a). (In a previous work 58 the master mold had a 

rippled surface and the solvent for gelatin was water.) The initial surface height of the pattern is denoted by 0h , 

and the width of the ridge and the spacing between the ridges are both equal to w .  (In the previous experiments 
5,32, 0h  is about a few microns and w  is on the order of tens of microns.)  The length of the ridges in the out of 

plane direction is much larger than any relevant scales such as w and 0h .  When the gel is released from the 

geometric constraint at time 0t =  (the undeformed configuration just before the removal is shown in Fig. 1(b)), 

the surface stress of the gel-air interface flattens the gel surface instantaneously, reducing the surface height to h  

(Fig. 1(c)). The reduction in the heights, i.e. the peak-to-valley distances (ℎ) of the surface features when the gel 

surface is exposed to air, can be measured using optical interferometry 5,32.  For the samples with a glycerol/water 

solvent there was insignificant subsequent deformation. Presumably, the viscosity of glycerol/water mixture was 

high so solvent flow was insignificant in the time frame of experiment and could be neglected. 

Here we ask the following question: can we analyze quantitatively the case in which the gel has a sufficiently 

high permeability so solvent flow can occur?  Intuitively, we expect that at the instant the gel is removed from 

the mold, it behaves like an incompressible elastic solid since solvent flow takes finite time.  At sufficiently long 

times (to be specified below) the gel behaves as a compressible elastic solid (with the drained Poisson ratio  ) as 

solvent squeezes out of the polymer network. Hence the surface profile is expected to change over time.   

Part of our goal in this work is to investigate if the time-dependent surface profile measured in experiments 

can be used to determine properties such as the surface stress, drained Poisson’s ratio, and diffusivity of the gel 

without making contact with the material.  In most experiments, the ridges are quite shallow (i.e., 0h w ).  As 
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a result, the deformation due to surface stress is sufficiently small to allow the bulk behavior to be represented by 

linear poroelasticity. In this work, we further assume that the chemical potential of the solvent in the gel is in 

equilibrium with the external solvent in the air (i.e., air with saturated humidity), hence the gel does not dry or 

swell. 

The outline of the paper is as follows. In Section 2, we briefly review the field equations of linear poroelasticity. 

In Section 3, we use the finite element method (FEM) to simulate the time-dependent surface flattening process. 

In section 4, we then discuss how to extract material properties from the results. Summary and discussion are 

presented in section 5.   

 
Fig. 1. (a) The soft gel is cured in a PDMS mold with periodic ridges and channels.  These ridges and channels 

are parallel to each other and their length in the out-of-plane direction 3x  is much longer than any in-plane 

dimensions.  (b) The shape of the gel and PDMS after release in the absence of surface stress.  (c) The actual 

shape after release.  Surface stress flattens the surface of the soft gel sample.  Since the elastocapillary length of 

PDMS mold is on the order of nm, there is no observable deformation of the mold due to its surface stress.  (d) 

Schematic of finite element model.    

 

2. Field Equations Summary 

The channels and ridges are assumed to be infinitely long in the 3x  direction.  This simplification allows us to 

model the deformation as plane strain where the out-of-plane displacement is identically zero and the continuum 
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fields are independent of 3x .  For the sake of clarity, we briefly review the plane strain theory of linear 

poroelasticity.  Details can be found in the previous works 59–62.  The gel is modeled as a fully saturated, elastic, 

porous medium occupying a two-dimensional region 0  with a surface 0 . We assume that the drained 

network is elastic and isotropic, while the skeleton of the network and solvent phase are incompressible. The 

material point position in the gel is denoted by x  ( 1,2 = ) at time t . The time-dependent displacement filed is 

denoted by u .  In plane strain, the out of plane strain components are identically zero, and the in-plane strain 

( ) - displacement relation is  

( ), , / 2u u     = +  in 0 ,          (1) 

where lower-case Greek subscripts range from 1 to 2, and ( ),
 denotes partial derivative with respect to x , i.e., 

