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To verify safety and robustness of neural networks, researchers have successfully applied abstract interpretation,
primarily using the interval abstract domain. In this paper, we study the theoretical power and limits of the
interval domain for neural-network veri�cation.

First, we introduce the interval universal approximation (IUA) theorem. IUA shows that neural networks not
only can approximate any continuous function f (universal approximation) as we have known for decades,
but we can �nd a neural network, using any well-behaved activation function, whose interval bounds are an
arbitrarily close approximation of the set semantics of f (the result of applying f to a set of inputs). We call
this notion of approximation interval approximation. Our theorem generalizes the recent result of Baader et al.
[2020] from ReLUs to a rich class of activation functions that we call squashable functions. Additionally, the
IUA theorem implies that we can always construct provably robust neural networks under `1-norm using
almost any practical activation function.

Second, we study the computational complexity of constructing neural networks that are amenable to
precise interval analysis. This is a crucial question, as our constructive proof of IUA is exponential in the size
of the approximation domain. We boil this question down to the problem of approximating the range of a
neural network with squashable activation functions. We show that the range approximation problem (RA) is
a �2-intermediate problem, which is strictly harder than NP-complete problems, assuming coNP 1 NP. As a
result, IUA is an inherently hard problem: No matter what abstract domain or computational tools we consider
to achieve interval approximation, there is no e�cient construction of such a universal approximator. This
implies that it is hard to construct a provably robust network, even if we have a robust network to start with.

1 INTRODUCTION

Neural networks and approximation. Over the past decade, machine learning with neural
networks has revolutionized a vast array of tasks—from computer vision [Krizhevsky et al. 2012],
to natural-language processing [Mikolov et al. 2013], to program-analysis tasks [Raychev et al.
2015], and beyond. While these advances are recent, it has been well-known that neural networks
are a powerful class of models: The universal approximation theorem [Cybenko 1989; Hornik
et al. 1989] states that neural networks can approximate any continuous function with arbitrary
precision. Moreover, we only need a single hidden layer of neurons to realize this theorem. By
adding more neurons, one gets a more and more precise approximation. The intuition is that each
neuron can encode a step function. So, by adding more neurons, one gets a �ner-grained, step-like
approximation of a continuous function (see Nielsen [2015, Ch.4] for an interactive visualization).
Abstract interpretation of neural networks. With the wide adoption of neural networks,
new safety and security concerns arose. The most prominent property of study has been robust-
ness [Goodfellow et al. 2015]: small perturbations to the input of a network should not change
the prediction. For example, a small change to an image of a stop sign should not cause a classi-
�er to think it is a speed-limit sign. A number of researchers have proposed the use of abstract
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IUA theorem (semi-formally): For a function f : Rm ! R
that we wish to approximate and error � > 0, there is a neural
network N that has the following behavior:

Let B ⇢ Rm be a hyperrectangle (box) in Euclidean space.
The red interval (top) is the tightest interval that contains all
outputs of f when applied to elements of the set B.

If we abstractly interpret N on the box B, we may get the
black interval (bottom) N #(B), whose lower/upper bounds are
up to � away from those of the red interval. Note that N #(B)
may not necessarily subsume the top interval, since N is an
approximation of f .

6 � 6 �

minx2B f (x) maxx2B f (x)

N
#(B)

Fig. 1. Illustration and semi-formal statement of the interval universal approximation (IUA) theorem (Right
is adapted from Baader et al. [2020])

interpretation [Cousot and Cousot 1977] techniques to prove robustness of neural networks to
small perturbations [Anderson et al. 2019; Gehr et al. 2018; Wang et al. 2018] and to train robust
models [Gowal et al. 2018; Huang et al. 2019; Mirman et al. 2018].

Suppose we want to verify robustness of a neural network to small changes in the brightness of
an image. We can represent a large set of images, with varying brightness, as an element of some
abstract domain, and propagate it through the network, e�ectively “executing” the network on an
intractably large number of images. If all images lead to the same prediction, then we have a proof
that the network is robust on the original image.
The simplest abstract domain that leads to practical veri�cation results in this setting is the

interval domain. In our example above, if each pixel in a monochrome image is a real number r , then
the pixel can be represented as an interval [r � �, r + �], where � denotes the range of brightness we
wish to be robust on. Then, the box representing the interval of each pixel is propagated through
the network using interval arithmetic operations and other custom abstract transformers.
The power of the interval domain. The interval abstract domain has been successfully used
for verifying properties of neural networks for image classi�cation [Gehr et al. 2018; Gowal et al.
2018], natural-language processing [Huang et al. 2019], as well as cyber-physical systems [Wang
et al. 2018]. Why does the interval domain work for verifying neural networks?

In investigating this question, Baader et al. [2020] demonstrated a surprising connection between
the universal approximation theorem and interval-based veri�cation. Their theorem states that not
only can neural networks approximate any function f , but we can �nd a neural network, using
recti�ed linear unit (ReLU) activation functions [Nair and Hinton 2010], whose interval abstract
interpretation is arbitrarily close to the collecting (or set) semantics of f .
Interval universal approximation theorem. In this paper, our �rst goal is to deepen our
understanding of the power of interval analysis of neural networks, broadly construed. Speci�cally,
we set out to answer the following question:

Can we always construct a neural network, with any activation function, whose interval
abstract interpretation is arbitrarily close to the collecting (or set) semantics of f ?

The theorem of Baader et al. [2020] is restricted to networks that use ReLU activations. In this
work, we generalize the result of Baader et al. [2020] to neural networks that use arbitrary well-
behaved activation functions. Speci�cally, we provewhatwe call the interval universal approximation
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theorem, or IUA theorem for short: Let f be the function we wish to approximate, and let � > 0
be the tolerated error. Then, there exists a neural network N , built using any activation function,
such that for any box of inputs B, the abstract interpretation of N on B is � close to the collecting
semantics of f over B. If the box of inputs is a single point in Euclidean space, then the IUA theorem
reduces to the universal approximation theorem; thus, IUA generalizes universal approximation.
The IUA theorem is illustrated in more detail in Fig. 1.
We de�ne a rich class of activation functions, which we call squashable functions, for which

our IUA theorem holds. This class includes popular activation functions, like ReLU, sigmoid, tanh,
ELU, and other activation functions that have been shown to be useful for training robust neural
networks [Xie et al. 2020]. The key idea behind squashable activation functions is that they have
left and right limits (or we can use them to construct functions with limits); we exploit limits to
approximate step functions, and therefore construct step-like approximations of f , while controlling
approximation error � .
Existence of provably robust networks. While our results are theoretical in nature, they shed
light on the existence of provably correct neural networks. Suppose there is some ideal robust
image classi�er f using the `1-norm, which is typically used to de�ne a set of images in the
neighborhood of a given image. The classical universal approximation theorem tells us that, for any
desired precision, there is a neural network that can approximate f . The IUA theorem further tells
us that there exists a neural network for which we can automatically construct proofs of robustness
using the interval domain. In addition, this neural network can be built using almost any activation
function in the literature, and more.
Hardness of range approximation. Our proof of IUA, like that of Baader et al. [2020], is construc-
tive. Given f and � , one can construct a neural network that � -interval approximates f . However,
the constructions are exponential in the size of the function’s domain. A key open problem is
whether there is an e�cient construction of such neural networks; therefore, the second question
we set out to answer in this paper is

Can we e�ciently build an interval universal approximator for any continuous function f ?

We answer this question by boiling it down to studying the hardness of what we call the range
approximation (RA) problem: Given a function f , how hard it is to approximate the range of f .
Speci�cally, we consider the case where f is given as a neural network N with domain [0, 1]m
and codomain [0, 1], and our goal is to approximate the range of N with tolerance � . We show a
dichotomy result: if � > 1/2, then this is a trivial task; if � < 1/2, then this is a �2-intermediate
(De�nition 5.6) problem, where �2 is the smallest class in the polynomial hierarchy that contains
both the NP and coNP classes. As a consequence, there is no e�cient construction of the interval
universal approximating neural network, and the veri�cation of robustness using the interval
domain is hard. If one can approximate the collecting semantics of a neural network using the
interval domain as required for verifying robustness, then one can immediately approximate the
range of the network.
Contributions. Our contributions can be summarized as follows:

(1) We characterize a rich class of activation functions, which we call squashable functions, that
includes most activation functions used in neural networks (ReLU, sigmoid, tanh, ELU, etc.).
We show that squashable functions can arbitrarily approximate step functions. Since neural
networks using step functions can encode Boolean formulas, interpreting any activation
function as a squashable function provides a uni�ed view of neural networks. We believe
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that it will bene�t future researchers in understanding the theoretical and formal properties
of neural networks. (Section 2)

(2) We prove the interval universal approximation (IUA) theorem: Given a continuous f over a
compact domain, one can always construct a neural network N with any squashable function
whose interval semantics is arbitrarily close to the set semantics of f . Our result generalizes
the work of Baader et al. [2020], which is specialized for ReLU activations. Our proof follows
the general framework put forth by Baader et al. [2020], which can be viewed as a careful
design of summation of indicator functions. Baader et al. [2020] use a construction from He
et al. [2018] to construct themin function with ReLU units. We present a smaller construction
that is simpler to analyze and applies to any squashable activation function. (Sections 3 and 4)

(3) We demonstrate that the IUA theorem implies the existence of provably robust neural
networks for any classi�cation task at hand that has a robust solution f . Speci�cally, there
exists a neural network for which we can automatically construct proofs of robustness using
the interval domain and whose classi�cations match those of f . In addition, this neural
network can be built using any squashable activation. (Section 7)

(4) We study the hardness of building neural networks for IUA. We show a dichotomy result,
that it is either trivial or �2-intermediate to approximate the range of a neural network that
is polynomial-time executable. As a consequence, there is no e�cient construction of the
interval universal approximator. To our best knowledge, this is the �rst work to classify the
complexity of a veri�cation task of neural networks.1 (Sections 5 and 6)

2 SQUASHABLE ACTIVATION FUNCTIONS
In this section, we de�ne squashable functions, and how they can be used to build other functions
that are essential in our analysis of neural networks.

2.1 Neural Networks and Squashable Activation Functions

Neural networks. Aneural network in our setting is a function inRm ! R, wherem is the number
of inputs to the network. We will take a general view and de�ne a network N following a simple
grammar, a composition of primitive arithmetic operations and activation functions. Throughout,
we will use x 2 Rm to denote a vector, and use x1, . . . , xm to denote them elements of x.

De�nition 2.1 (Neural network grammar). Let x be the input to the neural network. A neural
network N is de�ned as follows

N B c

| xi
| N1 + N2
| c ⇤ N1
| t(N1)

where c 2 R, xi is the ith input to the network, and t : R! R is an activation function. Whenever
we discuss neural networks, we will �x a single activation function t to be used in the grammar. ⌅

This grammar is rich enough to encode standard feed-forward neural networks, convolutional
neural networks, and other non-recurrent architectures.
Activation Functions. In Fig. 2, we de�ne and plot a number of popular activation functions,
and other more recent ones: sigmoid, tanh, recti�ed linear units (ReLU) [Nair and Hinton 2010],
exponential linear unit (ELU) [Clevert et al. 2016], softplus [Glorot et al. 2011], softsign [Bergstra
et al. 2009], and smooth ReLU [Xie et al. 2020].
1Katz et al. [2017] and Weng et al. [2018] study the complexity of bug �nding (falsi�cation) instead of veri�cation.
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Activation functions that satisfy Eq. (1)

�4 �2 2 4

0.5

1

� (x ) = 1
1 + e�x

�4 �2 2 4

1

tanh(x ) = 2
1 + e�2x

� 1

�8 �4 4 8
�1

1

so�sign(x ) = x
1 + |x |

Activation functions that do not directly satisfy Eq. (1)

�1 �0.5 0.5 1

0.5

1

ReLU(x ) =
⇢
x , x > 0
0, x < 0

1 2 3�1

2

ELU(x ) =
⇢
x , x > 0
ex � 1, x < 0

�2 �1 1 2

2

so�plus(x ) = log(1 + ex )

�1 2 4

2

smoothReLUa (x ) =
⇢
x � 1

a log(ax + 1), x > 0, a > 0
0, x < 0

Fig. 2. Example activation functions. Smooth ReLU (smoothReLUa ) is parameterized by a > 0 (a = 1 is
plo�ed).

Example 2.2. Consider the following simple neural network with 2-dimensional input x = (x1, x2)
and a sigmoid activation function: N (x) = � (x1 + 0.5x2). This is typically depicted as:

x1

x2

+ �

0.5

Observe that the coe�cient of x2 is shown on the arrow. ⌅

Squashable activation functions. We provide the de�nitions of activation functions above to
ground our discussion. Our results, however, are more general: they apply to a general class of
activation functions that we will call squashable activation functions:

De�nition 2.3 (Squashable activation functions). t : R! R is squashable i�
(1) there is a < b 2 R such that

lim
x!�1

t(x) = a, lim
x!1

t(x) = b, and 8x < �. t(x) 6 t(�) (1)

(2) or a function t
0 : R ! R that satis�es Eq. (1) and can be expressed using the grammar in

De�nition 2.1 with copies of t . For example, t 0(x) = t(2 ⇤ t(x) � t(x + 10)).
In other words, squashable functions are the smallest set of functions that can use the grammar in
De�nition 2.1 to build a function that satis�es Eq. (1). ⌅
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Informally, an activation function is in this class if we can use it to construct a monotonically
increasing function that has limits in the left and right directions, �1 and1.2 Squashable activation
functions extend the squashing functions used by Hornik et al. [1989]. All of the activation functions
we have de�ned in Fig. 2 are squashable.

