
Cocktail: Leveraging Ensemble Learning for Optimized Model Serving
in Public Cloud.

Jashwant Raj Gunasekaran
Pennsylvania State University

Cyan Subhra Mishra
Pennsylvania State University

Prashanth Thinakaran
Pennsylvania State University

Mahmut Taylan Kandemir
Pennsylvania State University

Chita R. Das
Pennsylvania State University

Abstract
With a growing demand for adopting ML models for a variety
of application services, it is vital that the frameworks serving
these models are capable of delivering highly accurate predic-
tions with minimal latency along with reduced deployment
costs in a public cloud environment. Despite high latency,
prior works in this domain are crucially limited by the accu-
racy offered by individual models. Intuitively, model ensem-
bling can address the accuracy gap by intelligently combining
different models in parallel. However, selecting the appro-
priate models dynamically at runtime to meet the desired
accuracy with low latency at minimal deployment cost is a
nontrivial problem. Towards this, we propose Cocktail, a cost
effective ensembling-based model serving framework. Cock-
tail comprises of two key components: (i) a dynamic model
selection framework, which reduces the number of models
in the ensemble, while satisfying the accuracy and latency
requirements; (ii) an adaptive resource management (RM)
framework that employs a distributed proactive autoscaling
policy combined with importance sampling, to efficiently allo-
cate resources for the models. The RM framework leverages
transient virtual machine (VM) instances to reduce the de-
ployment cost in a public cloud. A prototype implementation
of Cocktail on the AWS EC2 platform and exhaustive evalua-
tions using a variety of workloads demonstrate that Cocktail
can reduce deployment cost by 1.45×, while providing 2×
reduction in latency and satisfying the target accuracy for up
to 96% of the requests, when compared to state-of-the-art
model-serving frameworks.

1 Introduction
Machine Learning (ML) has revolutionized user experience
in various cloud-based application domains such as product
recommendations [65], personalized advertisements [40], and
computer vision [13, 39]. For instance, Facebook [40, 75]
serves trillions of inference requests for user-interactive ap-
plications like ranking new-feeds, classifying photos, etc. It
is imperative for these applications to deliver accurate predic-
tions at sub-millisecond latencies [27, 33–35, 40, 76] as they
critically impact the user experience. This trend is expected
to perpetuate as a number of applications adopt a variety of
ML models to augment their services. These ML models are

typically trained and hosted on cloud platforms as service end-
points, also known as model-serving framework [6, 28, 55].
From the myriad of ML flavours, Deep Neural Networks
(DNNs) [50] due to their multi-faceted nature, and highly gen-
eralized and accurate learning patterns [41,68] are dominating
the landscape by making these model-serving frameworks
accessible to developers. However, their high variance due to
the fluctuations in training data along with compute and mem-
ory intensiveness [54,60,77] has been a major impediment in
designing models with high accuracy and low latency. Prior
model-serving frameworks like InFaas [76] are confined by
the accuracy and latency offered by such individual models.

Unlike single-model inferences, more sophisticated tech-
niques like ensemble learning [15] have been instrumental
in allowing model-serving to further improve accuracy with
multiple models. For example, by using the ensembling 1

technique, images can be classified using multiple models in
parallel and results can be combined to give a final prediction.
This significantly boosts accuracy compared to single-models,
and for this obvious advantage, frameworks like Clipper [27]
leverage ensembling techniques. Nevertheless, with ensem-
bling, the very high resource footprint due to sheer number
of models that need to be run for each request [27, 52], ex-
acerbates the public cloud deployment costs, as well as leads
to high variation in latencies. Since cost plays a crucial role
in application-provider consideration, it is quintessential to
minimize the deployment costs, while maximizing accuracy
with low latency. Hence, the non-trivial challenge here lies
in making the cost of ensembling predictions analogous to
single model predictions, while satisfying these requirements.

Studying the state-of-the-art ensemble model-serving
frameworks, we observe the following critical shortcomings:
• Ensemble model selection policies used in frameworks

like Clipper [27] are static, as they ensemble all available
models and focus solely on minimizing loss in accuracy. This
leads to higher latencies and further inflates the resource foot-
print, thereby accentuating the deployment costs.
• Existing ensemble weight estimation [80] has high com-

putational complexity and, in practice, are limited to a small
set of off-the-shelf models. This leads to significant loss in

1We refer to ensemble-learning as ensembling throughout the paper.

1

ar
X

iv
:2

10
6.

05
34

5v
1

 [c
s.D

C
]

9
Ju

n
20

21

accuracy. Besides, employing linear ensembling techniques
such as model averaging are compute intensive [73] and not
scalable for a large number of available models.
• Ensemble systems [27,73] are not focused towards model

deployment in a public cloud infrastructure, where resource
selection and procurement play a pivotal role in minimizing
the latency and deployment costs. Further, the resource provi-
sioning strategies employed in single model-serving systems
are not directly extendable to ensemble systems.

These shortcomings collectively motivate the central
premise of this work: how to solve the complex optimiza-
tion problem of cost, accuracy and latency for an ensem-
bling framework? In this paper, we present and evaluate
Cocktail2, which to our knowledge is the first work that
develops a cost-effective model-serving system by exploit-
ing ensembling techniques to deliver high accuracy and
low latency predictions in public cloud. Cocktail adopts
a three-pronged approach to solve the optimization prob-
lem. First, it uses a dynamic model selection policy to sig-
nificantly reduce the number of models used in an ensem-
ble, while meeting the latency and accuracy requirements.

Cost 1

Latency 1Accuracy

0.25
0.5
0.75

InFaas Clipper Cocktail

Figure 1: Benefits of Cocktail. Re-
sults are normalized (higher the
better).

Second, it utilizes dis-
tributed autoscaling poli-
cies to reduce the la-
tency variability and re-
source consumption of
hosting ensemble mod-
els. Third, it minimizes
the cost of deploying
ensembles in a public
cloud by taking advan-
tage of transient VMs,

as they can be 70-90% cheaper [3] than traditional VMs.
Cocktail, by coalescing these benefits, is capable of operating
in a region of optimal cost, accuracy and latency (shown in
Figure 1) that prior works cannot achieve. Towards this, the
key contributions of the paper are summarized below:

1. By characterizing accuracy vs. latency of ensemble models,
we identify that prudently selecting a subset of available
models under a given latency can achieve the target ac-
curacy. We leverage this in Cocktail, to design a novel
dynamic model selection policy, which ensures accuracy
with significantly reduced number of models.

2. Focusing on classification-based inferences, it is important
to effectively minimize the bias in predictions resulting
from multiple models. In Cocktail, we employ a per-class
weighted majority voting policy, that makes it scalable
and effectively breaks ties when compared to traditional
weighted averaging, thereby minimizing the accuracy loss.

3. We show that uniformly scaling resources for all models
in the ensemble leads to over-provisioning of resources
and towards minimizing it, we build a distributed weighted

2Cocktail is ascribed to having the perfect blend of models in an ensemble.

Applications
Image

Recognition NLP Recommender
Systems

Models

VM

VM
VM

VM VM
VM

Frameworks

Cloud

Resources

SLO

Ac
cu

ra
cy

La
te

nc
y

Users

Burstables Spot CPU GPU

Co
st

La
te

nc
y

Figure 2: The overall framework for model-serving in public cloud.

auto-scaling policy that utilizes the importance sampling
technique to proactively allocate resources to every model.
Further, Cocktail leverages transient VMs as they are
cheaper, to drastically minimize the cost for hosting model-
serving infrastructure in a public cloud.

4. We implement a prototype of Cocktail using both CPU
and GPU instances on AWS EC2 [5] platform and ex-
tensively evaluate it using different request-arrival traces.
Our results from exhaustive experimental analysis demon-
strate that Cocktail can minimize deployment cost by 1.4×
while meeting the accuracy for up-to 96% of the requests
and providing 2× reduction in latency, when compared to
state-of-the-art model serving systems.

5. We show that ensemble models are inherently fault-
tolerant over single models, since in the former, failure of
a model would incur some accuracy loss without complete
failure of the requests. It is observed from our failure-
resilience results that Cocktail can adapt to instance fail-
ures by limiting the accuracy loss within 0.6%.

2 Background and Motivation
We start by providing a brief overview of model-serving in
public cloud and ensembling, followed by a detailed analysis
of their performance to motivate the need for Cocktail.

2.1 Model Serving in Public Cloud

Figure 2 shows the overall architecture of a model-serving
framework. There are diverse applications that are typically
developed, trained and hosted as web services. These services
allow end-users to submit queries via web server interface.
Since these inference requests are often user-facing, it is
imperative to administer them under a strict service level ob-
jective (SLO). We define SLO as the end-to-end response
latency required by an application. Services like Ads and
News Feed [35, 40] would require SLOs within 100ms, while
facial tag recommendation [76] can tolerate up to 1000ms.
A myriad of model architectures are available to train these
applications which by themselves can be deployed on appli-
cation frameworks like TensorFlow [1], PyTorch [57] etc.

2

Model (Acronym) Params
(10k)

Top-1
Accuracy(%)

Latency
(ms) Pf

MobileNetV1 (MNet) 4,253 70.40 43.45 10
MobileNetV2 (MNetV2) 4,253 71.30 41.5 10
NASNetMobile (NASMob) 5,326 74.40 78.18 3
DenseNet121 (DNet121) 8,062 75.00 102.35 3
DenseNet201 (DNet201) 20,242 77.30 152.21 2
Xception (Xcep) 22,910 79.00 119.2 4
Inception V3 (Incep) 23,851 77.90 89 5
ResNet50-V2 (RNet50) 25,613 76.00 89.5 6
Resnet50 (RNet50) 25,636 74.90 98.22 5
IncepResnetV2 (IRV2) 55,873 80.30 151.96 1
NasNetLarge (NasLarge) 343,000 82.00 311 1

Table 1: Collection of pretrained models used for image classification.

Table 1 shows the different models available for image predic-
tion, that are pretrained on Keras using ImageNet [29] dataset.
Each model has unique accuracy and latencies depending on
the model architecture. Typically denser models are designed
with more parameters (ex. NASLarge) to classify complex
classes of images.

The entire model framework is typically hosted on re-
sources like VMs or containers in public cloud. These re-
sources are available in different types including but not lim-
ited to transient instances, burstables, CPUs, and GPUs. Tran-
sient instances [64] are similar to traditional VMs but can be
revoked at any time by the cloud provider with an interrup-
tion notice. The provisioning latency, instance permanence
and packing factor of these resources have a direct impact on
the latency and cost of hosting model-serving. We explain
instance “packing factor” and its relationship with latency
in Section 2.3.2. In this paper, we focus on improving the
accuracy and latency from the model selection perspective
and consider instances types from a cost perspective. A ma-
jority of the model serving systems [6, 76, 79] in public cloud
support individual model selection from available models.
For instance, InFaas [76] can choose variants among a same
model to maintain accuracy and latency requirements. How-
ever, denser models tend to have up to 6× the size and twice
the latency of smaller models to achieve increased accuracy
of about 2-3%. Besides using dense models, ensembling [15]
techniques have been used to achieve higher accuracy.
Why Ensembling? An Ensemble is defined as a set of clas-
sifiers whose individual decisions combined in some way to
classify new examples. This has proved to be more accurate
than traditional single large models because it inherently re-
duces incorrect predictions due to variance and bias. The
commonly used ensemble method in classification problems
are bootstrap aggregation (bagging) that considers homoge-
neous weak learners, learns them independently from each
other in parallel, and combines them following some kind of
deterministic averaging process [18] or majority voting [45]
process. For further details on ensemble models, we refer the
reader to prior works [14, 53, 56, 59, 70, 71, 81].