( ) ( ),
/ x

   . The stress-strain relation for stress tensor  , strain tensor  , and pore pressure p  is  

22
3
GG K p        

 
= + − − 

 
 in 0 ,        (2) 

where G  and K  are the shear and bulk moduli of the drained network, respectively, and   is the Kronecker 

delta. Here, summation convention over repeated indices is used. The sign convention is that stresses are positive 

when they are tensile, and pore pressure is positive when it is compressive. The bulk modulus K  is related to the 

shear modulus G  by 

( )2 1
3(1 2 )

G
K





+
=

−
,            (3) 

where   is the drained Poisson’s ratio of the gel.  In the absence of body forces and ignoring inertia, the stress 

tensor   satisfies the equilibrium equations 

, 0  =  in 0 .            (4) 

Solvent flow in the gel is assumed to be governed by Darcy’s law, i.e., the solvent flux J  is proportional to the 

spatial gradient of the pore pressure p by 

,
kJ p 


= − ,            (5a) 

where k  is the permeability and   is the viscosity of the solvent.  In the literature, Darcy’s law often takes another 

form as 

,
w

w

kJ p 


= − ,            (5b) 
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where wk  is the hydraulic conductivity and w  is the weight density of the solvent, thus / /w wk k = . 

Combining the mass conservation, Darcy’s law, and equilibrium equations, Biot 60 showed that  

2
cD

t








 =


, ( )2 1

1 2
w

c
w

G kD


 

−
=

−
         (6) 

where   is the 2D Laplacian. cD  is often referred to as the cooperative diffusivity of the gel.  

In contrast to standard poroelasticity theory, here the gel surface supports surface stress and does work by 

stretching.  We assume stretching of surface is resisted by a constant isotropic surface stress s . The surface 

equilibrium equations require the discontinuity of the stress across the interface to be balanced by the Laplace 

pressure induced by surface stress 2,37.  For example, if the surface is traction free on T , we have 

sn   =  in T ,           (7) 

where n  is the unit outward normal to T , and   is the in-plane curvature of the deformed surface profile.  It 

should be noted that   is part of the solution, making poroelastic problems more difficult to solve analytically. 

 

3. Finite Element Analysis 

Given the complexity of the field equations, it is difficult to obtain closed-form solutions. Therefore, we 

simulate the transient process using a finite element method (FEM). The finite element model is illustrated in Fig. 

1(d) and implemented in a commercial software, ABAQUS. Due to symmetry, only a half-wavelength sample is 

modeled (shaded region 0  in Fig. 1(b)). The initial surface height 0h  is much less than the period 2w =  , i.e., 

0 2h w . The thickness of the gel sample is a few times the wavelength.  The polymer network is modeled as an 

elastic solid with a shear modulus G  and drained Poisson’s ratio  . The hydraulic conductivity and weight 

density of the gel are wk  and w , respectively, and they are assumed to be constant. The fixed coordinate system 

( )1 2,x x  is shown in Fig. 1(d): in the undeformed configuration, the origin O  coincides with the middle point of 

the top flat region of the ridge-channel structure ( O  is labeled by the red point in Fig. 1(b)). After deformation, 

the material point occupies ( )1 2,y y  with respect to the same coordinate system, thus y x u  = + . We 

parametrize the deformed surface profile by 1y  as ( )( )1 2 1,y y s y= .  The boundary conditions are: no horizontal 

displacement, shear traction, or solvent flux is allowed on the left and right edges of 0 ; on the bottom edge of 

0 , the vertical displacement, shear traction and solvent flux are all zero; and on the top edges (indicated by the 

blue lines in Fig. 1(d)), the pore pressure is zero and surface stress is applied. The initial condition is that pore 

pressure is zero everywhere in the gel.  In small strain poroelastic theory, this condition states the chemical 

potential of solvent is continuous across the interface 46.  This condition can be satisfied by exposing the sample 
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to an environment of saturated solvent vapor pressure.  This also prevents drying of the gel, which can drastically 

change its mechanical properties 63–66.  