Fig. 2 (top, blue) shows all activation functions that satisfy Eq. (1), and are therefore squashable.
For example, sigmoid and tanh easily satisfy Eq. (1): both have limits and are monotonically
increasing. What about activation functions like ReLU, ELU, etc., shown in Fig. 2 (bottom, red)? It
is easy to see that they do not satisfy Eq. (1): none of them have a right limit. However, by point (2)
of De�nition 2.3, given an activation function t , if we can construct a new activation function t

0

that is squashable, using the operations in the grammar in De�nition 2.1, then t is squashable. In
the following proposition, we give a general and simple construction that works for all activation
functions in Fig. 2 (bottom, red).

P���������� 2.4 (S�������� �����������). Let

t 2 {ReLU, so�plus, smoothReLUa, ELU}

The function t 0(x) = t(1 � t(�x)) satis�es Eq. (1). Therefore, ReLU, softplus, Smooth ReLU, and ELU,
are squashable.

P����. It is easy to see that all the activation functions t are monotonically increasing with

lim
x!�1

t(x) = l and lim
x!1

t(x) = 1.

for some l 2 R.
Because t is increasing, t(�x) and t(1�x) are both decreasing; thus, their composition t(1�t(�x))

is increasing.

lim
x!�1

t(1 � t(�x)) = t( lim
x!�1

(1 � t(�x))) = l

lim
x!1

t(1 � t(�x)) = t(1 � lim
x!1

t(�x)) = t(1 � l)

ReLU. : l = 0, and t(1 � l) = ReLU(1 � 0) = 1.
ELU. : l = �1, and t(1 � l) = ELU(2) = 2.
softplus. : l = 0, and t(1 � l) = so�plus(1) = log(1 + e).
smoothReLU. : l = 0, and t(1�l) = smoothReLUa(1) = 1� 1

a log(a+1). (Note that 1
a log(a+1) < 1

for a , 0). ⇤

Throughout this paper, we will work with neural networks with squashable activation functions.
Proposition 2.4 guarantees that our results are general enough to account for many di�erent neural
networks, including ReLU networks.

Example 2.5. Fig. 3 shows t(1 � t(�x)), for t = ReLU and t = so�plus. Both have left/right limits
and are monotonic. Thus, they satisfy Eq. (1) and therefore ReLU and softplus are squashable. ⌅

2In our construction and proof, we do not need the function to be monotonic; however, in practice, most activation functions
are monotonic and abstractly interpreting arbitrary functions is impractical.
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�2 �1 1 2

1

(a) ReLU(1 � ReLU(�x ))

�8 �4 4 8

1

(b) so�plus(1 � so�plus(�x ))

Fig. 3. Two activation functions a�er applying construction in Proposition 2.4. Observe that the resulting
function satisfies Eq. (1), and therefore ReLU and so�plus are squashable.

�4 �2 2 4

0.5

1

(a) step(x)

�4 �2 2 4

0.5

1

(b) step(x) � step(x � 1)

�4 �2 2 4

0.5

1

(c) dilated sigmoid � (10x)

�4 �2 2 4

0.5

1

(d) � (10x) � � (10(x � 1))

Fig. 4. Approximations of step function and indicator function

2.2 Squashable-Function Constructions
In this section, we will show some constructions using squashable and step functions. This is a key
idea of the whole paper, and essential for proving the IUA and the hardness of range approximation
theorems. As we will demonstrate in the subsequent sections, we will use squashable functions to
approximate some gadgets that are fundamental in mathematics and complexity theory. We believe
that these constructions are important in understanding the computational and formal properties
of neural networks in the future.
Remark. In reality, ReLU is believed to improve neural network training because it prevents
gradient vanishing during training [Nair and Hinton 2010]. Our treatment to ReLU, i.e., as a
squashable function, allows gradient vanishing. However, we are not concerned about neural
network training; instead, we work on function approximations, and our goal is an existence proof.
Using the indicator functions is a classical idea in approximation theory, allowing us to approximate
each piece of a function. These constructions are useful for investigating the existence of function
approximators and worst-case behaviors. Similarly, the approximation proof in Baader et al. [2020];
Lin and Jegelka [2018]; Nielsen [2015] also used bump/indicator functions built by ReLU, via
di�erent approaches from what we did, which also potentially introduces gradient vanishing.
Step Function. A step function is

step(x) =
⇢
1, x > 0
0, x 6 0

One can view the step function as the indication of whether x is a positive number. The step
function can be used to build indicator functions, which is a fundamental tool in mathematical
analysis. For example, the standard way of de�ning integration with respect to the probability
measure is using the summation of indicator functions [Durrett 2010]. Also, neural networks with
step functions as the activation function can encode Boolean formula as we will show later.
Squashable Function. Squashable functions do not have an explicit formula, as it is a very
expressive class of functions. All we know is that it is monotonic and has both left and right limits
(see De�nition 2.3). Proving the properties of neural network with squashable functions might
appear a challenging task.
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However, the key observation is that if we dilate t properly, i.e., multiply the input with a large
number µ to get t(µx), we will obtain an approximation of the step function. See Figs. 4a and 4c on
how one can use the sigmoid function to approximate the step function.
Indicator Function. An indicator function associated with a set S ⇢ Rm is de�ned as

indS =
⇢
1, x 2 S

0, x < S

Note how the value is 1 if x is in the set S , and 0 otherwise.
We can use step functions to build indicator functions. For example,

step(x) � step(x � 1)

returns 1 for x 2 (0, 1], and 0 otherwise. See Figs. 4b and 4d for illustrations of the (approximating)
indicator function of (0, 1].
Encoding Boolean Formula. A Boolean formula is a composition of operators ¬, ^ and _
and variables that take values {0, 1}. This is one of the most fundamental objects in logic and
computer science, and has been extensively studied. If the Boolean formula is expressible using
neural networks, then we can understand the properties of the neural networks from their Boolean
formula counterparts. To simulate a Boolean formula, for each variable, we can build an input node
corresponding to the variable. We only need to encode the logical operators.
(1) For ¬�x , we only need to use 1 � X , where X is the neural network node corresponds to the

expression �x .
(2) For�x^�� , we can use step(X+Y�1.5). ForX andY that takes values in {0, 1}, step(X+Y�1.5)

evaluates to 1 only when both X and Y are 1.
(3) For�x_�� , we can use step(X+Y�0.5). ForX andY that takes values in {0, 1}, step(X+Y�0.5)

evaluates to 0 only when both X and Y are 0.
Note that the constants used in the encodings are not unique. In the appendix, we will give an

inductive proof on the correctness of this encoding.
One can then build a neural network that encodes a Boolean formula recursively according to

the syntactic composition of the formula. In Section 5, we will consider Boolean formulas of special
forms, i.e., 3CNF (conjunction normal form) and 3DNF (disjunction normal form). We will present
encodings of the 3CNF and 3DNF formulas using neural networks with squashable functions, and
the construction essentially captures the computation of corresponding logical operators. (Section 6)
Remark. As we shall see later, the step-function formulation serves as the intuition for understand-
ing the neural network with squashable activations. However, because we do not have the perfect
step function as the activation, and the values are continuous rather than {0, 1}, to rigorously
prove the results, we need to carefully control the imprecision introduced by the approximation
of squashable functions, and the construction that works for discrete values might not work for
continuous values directly. Nevertheless, one can expect the formal property of neural networks
with squashable activations will not be fundamentally di�erent from its Boolean formula or step-
function neural network counterparts. Moreover, the step function gadget can still guide the design
for the network with squashable functions. In fact, we will show that the complexity result in Katz
et al. [2017]—that it is NP-hard to falsify correctness3 of a neural network—can be easily proved
using the squashable function idea, as a corollary of the result we will present (Corollary 6.8).

3Katz et al. [2017] prove complexity of falsifying, rather than verifying, correctness properties presented as conjunctions of
linear inequalities over inputs and outputs of a network.
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3 THE INTERVAL UNIVERSAL APPROXIMATION THEOREM
In this section, we present the interval universal approximation (IUA) theorem. We begin with
background on abstract interpretation for neural networks.

3.1 Interval Abstraction
We will now de�ne the interval abstract domain and use it to abstractly interpret the semantics of
neural networks.
Set semantics. Given a function f : Rm ! R, we will use f

s : P(Rm) ! P(R) to de�ne its
collecting (or set) semantics. Formally, given a set S ✓ Rm ,

f
s (S) = { f (x) | x 2 S}

Henceforth, we will simply use f (S) to denote the collecting semantics version, f s (S), as it will be
clear from context that we are applying the function f to a set.
The interval abstract domain. Evaluating the set semantics on elements of P(Rm), the concrete
domain, is generally infeasible. The abstract interpretation framework [Cousot and Cousot 1977]
enables constructing sound approximations of collecting semantics by restricting operations to sets
of a certain shape—abstract domains. In this work, we consider the well-known interval abstract
domain, where the kinds of sets are limited to boxes in Rm . Anm-dimensional box B is a tuple of
intervals, de�ning the lower and upper bounds of each dimension:

h[l1,u1], . . . , [lm,um]i
where li ,ui 2 R (we do not need to consider unbounded boxes because we only consider bounded
input space, e.g., ui = 1).

The abstraction function � transforms an element of the concrete domain to a box. Let S 2 P(Rm).
�(S) = h[inf Si , sup Si ]imi=1

where Si = {xi | x 2 S} and xi refers to the ith element of x. In other words, Si is a projection of
vectors in S onto their ith element.

The concretization function � transforms boxes into their concrete domain counterparts.

� (h[l1,u1], . . . , [lm,um]i) = {x 2 Rm | li 6 xi 6 ui }
For clarity of presentation, we will often drop the use of the concretization operator, and treat a

box B as a subset of Rm .
Abstract transformers for neural operations. We can now de�ne abstract versions of the
operations of a neural network. We start with primitive arithmetic operations, where we use
superscript # to denote the abstract transformer. Since all of our operations are over scalars, we
de�ne arithmetic abstract transformers over 1-dimensional boxes.

De�nition 3.1 (Arithmetic abstract transformers). Let B be anm-dimensional box input to the
neural network. We follow the grammar in De�nition 2.1 to de�ne the abstract transformers.

c
# = [c, c]

x
#
i = [li ,ui ], where li ,ui are the ith lower and upper bounds of B

[l1,u1] +# [l2,u2] = [l1 + l2,u1 + u2]
[c, c] ⇤# [l,u] = [min(c ⇤ l, c ⇤ u),max(c ⇤ l, c ⇤ u)]

⌅

We also need to de�ne abstract transformers for activation functions. We give a general de�nition
that works for any function satisfying Eq. (1).
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De�nition 3.2 (Abstract transformer for activations [Gehr et al. 2018]). Let B = h[l,u]i be a 1-
dimensional box.

t
#(B) =

⌧
min
l6x6u

t(x), max
l6x6u

t(x)
��

Intuitively, we simply take the minimum and maximum values of t over the interval de�ned by the
box B. This may not generally be easy to compute, as it involves solving a constrained optimization
problem; however, for monotonically increasing activation functions (all activation functions in
Fig. 2), we can simplify the de�nition as follows:

t
#(B) = h[t(l), t(u)]i

where we only apply t to the lower and upper bounds of B, since by monotonicity we know that
t(� (B)) ✓ [t(l), t(u)]. ⌅

Example 3.3. Recall the neural network N (x) = � (x1 + 0.5x2), de�ned in Example 2.2. Suppose
we want to abstractly interpret it on the 2-dimensional box B = h[0, 1], [0.6, 1]i, i.e., the set of all
values where x1 2 [0, 1] and x2 2 [0.6, 1].

N
#(B) = �

#([0, 1] +# [0.5, 0.5] ⇤# [0.6, 1])
= �

#([0, 1] +# [0.3, 0.5]) (evaluate ⇤#)
= �

#([0.3, 1.5]) (evaluate +#)
= [� (0.3),� (1.5)] (evaluate � #; � is monotonic)

⌅

Soundness. Finally, we shall use N # to denote the abstract version of a neural network N . The
following theorem establishes soundness of our abstract transformers.

T������ 3.4 (S�������� �� �������� ������������). Let N : S ! R be a neural network
with domain S ✓ Rm . Let B be anm-dimensional box such that � (B) ✓ S . Then, N (� (B)) ✓ � (N #(B)).