2.2 Related Work

Ensembling in practice: Ensembling is supported by com-
mercial cloud providers like Azure ML-studio [11] and AWS

Features C
lip

pe
r[

27
]

R
afi

ki
[7

3]

In
fa

as
[7

6]

M
A

rk
[7

9]

Sa
ge

m
ak

er

Sw
ay

am
[3

3]

C
oc

kt
ai

l

Predictive Scaling 7 7 7 3 7 3 3

SLO Guarantees 3 7 3 3 7 3 3

Cost Effective 7 7 3 3 7 7 3

Ensembling 3 3 7 7 3 7 3

Heterogeneous Instances 7 3 3 3 3 7 3

Dynamic ensemble selection 7 7 7 7 7 7 3

Model abstraction 3 3 3 7 7 7 3

Table 2: Comparing Cocktail with other related frameworks.

Autogluon [31] to boost the accuracy compared to single
models. Azure initially starts with 5 models and constantly
scales up models using a hill-climb policy [17] to meet the
target accuracy. While AWS combines all available (6-10)
models to give the best possible accuracy. Users also have
the option to manually mention the ensemble size. Unlike
them, Cocktail’s model selection policy tries to right-size the
ensemble for a given latency, while maximizing accuracy.
Model-serving in Cloud: The most relevant prior works to
Cocktail are InFaas [76] and Clipper [27], which have been
extensively discussed and compared to in Section 6. Recently
FrugalML [20] was proposed to cost-effectively choose from
commercial MLaaS APIs. While striking a few similarities
with Cocktail, it is practically limited to image-classification
applications with very few classes and does not address re-
source provisioning challenges. MArk [79] proposed SLO and
cost aware resource procurement policies for model-serving.
Although our heterogeneous instance procurement policy has
some similarities with MArk, it is significantly different be-
cause we consider ensemble models. Rafiki [73] considers
small model sets and scales up and down the ensemble size by
trading off accuracy to match throughput demands. However,
Cocktail’s resource management is more adaptive to chang-
ing request loads and does not drop accuracy. Pretzel [48]
and Inferline [26] are built on top of Clipper to optimize the
prediction pipeline and cost due to load variations, respec-
tively. Many prior works [2, 25, 34, 58] have extensively tried
to reduce model latency by reducing overheads due to shared
resources and hardware interference. We believe that our
proposed policies can be complementary and beneficial to
these prior works to reduce the cost and resource footprint
of ensembling. There are mainstream commercial systems
which automate single model-serving like TF-Serving [55],
SageMaker [6], AzureML [10], Deep-Studio [28] etc.
Autoscaling in Public Cloud: There are several research
works that optimize the resource provisioning cost in pub-
lic cloud. These works are broadly categorized into: (i)
multiplexing the different instance types (e.g., Spot, On-
Demand) [12, 23, 33, 37, 38, 63, 72], (ii) proactive resource
provisioning based on prediction policies [33, 36, 37, 64, 79].
Cocktail uses similar load prediction models and auto-scales
VMs in a distributed fashion with respect to model ensem-

3

Baseline(BL) NASLarge IRV2 Xception DNet121 NASMob
#Models 10 8 7 5 2
BL_Latency 311(ms) 152(ms) 120(ms) 100(ms) 98(ms)
E_Latency 152(ms) 120(ms) 103(ms) 89(ms) 44(ms)

Table 3: Comparing latency of Ensembling (E_Latency) with single
(baseline) models.

bling. Swayam [33] is relatively similar to our work as it han-
dles container provisioning and load-balancing, specifically
catered for single model inferences. Cocktail’s autoscaling
policy strikes parallels with Swayam’s distributed autoscaling;
however, we further incorporate novel importance sampling
techniques to reduce over-provisioning for under-used models.
Table 2 provides a comprehensive comparison of Cocktail
with the most relevant works across key dimensions.

2.3 Pros and Cons of Model Ensembling

In this section, we quantitatively evaluate (i) how effective
ensembles are in terms of accuracy and latency compared to
single models, and (ii) the challenges in deploying ensemble
frameworks in a cost-effective fashion on a public cloud. For
relevance in comparison to prior work [27, 76] we chose im-
age inference as our ensemble workload. While ensembling is
applicable in other classification tasks like product recommen-
dations [24, 49], text classification [66] etc, the observations
drawn are generic and applicable to other applications.

2.3.1 Ensembling Compared to Single Models

To analyze the accuracy offered by ensemble models, we con-
duct an experiment using 10000 images from ImageNet [29]
test dataset, on a C5.xlarge [8] instances in AWS EC2 [5].
For a given baseline model, we combine all models whose
latency is lower than that of the baseline, and call it full-
ensemble. We perform ensembling on the predictions using
a simple majority voting policy. The latency numbers for
the baseline models and the corresponding ensemble models
along with the size of the ensemble are shown in Table 3. In
majority voting, every model votes for a prediction for each
input, and the final output prediction is the one that receives
more than half of the votes. Figure 3a, shows the accuracy
comparison of the baseline (single) and static ensemble (ex-
plained in Section 3) compared to the full-ensemble. It is
evident that full-ensemble can achieve up to 1.65% better
accuracy than single models.

Besides accuracy again, ensembling can also achieve lower
latency. The latency of the ensemble is calculated as the time
between start and end of the longest running model.As shown
in Table 3, in the case of NASLarge, the ensemble latency is
2× lower (151ms) than the baseline latency (311ms). Even
a 10ms reduction in latency is of significant importance to
the providers [34]. We observe a similar trend of higher en-
semble accuracy for other four baseline models with a latency
reduction of up to 1.3×. Thus, depending on the model sub-
set used in the ensemble, it achieves better accuracy than
the baseline at lower latencies. Note that in our example
model-set, the benefits of ensembling will diminish for lower

NASLarge IRV2 Xception DNet121 NASMob

0.5

1.0

1.5

Ac
cu

ra
cy

 L
os

s(
%

)

Static Single

(a) Accuracy loss compared to full-
ensemble.

NASLarge IRV2 XceptionDNet121 NASMob0

2

4

6

Co
st

($
)

Single-OD Ensemble-OD Ensemble-spot

(b) Cost of full-ensembling hosted
on OD and Spot instances.

Figure 3: Comparing the cost and accuracy of ensembling to single
models.

accuracies (< 75%) because single models can reach those
accuracies. Hence, based on the user constraints, Cocktail
chooses between ensemble and single models.

2.3.2 Ensembling Overhead

While ensembling can boost accuracy with low latency, their
distinctive resource hungry nature drastically increases the
deployment costs when compared to single models. This is
because more VMs or containers have to be procured to match
the resource demands. However, note that the “Packing factor”
(Pf) for each model also impacts the deployment costs. Pf in
this context is defined as the number of inferences that can be
executed concurrently in a single instance without violating
the inference latency (on average). Table 1 provides the Pf for
11 different models when executed on a C5.xlarge instance.
There is a linear relationship between Pf and the instance size.
It can be seen that smaller models (MNet, NASMob) can be
packed 2-5× more when compared to larger models (IRV2,
NASLarge). Thus, the ensembles with models of higher Pf
have significantly lower cost.

The benefits of Pf is contingent upon the models chosen
by the model selection policy. Existing ensemble model se-
lection policies used in systems like Clipper use all off-the-
shelf models and assign weights to them to calculate accu-
racy. However, they do not right-size the model selection
to include models which primarily contribute to the major-
ity voting. We compare the cost of hosting ensembles using
both spot (ensemble-spot) and OD (ensemble-OD) instances
with the single models hosted on OD (single-OD) instances.
Ensemble-spot is explained further in the next section. We run
the experiment over a period of 1 hour for 10 requests/second.
The cost is calculated as the cost per hour of EC2 c5.xlarge
instance use, billed by AWS [5]. We ensure all instances are
fully utilized by packing multiple requests in accordance to
the Pf . As shown in Figure 3b, Ensemble-OD is always ex-
pensive than single-OD for the all the models. Therefore, it is
important to ensemble an “optimal” number of less compute
intensive models to reduce the cost.

3 Prelude to Cocktail
To specifically address the cost of hosting an ensembling-
based model-serving framework in public clouds without
sacrificing the accuracy, this section introduces an overview
of the two primary design choices employed in Cocktail.
How to reduce resource footprint? The first step towards

4

making model ensembling cost effective is to minimize the
number of models by pruning the ensemble, which reduces
the overall resource footprint. In order to estimate the right
number of models to participate in a given ensemble, we
conduct an experiment where we chose top N

2 accurate models
(static) from the full-ensemble of size N. From Figure 3a, it
can be seen that the static policy has an accuracy loss of up
to 1.45% when compared to full-ensemble, but is still better
than single models. This implies that the models other than
top N

2 yields a significant 1.45% accuracy improvement in
the full-ensemble but they cannot be statically determined.

Peacock Panda Quill Slug Cup
Class

0

50

100

Ac
cu

ra
cy

MNetV2 IRV2 NASLarge

Figure 4: Class-wise Accuracy.

Therefore, a full-ensemble
model participation is not
required for all the inputs
because, every model is in-
dividually suited to classify
certain classes of images
when compared to other

classes. Figure 4 shows the class-wise accuracy for three
models on 5 distinct classes. It can be seen that for simpler
classes like Slug, MNetV2 can achieve similar accuracy as the
bigger models, while for difficult classes, like Cup and Quill,
it experiences up to 3% loss in accuracy. Since the model
participation for ensembling can vary based on the class of
input images being classified, there is a scope to develop a dy-
namic model selection policy that can leverage this class-wise
variability to intelligently determine the number of models
required for a given input.
Key Takeaway: Full ensemble model-selection is an overkill,
while static-ensemble leads to accuracy loss. This calls for
a dynamic model selection policy which can accurately de-
termine the number of models required, contingent upon the
accuracy and scalability of the model selection policy.
How to save cost? Although dynamic model selection poli-
cies can significantly reduce the resource footprint as shown
in Figure 3b, the cost is still 20-30% higher when compared
to a single model inference. Most cloud providers offer tran-
sient VMs such as Amazon Spot instances [64], Google Pre-
emptible VMs [9], and Azure Low-priority VMs [7], that can
reduce cloud computing costs by as much as 10× [3]. In Cock-
tail, we leverage these transient VMs such as spot instances
to drastically reduce the cost of deploying ensembling model
framework. As an example, we host full-ensembling on AWS
spot instances. Figure 3b shows that ensemble-spot can re-
duce the cost by up to 3.3× when compared to ensemble-OD.
For certain baselines like IRV2, ensemble-spot is also 1.5×
cheaper than single-OD. However, the crucial downside of
using transient VMs is that they can be unilaterally preempted
by the cloud provider at any given point due to reasons like in-
crease in bid-price or provider-induced random interruptions.
As we will discuss further, Cocktail is resilient to instance
failures owing to the fault-tolerance of ensembling by com-
puting multiple inferences for a single request.
Key takeaway: The cost-effectiveness of transient instances,

Fast
Cache

MobileNet
NasNet

ResNet50
DenseNet121

Dynamic Model
Selection

. . .