Continuum coupled displacement and pore pressure elements CPE4P are used in our FEM. Special user-

defined surface finite elements are attached to the top edges to model the constant surface stress.  These user-

defined surface elements have been reported in our previous works 28.  

 

4. Results 

The following normalization is used to expedite the analysis.  The normalized coordinates are 1 1 /x x w , 

2 2 0/x x h , 1 1 /y y w , and 2 2 0/y y h .  Thus, the normalized deformed surface profile is ( ) ( )1 1 0/s y s y h , 

normalized surface height is 0/h h h , and the elastocapillary number is /c sl Gw .  Time t  is normalized by 

a characteristic time t , which is proportional to the square of a characteristic length of the gel.  There are three 

length scales in our problem: the initial surface height 0h , the elasto-capillary length /c sl G= , and the 

wavelength 2w .  Conceptually, the solvent in the gel needs to migrate over these length scales to equilibrate. 

Since w h  and cw l , we use w as the characteristic length and define 2 / ct w D  , where cD  is the 

diffusivity defined by (6). We normalize time t  by t  and define 2/ct D t w= .  We will justify this normalization 

in Section 4.2. 

 

4.1 Surface profiles and heights at short and long times 

We first consider the limiting cases of surface profiles at short and long times.  The finite element results of 

surface profiles at 0t +=  (blue dashed line) and t =   (red dotted line) are plotted in Fig. 2(a), where

0 / 0.04h w = , / 0.2c sl Gw= = , and 0.2 = . The surface profiles have been shifted vertically so that the lowest 

position in both is set to zero.  Fig. 2(a) shows that the gel corners are noticeably rounded compared to its sharp-

edged ridge-channel mold.  The gel surface is also significantly flattened by surface stress with no change in 

wavelength. The gel further flattens as the solvent is squeezed out and the gel becomes more compressible, 

eventually reaching its equilibrium shape as 1t  . 

Alternatively, the short- and long-time solutions can be obtained by studying the deformation driven by surface 

stress for an elastic solid: the instantaneous response of the porous medium behaves like an incompressible elastic 

solid, while at long times the porous medium behaves as a compressible elastic solid with the drained Poisson’s 

ratio  . Hui et al. 67 have recently provide an analytical solution to determine the flattened surface profile for any 

initial surface profile of a linear elastic half space, provided that surface stress is isotropic and constant. Using 

our notation, the deformed surface profile is given by 
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( ) ( )1 1
1

1 cos
2 n

n
s y a n y



=

= + , ( )

( )
2sin / 2

1 1 /
n e

s

n
a

n n Gw


   
=

 + −
 

,      (8) 

where e  is the Poisson’s ratio of the elastic solid. We determine the short and long times solutions using 0.5e =  

and ( 0.2e = = ) in (8).  These analytical results are shown as squares and circles, respectively, in Fig. 2(a). 

Clearly, there is a very good agreement between numerical and analytical short and long times solutions. 

Next, we investigate the change in surface height during solvent flow.  Let us denote the surface heights at 

short and long times by sh  and lh , respectively.  The corresponding normalized heights are 0/s sh h h=  and 

0/l lh h h=  respectively.  In Fig. 2(b), we plot the normalized short- and long-time surface heights versus the 

elasto-capillary number cl .  As expected, our FEM shows that the surface height decreases as the elasto-capillary 

number increases and is further reduced as the gel relaxes over time. The surface heights sh  and lh  can also be 

computed using (8), ( ) ( )1 10, 0.5 1, 0.5e e
sh s y s y = = = − = =  and ( ) ( )1 10, 0.2 1, 0.2e e

lh s y s y = = = − = = , 

respectively.  We find 

( ) ( )

1,3,... 1,3,...