Incompleteness. Even though abstract interpretation is sound, it is not necessarily complete,
i.e., the robustness of some inputs might not be certi�ed by abstract interpretation even though
they are robust. This is because abstract interpretation could potentially lose precision, and the
ceri�cation result for some robust inputs becomes unknown. Consider the following example,

� = x � x and x
# = [0, 1]

The abstract interpretation rule gives

�
# = x

# �#
x
# = [0, 1] �# [0, 1] = [�1, 1]

whereas � = 0 is always true.
The soundness of abstract interpretation enables the veri�cation of robustness and other cor-

rectness properties. However, because abstract interpretation is not necessarily complete, and
therefore for some correctness properties we may fail to construct proofs. As we shall see, the
interval universal approximation theorem that we will present in Section 3.2 implies that in fact it
is possible to verify certain robustness de�nitions (`1) using interval abstract interpretation.

3.2 The Interval Universal Approximation Theorem
In this section, we state the interval universal approximation (IUA) theorem.
Interval approximation. We begin by de�ning what it means to approximate a function using a
neural network. We assume some �xed continuous function f : C ! R, with a compact domain
C ⇢ Rm , that we wish to approximate.
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De�nition 3.5 (� -approximation). Let � > 0. A neural network N � -approximates f i� for all
x 2 C , we have f (x) � � 6 N (x) 6 f (x) + � . ⌅

We now generalize this point-wise approximation de�nition to elements of our abstract domain.

De�nition 3.6 (� -interval approximation). Let � > 0. A neural network N � -interval approximates
f i� for every box B ✓ C , we have

[l + � ,u � � ] ✓ N
#(B) ✓ [l � � ,u + � ]

where l = min f (B) and u = max f (B). ⌅

Informally, � -interval approximation says that the box output of abstract interpretation N
#(B) is

up to � away from the tightest bounding box around the collecting semantics f (B). Revisit Fig. 1
from Section 1 for an illustration of � -interval approximation. Observe that � -approximation is a
special case of � -interval approximation, when the box B is a point in C , i.e., � (B) is a singleton set.
Interval universal approximation (IUA). We now state the IUA theorem:

T������ 3.7 (I������� ��������� �������������). Let f : C ! R be a continuous
function on a compact domain C ⇢ Rm . Let t be a squashable activation function. For all
� > 0, there exists a neural network N , using only activations t , that � -interval approximates
f .

Informally, the theorem says that we can always �nd a neural network whose abstract interpre-
tation is arbitrarily close to the collecting semantics of the approximated function. Note also that
there exists such a neural network for any �xed squashable activation function t .
As we discuss in Section 7, the IUA theorem has very exciting implications: We can show that

one can always construct provably robust neural networks using any squashable activation function
(Theorem 7.4). The robustness property, which states that small perturbations in the input result in
the same classi�cation by a neural network, has been heavily studied recently, and the interval
domain has been used to prove robustness in a range of domains [Anderson et al. 2019; Gehr et al.
2018; Wang et al. 2018]. Our result hints at a very close theoretical connection between robust
neural networks and proofs using interval-based abstract interpretation.
In the supplementary materials, we give a generalization of the IUA theorem to functions and

networks with multiple outputs. In reality, neural networks are used as multi-label classi�ers,
therefore, the multiple-output case demonstrates this real-world scenerio because each output
corresponds to a predicted label. This generalization shows that we can always construct provably
robust neural networks for the real-world use case.

4 PROOF OF IUA THEOREM
We will show the IUA theorem, as stated in Theorem 3.7. Our proof uses the framework of Baader
et al. [2020], which is a delicate design of a summation of indicator functions. Though constructing
indicator functions is a classical idea in approximation theory (see Nielsen [2015, Ch.4] for an
interactive visualization), we are working in interval approximation, which is harder than pointwise
approximation because interval approximation implies pointwise approximation. The interval
approximation construction di�ers from the usual pointwise approximation one in the following
two ways:
(1) In the pointwise case, we only need to grid the input domain. As long as one can approximate

the target function within each grid using an indicator function, the pointwise approximation
is achieved. However, this does not work in the interval case because the input can be a box
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which might span over several grids. Baader et al. [2020] discovered an ingenious observation
that if one slices the domain of a function, and approximate each slice, then the usual indicator
approximation works because one can control the loss of precision of each slice.

(2) The interval semantics and the pointwise semantics can be vastly di�erent, therefore, the
pointwise indicator function might not remain an indicator in the interval semantics. As
we demonstrate in Theorem 5.8, it is in general a hard task to build a network whose
interval semantics approximate another network’s set semantics. Baader et al. [2020] use a
construction from He et al. [2018] to build the indicator function from the ReLU units, and
carefully analyze that this construction is indeed an indicator under the interval semantics,
which is in fact among the most technical and involved parts. We instead use ideas of
squashable functions introduced in Section 2 to approximate the indicator function. This
results in a technique that is simpler to analyze and also works for a larger set of functions,
including ReLU.

To summarize, we extend the IUA restricted to ReLU-network shown in Baader et al. [2020] to a
more general class of neural networks, and provide a simple-to-analyze indicator construction from
squashable functions. If we only consider ReLU network, our construction will achieve a linear
factor reduction in the usage of activation units to build the approximation network compared
to Baader et al. [2020].

4.1 Overview of Complete Proof of IUA
We will give a brief overview of the whole proof, following the technique of Baader et al. [2020] for
ReLU networks. Because we use an arbitrary squashable function rather than ReLU to approximate
the step function, this introduces extra imprecision in comparison with ReLUs. In what follows,
we outline on how to build the network N that satis�es the IUA theorem. We provide the detailed
analysis in the supplementary materials.
Slicing f . Let f : C ! R be the continuous function we need to approximate, and � be the
approximation tolerance, as per IUA theorem statement (Theorem 3.7). Assume min f (C) = 0.4 Let
u = max f (C). In other words, the range of f is [0,u].

Let � = �
3 . We will decompose f into a sequence of function slices fi , whose values are restricted

to [0, � ]. Let K = bu/� c. The sum of the sequence of function slices is f . The sequence of functions
fi : C ! [0, � ], for i 2 {0, . . . ,K}, is:

fi (x) =
8>>><
>>>:

f (x) � i� , i� < f (x) 6 (i + 1)�
0, f (x) 6 i�

� , (i + 1)� < f (x)
Notice that in Baader et al. [2020], the slicing size is �/2 instead of �/3. This is because squashable

functions might introduce extra imprecision compared to ReLU. For example, in Fig. 3, in the ReLU
case, we know t(x) = 0 when x < �5 but we only know t(x) ⇡ 0 when x < �5 in the so�plus case.
We thus need a �ner function slicing to accommodate it. Recall that the goal is to show that in
the �nal result, the interval semantics of the constructed neural network satisfy the inequality
in De�nition 3.6. From the detailed analysis we provide in the supplementary materials, we can
�nd that �/2 leads to a sharp inequality in the �nal result for the ReLU case, and thus we have this
�ner (�/3 instead of �/2) slicing for general squashable functions.

Example 4.1. See Fig. 5 for slicing f (x) = sin(2x) + 1 with � = 1.2. ⌅

4Otherwise, we can shift f such that min f (C) = 0.
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(a) f (x) = sin(2x) + 1
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(b) Sliced f (x)
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(c) Example slice f0
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(d) Example slice f3

Fig. 5. Slicing f (x) = sin(2x) + 1 with approximation tolerance � = 1.2.
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(a) 1-grid over R2
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(b) Three boxes in G
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3

G

(c) Box G & neighborhood � (G)

Fig. 6. A grid illustration

Approximating fi . Fix � > 0. Consider a standard grid of vertices over a compact set C , where
any two neighboring vertices are axis-aligned and of distance � ; we will call this an �-grid. Let
[a1,b1] ⇥ . . . ⇥ [am,bm] be a box G on the grid, where [ai ,bi ] is the range of G at dimension i . In
other words, bi � ai is a multiple of � . Let G be the set of boxes whose vertices are in the grid.
The neighborhood � (G) of G is [a1 � �,b1 + �] ⇥ . . . ⇥ [am � �,bm + �]. Our goal is to construct an
indicator function whose value is close to 1 withinG , and close to 0 outsideG’s neighborhood � (G).
The idea of using grid is similar to the nodal basis in He et al. [2018]. See Fig. 6 for an example of
grid and boxes in the grid. Constructing the indicator function for boxes in the grid is essential for
the proof, and we will provide the precise the construction in Section 4.2. For now, let’s assume we
have the construction NG (Eq. (3)) with NG (x) ⇡ 1 in x 2 G and NG ⇡ 0 for x < � (G).

We will use the indicator approximation NG to construct a neural network Ni that approximates
fi . BecauseC is compact, |G| is �nite. Consider 1

� fi (x); it is roughly similar to an indicator function
for the set S = {x 2 C | f (x) > (i + 1)� }, i.e., indicating when f (x) is greater than the upper
bound of the ith slice. To approximate 1

� fi (x), we will consider all boxes in G that are subsets
of S , and construct an indicator function to tell us whether an input x is in those boxes. Let
Gi = {G 2 G | f (G) > (i + 1)� }. Now construct Ni (x) that approximates 1

� fi (x) as

Ni (x) = t

 
µ

 ’
G 2Gi

NG (x) � 0.5

!!
.

Sum all Ni . Because
ÕK

i=0 fi (x) = f (x), and Ni (x) approximates 1
� fi (x), we de�ne N as

N (x) = �
K’
i=0

Ni (x)

N � -interval approximates f ; therefore, the IUA theorem holds.

4.2 Approximating Indicator Functions
In this section, we will give the precise construction of the approximating indicator function and
the rigorous proof of correctness. Because we will grid the input space (recall the �-grid de�ned
in Section 4.1), we need an indicator function for each grid cell, i.e., high-dimensional box. We
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start from building the one-dimensional indicator function and then use that to build the high-
dimensional one. We will use the idea introduced in Section 2.2 on how to construct the indicator
function from squashable functions.

4.2.1 One-dimensional indicator function. Wewill �rst show how to construct an indicator function
for a 1-dimensional box, using a squashable activation function as we have seen in Section 2. The
main challenge is choosing the dilation factor that results in small precision loss when abstractly
interpreting the neural network.
By the IUA theorem statement, we are given some squashable activation function t . Without

loss of generality, we make the following two assumptions about t :
(1) We assume that t already satis�es Eq. (1) (De�nition 2.3):

lim
x!�1

t(x) = a and lim
x!1

t(x) = b and 8x 2 R. t(x) 2 [a,b]

Otherwise, by De�nition 2.3, we can use t to build a t 0 that satis�es Eq. (1).
(2) We assume that the left and right limits of t are 0 and 1, respectively. (If not, we can apply an

a�ne transformation to the results of t to make the left and right limits 0 and 1.)

Loss of precision from limits. The activation function t has limits at both sides, but the function
might never reach the limit. For example, the right limit of the sigmoid function, � , is 1, but
8x . � (x) , 1. This will lead to a loss of precision when we use t to model a step function. However,
we can carefully apply mathematical analysis to rigorously bound this imprecision.
Dilation to approximate step function. We now discuss how to dilate t to get a step-function-
like behavior. By de�nition of limit, we know the following lemma, which states that by su�ciently
increasing the input of t , we can get � close to the right limit of 1, and analogously for the left limit.

L���� 4.2. 8� > 0, 9D > 0 such that:
(1) If x > D, then t(x) 2 (1 � � , 1].
(2) If x 6 �D, then t(x) 2 [0, � ). 1

6 �

0.5��0.5�
Fig. 7. Illustrating the loss of precision �

incurred through using a squashable acti-
vation to approximate a step function. The
length of the red arrows is 6 � .

Because the grid size is � , we want the step-function
approximation to achieve a transition from ⇡ 0 to ⇡ 1
within � . Let µ be the dilation factor. Following Lemma 4.2,
we would like the following:

(1) if x > 0.5� , then t(µx) 2 (1 � �, 1];
(2) if x 6 �0.5� , then t(µx) 2 [0, � ).
From Lemma 4.2, we only need µx > D when x > 0.5� ;

therefore, µ = 2D/� su�ces as the dilation factor.

L���� 4.3. From Lemma 4.2, 8� > 0, let µ = 2D/� . The
following is true:
(1) if x > 0.5� , then t(µx) 2 (1 � � , 1];
(2) if x 6 �0.5� , then t(µx) 2 [0, � ).
Example 4.4. Fig. 7 illustrates the loss of precision � incurred by our construction. ⌅

Indicator function on dimension i. Now that we have discussed how to approximate a step
function, we are ready to show how to approximate an indicator function for one dimension of a
box G in the grid.

Suppose the projection of a boxG on dimension i is [ai ,bi ]. BecauseG is in the �-grid, bi �ai > � ;
and the projection of neighborhood � (G) on dimension i is [ai � �,bi + �]. We want to build an
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indicator function that has value close to 1 on [ai ,bi ], and value close to 0 on R \ [ai � �,bi + �].
Notice how we may lose precision within the neighborhood of G; this is expected, because our
approximation may not be able to exactly tell if we are in G or its neighborhood.

Inspired by how to construct an indicator function from a step function, wewill take the di�erence
between two shifted step functions. Let

t̂(x) = t (µ (x + 0.5� � ai )) � t (µ (x � 0.5� � bi )) (2)

Properties of t̂ . The following lemmas show that t̂ roughly behaves like an indicator function: its
value within a box’s ith dimension [ai ,bi ] is ⇡ 1; its value outside of the neighborhood is ⇡ 0; its
value globally is bounded by 1 We will analyze the values of the two terms in t̂ .