Aggregator
Master VM

User Requests

…… … … …

Queries
Cost aware Procurement

Importance Sampling

Model-1 Model-2 Model-3 Model-4 Model-n

output

Heterogeneity

Prediction Policy

Au
to

sc
al

er

Re
so

ur
ce

 C
on

tr
ol

le
r

Load Balancer

 argmax O1
(latency)

 argmin O2
(accuracy)

CPU GPUCPUGPU

Objectives
1a

3

4b

1b

2 4

4a

4b

1

6

6b

6a

w1 w2 w3 wkw4

3

5 Bin-Packing

Weight Matrix

L

N

Figure 5: High-level overview of Cocktail design.

is naturally suitable for hosting ensemble models.

4 Overall Design of Cocktail
Motivated by our observations, we design a novel model-
serving framework, Cocktail, that can deliver high-accuracy
and low-latency predictions at reduced cost. Figure 5 depicts
the high-level design of Cocktail. Users submit requests to a
master VM, which runs a model selection algorithm, 1a to
decide the models to participate in the ensemble. The partic-
ipating models are made available in a model cache 1b for
faster access and avoid re-computation for requests having
similar constraints. Then, individual queries are dispatched to
instances pools 2 dedicated for each model. The results from
the workers are ensembled using an weighted majority voting
aggregator 3 to agree upon a correct prediction. To efficiently
address the resource management and scalability challenges,
Cocktail applies multiple strategies. First, it maintains dedi-
cated instance pools to serve individual models which simpli-
fies the management and load balancing overheads for every
model. Next, the resource controller 4 handles instance pro-
curement, by exploiting both CPU and GPU instances 4a in
a cost-aware 4b fashion, while the load balancer 5 ensures
all procured instances are bin-packed by assigning queries to
appropriate instances. We also design an autoscaler 6 , which
utilizes a prediction policy 6a to forecast the request load
and scale instances for every model pool, thereby minimiz-
ing over-provisioning of resources. The autoscaler further
employs an importance sampling 6b algorithm to estimate
the importance of each model pool by calculating percent-
age of request served by it in a given time interval. The key
components of the design are explained in detail below.
4.1 Dynamic Model Selection Policy

We use a window-based dynamic model selection policy using
two objective functions as described below.
Objective functions: In order to reduce cost and latency
while maximizing the accuracy, we define a latency-accuracy
metric (µAL) and cost metric (µc):

µAL =
Acctarget

Lattarget
µC = k×

N

∑
m=1

inst_cost
Pfm

where N is the number of models used to ensemble and
inst_cost is the VM cost. Each model m has a packing factor

5

Pfm and k is a constant which depends on the VM size in
terms of vCPUs (xlarge, 2xlarge, etc). Our first objective
function (O1) is to the maximize µAL such that target accuracy
(Acctarget) is reached within the target latency (Lattarget).

maxµAL :
{

Acctarget ≥ Acctarget ±Accmargin
Lattarget ≤ Lattarget ±Latmargin

To solve O1, we determine an initial model list by choosing
the individual models satisfying Lattarget and then create a
probabilistic ensemble that satisfies the Acctarget . Cocktail
takes the accuracy of each model as a probability of cor-
rectness and then iteratively constructs a model list, where
the joint probability of them performing the classification is
within the accuracy target. We tolerate a 0.2% (Accmargin)
and 5ms (Latmargin) variance in Acctarget and Lattarget , respec-
tively. Next, we solve for the second objective function (O2)
by minimizing µC, while maintaining the target accuracy.

minµC :
{

Acctarget ≥ Acctarget ±Accmargin

O2 is solved by resizing the model list of size N and fur-
ther through intelligence resource procurement (described
in section 4.2), and thus maximizing Pf and minimizing k
simultaneously. If we have N models, where each model has
a minimum accuracy of ‘a’, we model this ensemble as a
coin-toss problem, where N biased coins (with probability
of head being a) are tossed together, and we need to find the
probability of majority of them being heads. For this, we
need at least bN

2 c+ 1 models to give the same results. The
probability of correct prediction is given by

N

∑
i=bN

2 c+1

(
N
i

)
ai (1−a)(N−i)

Model Selection Algorithm: To minimize µC, we design
a policy to downscale the number of models, if more than
N/2+1 models vote for the same classification result. Algo-
rithm 1 describes the overall design of the model selection
policy 1a . For every monitoring interval, we keep track of the
accuracy obtained from predicting all input images within the
interval. If the accuracy of the interval reaches the threshold
accuracy (target + error_margin), we scale down the num-
ber of available models in the ensemble. For consecutive
sampling intervals, we calculate the Mode (most frequently
occurring) of the majority vote received for every input. If
the Mode is greater than needed votes bN/2c+ 1 we prune
the models to bN/2c+1. While down-scaling, we drop the
models with the least prediction accuracy in that interval. If
there is a tie, we drop the model with least packing factor
(Pf). It can so happen that dropping models can lead to drop
in accuracy for certain intervals, because the class of images
being predicted are different. In such cases, we up-size the
models (one at a time) by adding most accurate model from
the remaining unused models.

Algorithm 1 Model Selection and Weighted Majority Voting
1: procedure FULL_ENSEMBLE(MODELLIST, SLO)
2: for model ∈ModelList do
3: if model.latency ≤ SLO.latency then
4: Model.add(model)
5: end if
6: end for O1

7: end procedure
8: procedure DYNAMIC_MODEL_SCALING(Models)
9: if curr_accuracy ≥ accuracy_threshold then

10: if maxvote > N
2 + 1 then O2

11: to_be_dropped← maxvote− N
2 +1

12: Models.drop(to_be_dropped)
13: end if
14: else
15: addModel← f ind_models(remaining_models)
16: Models.append(addModel)
17: end if
18: end procedure
19: procedure WEIGHTED_VOTING(Models)
20: for model in ∀Models do
21: class← model.predicted_class
22: weighted_vote[class]+ = weights[model.class]
23: end for
24: Pclass←max(weighted_vote,key = class)
25: returnPclass
26: end procedure

4.1.1 Class-based Weighted Majority Voting

The model selection policy described above ensures that we
only use the necessary models in the majority voting. In or-
der to increase the accuracy of majority voting, we design
a weighted majority voting policy 3 . The weight matrix is
designed by considering the accuracy of each model for each
class, giving us a weight matrix of L×N dimension, where L
is the number of unique labels and N is the number of models
used in the ensemble. The majority vote is calculated as a
sum of model-weights for each unique class in the individual
prediction of the ensemble. For instance, if there are 3 unique
classes predicted by all the ensemble models, we sum the
weights for all models of the same class. The class with the
maximum weight (Pclass) is the output of the majority vote.
Hence, classes that did not get the highest votes can still be
the final output if the models associated with that class has a
higher weight, than the combined weights of highest voted
class. Unlike commonly used voting policies which assign
weights based on overall correct predictions, our policy incor-
porates class-wise information to the weights, thus making it
more adaptable to different images classes.

In order to determine the weight of every class, we use
a per-class dictionary that keeps track of the correct predic-
tions of every model per class. We populate the dictionary
at runtime to avoid any inherent bias that could result from
varying images over time. Similarly, our model selection pol-
icy is also changed at runtime based on correct predictions
seen during every interval. An important concern in majority
voting is tie-breaking. Ties occur when two sets of equal
number of models predict a different result. The effectiveness

6

Algorithm 2 Predictive Weighted Instance Auto Scaling
1: procedure WEIGHTED_AUTOSCALING(Stages)
2: Predicted_load← DeepARN_Predict(load)
3: for every Interval do
4: for model in ∀Models do
5: modelweight ← get_popularity(model)
6: Weight.append(modelweight)
7: end for
8: end for
9: if Predicted_load ≥ Current_load then

10: for model in ∀Models do
11: I_n← (Predicted_load - Current_load)×modelweight
12: launch_workers(est_VMs)
13: model.workers.append(est_VMs)
14: end for
15: end if
16: end procedure

of weighted voting in breaking ties is discussed in Section 6.

4.2 Resource Management

Besides model selection, it is crucial to design an optimized
resource provisioning and management scheme to host the
models cost-effectively. We explain in detail the resource
procurement and autoscaling policy employed in Cocktail.

4.2.1 Resource Controller

Resource controller determines the cost-effective combina-
tion of instances to be procured. We explain the details below.
Resource Types: We use both CPU and GPU instances 4a

depending on the request arrival load. GPU instances are
cost-effective when packed with a large batch of requests for
execution. Hence, inspired from prior work [27, 79], we de-
sign an adaptive packing policy such that it takes into account
the number of requests to schedule at time T and Pf for every
instance. The requests are sent to GPU instances only if the
load matches the Pf of the instance.
Cost-aware Procurement: The cost of executing in a fully
packed instance determines how expensive is each instance.
Prior to scaling-up instances, we need to estimate the cost 4b

of running them along with existing instances. At any given
time T , based on the predicted load (Lp) and running instances
RN , we use a cost-aware greedy policy to determine the num-
ber of additional instances required to serve as An = Lp−Cr,
where Cr = ∑

N
i=1 Pfi , is the request load which can be handled

with RN . To procure An instances, we greedily calculate the
least cost instance as min∀i∈instances Costi×An/Pfi . Depend-
ing on the cost-effectiveness ratio of An/Pfi , GPUs will be
preferred over CPU instances.
Load Balancer: Apart from procuring instances, it is
quintessential to design a load balancing and bin-packing 5

strategy to fully utilize all the provisioned instances. We
maintain a request queue at every model pool. In order to
increase the utilization of all instances in a pool at any given
time, the load balancer submits every request from the queue
to the lease remaining free slots (viz. instance packing factor
Pf). This is similar to an online bin-packing algorithm. We
use an idle-timeout limit for 10 minutes to recycle unused

instances from every model pool. Hence, greedily assigning
requests enables early scale down of lightly loaded instances.