4sin / 2 4sin / 2
1 / 2 1 / 2s s

n n c

n n
h

n n Gw n n l
 

   

 

= =

= =
   + +   

  ,        (9a) 

( )

( )

( )

( )1,3,... 1,3,...

4sin / 2 4sin / 2
1 1 / 1 1l s

n n c

n n
h

n n Gw n n l
 

      

 

= =

= =
   + − + −   

  .     (9b) 

The analytical predictions are plotted as symbols in Fig. 2(b) for comparison. Again, they match well at the two 

limits of short and long times. 
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Fig. 2. (a) Initial profile of the gel surface (black solid line), comparison of FEM solution (blue dotted line) with 

analytical solution (8) (for 0.5e = , squares) just after gel is release from mold ( )0t += ; comparison of FEM 

profile at long times (red dotted line) with (8) (for 0.2e = = , circles).  (b) Normalized surface height for short 

(blue) and long times (red) versus elasto-capillary number cl .  Analytical results are represented by squares and 

circles, and FEM results are represented by dotted lines.  The black dotted line is the simplified expression for 

short time given by (10).  

 

From (9a), we notice that sh  is a function dependent on cl  only. This is because that at short times, the gel 

behaves as an incompressible elastic solid with 0.5e = , independent of the drained Poisson’s ratio  .  In a 

previous work, this feature allowed us to use (9a) to extract the magnitude of surface stress, provided that sh , w  

and G  were known.  The short-time surface height sh  and wavelength 2w  can be measured, for example, by 

optical interferometry, and the shear modulus G  of the gel can be obtained independently in a separate test. To 

avoid evaluating the series (9a), we provide an approximate expression for the short time surface height, i.e., 
20.5997 1.055 1appr

s c ch l l= − + .          (10) 

The prediction of (10) is plotted in Fig. 2(b) as a black dotted line. It agrees with the analytical solutions and FEM 

well.  Equation (10) allows one to determine cl  from sh . 

The drained Poisson’s ratio can be determined using sh  and lh .  To see this, (9b) implies that lh  depends on 

both cl  and  .  Let us suppose that cl  has been determined using sh  measured in experiment (using (10)), then 

one can determine   by substituting cl  into (9b).  This relation between sh , lh  and   is given graphically in Fig. 

3.  Using this contour map, one can determine the drained Poisson’s ratio from measured values of sh  and lh . It 

should be noted that, unlike the procedure of determining the surface stress where a separate test is needed to 

measure the shear modulus, the drained Poisson’s ratio can be completely determined by measuring the surface 

heights at short and long times in experiments. 
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Fig. 3. Contour plots for normalized short- and long-time normalized height of the channel-ridge surface in which 

each contour line corresponds to a drained Poisson ratio  of the gel.    

 

4.2 Relative Height Relaxation Curve 

In the previous section we have provided a procedure by which the elasto-capillary number (and hence the 

surface stress) and the drained Poisson’s ratio v  can be determined using sh  and lh  measured in experiments.  In 

this section we show that the diffusivity of the gel, cD , can also be determined by measuring a quantity called 

relative surface height, which is defined as ( ) ( )/l s lh h h h = − − .  This dimensionless quantity reflects the 

transient surface flattening process over time;   relaxes from one to zero as the gel approaches equilibrium. 

A straightforward dimensional analysis implies  

0 , , ,ch lf t
w w

 
 

=  
 

,           (11) 

where f  is a dimensionless function.  Fig. 4(a) shows that   is insensitive to 0 /h w  as long as 0 / 1h w  .  To 

investigate the surface stress effect on  , represented by elastocapillary number ( )/c cl l w= , we plot   against 

t  for different cl  in Fig. 4(b).  The elastocapillary number cl  is chosen to be between 0.1 to 0.4, which are typical 

values observed in experiments 2,5,32. The drained Poisson’s ratio is 0.2 in these simulations.  From Fig. 4(b), it is 

evident that the effect of cl  on the relative surface height versus time is small, in the sense that the maximum 

difference of t  (for a fixed value of   ) for different curves is much less than the total time (over 7 decades) 
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where the variation occurs.  Fig. 4(b) also shows that the gel reaches equilibrium when t  is on the order of one. 