The following lemma states that if x is within the box’s ith dimension, then the �rst term is close
to 1 and the second term is close to 0, resulting in t̂(x) ⇡ 1.

L���� 4.5. If x 2 [ai ,bi ], then the following is true:
(1) t(µ(x + 0.5� � ai )) 2 (1 � �, 1].
(2) t(µ(x � 0.5� � bi )) 2 [0, � ).
The next two lemmas state that if x is outside the neighborhood, then the two terms are similar,

resulting in a t̂(x) ⇡ 0.

L���� 4.6. If x 6 ai � � , then the following is true:
(1) t(µ(x + 0.5� � ai )) 2 [0, � ).
(2) t(µ(x � 0.5� � bi )) 2 [0, � ).
L���� 4.7. If x > bi + � , then the following is true:
(1) t(µ(x + 0.5� � ai )) 2 (1 � �, 1].
(2) t(µ(x � 0.5� � bi )) 2 (1 � � , 1].

Abstract precision of t̂ . We are now ready to prove properties about the abstract interpretation
of our 1-dimensional indicator approximation, t̂ . The following lemma states that the abstract inter-
pretation of t̂ , t̂#(B), is quite precise: if the 1-dimensional input box B is outside the neighborhood
of G, on G’s ith dimension, then the output box is within � from 0; if the input box B is within the
ith dimension of G, then the output box is within 2� from 1.

L���� 4.8. For a 1-dimensional box B, the following is true:
(1) t̂#(B) ⇢ (�1, 1].
(2) If B ✓ (�1,ai � �] or B ✓ [bi + �,1), then t̂#(B) ✓ (��, � ).
(3) If B ✓ [ai ,bi ], then t̂#(B) ✓ (1 � 2�, 1] .

4.2.2 Approximating anm-dimensional indicator. We saw how to construct an indicator approxi-
mation for a 1-dimensional box. We will now show how to construct an indicator function approxi-
mation NG for anm-dimensional box.

Throughout, we assume a box G = [a1,b1] ⇥ · · · ⇥ [am,bm]. So, if x 2 G, then xi 2 [ai ,bi ] for all
i 2 {1, . . . ,m}; if x < � (G), i.e., not in the neighborhood, then 9i such that xi 6 ai �� or xi > bi +� .
Constructing NG . We want to construct an indicator function whose value within a box G is
close to 1 and outside the neighborhood � (G) is close to 0. In the multi-dimensional case,m > 2,
we do not know at which, if any, dimension j of an input is outside the neighborhood of G. The
1-dimensional indicator approximation, t̂ , which we constructed earlier, can be used to tell us, for
each dimension j, whether x j is within the bounds of the neighborhood of G. Therefore we can
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x1

xm

...

t̂1

...

t̂m

Õ
t

µ

(a) Illustration of NG (added constants elided)

�5
0

5 �5
0

50
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(b) Plot of NG on G = [0, 1] ⇥ [0, 1] using the sigmoid activation,
with µ = 10, 2� = 0.05, and � = 1. Observe how NG (x) is ⇡ 1 for
values of x 2 G , and ⇡ 0 elsewhere.

Fig. 8. Step 2 Illustration of neural network NG

construct a logical OR approximation that applies t̂ to each dimension and takes the OR of the
results. Speci�cally,
(1) We will construct a function that applies t̂ to each dimension, and sums the results such that

the answer is > 0 if x 2 G, and < 0 if x < � (G).
(2) Then, we can use the step-function approximation to indicate the step of the answer.

Formally, we de�ne the neural network NG as follows:

NG (x) = t

 
µ

 
m’
i=1

Hi (xi ) + 0.5�
!!

(3)

where Hi (x) = t̂i (x) � (1 � 2� ), and t̂i is t̂ using the range [ai ,bi ] of the ith dimension of G. The
neural network NG is graphically depicted in Fig. 8a.
The function term

Õm
i=1Hi (xi ) evaluates to a positive value if x 2 G and to a negative value if

x < � (G). Observe that we need to shift the result of t̂ by (1� 2� ) to ensure a negative answer if one
of the dimensions is outside the neighborhood. Then, we use t to approximate the step function, as
we did in the 1-dimensional case, giving ⇡ 1 if x 2 G, and ⇡ 0 if x < � (G).

Example 4.9. Fig. 8b shows a plot of NG for x 2 R2. ⌅

Abstract precision of NG . We are now ready to analyze the abstract precision of NG . We �rst
consider Hi in the following lemma. For any box B ✓ C , let Bi be its projection on dimension i ,
which is an interval.

The following lemma states that if B is in the box G, then
Õ

i H
#
i is positive; otherwise, if B is

outside the neighborhood of G, then
Õ

i H
#
i is negative.

L���� 4.10 (A������� �������������� �� Hi ). For any box B ✓ C , the following is true:
(1) If B ✓ G, then

Õm
i=1H

#
i (Bi ) ✓ (0,1).

(2) If B ✓ C \ � (G), then Õm
i=1H

#
i (Bi ) ✓ (�1,��).

The following theorem states the precision of the abstract interpretation of NG : if the input box
is in G, then the output box is within � from 1; if B is outside the neighborhood of G, then the
output box is within � from 0.

T������ 4.11 (A������� �������������� �� NG ). For any box B ✓ C , the following is true:
(1) N #

G (B) ✓ [0, 1].
(2) If B ✓ G, then N

#
G (B) ✓ (1 � �, 1].
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(3) If B ✓ C \ � (G), then N
#
G (B) ✓ [0, � ).

P����.
S�������� (1): See de�nition of NG in Eq. (3). The outer function of NG is t , whose range is [0, 1]
by the de�nition of squashable functions and our assumption that the left and right limits are 0
and 1. Therefore, N #

G (B) ✓ [0, 1].
S�������� (2): If B ✓ G, from Lemma 4.10, we know that

Õm
i=1H

#
i (Bi ) ✓ (0,1). Then,

m’
i
H

#
i (Bi ) +# (0.5�)# ✓ (0,1) +# (0.5�)# ✓ (0.5�,1)

From Lemma 4.3, we know that if x > 0.5� , then 1 � � < t(µx) 6 1. Therefore,

N
#
G (B) = t

#(µ# ⇤# (0.5�,1)) ✓ (1 � � , 1]
S�������� (3): If B ✓ C \ � (G), from Lemma 4.10, we know that

Õm
i=1H

#
i (Bi ) ✓ (�1,��). Then,Õm

i=1H
#
i (Bi ) +# (0.5�)# ✓ (�1,��) +# (0.5�)# ✓ (�1,�0.5�)

From Lemma 4.3, we know that if x 6 �0.5� , then 0 6 t(µx) < � . Therefore,

N
#
G (B) = t

#(µ# ⇤# (�1,�0.5�)) ✓ [0, � )
⇤

Complexity of construction. To construct a single indicator function, we use 2m + 1 activation
functions, with depth 2 and width 2m. If we restrict ourselves to ReLU activations, we use 4m + 2
neurons, with depth 4 and width 2m; in contrast, Baader et al. [2020] use 10m � 3 ReLu functions,
with depth 3 + log2(m), and width 4m.

5 HARDNESS OF RANGE APPROXIMATION
In this section, we will present the range approximation (RA) problem and some basics of computa-
tional complexity theory. By studying the complexity of RA, one can understand the hardness of
IUA.

5.1 The Polynomial Hierarchy
The polynomial hierarchy generalizes the de�nitions of P,NP, coNP. Let L be a language.

De�nition 5.1 (The NP and coNP classes). L is an NP language if there exists a polynomial-time
Turing machineM , and a polynomial q such that

x 2 L if and only if 9u 2 {0, 1}q( |x |).M(x,u) = 1.
coNP languages are similarly de�ned, but with a universal (8) quanti�er instead. ⌅

Example 5.2. Deciding whether a Boolean formula is satis�able is an NP problem. Deciding
whether a Boolean formula is a tautology is a coNP problem. ⌅

We write �1 = NP, and �1 = coNP. Notice that the di�erence between �1 and �1 is the leading
quanti�er. Indeed, the de�nitions of �n and �n have similar structure as NP and coNP, with n

alternating quanti�ers rather than a single quanti�er. In this paper, we only need to consider �2
and �2, which we de�ne below.

De�nition 5.3 (The �2 class). L is a �2 language if there exists a polynomial-time Turing machine
M , and a polynomial q such that

x 2 L if and only if 9u1 2 {0, 1}q( |x |)8u2 2 {0, 1}q( |x |).M(x,u1,u2) = 1.
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⌅

De�nition 5.4 (The �2 class). L is a �2 language if there exists a polynomial-time Turing machine
M , and a polynomial q such that

x 2 L if and only if 8u1 2 {0, 1}q( |x |)9u2 2 {0, 1}q( |x |).M(x,u1,u2) = 1.

⌅

De�nition 5.5 (The �2 class). �2 = �2 \ �2. ⌅

Note thatNP, coNP ✓ �2, because one can substitute an empty string tou1 oru2 in De�nitions 5.3
and 5.4. The polynomial hierarchy is the union of all �n languages.

De�nition 5.6 (�2-intermediate language). A set of languages L is �2-intermediate ifNP[coNP ✓
L and L ✓ �2. ⌅

Remark. By de�nition, �2 = �2\�2, andNP[ coNP ✓ �2 because both NP and coNP are subsets
of �2. It is unknown whether NP [ coNP = �2 or not. However, if coNP 1 NP as is commonly
believed, NP ( L when L is �2-intermediate.

5.2 The Range Approximation Problem
In this section, we present the RA problem. This will reveal one of the fundamental di�erences
between the classical UA and IUA because the interval approximation can be studied via decision
problems (Section 6.3) and therefore one can attempt to understand its computational complexity.
In the appendix, we will give a precise description of the real-valued computational model.

We restrict our attention to neural networks that map [0, 1]m to codomain [0, 1], i.e., f : [0, 1]m !
[0, 1] is a neural network. Throughout the paper, when we use polynomial-time executable, we
mean polynomial in terms ofm.

De�nition 5.7 (� -range approximation). Let � > 0 and f : [0, 1]m ! [0, 1] be a neural network.
We can � -range approximate f if we �nd a 6 b 2 [0, 1] such that

[l + � ,u � � ] ✓ [a,b] ✓ [l � � ,u + � ]

where l = min f ([0, 1]m) and u = max f ([0, 1]m). ⌅

Note that � -range approximation (De�nition 5.7) is weaker than � -interval approximation (IA)
(De�nition 3.6) in the following ways:

(1) In RA, we only need f to be a neural network, while in IA, we aim to approximate any
continuous function;

(2) In IA, we require the approximation holds for any B in the domain, while in RA, we only
need it holds for the domain [0, 1]m ;

(3) In IA, we need to �nd a neural network that approximates f , but in RA, we do not require
any speci�c ways to �nd a,b. If one can �nd the � -interval approximation neural network,
abstractly executing the neural network will return a,b automatically.

As a result, if we show that the � -range approximation problem is hard, then building a � -interval
approximation neural network that can be polynomial-time executable has to be hard.

We now state a dichotomy theorem on the � -range approximation problem:
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T������ 5.8 (D�������� �� � ������ �������������). Let f : [0, 1]m ! [0, 1] be a neural
network with any squashable functions. Then
(1) If � > 1/2, it is trivial to � -range approximate f .
(2) If � < 1/2, it is NP-hard and coNP-hard to � -range approximate f . Moreover, if we

assume that the neural network takes polynomial time to execute and the input has
�nite precision, then it is �2-intermediate to � -range approximate f .

The �rst statement is trivial, because if � > 1/2, we can choose a = b = 1/2. Because we have
0 6 l 6 u 6 1, then it is always true that when � > 1/2,

u � � 6 1/2 6 u + �

and
l � � 6 1/2 6 l + � .

We will show the second statement in Section 5. The idea is to reduce the problem of determining
the range of a Boolean formula to the � -range approximation problem, by encoding the Boolean
formula as a neural network with step functions as the activation functions. Since squashable units
can arbitrarily approximate the step function, the � -range approximation problem for the neural
network is also hard.
Implications of RA hardness. Even though we knew that exactly �nding the range is hard,
� -range approximation might be much easier. As an analogy, many NP-complete optimization
problems have polynomial-time approximation algorithms [Vazirani 2003]. Theorem 5.8 is surpris-
ing because it shows a dichotomy that it is either trivial or very hard to achieve the approximation
of the set semantics depending on how close/tolerant one demands the approximation to be. As we
will reveal in Section 6, exactly deciding or approximating the range of a neural network are not
very di�erent from the complexity-theoretical view, even though the former appears a harder task
because it implies the latter (Corollary 6.4).
Theorem 5.8 also implies that even if we have a neural network N0 that approximates some

function in the pointwise sense, it does not help build the interval approximator because one cannot
simply build another network N whose abstract interpretation approximates the set semantics
of N0. This shows the non-triviality of the IUA, even though UA is a classical topic and has been
studied extensively.