4.2.2 Autoscaler

Along with resource procurement, we need to autoscale in-
stances to satisfy the incoming query load. Though reactive
policies (used in Clipper and InFaas) can be employed which
take into account metrics like CPU utilization [76], these
policies are slow to react when there is dynamism in request
rates. Proactive policies with request prediction are know to
have superior performance [79] and can co-exist with reac-
tive policies. In Cocktail, we use a load prediction model
that can accurately forecast the anticipated load for a given
time interval. Using the predicted load 6a , Cocktail spawns
additional instances, if necessary, for every instance pool. In
addition, we sample SLO violations for every 10s interval and
reactively spawn additional instances to every pool based on
aggregate resource utilization of all instances. This captures
SLO violations due to mis-predictions.
Prediction Policy: To effectively capture the different load
arrival patterns, we design a DeepAR-estimator (DeepARest)
based prediction model. We zeroed in on the choice of using
DeepARest by conducting an in-depth comparison (Table 4)
of the accuracy loss when compared with other state-of-the-
art traditional and ML-based prediction models used in prior
works [43, 79]. As shown in Algorithm 2, for every model
under a periodic scheduling interval of 1 minute (Ts), we use
the Predicted_load (Lp) at time T + Tp and compare it with
the current_load to determine the number of instances (In).

Model RMSE
MWA 77.5
EWMA 88.25
Linear R. 87.5
Logsitic R. 78.34
Simple FF. 45.45
DeepArEst 26.67
LSTM 28.56

Table 4: Prediction models.

Tp is defined as the average
launch time for new instances.
(Ts) is set to 1 minute as it is
the typical instance provision-
ing time for EC2 VMs. To cal-
culate (Lp), we sample the ar-
rival rate in adjacent windows
of size W over the past S sec-
onds. Using the global arrival
rate from all windows, the model predicts (Lp) for Tp time
units from T . Tp is set to 10 minutes because it is sufficient
time to capture the variations in long-term future. All these
parameters are tunable based on the system needs.
Importance Sampling: An important concern in autoscaling
is that the model selection policy dynamically determines
the models in the ensemble for a given request constraints.
Autoscaling the instances equally for every model based on
predicted load, would inherently lead to over-provisioned
instances for under-used models. To address this concern,
we design a weighted autoscaling policy which intelligently
auto-scales instances for every pool based on the weights.
As shown in Algorithm 2, weights are determined by fre-
quency in which a particular model is chosen for requests
(get_popularity) with respect to other models in the ensemble.
The weights are multiplied with the predicted load to scale

7

instances (launch_workers) for every model pool. We name
this as an importance sampling 6b technique, because the
model pools are scaled proportional to their popularity.

5 Implementation and Evaluation
We have implemented a prototype of Cocktail and deployed
it on AWS EC2 [5] platform for evaluating the design with .
The details of the implementation are described below.

5.1 Cocktail Prototype Implementation

Cocktail is implemented using 10KLOC of Python. We de-
signed Cocktail as a client-server architecture, where one
master VM receives all the incoming requests which are sent
to individual model worker VMs.
Master-Worker Architecture: The master node handles the
major tasks such as (i) concord model selection policy, (ii)
request dispatch to workers VMs as asynchronous future tasks
using Python asyncio library, and (iii) ensembling the pre-
diction from the worker VMs. Also all VM specific metrics
such as current_load, CPU utilization, etc. reside in the mas-
ter node. It runs on a C5.16x [8] large instance to handle
these large volume of diverse tasks. Each worker VMs runs a
client process to serve its corresponding model. The requests
are served as independent parallel threads to ensure timely
predictions. We use Python Sanic web-server for commu-
nication with the master and worker VMs. Each worker VM
runs tensorflow-serving [55] to serve the inference requests.
Load Balancer: The master VMs runs a separate thread
to monitor the importance sampling of all individual model
pools. It keeps track of the number of requests served per
model in the past 5 minutes. This information is used for cal-
culating the weights per model for autoscaling decisions. We
integrate a mongodb [21] database in the master node to main-
tain all information about procured instances, spot-instance
price list, and instance utilization. The load prediction model
resides in the master VM which constantly records the arrival
rate in adjacent windows. Recall that the details of the pre-
diction were described in Section 4.2.2. The DeepAREst [4]
model was trained using Keras [22] and Tensorflow, over
100 epochs with 2 layers, 32 neurons and a batch-size of 1.
Model Cache: We keep track of the model selected for en-
sembling on a per request constraint basis. The constraints are
defined as <latency,accuracy> pair. The queries arriving
with similar constraints can read the model cache to avoid
re-computation for selecting the models. The model cache
is implemented as a hash-map using Redis [16] in-memory
key-value store for fast access.
Constraint specification: We expose a simple API to de-
velopers, where they can specify the type of inference task
(e.g., classification) along with the <latency,accuracy>
constraints. Developers also need to indicate the primary ob-
jective between these two constraints. Cocktail automatically
chooses a set of single or ensemble models required to meet
the developer specified constraints.

Dataset Application Classes Train-set Test-set
ImageNet [29] Image 1000 1.2M 50K

CIFAR-100 [46] Image 100 50K 10K
SST-2 [67] Text 2 9.6K 1.8K

SemEval [61] Text 3 50.3K 12.2K

Table 5: Benchmark Applications and datasets.

Discussion: Our accuracy and latency constraints are limited
to the measurements from the available pretrained models.
Note that changing the models or/and framework would lead
to minor deviations. While providing latency and top-1% ac-
curacy of the pretrained models is an offline step in Cocktail,
we can calculate these values through one-time profiling and
use them in the framework. All decisions related to VM au-
toscaling, bin-packing and load-prediction are reliant on the
centralized mongodb database, which can become a potential
bottleneck in terms of scalability and consistency. This can be
mitigated by using fast distributed solutions like Redis [16]
and Zookeeper [42]. The DeepARest model is pre-trained
using 60% of the arrival trace. For varying load patterns,
the model parameters can be updated by re-training in the
background with new arrival rates.

5.2 Evaluation Methodology

We evaluate our prototype implementation on AWS EC2 [8]
platforms. Specifically, we use C5.xlarge, 2xlarge,
4xlarge, 8xlarge for CPU instances and p2.xlarge for
GPU instances.
Load Generator: We use different traces which are given
as input to the load generator. Firstly, we use real-world re-
quest arrival traces from Wikipedia [69], which exhibit typical
characteristics of ML inference workloads as it has recurring
diurnal patterns. The second trace is production twitter [44]
trace which is bursty with unexpected load spikes. We use
the first 1 hour sample of both the traces and they are scaled
to have an average request rate of 50 req/sec.
Workload: As shown in Table 5 we use image-classification
and Sentiment Analysis (text) applications with two datasets
each for our evaluation. Sentiment analysis outputs the
sentiment of a given sentence as positive negative and
(or) neutral. We use 9 different prominently used text-
classification models from transformers library [74] (details
available in appendix) designed using Google BERT [30]
architecture trained on SST [67] and SemEval [61] dataset.
Each request from the load-generator is modelled after
a query with specific <latency,accuracy> constraints.
The queries consist of images/text, which are randomly

0

100

200

300

400

70 75 80 85

La
te

nc
y

(m
s)

Accuracy (%)

Improved QoS

Figure 6: Constraints used.

picked from the test
dataset. In our ex-
periments, we use
five different types
of these constraints.
As an example for
the Imagenet dataset
shown in Figure 6,

8

each constraint is a representative of <latency, accuracy>
combination offered by single models (shown in Table 1).
We use one constraint (blue dots) each from five different
regions (categorized by dotted lines) picked in the increasing
order of accuracy. The ensemble size for these constraints
ranges from small (2) to large (10), as shown in Table 3.
Note that the latency is the raw model execution latency, and
does not include the additional network-transfer overheads
incurred. We picked the constraints using a similar procedure
for CIFAR-100, SST-2 and SemEval (twitter tweets) datasets
as well. We model two different workload mixes by using a
combination of these five query constraint types. Based on
the decreasing order of accuracy, we categorize them into
Strict and Relaxed workloads.

5.2.1 Evaluation Metrics

Most of our evaluations of Cocktail for image-classification
are performed using the Imagenet dataset. To further demon-
strate the sensitivity of Cocktail to dataset and applicability
to other classification applications, we also evaluate it us-
ing CIFAR-100 and Sentiment-Analysis application. We use
three important metrics: response latency, cost and accuracy
for evaluating and comparing our design to other state-of-
the-art systems. The response latency metric includes model
inference latency, communication/network latency and syn-
chronization overheads. Queries that do not meet response
latency requirements (>700ms) are considered as SLO vio-
lations. The cost metric is the billing cost from AWS, and
the accuracy metric is measured as the percentage of requests
that meet the target accuracy requirements. We compare
these metrics for Cocktail against (i) InFaas [76], which is
our baseline that employs single model selection policy; (ii)
Clipper [27], which uses static full model selection policy
(analogous to AWS AutoGluon); and (iii) Clipper-X which
is an enhancement to Clipper with a simple model selection
(drop one model at a time) that does not utilize the mode-
based policy enforced in Cocktail. Both InFaas and Clipper
share Cocktail’s implementation setup to ensure a fair com-
parison with respect to our design and execution environment.
For instance, both Clipper and InFaas employ variants of a
reactive autoscaler as described in Section 4.2.2. However, in
our setup, both benefit from the distributed autoscaling and
prediction policies, thus eliminating variability. Also note that
InFaas is deployed using OnDemand instances, while both
Clipper and Cocktail use spot instances. In our evaluations,
we use accuracy as the primary parameter. As a result, all
ensemble requests will wait until they receive a response from
their respective model workers.

6 Analysis of Results

This section discusses the experimental results of Cocktail
using the Wiki and Twitter traces.

6.1 Latency, Accuracy and Cost Reduction

Latency Distribution: Figure 7 shows the distribution of to-
tal response latency in a standard box-and-whisker plot. The
boundaries of the box-plots depict the 1st quartile (25th per-
centile (PCTL)) and 3rd quartile (75th PCTL), the whiskers
plot the minimum and maximum (tail) latency and the middle
line inside the box depict the median (50 PCTL). The total
response latency includes additional 200-300ms incurred for
query serialization and data transfer over network. It can
be seen that the maximum latency of Cocktail is similar to
the 75th PCTL latency of InFaas. This is because the single
model inference have up to 2x higher latency to achieve higher
accuracy. Consequently, this leads to 35% SLO violations
for InFaas in the case of Strict workload. In contrast, both
Cocktail and Clipper can reach the accuracy at lower latency
due to ensembling, thus minimizing SLO violations to 1%.
Also, the tail latency is higher for Twitter trace (Figure 7c, 7d)
owing to its bursty nature. Note that the tail latency of Clipper
is still higher than Cocktail because Clipper ensembles more
models than Cocktail, thereby resulting in straggler tasks in
the VMs. The difference in latency between Cocktail and In-
Faas is lower for Relaxed workload when compared to Strict
workload (20% lower in tail). Since the Relaxed workload has
much lower accuracy constraints, smaller models are able to
singularly achieve the accuracy requirements at lower latency.
Accuracy violations: Table 6 plots the percentage
of queries that meet the target accuracy. The ac-
curacy is measured as a moving window average
with size 200 for all the requests in the workload.