This confirms that our conjecture that the characteristic time t  should scale with the wavelength 2w .    

The number of arguments in (11) is now narrowed down to two; that is, 

( ),f t = .            (12) 

We plot the relative surface height relaxation curve for different drained Poisson’s ratios   in Fig. 5(a). It shows 

that the characteristic time to equilibrate decreases as   increases, which is to be expected.  This is because when 

0.5 = , the time it takes to equilibrate is zero as the gel surface height cannot be further reduced by surface stress.  

More interestingly, we observe that the curves for different   are parallel – suggesting a master curve can be 

produced by shifting the curves horizontally in a log-log plot. We find that if a new characteristic time is defined 

as ( ) 20.5 / ct w D  − , and we re-normalize time t  by 

( )
new

20.5
cD ttt

t w
 =

−
,           (13) 

the relative height relaxation curves corresponding to different   collapse to one single curve, as shown in Fig. 

5(b).  This rescaling indicates that   is a function of a single dimensionless time.  A fit for the master curve is 

( ) ( )new new newexp 2.674 1.647f t t t = = − −         (14) 

which is plotted as symbols in Fig. 5(b).  Remarkably, (14) provides a very good fit to the FEM results for all 
newt .  The usefulness of this result is that the diffusivity cD  can be obtained by comparing the experimentally 

measured time dependence of the relative height relaxation curve to (14).  Similar to the procedure to extract the 

drained Poisson’s ratio, the cooperative diffusivity cD  of the gel can be determined by the graphing surface height 

versus time.  It is not necessary to measure any other material properties. 

 
Fig. 4. The relative surface height   is approximately independent of (a) height and (b) elasto-capillary number. 
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Fig. 5. (a)   versus normalized time /t t t= . (b)   plotted against new normalized time /newt t t= . The square 

symbols are obtained from eq. (14).   

 

5. Summary and Discussion 

In this work, we have proposed a test by which the surface stress, the drained Poisson’s ratio and the diffusivity 

of a gel can be measured simultaneously.  This test is based on measuring the time-dependent surface profile of 

a periodic ridge-channel gel structure. The time dependence of the surface profile is due to poroelastic flow caused 

by the flattening effect of surface stress.  We carried out finite element analysis to support our analysis.  The 

determination of surface stress requires knowledge of the shear modulus. However, the drained Poisson’s ratio 

and the diffusivity can be obtained with no mechanical testing. 

We illustrate more quantitatively how this might work experimentally.  For a typical hydrogel, the diffusivity 

is on the order of 1110cD −  m2/s 68–70.  A typical value for surface stress is 70s  mN/m.  If we use a periodic 

ridge-channel geometry with height 0 0.1h   mm and wavelength 2w  of 1 mm, then the elasto-capillary number 

/c sl Gw  for samples of this geometry is on the order of 
2140 Nm

G

−

.  For a hydrogel with modulus on the order 

of kPa, the elasto-capillary number is of order 0.1.  The characteristic relaxation time 2 4~ / ~ 10 sct w D . This 

time scale allows sufficient time to perform the measurements.  For example, to capture the full time-dependent 

behavior of the relative height curve, an image exposure time of 1s is necessary. In modern image technologies 

(e.g., high speed video microscopy), images can be easily acquired with 1 μs exposure time 50, which is more than 

sufficient for our needs. To measure smaller structures, one can decrease diffusivity by replacing water with a 

water-glycerol mixture to swell the gel 71.  The pure glycerol solvent will increase the viscosity and hence decrease 
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the diffusivity by three orders of magnitude.  This justifies the feasibility of using surface flattening method to 

determine both poroelastic and surface material properties in experiments.   