6 PROOF OF HARDNESS OF RA
In this section, we will show the second statement of Theorem 5.8, that it is �2-intermediate to
� -range approximate f for � < 1/2 and f : [0, 1]m ! [0, 1], where f is a neural network with any
squashable functions. Before showing this, we will consider the Boolean formula counterpart of
this problem. This will provide us with an intuition for the original neural network version of the
range-approximation problem.
Because a Boolean formula is only valued in {0, 1}, � -range approximating a Boolean formula

e�ectively decides the exact range of the Boolean formula. Therefore, let’s consider the following
problem: deciding exactly the range of a Boolean formula. We show that this problem is �2-
intermediate.

6.1 Deciding the Range of a Boolean Formula
Let � be an arbitrary Boolean formula. Let R� be the range of �. To decide the range of � amounts
to deciding whether R� = {0}, R� = {1}, or R� = {0, 1}. To show a problem is �2-intermediate, we
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need to show that it is in �2 = �2 \ �2; and it is both �1-hard and �1-hard. Recall that �1 = NP
and �1 = coNP.
R� = {0} can be expressed as

8x .�(x) = 0.
Similarly, R� = {1} can be expressed as

8x .�(x) = 1.

R� = {0, 1} can be expressed as

9x,�.�(x) = 1 ^ �(�) = 0.

All of them can be expressed within both �2 and �2 languages. Therefore, deciding the range of a
Boolean formula is in �2 \ �2 = �2.
The canonical NP-hard problem is deciding whether a Boolean formula is satis�able, and the

canonical coNP-hard problem is deciding whether a Boolean formula is a tautology. Indeed, if one
can decide the range of a Boolean formula, then one can easily tell whether the Boolean formula is
satis�able or not, and whether the Boolean formula is a tautology or not.

Therefore, deciding the range of a Boolean formula is �2-intermediate.

6.2 Range Approximating a Neural Network
Showing that deciding the range of a formula is a �2-intermediate problem provides an intuition
for why the range approximation problem is �2-intermediate. Our proof of the hardness of RA
consists of 3 parts:
(1) The RA problem is in �2\�2. We show that we can express deciding the range of a polynomial-

time executable neural network using �2 and �2 languages. Because deciding the range of a
function is harder than approximating the range, this shows that approximating the range is
also in �2.

(2) The RA problem is NP-hard.
(3) The RA problem is coNP-hard.

We will build reductions from the NP-hard and coNP-hard problems to the RA problem, and this
shows that both exactly deciding and approximating the range of a neural network are NP- and
coNP-hard.
The NP-hard problem is whether a Boolean formula in 3CNF is satis�able. The coNP-hard

problem is whether a Boolean formula in 3DNF is a tautology. In particular, we will encode the
3CNF and 3DNF formulas computation using neural networks with squashable functions, which
comes from on how to encode a Boolean formula using neural networks with perfect step functions.
RA is in �2. We �rst show that the RA problem is �2. We will need the assumptions that the neural
network is polynomial-time executable in terms ofm and the input precision is �nite, otherwise,
we cannot use a polynomial-time Turing machine to simulate the execution of the neural network.
We require �nite input-precision because we want to ensure there are only exponentially many
inputs. Note that the NP-hardness and coNP-hardness of RA do not need these assumptions, so if
coNP 1 NP as commonly believed, RA is always harder than any NP-complete problem.

L���� 6.1. The � -range approximation problem as de�ned in Theorem 5.8 is in �2 for � < 1/2, if
the neural network is polynomial-time executable and the input has �nite precision.

P����. We will show that exactly deciding the range of f is in �2. Because exactly deciding
a range is harder than the approximating it, this also shows that approximating the range of a
polynomial-time executable neural network is in �2.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.



1:21

Because f is a continuous function, deciding the range of f is [a,b] can be written as

9x,�.8z. f (x) = a ^ f (�) = b ^ f (z) 6 b ^ f (z) > a. (4)

In Eq. (4), because z is not dependent on x,�, we can also switch the order of the quanti�er.
Therefore, deciding the range of f is in both �2 and �2, and thus in �2. ⇤

Hardness of RA. We need to show that the RA problem is both NP-hard and coNP-hard, which
is formally stated in the following lemmas:

L���� 6.2. The � -range approximation problem as de�ned in Theorem 5.8 is NP-hard for � < 1/2.

L���� 6.3. The � -range approximation problem as de�ned in Theorem 5.8 is coNP-hard for � < 1/2.

We will present a decision problem formulation of approximating the maximum value of the
neural network, and show a reduction from the SAT problem to the decision problem in Section 6.3.
This shows that the � -range approximation problem is NP-hard.

The idea of the reduction is to use neural networks with squashable functions to encode a 3CNF
formula as discussed in Section 2. Approximating the range of the neural network also approximates
the range of the Boolean formula. As discussed in Section 6.1, given the range of the Boolean
formula, it is easy to know its satis�ability. Then we know the � -range approximation problem is
NP-hard.
The proof of Lemma 6.3 very much resembles that of Lemma 6.2. We encode a 3DNF formula

instead of a 3CNF formula, and delegate the proof to the supplementary materials.
Range decision of neural networks. Lemmas 6.2 and 6.3 also imply that deciding the range of
a neural network is both NP-hard and coNP-hard. Together with the result that deciding the range
of the neural network is in �2, we have the following corollary:

C�������� 6.4. Let f : [0, 1]m ! [0, 1] be a neural network that takes polynomial time to execute
and the input has �nite precision, then it is �2-intermediate to decide the range of f .

6.3 The NP-Hardness of Range Approximation
In this section, we will prove Lemma 6.2. f : [0, 1]m ! [0, 1] is a neural network with any
squashable units. We will show that for � < 1/2, it is NP-hard to approximate the maximum value
of f over [0, 1]m up to an additive factor of � (Lemma 6.5). This is accomplished by a reduction
from the 3SAT problem, and we show that there is an gap between the maximums of neural
networks that encode either satis�able formulas or unsatis�able formulas (Proposition 6.7). This
gap enables us to show that approximating of maximum of neural network is NP-hard because
approximating the maximum can tell whether the 3CNF formula is satis�able or not. Because if
one can approximate the range of a neural network, one can also approximate its maximum. This
implies that approximating the range of a neural network is NP-hard (Lemma 6.2).
Our reduction maps 3CNF formulas � overm variables to a neural network f onm variables,

such that if � is satis�able then the maximum value attained by f over [0, 1]m lies in (1/2 + � , 1],
and if � is unsatis�able, the maximum value of f over [0, 1]m lies in [0, 1/2�� ]. The neural network
returned by the reduction can be built using any squashable activation.
Decision Problem Formulation. Let Fm be the set of neural networks overm variables that map
[0, 1]m to codomain [0, 1], and let F =

–
m>1 Fm . For � < 1/2, let

F
+
� =

ÿ
m>1

⇢
f 2 Fm

���� max
x2[0,1]m

(f (x)) > 1/2 + �
�

(5)
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F
�
� =

ÿ
m>1

⇢
f 2 Fm

���� max
x2[0,1]m

(f (x)) 6 1/2 � �

�
(6)

L���� 6.5. Given f 2 F
+
� [ F

�
� , it is NP-hard to determine whether f 2 F

+
� or f 2 F

�
� .

Since an e�cient algorithm for � -range approximating a neural network also approximates its
maximum value, Lemma 6.2 is an immediate consequence of Lemma 6.5.
SAT reduction. Let X1, . . . ,Xm be Boolean variables, and Li = (¬)Xi is called a literal (with the
negation operator, it is called a negative literal). A 3CNF instance � is a conjunction of clauses
of the form C1 ^ . . . ^ Ck , where each clause Cj is a disjunction of 3 literals. To distinguish the
3CNF instance and its simulation using the neural network, we will use uppercase letters to denote
components in the 3CNF instance, and lowercase letters to denote the corresponding construction
in the neural network.
Simulation of 3CNF.We will need to simulate the logical operations using the neural network
operations. If we have perfect step functions as the activations and the input values are discrete,
then the 3CNF instance can be easily simulated, as we have demonstrated in Section 2.2 on how
to encode Boolean formula. Using the idea presented in Section 2, we will scale and shift the
activations to simulate the step function. De�ne the following three activation functions that will
be used in the reduction:

t1(z) =
(
> �0.2 and 6 �0.1, z 6 0.6
> 0.5 and 6 0.6, z > 0.7

(7)

t2(z) =
(
> 1

2k and 6 1
k , z > 0.1

6 �1, z 6 0
(8)

t3(z) =
(
> 1/2 + � and 6 1, z > 0.5
< 1/2 � � and > 0, z 6 0

(9)

Recall that we use upper case letters for Boolean variables and lower case letters for neural
network variables. The goal is to show Lemma 6.5, and it can be proved via Proposition 6.7, i.e.,
for satis�able or unsatis�able instances, the neural networks have di�erent upper bounds. On one
hand, if the instance � is satis�able, we can take the satis�able assignment X of values 0s and 1s as
an input to the neural network and show that f (x) > 1/2 + � . On the other hand, if f (x) > 1/2 � � ,
we can use x to construct a satis�able assignment for �. The output values in Eq. (9) are chosen to
generate the gap as in Lemma 6.5. The choice for other values in Eqs. (7) to (9) are not unique. We
only need to ensure that for satis�able or unsatis�able instances, we can produce the gap.

We will simulate the 3CNF instance using a neural network in the following way.
• For each variable Xi , construct an input node xi .
• Simulate the negation operator using li = 1 � xi . If there is no negation operator for li , we
use li = xi directly. Then transform each literal using t1.

• For each disjunction operator, we will use t2 to control the output value. For example, if
Cj = Lj1 _ Lj2 _ Lj3, build the gadget c j = t2(t1(lj1) + t1(lj2) + t1(lj3)).

• For the conjunction operator, we will use t3. For example, if � =
”k

i=1Ci , then let � =
t3(

Õk
i=1 ci ).

Example 6.6. Fig. 9 shows an example of the neural network corresponds to the 3SAT instance
(X1 _ ¬X2 _ X3) ^ (¬X1 _ X2 _ X4). ⌅
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x1

x2

x3

xn

�

l21 = 1 � x1

l11 = x1

l12 = 1 � x2

l22 = x2

l13 = x3

l23 = x4

t1 t2 t3

c1 = t2(t1(l11) + t1(l12) + t1(l13))

c2 = t2(t1(l21) + t1(l22) + t1(l23))

� = t3(c1 + c2)

Fig. 9. The neural network encoding for (X1 _ ¬X2 _ X3) ^ (¬X1 _ X2 _ X4)

Gap in upper bounds. We need to ensure that there is a gap between the upper bound of neural
networks obtained from satis�able or unsatis�able 3CNF instances. This shows that even the
approximation of the upper bound can di�erentiate satis�able and unsatis�able 3CNF instances.

P���������� 6.7. For a 3CNF instance �, let N� be the encoding neural network. Let �u =
maxN� ([0, 1]m). The following two statements are true:
(1) If the 3CNF instance � is satis�able, then �u > 1/2 + � .
(2) If � is unsatis�able, then �u 6 1/2 � � .

P����. S�������� (1): If � is satis�able, let �i be a satisfying assignment of Xi and use them
as the input to N� . For each clause Cj , at least one literal is valued 1. WLOG, assume Lj1 = 1.
Therefore, t1(lj1) > 0.5, the remaining two literals are valued either 0 or 1, then t1(ljk ) > �0.2 for
the gadgets corresponding to the two literals. Thus, t1(lj1) + t1(lj2) + t1(lj3) > 0.5 � 0.2 � 0.2 > 0.1,
and c j = t2(t1(lj1) + t1(lj2) + t1(lj3)) > 1

2k . Therefore,
Õk

i=1 ci > 1/2, then � = t3(
Õk

i=1 ci ) > 1/2 + � ,
and so �u > 1/2 + � .
S�������� (2): We will prove that if �u > 1/2 � � , then � is satis�able. Let z be such that
N� (z) > 1/2 � � . For each i 2 {1, . . . ,m}, if zi > 0.6, let xi = 1; otherwise, let xi = 0. We will show
that x is a satisfying assignment for �.
We need to show that for each clause Ci , the assignment makes Ci true. Equivalently, at least

one of the literals inCi is true. Let us consider the corresponding gadget ci in the network. Because
N� (z) > 1/2 � � , from Eq. (9) and the construction � = t3(

Õk
i=1 ci ), then

Õk
i=1 ci (z) > 0.

This implies that ci (z) > �1 for every i . Otherwise, the gadgets corresponding to the remaining
k � 1 clauses are valued at most 1

k (see Eq. (8)), if ci (z) 6 �1, then Õk
i=1 ci (z) 6 �1 + (k � 1) 1k < 0.

Because ci (z) > �1 and ci = t2(t1(li1)+t1(li2)+t1(li3)), [t1(li1)+t1(li2)+t1(li3)](z) > 0 (see Eq. (8)).
For all the three literals Li1, Li2, Li3 in Ci , consider the three gadgets corresponding to them in

the neural network. Because [t1(li1) + t1(li2) + t1(li3)](z) > 0, at least one of the literals li1, li2, li3
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is evaluated to > 0.6, otherwise t1(li j )(z) 6 �0.1 for j = 1, 2, 3, and it is impossible that [t1(li1) +
t1(li2) + t1(li3)](z) > 0.