Accuracy Met (%)Scheme Strict Relaxed
InFaas 21 71
Clipper 47 89
Cocktail 56 96

Table 6: Requests meeting target
accuracy averaged for both Trace.

It is evident both Clip-
per and Cocktail can
meet the accuracy for
56% of requests, which
is 26% and 9% more
than InFaas and Clip-
per respectively. This
is because, intuitively ensembling leads to higher accuracy
than single models. However, Cocktail is still 9% better than
Clipper because the class-based weighted voting, is efficient
in breaking ties when compared to weighting averaging used
in Clipper. Since majority voting can include ties in votes,
we analyzed the number of ties, which were correctly pre-
dicted for all the queries. Cocktail was able to deliver correct
predictions for 35% of the tied votes, whereas breaking the
ties according to Clipper’s policy led only to 20% correct pre-
dictions. Note that, changing the target accuracy to tolerate
a 0.5% loss, increases the percentage of requests that meet
accuracy to 81% for Cocktail, when compared to 61% for
InFaas. The requests meeting accuracy are generally higher
for the Relaxed workload because the target accuracy is much
lower. Overall, Cocktail was able to deliver an accuracy of
83% and 79.5% on average for the Strict and Relaxed work-
loads, respectively. This translates to 1.5% and 1% better

9

InFaas Clipper Cocktail
Policy

0

500

1000

1500

Re
sp

. L
at

en
cy

 (m
s)

(a) Wiki-trace: Strict workload.

InFaas Clipper Cocktail
Policy

0

500

1000

1500

Re
sp

. L
at

en
cy

 (m
s)

(b) Wiki-trace: Relaxed workload.

InFaas Clipper Cocktail
Policy

0

500

1000

1500

Re
sp

. L
at

en
cy

 (m
s)

(c) Twitter-trace: Strict workload.

InFaas Clipper Cocktail
Policy

0

500

1000

1500

Re
sp

. L
at

en
cy

 (m
s)

(d) Twitter-trace: Relaxed workload.

Figure 7: Latency Distribution of InFaas, Clipper and Cocktail for two workload mixes using both Wiki and Twitter traces.

Strict Relaxed0

20

40

60

80

Co
st

($
)

InFaas Clipper Clipper-X Cocktail

(a) Wiki Trace.

Strict Relaxed0

50

100

Co
st

($
)

InFaas Clipper Clipper-X Cocktail

(b) Twitter Trace.

Figure 8: Cost savings of Cocktail compared to three schemes.

Const1 Const2 Const3 Const4
Query

0

5

10

#M
od

el
s

Clipper Clipper-X Cocktail

(a) Average number of models
used in the ensemble.

IR
V2

DN
et

20
1

NA
SM

ob
DN

et
12

1
Xc

ep
MN

et
In

ce
p

MN
et

V2
RN

et
50

V2
RN

et
50

Model

0

50

100

Im
po

rta
nc

e(
%

)

(b) Distribution of requests served
by each individual model.

Figure 9: Benefits of dynamic model selection policy.

accuracy than Clipper and InFaas. We do not plot the results
for Clipper-X, which achieves similar accuracy to Cocktail,
but uses more models as explained in Section 6.2.1.
Cost Comparison: Figure 8 plots the cost savings of Cocktail
when compared to InFaas, Clipper and Clipper-X policies. It
can be seen that, Cocktail is up to 1.45× more cost effective
than InFaas for Strict workload. In addition, Cocktail reduces
cost by 1.35× and 1.27× compared to Clipper and Clipper-X
policies, owing to its dynamic model selection policy, which
minimizes the resource footprint of ensembling. On the other
hand, Clipper uses all models in ensemble and the Clipper-X
policy does not right size the models as aggressively as Clip-
per, hence they are more expensive. Note that, all the schemes
incur higher cost for twitter trace (Figure 8b) compared to
wiki trace (Figure 8a). This is because the twitter workload is
bursty, thereby leading to intermittent over-provisioned VMs.

6.2 Key Sources of Improvements

The major improvements in terms of cost, latency, and accu-
racy in Cocktail are explained below. For brevity in explana-
tion, the results are averaged across Wiki and Twitter traces
for strict workload.

6.2.1 Benefits from dynamic model selection

Figure 9a plots the average number of models used for queries
falling under the first four different constraint (const) types.
Here, Cocktail reduces the number of models by up to 55%
for all four query types. This is because our dynamic pol-
icy ensures that the number of models are well within N/2
most of the time, whereas the Clipper-X policy does not ag-

gressively scale down models. Clipper, on the other hand,
is static and always uses all the models. The percentage of
model-reduction is lower for const-2, 3 and 4 because, the
total models used in the ensemble is less than const-1 (8, 7
and 6 models, respectively). Still, the savings in terms of
cost will be significant because even removing one model
from the ensemble amounts to ∼20% cost savings in the long
run (Clipper vs Clipper-X ensemble in Figure 8). Thus, the
benefits of Cocktail are substantial for large ensembles while
reducing the number of models for medium-sized ensembles
as well.

Figure 9b shows the breakdown of the percentage of re-
quests (const-1) served by the each model. As seen, Incep-
tionResNetV2, Densenet-201, Densenet121, NasnetMobile
and Xception are the top-5 most used models in the ensem-
ble. Based on Table 1, if we had statically taken the top
N/2 most accurate models, NasNetmobile would not have
been included in the ensemble. However, based on the input
images sent in each query, our model selection policy has
been able to identify NasNetMobile to be a significantly con-
tributing model in the ensemble. Further, the other 5 models
are used by up to 25% of the images. Not including them
in the ensemble would have led to severe loss in accuracy.
But, our dynamic policy with the class-based weighted vot-
ing, adapts to input images in a give interval by accurately
selecting the best performing model for each class. To further
demonstrate the effectiveness of our dynamic model selection,
Figure 10a, 10b,10c plots the number models in every sam-
pling interval along with cumulative accuracy and window
accuracy within each sampling interval for three schemes.
We observe that Cocktail can effectively scale up and scale
down the models while maintaining the cumulative accuracy
well within the threshold. More than 50% of the time the
number of models are maintained between 4 to 5, because
the dynamic policy is quick in detecting accuracy failures
and recovers immediately by scaling up models. However,
Clipper-X does not scale down models as frequently as Cock-
tail, while ensuring similar accuracy. Clipper is less accurate
than Cocktail and further it uses all 10 models throughout.

6.2.2 Benefits from Autoscaling

Figure 11 plots the reduction in the number of VMs used by all
four schemes. It can be seen that both Cocktail and Clipper-X
spawn 49% and 20% fewer VMs than Clipper for workload-1
on Twitter trace. Cocktail spawns 29% lesser VMs on top of
Clipper-X, because it is not aggressive enough like Cocktail

10

2.0 3.0 4.0 5.0 6.0 7.0 8.0
#Sampling-Interval

0.0
2.5
5.0
7.5

10.0

#M
od

el
s

70
75
80
85
90

Ac
cu

ra
cy

Cumulative-Acc Window-Acc

(a) Clipper

4.0 8.0 9.0 12.0
#Sampling-Interval

0.0
2.5
5.0
7.5

10.0

#M
od

el
s

70
75
80
85
90

Ac
cu

ra
cy

Cumulative-Acc Window-Acc

(b) Clipper-X

3.0 4.0 6.0 7.0 8.0 9.0
#Sampling-Interval

0.0
2.5
5.0
7.5

10.0

#M
od

el
s

70
75
80
85
90

Ac
cu

ra
cy

Cumulative-Acc Window-Acc

(c) Cocktail

0 1000 2000 3000
Time interval (10s)

0

50

100

#V
M

s

Bline model1 model2 model3

(d) Cumulative #VMs over time.

Figure 10: Figures (a), (b) and (c) shows the number of models used in ensemble with corresponding cumulative accuracy and window accuracy
over a 1 hour period for requests under const-1. Figure (d) shows the effects of distributed autoscaling with importance sampling.

Strict Relaxed0

25

50

75

#V
M

s

InFaas Clipper Clipper-X Cocktail

(a) Wiki Trace.

Strict Relaxed0

25

50

75

#V
M

s

InFaas Clipper Clipper-X Cocktail

(b) Twitter Trace.

Figure 11: Number of VMs spawned for all four schemes.

to downscale more models at every interval. It is to be noted
that the savings are lower for Relaxed workload because, the
number of models in the ensemble are inherently low, thus
leading to reduced benefits from scaling down the models.
Intuitively, InFaas has the least number of VMs spawned
because it does not ensemble models. Cocktail spawns upto
50% more VMs than InFaas, but in turns reduces accuracy
loss by up to 96% (shown in Table 6)

To further capture the benefits of the weighted autoscaling
policy, Figure 10d plots the number of VMs spawned over
time for the top-3 most used models in the ensemble for const-
1. The Bline denotes number of VMs that would be spawned
without applying the weights. Not adopting an importance
sampling based weighted policy would result in equivalent
number of VMs as the Bline for all models. However, since
Cocktail exploits importance sampling by keeping track of the
frequency in which models are selected, the number of VMs
spawned for model1, model2 and model-3 is upto 3× times
lesser than uniform scaling. Figure 9b shows the most used
models in decreasing order of importance. The autoscaling
policy effectively utilizes this importance factor in regular
intervals of 5 minutes. Despite using multiple models for a
single inference, importance sampling combined with aggres-
sive model pruning, greatly reduces the resource footprint
which directly translates to the cost savings in Cocktail.

6.2.3 Benefits of Transient VMs

The cost-reductions in Cocktail are akin to cost-savings of
transient VMs compared to On-Demand (OD) VMs. We pro-
file the spot price of 4 types of C5 EC2 VMs over a 2-week
period in August 2020. It was seen that, the spot instance
prices have predictable fluctuations. When compared to the
OD price , they were up to 70% cheaper. This price gap is cap-
italized in Cocktail to reduce the cost of instances consumed
by ensembling. Note that, we set the bidding price conser-
vatively to 40% of OD. Although, Cocktail spawns about
50% more VMs than InFaas, the high Pf of small models
and spot-instance price reductions combined with autoscaling

policies lead to the overall 30-40% cost savings.

6.3 Sensitivity Analysis

In this section, we analyze the sensitivity of Cocktail with
respect to various design choices including sampling interval,
spot-instance failure rate and datasets used.
Sampling Interval. We use four different sampling inter-
vals of 10s, 30s, 60s and 120s respectively. Figure 12

10 30 60 120
Sampling-Interval

0

2

4

6

#M
od

el
s

82.25

82.50

82.75

Ac
cu

ra
cy

(a) Const-1.

10 30 60 120
Sampling-Interval

0

2

4

6

#M
od

el
s

81.0

81.2

81.4

Ac
cu

ra
cy

(b) Const-2.

10 30 60 120
Sampling-Interval

0

2

4

6

#M
od

el
s

79.0

79.2

79.4
Ac

cu
ra

cy

(c) Const-3.