It is also interesting to note that for sufficiently large elastocapillary number 1cl  , the series of the final 

equilibrium shape obtained using (8) is given by  

( )
( )

( )1 12

1 2, 1
2 1c

c

s y l y
v l




  +
−

,        (15a) 

where 

( )
( )

( )1 12
0

( 1) cos
2 1

n

n
y n y

n
 



=

−
=

+
 .         (15b) 

In particular, the normalized peak to valley height is inversely proportional to cl  and is given by 

( )
( ) ( ) ( )22 2

0

4 ( 1) 41
1 12 1

n

c
nc c

Ch l
l ln   



=

−
  =

− −+
 ,      (15c) 

where 0.9159655941...C = is the Catalan’s constant. 

In this work, we assume that the material is linear poroelastic. However, soft solids can exhibit viscoelastic 

behaviors.  Viscoelastic relaxation decreases the shear modulus, resulting in increasing elastocapillary length with 

time and promoting the flattening effect of surface stress.  In contrast to the poroelastic relaxation time, which is 

quadratic in the sample wavelength, the viscoelastic relaxation time is independent on the geometry. Thus, one 

can experimentally distinguish between the surface height relaxation due to solvent flow and surface height 

relaxation due to viscoelastic relaxation of the gel networks. The coupling of poroelastic and viscoelastic effects 

at the same time scale is beyond the scope of this work, and it needs to be studied in the future work.   

Another limitation in our model is that surface stress is assumed to be isotropic and constant, and large 

deformation effect is completely ignored in our analysis. In addition, it is known that surfaces of very soft 

polymers can have significant surface elasticity (the “Shuttleworth Effect” 72), and small strain linear elasticity 

theory is no longer valid when the ridge-channel structure becomes deep 5. One approach is to use numerical 

methods like nonlinear finite element modeling. A few nonlinear transient finite element methods to study coupled 

solvent diffusion and large deformation have been developed recently 45,73,74. One can supplement these models 

with a surface finite-element model to study the complicated surface flattening relaxation process.  

Further, we assume that the squeezed-out solvent is sufficient thin (not filling up the valleys) so that the 

surface stress still exists to drive the deformation. To justify this assumption, we first plot the solvent flux field 

j  on the interface at time new 310t −=  and new 1t =  in Fig. 6. We use 0 / 0.04h w = , / 0.2c sl Gw= = , and 
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0.2 =  in the FE simulation, and normalize the solvent flux by /w wk G w , i.e., the normalized flux w

w

w
k G


=J j . 

The direction and magnitude of the normalized flux field is indicated by the red arrows in Figure 6.  The magnitude 

of the flux is actually very small, since the flux is normalized by 
( )

(1 2 )
2 1

w c

w

k G v D
w v w

−
=

−
.  If we take 1110cD −  m2/s 

and 2 1w =  mm, a normalized flux value of 1 corresponds to 810−  m/s.  At very short times ( new 310t −= ), the 

solvent is leaving the gel on the top surface and the maximum outward flux occurs at the top corner, while the 

solvent is entering the gel on the bottom surface and the maximum inward flux occurs at the bottom corner. At 

the characteristic time ( new 1t = ), the flux becomes negligible and a different feature emerges: the maximum 

outward and inward fluxes occur at the peak and valley of the surface, respectively. Integration of the solvent flux 

over the time and the entire interface gives the total volume change of the solvent. We find that the total volume 

leaving the gel till a very long time new 5t =  is about 00.029h w , which is negligible compared to the sample size. 

It lends support to our assumption.  

Finally, future work needs to consider more realistic boundary conditions which allow for non-equilibrium 

drying of the gel. 

 

Fig. 6. Normalized flux at time (a) new 310t −=  and (b) new 1t = . The black curve is the deformed surface profile 

of the ridge-channel structure.  The red arrows represent the direction and magnitude of the flux and the scale bar 

in (a) and (b) indicates the magnitude of the flux.   
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