WLOG, let’s assume li1(z) > 0.6. We can consider the corresponding literal Li1 in Ci . Let Li1
come from variable X j . Either Li1 = X j or Li1 = ¬X j . In the former case, because li1(z) > 0.6, then
li1(z) = li1(zj ) = zj > 0.6. According to our assignment rule, x j = 1 and X j is evaluated true, and so
is Ci . In the latter case, li1(z) = li1(zj ) = 1 � zj > 0.6, so zj < 0.4. According to the assignment rule,
x j = 0, and so X j is evaluated to false. Ci is still evaluated to true.

We have shown that the assignment x satis�es all clauses, and so the 3-SAT instance �. ⇤

Consequences of NP-hardness. We have shown that the decision problem in Lemma 6.5 is
NP-hard. Because RA implies the decision problem, RA is NP-hard. Also, as described in Section 5.2,
IUA implies RA, so IUA is also NP-hard. Additionally, we also have the following result:

C�������� 6.8. It is NP-hard to falsify correctness5 of neural networks with any squashable
activation function.

P����. To show that this is NP-hard, given a 3CNF instance �, let’s build the neural network
N� in Section 6.3. From Proposition 6.7 we know that N� 2 F

+
� [ F

�
� . Let the correctness constraint

be
”m

i=1(xi 6 1) ^ ”m
i=1(xi > 0) ^ (� > 0.5). If one can decide the satis�ability of this constraint,

then one can decide N� 2 F
+
� or N� 2 F

�
� . Therefore, the falsi�cation of neural networks with any

squashable activation functions is NP-hard. ⇤

Because ReLU is also squashable, the result of Katz et al. [2017], showing that falsifying ReLU
networks is NP-hard, is a special case of Corollary 6.8.

7 PROVABLY ROBUST NEURAL NETWORKS
In this section, we discuss the connection between the IUA theorem and robust classi�ers. Because of
the soundness of abstract interpretation, we can use it to verify the robustness of neural networks.
However, abstract interpretation is not complete, so some robust points might not be veri�ed.
One consequence of the IUA is that not only a neural network can arbitrarily approximate any
continuous function on a compact domain, as we knew from classical universal approximation,
but one could also construct a neural network as shown in the proof of IUA, where all the robust
inputs can be veri�ed using interval abstract interpretation. We begin with some de�nitions on
robustness and provably robust neural networks, and then show how IUA implies the existence of
provably robust neural networks.
Robust classi�ers. We begin by de�ning a robust classi�er using `1-norm. Throughout this
section, we assume that f : C ! R is a continuous function over compact domain C . We treat f as
a binary classi�er, where an output < 0.5 represents one class and > 0.5 represents another.

We start by de�ning the notion of an �-ball, which can represent, for example, a set of copies of
the same image but with varying brightness. Recall that `1-norm is de�ned as kzk1 = maxi |zi |.

De�nition 7.1 (�-Ball). Let x 2 Rm and � > 0. The �-ball of x is R� (x) = {z | kz � xk1 6 �}. ⌅
Next, we de�ne an �-robust classi�er. Informally, given a set of points M , for each x 2 M , an

�-robust classi�er returns the same classi�cation for all points in the �-ball of x.

De�nition 7.2 (�-Robustness). LetM ✓ C and � > 0. We say that f is �-robust on setM i�, for all
x 2 M and z 2 R� (x), we have f (x) < 0.5 i� f (z) < 0.5. ⌅

5Falsi�cation is de�ned as deciding whether the conjunction of linear constraints on the input and output of the network is
satis�able, as used by Katz et al. [2017] for veri�cation.
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Provably robust neural networks. Next, we de�ne provably robust neural networks. These are
neural networks for which we can automatically prove �-robustness. Note that an �-ball is a box in
Rm , and so there is no loss of precision while using the interval domain, i.e., � (�(R� (x))) = R� (x).

De�nition 7.3 (Provably robust networks). A neural network N is �-provably robust onM i�, for
all x 2 M , we have N #(B) ✓ (�1, 0.5) or N #(B) ✓ [0.5,1), where B = �(R� (x)). ⌅

From an automation perspective, the set M is typically a �nite set of points, e.g., images. For
every x 2 M , the veri�er abstract interprets N on the �-ball of x, deriving a lower bound and upper
bound of the set of predictions N (R� (x)). If the lower bound is > 0.5 or the upper bound is < 0.5,
then we have proven that all images in the �-ball have the same classi�cation using N .
Existence of provably robust networks. The following theorem states the existence of provably
robust neural networks. Speci�cally, assuming there is some ideal robust classi�er, then, following
the IUA theorem, we can construct a neural network, using any squashable activation function,
that matches the classi�er’s predictions and is provably robust.

T������ 7.4 (E�������� �� ������ ��������). Let f : C ! R be �-robust on set M ✓ C .
Assume that 8x 2 M, z 2 R� (x). f (z) , 0.5.6 Let t be a squashable activation function. Then, there
exists a neural network N , using activation functions t , that
(1) agrees with f onM , i.e., 8x 2 M .N (x) < 0.5 i� f (x) < 0.5, and
(2) is �-provably robust onM .

P����. Let set Z =
–

x2M R� (x). Let � 0 = minz2Z | f (z) � 0.5|. That is, � 0 > 0 is the smallest
distance from the classi�cation boundary. Following the IUA theorem, we know that there is a
neural network N that � -interval approximates f , for any � < �

0. Fix such network N .

S�������� (1): Pick any x 2 M . Suppose that f (x) < 0.5. Then, we know that 0.5 � f (x) > �
0. By

the IUA theorem, we know that |N (x) � f (x)| 6 � < �
0. It follows that N (x) < 0.5. The case where

f (x) > 0.5 is symmetric.

S�������� (2): Let x 2 M . Suppose that f (x) < 0.5. Because f is robust, 8z 2 R� (x). f (z) < 0.5.
Then, we know that 0.5�max f (R� (x)) > �

0. By the IUA theorem, we know thatN #(R� (x)) = h[l,u]i,
where |u�max f (R� (x))| 6 � < �

0. It follows thatN #(R� (x)) ✓ (�1, 0.5). The casewhere f (x) > 0.5
is symmetric. So, N is �-provably robust onM . ⇤

n-ary classi�ers. The above theorem can be extended ton-ary classi�ers, forn > 2, in an analogous
fashion. Please refer to the supplementary materials for the formalization and proof.

8 RELATEDWORK

Universal approximation. The classical universal approximation (UA) theorem has been estab-
lished for decades. In contrast to IUA, UA states that a neural network with one single hidden
layer can approximate any continuous function on a compact domain. One of the �rst versions
goes back to Cybenko [1989]; Hornik et al. [1989], who showed that the standard feed-forward
neural network with sigmoidal or squashing activations is a universal approximator. The most
general version of UA was discovered by Leshno et al. [1993], who showed that the feed-forward
neural network is a universal approximator if and only if the activation function is non-polynomial.
Because IUA implies UA, this means IUA cannot hold beyond non-polynomial activation functions.
There are also other variants of UA. Some of them study the expressiveness of neural networks
with structural constraints, such as restricted width per layer [Kidger and Lyons 2019; Lu et al.
6Informally, this assumption eliminates the corner case where a point sits exactly on the classi�cation boundary, 0.5.
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2017], or speci�c neural network architectures [Lin and Jegelka 2018]. Another line of work focuses
on speci�c functions that one wants to approximate rather than arbitrary continuous functions,
such as Anil et al. [2019]; Cohen et al. [2019], who study approximation of Lipschitz functions.

Baader et al. [2020] showed the �rst UA theorem adapted to interval analysis, and our high-level
construction resembles theirs. However, we proved that the neural networks with any squashable
activation functions can be an interval universal approximator. In contrast, they only showed the
IUA theorem restricted to ReLU activation functions.
Neural-network veri�cation. Neural-network veri�cation has received a lot of attention in
recent years. Consult Albarghouthi [2021] for an introduction. Most techniques are either based on
decision procedures, like SMT solvers [Ehlers 2017; Katz et al. 2017] and integer linear programming
(ILP) solvers [Tjeng et al. 2019], or abstract interpretation. The former class can often provide
sound and complete veri�cation on neural networks with piecewise-linear operations, like ReLU,
but is not scalable due to the complexity of the problem and the size of the networks. Abstract-
interpretation-based techniques sacri�ce completeness for e�cient veri�cation. We have considered
the simplest non-trivial numerical domain, intervals, that has been shown to produce strong results,
both for robustness veri�cation and adversarial training [Anderson et al. 2019; Gehr et al. 2018;
Huang et al. 2019; Mirman et al. 2018; Wang et al. 2018; Zhang et al. 2020, 2021]. Researchers have
considered richer domains [Singh et al. 2018, 2019], like zonotopes [Ghorbal et al. 2009] and forms
of polyhedra [Cousot and Halbwachs 1978]. Since such domains are strictly more precise than
intervals, the IUA theorem holds for them.
Complexity of Neural Network Veri�cation. Katz et al. [2017] proved that the falsi�cation of
ReLU neural networks is NP-complete. It introduced a reduction from 3SAT to the ReLU neural
network falsi�cation problem. Our result implies theirs as we have shown.Weng et al. [2018] proved
the inapproximability of �nding the optimal `1-distortion of ReLU networks, using a reduction from
the set cover problem, a well-known hard-to-approximate problem. However, they are working on
`1 ReLU robustness falsi�cation problem and their reduction does not imply our result.

9 CONCLUSION
We identify a set of activation functions, squashable functions, which includes most commonly used
activation functions. We prove that neural networks with any squashable functions are interval
universal approximators. We further study the computational complexity to range-approximate
a neural network, which implies that building the interval universal approximator is in general
a hard task. Our proof uses the idea that squashable functions can arbitrarily approximate step
functions and neural networks with step functions are formally well-behaved objects. We believe
that this perspective can be important to understand the formal aspect of neural network in the
future.
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A VECTOR-VALUED NETWORKS AND ROBUSTNESS
In this section, we extend the IUA theorem to vector-valued functions.We also extend our robustness
results to n-ary classi�ers.

A.1 Higher-Dimensional Functions

Vector-valued neural networks. So far we have considered scalar-valued neural networks.
We can generalize the neural-network grammar (De�nition 2.1) to enable vector-valued neural
networks. Simply, we can compose a sequence of n scalar-valued neural networks to construct a
neural network whose range is Rn . Formally, we extend the grammar as follows, where Ei are the
scalar-valued sub-neural networks.
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De�nition A.1 (Vector-valued neural network grammar). A neural network N : Rm ! Rn is
de�ned as follows

N B (E1, . . . , En)
E B c

| xi
| E1 + E2
| c ⇤ E2
| t(E1, . . . , Ek )

where c 2 R, xi is one of them inputs to the network, and t is an activation function. ⌅

Example A.2. Consider the following neural network N : R2 ! R2:
N (x) = (� (x1 + 0.5x2), � (0.1x1 + 0.3x2))

which we can pictorially depict as the following graph:
x1

x2

+ �

+ �

0.1

0.5

0.3

⌅

Generalized IUA theorem. We now generalize the IUA theorem to show that we can � -interval
approximate vector-valued functions.

T������ A.3. Let f : C ! Rn be a continuous function with compact domain C ⇢ Rm . Let � > 0.
Then, there exists a neural network N : Rn ! Rm such that for every box B ✓ C , and for all i 2 [1,m],

[li + � ,ui � � ] ✓ N
#(B)i ✓ [li � � ,ui + � ] (10)

where
(1) N #(B)i is the ith interval in the box N #(B), and
(2) li = min Si and ui = max Si , where S = f (B) (recall that Si is the set of ith element of every

vector in S).

P����. From the IUA theorem, we know that there exists a neural network Ni that � -interval
approximates fi : C ! R, which is like f but only returns the ith output. We can then construct
the network N = (N1, . . . ,Nn). Since each Ni satis�es Eq. (10) separately, then N � -interval
approximates f . ⇤

A.2 Robustness in n-ary classification
We now extend the de�nition of �-robustness to n-ary classi�ers. We use a function f : C ! Rn to
denote an n-class classi�er. f returns a value for each of the n classes; the class with the largest
value is the result of classi�cation. We assume there are no ties. Formally, for a given x 2 C , we
denote classi�cation by f as class(f (x)), where

class(y) = argmax
i 2{1, ...,m }

�i

De�nition A.4 (n-ary robustness). LetM ⇢ C . We say that f is �-robust onM , where � > 0, i� for
all x 2 M and x0 2 R� (x), we have class(f (x)) = class(f (x0)). ⌅

We now extend the provably robust neural networks de�nition to the n-class case. Recall that
R� (x) = {x0 | | |x � x0 | | 6 �}.
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De�nition A.5 (Provably robust networks). A neural network N is �-provably robust onM i�, for
all x 2 M , for all y, y0 2 � (N #(�(R� (x)))), we have class(y) = class(y0). ⌅

Existence of robust networks. We now show existence of robust networks that approximate
some robust n-ary classi�er f .

T������ A.6 (E�������� �� ������ ��������). Let f : C ! Rn be a continuous function that
is �-robust on setM . Then, there exists a neural network that
(1) agrees with f onM , i.e., 8x 2 M . class(N (x)) = class(f (x)), and
(2) is �-provably robust onM .