Figure 12: Sensitivity study.

plots the average num-
ber of models (bar- left y-
axis) and cumulative ac-
curacy (line- right y-axis)
for the different sampling
intervals for queries with
three different constraints.
The 30s interval strikes
the right balance with less
than 0.2% loss in accu-
racy and has average num-
ber models much lesser
than other intervals. In-
creasing the interval leads
to lesser scaling opera-
tions thus results in a big-
ger ensemble. Thus, the
120s interval has the high-
est number of models.

6.3.1 Cocktail Failure Resilience

We use spot instances to host models in Cocktail. As
previously discussed in Section 3, spot instances inter-
ruptions can lead to intermittent loss in accuracy as cer-
tain models will be unavailable in the ensemble. How-
ever for large ensembles (5 models are more), the in-
termittent accuracy loss is very low. Figure 13 plots
the failure analysis results for top three constraints by
comparing the ensemble accuracy to the target accuracy.

0 25 50 75
Time interval (10s)

79
80
81
82

Ac
cu

ra
cy

BL1
BL2

BL3
const1

const2 const3

Figure 13: Failure Analysis.

The desired accuracy
for all three constraints
are plotted as BL1,
BL2 and BL3. We
induce failures in the
instances using chaos-
monkey [19] tool with
a 20% failure probabil-

11

0
2
4
6
8
10

0

100

200

300

400

72 78 80 81.5 83.5 85

Av
eg

ae
#M

od
el

s

La
te

nc
y

(m
s)

Accuracy (%)

Latency Average #Models

(a) Fixed Accuracy.

0

2

4

6

8

60

70

80

90

60 70 100 120 150 350

Av
er

ag
e

#M
od

el
s

Ac
cu

ra
cy

 (%
)

Latency (ms)

accuracy Average #Model

(b) Fixed Latency.

Figure 14: Sensitivity Constraints under fixed latency and accuracy.
Bar graphs (latency) plotted using primary y-axis and line graph
(#models) plotted using secondary y-axis.

ity. It can be seen that queries in all three constraints suffer
an intermittent loss in accuracy of 0.6% between the time
period 240s and 800s. Beyond 800s, they quickly recover
back to the required accuracy because additional instances are
spawned in place of failed instances. However, in the case of
InFaas, this would lead to 1% failed requests due to requests
being dropped from the failed instances.

An alternate solution would be to restart the queries in
running instances but that leads to increased latencies for the
1% requests. In contrast, Cocktail incurs a modest accuracy
loss of well within 0.6% and quickly adapts to reach the
target accuracy. Thus, Cocktail is inherently fault-tolerant
owing to the parallel nature in computing multiple inferences
for a single request. We observe similar accuracy loss or
lower for different probability failures of 5%, 10% and 25%,
respectively (results/charts omitted in the interest of space).
Discussion: For applications that are latency tolerant, we can
potentially redirect requests from failed instances to existing
instances, which would lead to increased tail latency. The
results we how are only for latency intolerant applications.
Note that, the ensembles used in our experiments are at-least
4 models or more. For smaller ensembles, instance failures
might lead to higher accuracy loss, but in our experiments,
single models typically satisfy their constraints.

6.3.2 Sensitivity to Constraints

Figure 14 plots the sensitivity of model selection policy un-
der a wide-range of latency and accuracy constraints. In
Figure 14a, we vary the latency under six different constant
accuracy categories. It can be seen that for fixed accuracy of
72%, 78% and 80%, the average number of models increase
with increase in latency, but drops to 1 for the highest latency.
Intuitively, singe large models with higher latency can satisfy
the accuracy, while short latency models need to be ensem-
bled to reach the same accuracy. For accuracy greater than
80%, the ensemble size drops with higher latencies. This is
because the models which offer higher accuracy are typically
dense and hence, smaller ensembles are sufficient. In Fig-
ure 14b, we vary the accuracy under six different constant
latency categories. It can be seen that for higher accuracies,
Cocktail tries to ensemble more models to reach the accuracy,
while for lower accuracy it resorts to using single models.

Const1 Const2 Const3 Const4
Query

0

5

10

#M
od

el
s

Clipper Clipper-X Cocktail

(a) Image Classification-Cifar-100.

Const1 Const2 Const3 Const4
Query

0.0

2.5

5.0

7.5

#M
od

el
s

Clipper Clipper-X Cocktail

(b) Sentiment analysis.

Figure 15: Average number of models used in the ensemble.

Const1 Const2 Const3 Const4
Baseline

0

20

40

La
te

nc
y-

re
du

ct
io

n

0.50

0.75

1.00

Ac
cu

ra
cy

-G
ai

n

(a) Image Classification:Cifar100.

Const1 Const2 Const3 Const4
Baseline

0

10

20

30

La
te

nc
y-

re
du

ct
io

n

0.6

0.8

1.0

1.2

Ac
cu

ra
cy

-G
ai

n

(b) Sentiment Analysis.

Figure 16: Latency reduction (%) plotted as bar graph(primary y-
axis) and accuracy gains (%) plotted as line graph (secondary y-axis)
over InFaaS.

6.3.3 Sensitivity to Dataset

To demonstrate the applicability of Cocktail to multiple
datasets, we conducted similar experiments as elucidated in
Section 5.2.1 using the CIFAR-100 dataset [46]. It comprises
of 100 distinct image classes and we trained 11 different
models including the nine that are common from Table 1. Fig-
ure 15a plots the average number of models used by the three
policies for the top four constraints. It can be seen that Cock-
tail shows similar reduction (as Imagenet) while using only
4.4 models on average. As expected, Clipper and Clipper-X
use more models than Cocktail (11 and 5.4, respectively) due
to non-aggressive scaling down of the models used.

Figure 16a plots the latency reduction and accuracy boost
when compared to InFaaS (baseline). While able to reduce
60% of the models used in the ensemble, Cocktail also re-
duces latency by up to 50% and boosts accuracy by up to
1.2%. Cocktail was also able to deliver modest accuracy gain
of 0.5% than Clipper (not plotted). The accuracy gain seen
in CIFAR-100 is lesser than ImageNet dataset because the
class-based weighted voting works effectively when handling
large number of classes (100 in CIFAR vs 1000 in ImageNet).
Nevertheless, Cocktail is able to deliver the accuracy at 2x
lower latency than InFaaS and 1.35x lower cost than Clipper.

6.4 General Applicability of Cocktail

To demonstrate the general applicability of Cocktail to other
classification tasks, we evaluated Cocktail using a Sentiment
Analysis application for two datasets. The results reported
are averaged across both the datasets. Figure 15b plots the
average number of models used by the three policies for the
top four constraints. As shown for Const-1, Cocktail shows
similar reduction (as image-classification) with only using
4.8 models on average, which is 40% and 26% lower than
Clipper and Clipper-X, respectively. Cocktail is also able to
reduce the number of models by 30% and 50% for medium
ensembles (Const-2 & Const-3) as well.

12

Strict Relaxed0

20

40

60

80

Co
st

($
)

InFaas Clipper Clipper-X Cocktail

(a) Wiki Trace.

Strict Relaxed0

25

50

75

100

Co
st

($
)

InFaas Clipper Clipper-X Cocktail

(b) Twitter Trace.

Figure 17: Cost savings of Cocktail for Sentiment Analysis.

Figure 16b plots the latency reduction and accuracy gain,
compared to InFaaS (baseline). While being able to reduce
50% of the models used in the ensemble, Cocktail also re-
duces latency by up to 50% and improves accuracy by up
to 1.3%. Both Cocktail and Clipper deliver the same overall
accuracy (96%, 94.5%, 93.5%, and 92%)). Since sentiment
analysis only has 2-3 classes, there are no additional accuracy
gains by using the class-based weighted voting. However, the
model selection policy effectively switches between differ-
ent models based on the structure of input text (equivalent to
classes in images). For instance, complex sentences are more
accurately classified by denser models compared to smaller.
Despite the lower accuracy gains, Cocktail is able to reduce
the cost (Figure 17) of model-serving by 1.45× and 1.37×
for Wiki trace compared to InFaaS and Clipper, respectively.

7 Concluding Remarks
There is an imminent need to develop model serving systems
that can deliver highly accurate, low latency predictions at re-
duced cost. In this paper, we propose and evaluate Cocktail, a
cost-effective model serving system that exploits ensembling
techniques to meet high accuracy under low latency goals.
In Cocktail, we adopt a three-fold approach to reduce the
resource footprint of model ensembling. More specifically,
we (i) develop a novel dynamic model selection, (ii) design a
prudent resource management scheme that utilizes weighted
autoscaling for efficient resource allocation, and (iii) lever-
age transient VM instances to reduce the deployment costs.
Our results from extensive evaluations using both CPU and
GPU instances on AWS EC2 cloud platform demonstrate that
Cocktail can reduce deployment cost by 1.4×, while reducing
latency by 2× and satisfying accuracy for 96% of requests,
compared to state-of-the-art model-serving systems.

References
[1] Martín Abadi. Tensorflow: learning functions at scale. In Acm Sigplan

Notices. ACM, 2016.
[2] Deepak Agarwal, Bo Long, Jonathan Traupman, Doris Xin, and Liang

Zhang. Laser: A scalable response prediction platform for online
advertising. In Proceedings of the 7th ACM international conference
on Web search and data mining, pages 173–182, 2014.

[3] Ahmed Ali-Eldin, Jonathan Westin, Bin Wang, Prateek Sharma, and
Prashant Shenoy. Spotweb: Running latency-sensitive distributed web
services on transient cloud servers. In Proceedings of the 28th Inter-
national Symposium on High-Performance Parallel and Distributed
Computing, pages 1–12, 2019.

[4] Amazon. Deepar estimator. https://docs.aws.amazon.com/
sagemaker/latest/dg/deepar.html,February2020.

[5] Amazon. EC2 pricing. https://aws.amazon.com/ec2/pricing/.

[6] Amazon. Sagemaker. https://aws.amazon.com/sagemaker/, February
2018.

[7] Amazon. Azure Low priority batch VMs., February 2018.
https://docs.microsoft.com/en-us/azure/batch/batch-low-pri-vms .

[8] Amazon. EC2 C5 Instances., February 2018.
https://aws.amazon.com/ec2/instance-types/c5/ .

[9] Amazon. Google Preemptible VMs., February 2018.
https://cloud.google.com/preemptible-vms .

[10] Azure. Machine Learning as a Service., February 2018.
https://azure.microsoft.com/en-us/pricing/details/machine-learning-
service/ .

[11] Azure. Ensembling in Azure ML Studio., February 2020.
https://docs.microsoft.com/en-us/azure/machine-learning/studio-
module-reference/multiclass-decision-forest .

[12] Ataollah Fatahi Baarzi, Timothy Zhu, and Bhuvan Urgaonkar. Burscale:
Using burstable instances for cost-effective autoscaling in the public
cloud. In Proceedings of the ACM Symposium on Cloud Computing,
New York, NY, USA, 2019. Association for Computing Machinery.

[13] Marian Stewart Bartlett, Gwen Littlewort, Mark Frank, Claudia Lain-
scsek, Ian Fasel, and Javier Movellan. Recognizing facial expression:
machine learning and application to spontaneous behavior. In 2005
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’05), volume 2, pages 568–573. IEEE, 2005.

[14] Eric Bauer and Ron Kohavi. An empirical comparison of voting
classification algorithms: Bagging, boosting, and variants. Machine
learning, 36(1-2):105–139, 1999.

[15] William H Beluch, Tim Genewein, Andreas Nürnberger, and Jan M
Köhler. The power of ensembles for active learning in image classifi-
cation. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 9368–9377, 2018.

[16] Josiah L Carlson. Redis in action. Manning Publications Co., 2013.
[17] Rich Caruana, Alexandru Niculescu-Mizil, Geoff Crew, and Alex

Ksikes. Ensemble selection from libraries of models. In Proceedings of
the twenty-first international conference on Machine learning, page 18,
2004.

[18] Jesús Cerquides and Ramon López De Mántaras. Robust bayesian
linear classifier ensembles. In European Conference on Machine
Learning, pages 72–83. Springer, 2005.

[19] Michael Alan Chang, Bredan Tschaen, Theophilus Benson, and Lau-
rent Vanbever. Chaos monkey: Increasing sdn reliability through
systematic network destruction. In Proceedings of the 2015 ACM
Conference on Special Interest Group on Data Communication, pages
371–372, 2015.

[20] Lingjiao Chen, Matei Zaharia, and James Zou. Frugalml: How to use
ml prediction apis more accurately and cheaply. In Advances in Neural
Information Processing Systems (NeurIPS), 2020.

[21] Kristina Chodorow. MongoDB: the definitive guide: powerful and
scalable data storage. " O’Reilly Media, Inc.", 2013.

[22] Francois Chollet. Deep Learning mit Python und Keras: Das Praxis-
Handbuch vom Entwickler der Keras-Bibliothek. MITP-Verlags GmbH
& Co. KG, 2018.

[23] Andrew Chung, Jun Woo Park, and Gregory R. Ganger. Stratus:
Cost-aware container scheduling in the public cloud. In SoCC, 2018.

[24] Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks
for youtube recommendations. In Proceedings of the 10th ACM con-
ference on recommender systems, pages 191–198, 2016.

[25] Daniel Crankshaw, Peter Bailis, Joseph E Gonzalez, Haoyuan Li, Zhao
Zhang, Michael J Franklin, Ali Ghodsi, and Michael I Jordan. The
missing piece in complex analytics: Low latency, scalable model man-
agement and serving with velox. arXiv preprint arXiv:1409.3809,
2014.

[26] Daniel Crankshaw, Gur-Eyal Sela, Corey Zumar, Xiangxi Mo, Joseph E.
Gonzalez, Ion Stoica, and Alexey Tumanov. Inferline: ML inference
pipeline composition framework. CoRR, abs/1812.01776, 2018.

[27] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J. Franklin,
Joseph E. Gonzalez, and Ion Stoica. Clipper: A low-latency online pre-

13

 https://docs.aws.amazon.com/sagemaker/latest/dg/deepar.html , February 2020
 https://docs.aws.amazon.com/sagemaker/latest/dg/deepar.html , February 2020

diction serving system. In 14th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 17), pages 613–627, Boston,
MA, March 2017. USENIX Association.

[28] Deepstudio. Deep Learning Dtudio, February 2020.
https://docs.deepcognition.ai/ .

[29] J. Deng, W. Dong, R. Socher, L. Li, and and. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE Conference on Computer
Vision and Pattern Recognition, June 2009.

[30] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language un-
derstanding, 2019.

[31] Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang Zhang, Pedro
Larroy, Mu Li, and Alexander Smola. Autogluon-tabular: Robust and
accurate automl for structured data, 2020.

[32] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng,
Ming Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al.
Codebert: A pre-trained model for programming and natural languages.
arXiv preprint arXiv:2002.08155, 2020.

[33] Arpan Gujarati, Sameh Elnikety, Yuxiong He, Kathryn S. McKinley,
and Björn B. Brandenburg. Swayam: Distributed Autoscaling to
Meet SLAs of Machine Learning Inference Services with Resource
Efficiency. In USENIX Middleware Conference, 2017.

[34] Arpan Gujarati, Reza Karimi, Safya Alzayat, Antoine Kaufmann, Ymir
Vigfusson, and Jonathan Mace. Serving dnns like clockwork: Perfor-
mance predictability from the bottom up. In 14th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 20), Banff,
Alberta, November 2020. USENIX Association.

[35] U. Gupta, S. Hsia, V. Saraph, X. Wang, B. Reagen, G. Wei, H. S.
Lee, D. Brooks, and C. Wu. Deeprecsys: A system for optimiz-
ing end-to-end at-scale neural recommendation inference. In 2020
ACM/IEEE 47th Annual International Symposium on Computer Archi-
tecture (ISCA), pages 982–995, 2020.

[36] Rui Han, Moustafa M. Ghanem, Li Guo, Yike Guo, and Michelle
Osmond. Enabling cost-aware and adaptive elasticity of multi-tier
cloud applications. Future Gener. Comput. Syst., 32(C):82–98, March
2014.

[37] Aaron Harlap, Andrew Chung, Alexey Tumanov, Gregory R. Ganger,
and Phillip B. Gibbons. Tributary: spot-dancing for elastic services
with latency SLOs. In ATC, 2018.

[38] Aaron Harlap, Alexey Tumanov, Andrew Chung, Gregory R. Ganger,
and Phillip B. Gibbons. Proteus: Agile ML Elasticity Through Tiered
Reliability in Dynamic Resource Markets. In Eurosys, 2017.

[39] Johann Hauswald, Michael A. Laurenzano, Yunqi Zhang, Cheng Li,
Austin Rovinski, Arjun Khurana, Ronald G. Dreslinski, Trevor Mudge,
Vinicius Petrucci, Lingjia Tang, and Jason Mars. Sirius: An open
end-to-end voice and vision personal assistant and its implications for
future warehouse scale computers. In ASPLOS, 2015.

[40] K. Hazelwood, S. Bird, D. Brooks, S. Chintala, U. Diril, D. Dzhulgakov,
M. Fawzy, B. Jia, Y. Jia, A. Kalro, J. Law, K. Lee, J. Lu, P. Noordhuis,
M. Smelyanskiy, L. Xiong, and X. Wang. Applied machine learning
at facebook: A datacenter infrastructure perspective. In 2018 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), pages 620–629, Feb 2018.

[41] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen,
Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vi-
jay Vasudevan, et al. Searching for mobilenetv3. In Proceedings of the
IEEE International Conference on Computer Vision, pages 1314–1324,
2019.

[42] Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira, and Benjamin
Reed. Zookeeper: Wait-free coordination for internet-scale systems.
In USENIX annual technical conference, 2010.

[43] Minoru Kawashima, Charles E Dorgan, and John W Mitchell. Hourly
thermal load prediction for the next 24 hours by arima, ewma, lr and
an artificial neural network. Technical report, American Society of
Heating, Refrigerating and Air-Conditioning Engineers . . . , 1995.

[44] Abeer Abdel Khaleq and Ilkyeun Ra. Cloud-based disaster manage-
ment as a service: A microservice approach for hurricane twitter data
analysis. In GHTC, 2018.

[45] J Zico Kolter and Marcus A Maloof. Dynamic weighted majority: An
ensemble method for drifting concepts. Journal of Machine Learning
Research, 8(Dec):2755–2790, 2007.

[46] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-100 (cana-
dian institute for advanced research), 2010. http://www.cs.toronto.
edu/~kriz/cifar.html.

[47] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gim-
pel, Piyush Sharma, and Radu Soricut. Albert: A lite bert for
self-supervised learning of language representations. arXiv preprint
arXiv:1909.11942, 2019.

[48] Yunseong Lee, Alberto Scolari, Byung-Gon Chun, Marco Domenico
Santambrogio, Markus Weimer, and Matteo Interlandi. PRETZEL:
Opening the black box of machine learning prediction serving systems.
In 13th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 18), pages 611–626, Carlsbad, CA, October 2018.
USENIX Association.

[49] Romain Lerallut, Diane Gasselin, and Nicolas Le Roux. Large-scale
real-time product recommendation at criteo. In Proceedings of the 9th
ACM Conference on Recommender Systems, pages 232–232, 2015.

[50] Weibo Liu, Zidong Wang, Xiaohui Liu, Nianyin Zeng, Yurong Liu, and
Fuad E Alsaadi. A survey of deep neural network architectures and
their applications. Neurocomputing, 234:11–26, 2017.

[51] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi
Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoy-
anov. Roberta: A robustly optimized bert pretraining approach. arXiv
preprint arXiv:1907.11692, 2019.

[52] Zhenyu Lu, Xindong Wu, Xingquan Zhu, and Josh Bongard. Ensemble
pruning via individual contribution ordering. In Proceedings of the
16th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’10, page 871–880, New York, NY, USA, 2010.
Association for Computing Machinery.

[53] Soo-Jin Moon, Jeffrey Helt, Yifei Yuan, Yves Bieri, Sujata Banerjee,
Vyas Sekar, Wenfei Wu, Mihalis Yannakakis, and Ying Zhang. Alem-
bic: Automated model inference for stateful network functions. In 16th
USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI 19), pages 699–718, Boston, MA, February 2019. USENIX
Association.

[54] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri,
Nikhil R Devanur, Gregory R Ganger, Phillip B Gibbons, and Matei
Zaharia. Pipedream: generalized pipeline parallelism for dnn training.
In Proceedings of the 27th ACM Symposium on Operating Systems
Principles, pages 1–15, 2019.

[55] Christopher Olston, Noah Fiedel, Kiril Gorovoy, Jeremiah Harmsen,
Li Lao, Fangwei Li, Vinu Rajashekhar, Sukriti Ramesh, and Jordan
Soyke. Tensorflow-serving: Flexible, high-performance ml serving.
arXiv preprint arXiv:1712.06139, 2017.

[56] Nikunj C Oza. Online bagging and boosting. In 2005 IEEE interna-
tional conference on systems, man and cybernetics, volume 3, pages
2340–2345. Ieee, 2005.

[57] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, et al. Pytorch: An imperative style, high-performance
deep learning library. In Advances in neural information processing
systems, pages 8026–8037, 2019.

[58] Heyang Qin, Syed Zawad, Yanqi Zhou, Lei Yang, Dongfang Zhao, and
Feng Yan. Swift machine learning model serving scheduling: a region
based reinforcement learning approach. In Proceedings of the Inter-
national Conference for High Performance Computing, Networking,
Storage and Analysis, pages 1–23, 2019.

[59] Xueheng Qiu, Le Zhang, Ye Ren, Ponnuthurai N Suganthan, and Gehan
Amaratunga. Ensemble deep learning for regression and time series
forecasting. In 2014 IEEE symposium on computational intelligence
in ensemble learning (CIEL), pages 1–6. IEEE, 2014.

14

http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html

[60] Atul Rahman, Jongeun Lee, and Kiyoung Choi. Efficient fpga acceler-
ation of convolutional neural networks using logical-3d compute array.
In 2016 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pages 1393–1398. IEEE, 2016.