P����. First, we need to post-process the results of f as follows: For all x 2 C ,

f̂ (x) = (0, . . . , |�i |, . . . , 0)
where y = f (x) and class(f (x)) = i . In other words, f̂ is just like f , but it zeroes out the values of
all but the output class i . This is needed since the interval domain is non-relational, and therefore
it cannot capture relations between values of di�erent classes, namely, keeping track which one is
larger. Note that if f is continuous, then f̂ is continuous.
Let � 0 be the smallest non-zero element of any vector in the set { f̂ (x) | x 2 C}. Following the

IUA theorem, let N be a neural network that � -interval approximates f̂ , where � < 0.5� 0.

S�������� (1): Pick any x 2 M . Let the ith element of f̂ (x) , 0; call it c . By construction
i = class(f (x)). Let N (x) = (�1, . . . ,�n). By IUA theorem, we know that 0 6 �j < 0.5� 0, for j , i ,
and �i > c � 0.5� 0. Since c > �

0, class(N (x)) = class(f (x)) = i .
S�������� (2): Let x 2 M . Let S = f̂ (R� (x)). Let Si be the projection of all vectors in S on their ith
element, where i = class( f̂ (x)). We know that min Si > �

0. By construction of f̂ and the fact that f
is robust, all other elements of vectors of S are zero, i.e., S j = {0}, for j , i .

Let N #(�(R� (x))) = h[lj ,uj ]ij . By IUA theorem and its proof, for j , i , we have [lj ,uj ] ⇢ [0, 0.5� 0).
Similarly, [li ,ui ] ✓ [min Si � 0.5� 0,ui ] ✓ [0.5� 0,ui ]. It follows that for all y, y0 2 � (N #(�(R� (x)))),
we have class(y) = class(y0) = i . This is because any value in [� 0 � 0.5� 0,ui ] is larger than any
value in [0, 0.5� 0).

⇤

B APPENDIX: ELIDED DEFINITIONS AND PROOFS
B.1 Correctness of Boolean Formula Encoding
Let � be a Boolean formula and N� be its encoding neural network as described in Section 2.2. We
will show that � has the same semantics as N� , i.e.,

for any x 2 {0, 1}m , �(x) = N� (x)

P����. We will prove the proposition by an induction on the number of operators (AND, OR,
NOT), n, in the Boolean formula.
Base case. n = 0, the formula is only a variable X. The encoding network has no activation units
and will output X.
Inductive hypothesis. Suppose all the formulas using < k operators are captured by the corre-
sponding neural network.
Inductive step. Let � be a boolean formula with k operators, then � can be in the following form:

� = ¬�0 or � = �1 ^ �2 or � = �1 _ �2.
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Notice that the number of operators in �0, �1 and �2 are < k , so their corresponding encoding
networks are correct according to the inductive hypothesis.
(1) For � = ¬�0, by the encoding rule, N� = 1 � N�0 . For any x 2 {0, 1}m , by de�nition,

�(x) = ¬�0(x) = 1 � �0(x).
By inductive hypothesis, we have 1 � �0(x) = 1 � N�0 (x) = N� (x).

(2) For � = �1 ^ �2, by the encoding rule, N� = step(N�1 + N�2 � 1.5).
For any x 2 {0, 1}m , �(x) = �1(x) ^ �2(x). �(x) = 1 i� �1(x) = 1 and �2(x) = 1.
Because, by the inductive hypothesis, N�1 and N�2 have the same semantics as �1 and �2, so
the outputs of N�1 and N�2 are in {0, 1}. N� = step(N�1 +N�2 � 1.5) evaluate to 1 i� N�1 and
N�2 both evaluate to 1.

(3) For � = �1 _ �2, the reasoning is essentially the same as the case � = �1 ^ �2.
⇤

B.2 Proof of Theorem 3.4
All of the interval arithmetic operations we have de�ned are standard and are sound.

The only non-standard abstract transformers are t#. We start with the general de�nition and
prove its soundness:

t
#(B) =

⌧
min
l6x6u

t(x), max
l6x6u

t(x)
��

Let B = h[l,u]i be a 1-dimensional box. Since t satis�es Eq. (1), the lower bound and upper bound
above exist. The collecting semantics t(� (B)) = {t(x) | l 6 x 6 u}. It follows that t(� (B)) ✓ t

#(B).
If t is monotonically increasing, we de�ned the transformer

t
#(B) = h[t(l), t(u)]i

By monotonicity of t , we have 8x 2 [l,u]. t(l) 6 t(x) 6 t(u). Therefore, t(� (B)) ✓ [t(l), t(u)]. It
follows that t(� (B)) ✓ t

#(B).
Therefore all abstract transformers are sound. Soundness of N # follows compositionally from

soundness of all operators.

B.3 Choice of Parameters � and �

Because the our construction works for any �xed � and � , we will choose � = min( 1
K+1 ,

1
4m+2 ,

1
4 |G | ),

where � , K and G are de�ned in Section 4.1; and � < 0.5 be such that if kx � yk1 6 � , then
| f (x) � f (y)| < � . The latter is achievable from the Heine–Cantor Theorem (see Rudin [1986]), so
f is uniformly continuous on C .

B.4 Proof of Lemma 4.5
P����. S�������� (1): Because x > ai , x+0.5��ai > 0.5� . From Lemma 4.3, t(µ(x+0.5��ai )) 2

(1 � �, 1].
S�������� (2): Because x 6 bi , x � 0.5� � bi 6 �0.5� . From Lemma 4.3, t(µ(x � 0.5� � bi )) 2 [0, � ).

⇤

B.5 Proof of Lemma 4.6
P����. S�������� (1): Because x 6 ai � � , x + 0.5� � ai 6 �0.5� . From Lemma 4.3, t(µ(x +

0.5� � ai )) 2 [0, � ).
S�������� (2):Becausex 6 ai�� andai < bi ,x 6 bi�� . Thenx�0.5��bi 6 �0.5� . From Lemma 4.3,
t(µ(x � 0.5� � bi )) 2 [0, � ).
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⇤

B.6 Proof of Lemma 4.7
P����. S�������� (1): Because x > bi + � and bi > ai , x > ai + � . Then x + 0.5� � ai > 0.5� .

From Lemma 4.3, t(µ(x + 0.5� � ai )) 2 (1 � �, 1].
S�������� (2): Because x > bi+� , x�0.5��bi > 0.5� . From Lemma 4.3, t(µ(x�0.5��bi )) 2 (1�� , 1].

⇤

B.7 Proof of Lemma 4.8
P����. We begin the proof by simplifying the expression t̂#(B). Recall that t̂(x) = t(µ(x + 0.5� �

ai )) � t(µ(x � 0.5� � bi )). Let B = h[a,b]i. By applying abstract transformer t# (De�nition 3.2) and
subtracting the two terms, we get t̂#(B) = [T1 �T4,T2 �T3], where

T1 = minx 2[a,b] t(µ(x + 0.5� � ai )) T2 = maxx 2[a,b] t(µ(x + 0.5� � ai ))
T3 = minx 2[a,b] t(µ(x � 0.5� � bi )) T4 = maxx 2[a,b] t(µ(x � 0.5� � bi ))

We are now ready to prove the three statements.

S�������� (1): By the limits of t , 8x . t(x) 2 [0, 1], so T1,T2,T3,T4 2 [0, 1]. Therefore, the upper
bound of t̂#(B) is T2 �T3 6 1.

S�������� (2):
Case 1: B ✓ (�1,ai � �]. From Lemma 4.6, T1,T2,T3,T4 2 [0, � ), then T2 �T3 < � , and T1 �T4 > �� .
Case 2: B ✓ [bi +�,1). From Lemma 4.7,T1,T2,T3,T4 2 (1�� , 1], thenT2 �T3 < � , andT1 �T4 > �� .

In either case, t̂#(B) ✓ (��, � ).
S�������� (3): IfB ✓ [ai ,bi ],a,b 2 [ai ,bi ]. From Lemma 4.5(1),T1,T2 2 (1��, 1]. From Lemma 4.5(2),
T3,T4 2 [0, � ). Then T1 �T4 > 1 � 2� and T2 �T3 6 1.

Therefore, t̂#(B) ✓ (1 � 2� , 1]. ⇤

B.8 Proof of Lemma 4.10

P����. S�������� (1): If B ✓ G, then 8i . Bi ✓ [ai ,bi ]. From Lemma 4.8 (3), t̂#i (Bi ) ✓ (1 � 2�, 1];
thus,

H
#
i (Bi ) = t̂

#
i (Bi ) +# �(1 � 2� )#

✓ (0, 2� ]
⇢ (0,1)

Sum over allm dimensions,
Õm

i=1H
#
i (Bi ) ✓

Õm
i=1(0,1) = (0,1).

S�������� (2): If B ✓ C \ � (G), then there is a dimension j such that either Bj ✓ (�1,aj � �] or
Bj ✓ [bj + �,1). From Lemma 4.8 (2), we know that t̂#(Bj ) ✓ (��, � ). Therefore,

H
#
j (Bj ) = t̂

#(Bj ) +# �(1 � 2� )#
✓ (� � 1, 3� � 1) (11)

For the remainingm � 1 dimensions, from Lemma 4.8 (1), we know that t̂#(Bi ) ⇢ (�1, 1] when
i , j. Therefore,

H
#
i (Bi ) = t̂

#(Bi ) +# �(1 � 2� )#
✓ (�1, 2� ] (12)
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Take the sum of all them � 1 dimensions,Õ
i 2{1, ...,m }\{j } H

#
i (Bi ) ✓ Õ

i 2{1, ...,m }\{j }(�1, 2� ] (substitute Eq. (12))
= [m � 1,m � 1] ⇤# (�1, 2� ] (turn sum into ⇤#)
= (�1, 2(m � 1)� ] (apply ⇤#)

(13)

Now, take sum over all them dimensions,Õm
i=1H

#
i (Bi ) =

Õ
i 2{1, ...,m }\{j } H

#
i (Bi ) +# H #

j (Bj ) (decompose sum)
✓ (�1, 2(m � 1)� ] +# (� � 1, 3� � 1) (substitute Eqs. (11) and (13))
= (�1, (2m + 1)� � 1) (apply ⇤#)

Because of our choice of � , � 6 1
4m+2 (see Appendix B.3). Then (2m+1)� 6 2m+1

4m+2 = 0.5, and therefore
m’
i=1

H
#
i (Bi ) ✓ (�1,�0.5)

Also we have assumed that � < 0.5 (see Appendix B.3); therefore
m’
i=1

H
#
i (Bi ) ✓ (�1,��)

⇤

B.9 Abstract Interpretation of Ni

Observe how for any box B ✓ C from the abstract domain, it is overapproximated by a larger box
G ◆ B from the �nitely many boxes in the �-grid. Intuitively, our abstract approximation of Ni
incurs an error when the input B is not in the grid. We formalize this idea by extending the notion
of neighborhood (Section 4.2) to boxes from the abstract domain. For a box B ✓ C , if B 2 G, then
B’s neighborhood GB = � (B); otherwise, let GB be the smallest G 2 G, by volume, such that B ✓ G .
Note that GB is uniquely de�ned.

The following lemma says that considering the neighborhood ofB only adds up to � of imprecision
to the collecting semantics of f .

L���� B.1 (P��������� �� GB ). The following is true:
(1) If f (B) > � , then f (GB ) > � � � .
(2) If f (B) 6 � , then f (GB ) 6 � + � .

P����. Both of the statements follow from our choice of � in constructing the grid (see Appen-
dix B.3). If kx � xk1 6 � , then | f (x) � f (y)| < � . Consider the B and its neighborhood GB . By
de�nition of neighborhood, 8x 2 GB , 9y 2 B, such that kx � yk1 6 � .

S�������� (1) Because f (B) > � , then f (y) > � , so f (x) > f (y) � � > � � � . Then 8x 2 GB ,
f (x) > � � � .

S�������� (2) Because f (B) 6 � , then f (y) 6 � , so f (x) 6 f (y) + � 6 � + � . Then 8x 2 GB ,
f (x) 6 � + � . ⇤

T������ B.2 (A������� �������������� �� Ni ). For any box B ✓ C , let u = max f (B), and
l = min f (B). The following is true:

(1) N #
i (B) ✓ [0, 1].

(2) If l > (i + 2)� , then 9ui 2 (1 � �, 1] such that [ui ,ui ] ✓ N
#
i (B) ✓ (1 � �, 1].

(3) If u 6 (i � 1)� , then 9li 2 [0, � ) such that [li , li ] ✓ N
#
i (B) ✓ [0, � ).
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P����. We begin by noting that in Statement (2), [ui ,ui ] ✓ N
#
i (B) for some ui 2 (1 � �, 1] is a

direct corollary of N #
i (B) ✓ (1 � � , 1]. Because if N #

i (B) ✓ (1 � �, 1], and N
#
i (B) , ;, then N

#
i (B)

contains at least one point in (1��, 1]. Similarly, in Statement (3), [li , li ] ✓ N
#
i (B) for some li 2 [0, � )

is a direct corollary of N #
i (B) ✓ [0, � ).

In Appendix B.3, we have chosen that � 6 1
4 |G | , a fact we will use later in the proof.