[61] Sara Rosenthal, Noura Farra, and Preslav Nakov. SemEval-2017 task 4:
Sentiment analysis in Twitter. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017), pages 502–518,
Vancouver, Canada, August 2017. Association for Computational
Linguistics.

[62] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf.
Distilbert, a distilled version of bert: smaller, faster, cheaper and lighter.
arXiv preprint arXiv:1910.01108, 2019.

[63] Prateek Sharma, David Irwin, and Prashant Shenoy. Portfolio-driven
resource management for transient cloud servers. Proc. ACM Meas.
Anal. Comput. Syst., 1(1), June 2017.

[64] Prateek Sharma, Stephen Lee, Tian Guo, David Irwin, and Prashant
Shenoy. Spotcheck: Designing a derivative iaas cloud on the spot
market. In Proceedings of the Tenth European Conference on Computer
Systems, pages 1–15, 2015.

[65] Steven A Shaya, Neal Matheson, John Anthony Singarayar, Nikiforos
Kollias, and Jeffrey Adam Bloom. Intelligent performance-based prod-
uct recommendation system, October 5 2010. US Patent 7,809,601.

[66] Richard Socher, Yoshua Bengio, and Chris Manning. Deep learning for
nlp. Tutorial at Association of Computational Logistics (ACL), 2012.

[67] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D
Manning, Andrew Y Ng, and Christopher Potts. Recursive deep
models for semantic compositionality over a sentiment treebank. In
Proceedings of the 2013 conference on empirical methods in natural
language processing, pages 1631–1642, 2013.

[68] Mingxing Tan and Quoc V Le. Efficientnet: Rethinking model scaling
for convolutional neural networks. arXiv preprint arXiv:1905.11946,
2019.

[69] Guido Urdaneta, Guillaume Pierre, and Maarten Van Steen. Wikipedia
workload analysis for decentralized hosting. Computer Networks,
2009.

[70] Alexander Vezhnevets and Vladimir Vezhnevets. Modest adaboost-
teaching adaboost to generalize better. In Graphicon, pages 987–997,
2005.

[71] Jasper A Vrugt and Bruce A Robinson. Treatment of uncertainty using
ensemble methods: Comparison of sequential data assimilation and
bayesian model averaging. Water Resources Research, 43(1), 2007.

[72] Cheng Wang, Bhuvan Urgaonkar, Neda Nasiriani, and George Kesidis.
Using burstable instances in the public cloud: Why, when and how?
SIGMETRICS, June 2017.

[73] Wei Wang, Jinyang Gao, Meihui Zhang, Sheng Wang, Gang Chen,
Teck Khim Ng, Beng Chin Ooi, Jie Shao, and Moaz Reyad. Rafiki:
machine learning as an analytics service system. Proceedings of the
VLDB Endowment, 12(2):128–140, 2018.

[74] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond,
Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi
Louf, Morgan Funtowicz, et al. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint arXiv:1910.03771,
2019.

[75] Carole-Jean Wu, David Brooks, Kevin Chen, Douglas Chen, Sy Choud-
hury, Marat Dukhan, Kim Hazelwood, Eldad Isaac, Yangqing Jia, Bill
Jia, et al. Machine learning at facebook: Understanding inference at the
edge. In 2019 IEEE International Symposium on High Performance
Computer Architecture (HPCA), pages 331–344. IEEE, 2019.

[76] Neeraja J. Yadwadkar, Francisco Romero, Qian Li, and Christos
Kozyrakis. A case for managed and model-less inference serving.
In Proceedings of the Workshop on Hot Topics in Operating Systems,
New York, NY, USA, 2019. Association for Computing Machinery.

[77] Tien-Ju Yang, Andrew G. Howard, Bo Chen, Xiao Zhang, Alec Go,
Vivienne Sze, and Hartwig Adam. Netadapt: Platform-aware neural
network adaptation for mobile applications. CoRR, abs/1804.03230,
2018.

[78] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan
Salakhutdinov, and Quoc V Le. Xlnet: Generalized autoregressive pre-
training for language understanding. arXiv preprint arXiv:1906.08237,
2019.

[79] Chengliang Zhang, Minchen Yu, Wei Wang, and Feng Yan. Mark:
Exploiting cloud services for cost-effective, slo-aware machine learning
inference serving. In ATC, 2019.

[80] Honglei Zhuang, Chi Wang, and Yifan Wang. Identifying outlier arms
in multi-armed bandit. In Advances in Neural Information Processing
Systems, pages 5204–5213, 2017.

[81] Sheikh Ziauddin and Matthew N Dailey. Iris recognition performance
enhancement using weighted majority voting. In 2008 15th IEEE
International Conference on Image Processing, pages 277–280. IEEE,
2008.

15

Appendix
A Modeling of Ensembling
While performing an ensemble it is important to be sure that
we can reach the desired accuracy by combining more models.
In our design, we solve our first objective function (described
in Section 4.1) by combining all available models which
meet the latency SLO. To be sure that the combination will
give us the desired accuracy of the larger model, we try to
theoretically analyse the scenario. We formulate the problem
conservatively as following.

We perform an inference by ensembling ’N’ models, and
each of these models have accuracy ’a’. Therefore the prob-
ability of any model giving a correct classification is ’a’.
We assume the output to be correct if majority of them, i.e.
bN/2c+ 1 of them give the same result. Then, the final ac-
curacy of this ensemble would be the probability of at least
bN/2c+1 of them giving a correct result.

To we model this problem as a coin-toss problem involving
N biased coins with having probability of occurrence of head
to be a. Relating this to our problem, each coin represents
a model, and an occurrence of head represents the model
giving the correct classification. Hence, the problem boils
down to find the probability of at least bN/2c+1 heads when
all N coins are tossed together. This is a standard binomial
distribution problem and can be solved by using the following
formula:

Phead =
N

∑
i=bN

2 c+1

(
N
i

)
ai (1−a)(N−i).

To further quantify, let us consider the case where we need
to determine if we can reach the accuracy of NasNetLarge
(82%) by combining rest of the smaller models which have
lesser latency than NasNetLarge. We have 10 (therefore N =
10) such models and among them the least accurate model is
MobileNetV1 (accuracy 70%, therefore a = 0.70). We need to
find the probability of at least 6 of them being correct. Using
the equation above we find the probability to be

Phead =
10

∑
i=b 10

2 c+1=6

(
10
i

)
0.7i (1−0.7)(10−i) = 0.83

This corresponds to an accuracy of 83%, which is greater than
our required accuracy of 82%). Given all the other models
have higher accuracy, the least accuracy we can expect with
such an ensemble is 83%. This analysis forms the base of our
ensemble technique, and hence proving the combination of
multiple available models can be more accurate than the most
accurate individual model.

B Why DeepARest Model?
We quantitatively justify the choice of using DeepARest by
conducting a brick-by-brick comparison of the accuracy loss

when compared with other state-of-the-art prediction models
used in prior work. Table 7 shows the root mean squared error

Model RMSE
MWA 77.5
EWMA 88.25
Linear R. 87.5
Logsitic R. 78.34
Simple FF. 45.45
DeepArEst 26.67
LSTM 28.56

Table 7

(RMSE) incurred by all the models. The ML models used
in these experiments are pre-trained with 60% of the Twitter
arrival trace. It is evident that the LSTM and DeepAREst
have lowest RMSE value. DeepARest is 10% better than
LSTM model. Since the primary contribution in Cocktail
is to provide high accuracy and low latency predictions at
cheaper cost, application developers can adapt the prediction
algorithm to their needs or even plug-in their own prediction
models.

C System Overheads

We characterize the system-level overheads incurred due
to the design choices in Cocktail. The mongodb database
is a centralized server, which resides on the head-node.
We measure the overall average latency incurred due to all
reads/writes in the database, which is well within 1.5ms.
The DeepARest prediction model which is not in the critical
decision-making path runs as a background process incurring
2.2 ms latency on average. The weighted majority voting
takes 0.5ms and the model selection policy takes 0.7ms. The
time taken to spawn new VM takes about 60s to 100s de-
pending on the size of the VM instance. The time taken to
choose models from the model-cache is less than 1ms. The
end-to-end response time to send the image to a worker VM
and get the prediction back, was dominated by about 300ms
(at maximum) of payload transfer time.

D Instance configuration and Pricing

Instance vCPUs Memory Price
C5a.xlarge 4 8 GiB $0.154
C5a.2xlarge 8 16 GiB $0.308
C5a.4xlarge 16 32 GiB $0.616
C5a.8xlarge 32 64 GiB $1.232

Table 8: Configuration and Pricing for EC2 C5 instances.

E Sentiment Analysis Models

F Spot Instance Price Variation

We profile the spot price of 4 types of C5 EC2 VMs over a
2-week period in August 2020.

16

Model Params
(M)

Top-1
Accuracy(%)

Latency
(ms) Pf

Albert-base [47] 11 91.4 55 7
CodeBert [32] 125 89 79 6
DistilBert [62] 66 90.6 92 5
Albert-large 17 92.5 120 4
XLNet [78] 110 94.6 165 3
Bert [30] 110 92 185 3
Roberta [51] 355 94.3 200 2
Albert-xlarge 58 93.8 220 1
Albert-xxlarge 223 95.9 350 1

Table 9: Pretrained models for Sentiment Analysis using BERT.

0 100 200 300
Time

0.1

0.2

0.3

Pr
ice

 ($
)

xlarge 2xlarge 4xlarge 8xlarge

Figure 18: Spot instance price variation (time is in hours).

17

	1 Introduction
	2 Background and Motivation
	2.1 Model Serving in Public Cloud
	2.2 Related Work
	2.3 Pros and Cons of Model Ensembling
	2.3.1 Ensembling Compared to Single Models
	2.3.2 Ensembling Overhead

	3 Prelude to Cocktail
	4 Overall Design of Cocktail
	4.1 Dynamic Model Selection Policy
	4.1.1 Class-based Weighted Majority Voting

	4.2 Resource Management
	4.2.1 Resource Controller
	4.2.2 Autoscaler

	5 Implementation and Evaluation
	5.1 Cocktail Prototype Implementation
	5.2 Evaluation Methodology
	5.2.1 Evaluation Metrics

	6 Analysis of Results
	6.1 Latency, Accuracy and Cost Reduction
	6.2 Key Sources of Improvements
	6.2.1 Benefits from dynamic model selection
	6.2.2 Benefits from Autoscaling
	6.2.3 Benefits of Transient VMs

	6.3 Sensitivity Analysis
	6.3.1 Cocktail Failure Resilience
	6.3.2 Sensitivity to Constraints
	6.3.3 Sensitivity to Dataset

	6.4 General Applicability of Cocktail

	7 Concluding Remarks
	A Modeling of Ensembling
	B Why DeepARest Model?
	C System Overheads
	D Instance configuration and Pricing
	E Sentiment Analysis Models
	F Spot Instance Price Variation