S�������� (1): The outer function of Ni is t , whose range is [0, 1], by the de�nition of squashable
function and our construction, so N

#
i (B) ✓ [0, 1].

S�������� (2): Because f (B) > (i + 2)� , by Lemma B.1, f (GB ) > (i + 1)� , so GB 2 Gi . Thus, we
can break up the sum as follows:

’
G 2Gi

NG (x) = ©≠
´

’
G 2(Gi \{GB })

NG (x)™Æ
¨
+ NGB (x)

From Theorem 4.11, N #
GB

(B) ✓ (1 � �, 1], and N
#
G (B) ✓ [0, 1] for G 2 Gi \ {GB }. Therefore, we

can conclude the following two facts:
’
G 2Gi

N
#
G (B) ✓ (1 � � ,1) and

’
G 2Gi

N
#
G (B) +# [�0.5,�0.5] ✓ (0.5 � �,1) ⇢ (0.5�,1)

The second inequality follows from the fact that we assumed � 6 1
4 |G | 6 0.25 (above) and � < 0.5

(see Appendix B.3). Therefore, 0.5 � � > 0.25 > 0.5� .
It follows from Lemma 4.3 that

N
#
i (B) = t

#

 
µ
# ⇤#

 ’
G 2Gi

N
#
G (B) +# [�0.5,�0.5]

!!
✓ (1 � � , 1]

S�������� (3): If u 6 (i � 1)� , we will show that 8G 2 Gi . B ⇢ C \ � (G).
Pick anyG 2 Gi , then we have f (G) > (i + 1)� . Thus, from Lemma B.1, f (GB ) > i� . Recall that

if B 2 G, then GB = � (B). Hence, f (� (G)) > i� . However, f (B) 6 u 6 (i � 1)� , so B \ � (G) = ;.
Equivalently, B ⇢ C \ � (G).

From Theorem 4.11, 8G 2 Gi .N #
G (B) ✓ [0, � ), so

’
G 2Gi

N
#
G (B) ✓ [0, |Gi |� ) ✓ [0, |G|� )

We assumed that � 6 1
4 |G | and � < 0.5 (see Appendix B.3), so |G|� 6 0.25, and |G|� � 0.5 6

�0.25 6 �0.5� . Hence,’
G 2Gi

N
#
G (B) ✓ [0, 0.25) and

’
G 2Gi

N
#
G (B) +# [�0.5,�0.5] ✓ [�0.5,�0.25) ✓ (�1,�0.5�)

It follows from Lemma 4.3 that

N
#
i (B) = t

#

 
µ
# ⇤#

 ’
G 2Gi

N
#
G (B) +# [�0.5,�0.5]

!!
✓ [0, � )

⇤
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B.10 Abstract Interpretation of N
Because

ÕK
i=0 fi (x) = f (x), and Ni (x) approximates 1

� fi (x), we will construct the neural network
N as N (x) = � ÕK

i=0 Ni (x).
Before proceeding with the proof, we give a general lemma that will be useful in our analysis.

The lemma follows from the fact that, by construction, � 6 1
K+1 .

L���� B.3. If �0, . . . ,�K 2 [�� , � ], then ÕK
i=0 �i 2 [�1, 1].

P����. This simply follow from the choice of � 6 1
K+1 . ⇤

Proof outline of the existence of �-interval approximating neural networks. Our proof
involves three pieces, outlined below:
(A) Because N #(B) = �

# ⇤# ÕK
i=0 N

#
i (B), we need only analyze

ÕK
i=0 N

#
i (B). We will decompose

the sum into �ve sums and analyze each separately, arriving at �ve results of the form:⇥
L̃1j , Ũ1j

⇤
✓

’
i 2Sj

N
#
i (B) ✓

⇥
L̃2j , Ũ2j

⇤

for j 2 {1, . . . , 5}, where –
j S j = {0, . . . ,K} and S j are mutually disjoint sets.

(B) Then, we sum over all �ve cases, getting"
5’
j=1

L̃1j ,
5’
j=1

Ũ1j

#
✓

K’
i=0

N
#
i (B) ✓

"
5’
j=1

L̃2j ,
5’
j=1

Ũ2j

#

(C) Let Li = �
Õ5

j=1 L̃i j andUi = �
Õ5

j=1 Ũi j . Then, we get the bound [L1,U1] ✓ N
#(B) ✓ [L2,U2].

Finally, we show that [L2,U2] ✓ [l � � ,u + � ] and [l + � ,u � � ] ✓ [L1,U1].
Equivalently, we will show that

l � � 6 L2 6 L1 6 l + � and u � � 6 U1 6 U2 6 u + �

Proof assumptions. We will assume that l 2 [p� , (p + 1)� ) and u 2 [q� , (q + 1)� ), for some
p 6 q 6 K . Additionally, let c,d 2 B be such that f (c) = l and f (d) = u.
Step A: Decompose sum and analyze separately. We begin by decomposing the sum into �ve
terms.

This is the most important step of the proof. We want to show that most Ni ’s in
ÕK

i=0 N
#
i (B) are

(almost) precise. By almost we mean that their values are ⇡ 1 and ⇡ 0. The motivation is then to
extract as many precise terms as possible. The only tool used in the analysis is Theorem B.2.

• Consider the function slices represented by Term 1 and 5; for example, Term 1 represents
abstractions N #

i of function slices fi , for i 2 [0,p � 2]. The function slices of Term 1 and 5
are referred to in Theorem B.2 (Statements 2 and 3): they have an (almost) precise abstract
interpretation. That is, the abstract semantics of N #

i (B) and the collecting semantics of fi (B)
agree. For Term 1, the abstract interpretation of all N #

i (B) ⇡ [1, 1] and fi (B) = [� , � ]. For Term
5, the abstract interpretation of all N #

i (B) ⇡ [0, 0] and fi (B) = [0, 0].
• Now consider function slices fi , where i 2 [p + 2,q � 2]. The abstraction of these function
slices is also (almost) precise. We can see f (c) = l is below the lower bound of the slices
and f (d) = u is above the upper bound of the slices. Hence, fi (d) = � and N

#
i ({d}) ⇡ [1, 1].

Similarly, fi (c) = 0 and N
#
i ({c}) ⇡ [0, 0]. Because c,d 2 B, and due to continuity of f , we

have fi (B) = [0, 1], and N
#
i (B) ⇡ [0, 1].

• The remaining function slices are those in Term 2 and Term 4, and they are at the neighbor-
hood of the boundary of [l,u]. Most precision loss of N #

i (B) comes from those two terms.
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This drives us to decompose the sum as follows:
K’
i=0

N
#
i (B) =

p�2’
i=0

N
#
i (B)

|     {z     }
Term 1

+#
p+1’
i=p�1

N
#
i (B)

|        {z        }
Term 2

+#
q�2’
i=p+2

N
#
i (B)

|        {z        }
Term 3

+#
q+1’
i=q�1

N
#
i (B)

|        {z        }
Term 4

+#
K’

i=q+2
N

#
i (B)

|        {z        }
Term 5

(14)

We will analyze the �ve terms in Eq. (14) separately, and then take their sum to get the �nal result.
For now, assume that q > p + 3; the q 6 p + 2 case will follow easily.

(i) Term 1: 8i 6 p � 2, we have p� > (i + 2)� . Because l = min f (B) and l 2 [p� , (p + 1)� ), then
f (B) > p� > (i + 2)� .
From Theorem B.2, 9ui 2 (1��, 1] such that [ui ,ui ] ✓ N

#
i (B) ✓ (1��, 1]. ThenÕp�2

i=0 [ui ,ui ] ✓Õp�2
i=0 N

#
i (B) ✓

Õp�2
i=0 (1 � � , 1].

p�2’
i=0

[ui ,ui ] ✓
p�2’
i=0

N
#
i (B) ✓ (p � 1)# ⇤# (1 � �, 1]

(ii) Term 5: 8i > q + 2, we have (q + 1)� 6 (i � 1)� . Because u = max f (B) and u 2 [q� , (q + 1)� ),
then f (B) < (q + 1)� 6 (i � 1)� .
From Theorem B.2, 9li 2 [0, � ) such that [li , li ] ✓ N

#
i (B) ✓ [0, � ). Then ÕK

i=q+2[li , li ] ✓ÕK
i=q+2 N

#
i (B) ✓

ÕK
i=q+2[0, � ).

K’
i=q+2

[li , li ] ✓
K’

i=q+2
N

#
i (B) ✓ (K � q � 1)# ⇤# [0, � )

(iii) Term 3: 8i 2 [p + 2,q � 2], we have (p + 1)� 6 (i � 1)� and q� > (i + 2)� .
f (c) = l < (p + 1)� 6 (i � 1)� , and f (d) = u > q� > (i + 2)� .
From Theorem B.2, N #

i ({c}) ✓ [0, � ) and N
#
i ({d}) ✓ (1 � � , 1]. Because c,d 2 B, [� , 1 � � ] ✓

N
#
i (B).

Also by Theorem B.2, N #
i (B) ✓ [0, 1]. Hence, Õq�2

i=p+2[�, 1� � ] ✓ Õq�2
i=p+2 N

#
i (B) ✓

Õq�2
i=p+2[0, 1].

q�2’
i=p+2

[� , 1 � � ] ✓
q�2’
i=p+2

N
#
i (B) ✓ (q � p � 3)# ⇤# [0, 1]

(iv) Term 2: 8i 2 [p � 1,p + 1], since we have assumed that q > p + 3, then q > p + 3 > i + 2.
Because f (d) > q� > (i + 2)� , from Theorem B.2, 9ui 2 (1 � �, 1] such that [ui ,ui ] ✓
N

#
i ({d}) ✓ (1 � �, 1].

Because d 2 B, [ui ,ui ] ✓ N
#
i (B). Hence, [ui ,ui ] ✓ N

#
i (B) ✓ [0, 1] and Õp+1

i=p�1[ui ,ui ] ✓Õp+1
i=p�1 N

#
i (B) ✓

Õp+1
i=p�1[0, 1].
p+1’
i=p�1

[ui ,ui ] ✓
p+1’
i=p�1

N
#
i (B) ✓ 3# ⇤# [0, 1]

(v) Term 4: For 8q � 1 6 i 6 q + 1, because q > p + 3, we have p + 1 6 q � 2 6 i � 1. Then f (c) =
l < (p + 1)� 6 (i � 1)� . From Theorem B.2, 9li 2 [0, � ) such that [li , li ] ✓ N

#
i ({c}) ✓ [0, � ).

Because c 2 B, [li , li ] ✓ N
#
i (B). Thus, [li , li ] ✓ N

#
i (B) ✓ [0, 1].

q+1’
i=q�1

[li , li ] ✓
q+1’
i=q�1

N
#
i (B) ✓ 3# ⇤# [0, 1]
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Step B: Sum all �ve cases. We now sum up all �ve inequalities we derived above to derive an
overall bound of the sum in the form [L01,U 0

1 ] ✓
ÕK

i=0 N
#
i (B) ✓ [L02,U 0

2 ]. For example,

L
0
1 =

p�2’
i=0

ui +

K’
i=q+2

li +

q�2’
i=p+2

� +

p+1’
i=p�1

ui +

q+1’
i=q�1

li

Recall that, by Theorem B.2, 8i 2 {0, . . . ,K}, ui 2 (1 � �, 1] and li 2 [0, � ). Let l̃i = 1 � ui , so
l̃i 2 [0, � ).

We simplify L01, L
0
2,U

0
1 andU

0
2 as follows:

L
0
1 =

Õp�2
i=0 ui +

ÕK
i=q+2 li +

Õq�2
i=p+2 � +

Õp+1
i=p�1 ui +

Õq+1
i=q�1 li

(sum of the left bound)
=

Õp�2
i=0 (1 � l̃i ) +

ÕK
i=q+2 li +

Õq�2
i=p+2 � +

Õp+1
i=p�1(1 � l̃i ) +

Õq+1
i=q�1 li

(substitute ui with l̃i )
= (Õp�2

i=0 +
Õp+1

i=p�1)(1) +
Õp�2

i=0 (�l̃i ) +
ÕK

i=q+2 li +
Õq�2

i=p+2 � +
Õp+1

i=p�1(�l̃i ) +
Õq+1

i=q�1 li
(Rearrange the terms)

= (p + 2) +Õp+1
i=0 (�l̃i ) +

ÕK
i=q�1 li +

Õq�2
i=p+2 �

(Sum all the 1’s)

From Lemma B.3,
Õp+1

i=0 (�l̃i ) +
Õq�2

i=p+2 � +
ÕK

i=q�1 li 2 [1, 1] by plugging in �l̃i , li , � to �i . So,

L
0
1 2 [p + 1, p + 3]

U
0
1 =

Õp�2
i=0 ui +

ÕK
i=q+2 li +

Õq�2
i=p+2(1 � � ) +Õp+1

i=p�1 ui +
Õq+1

i=q�1 li (sum of right bound)
=

Õp�2
i=0 (1 � l̃i ) +

ÕK
i=q+2 li +

Õq�2
i=p+2(1 � � ) +Õp+1

i=p�1(1 � l̃i ) +
Õq+1

i=q�1 li (substitute ui with l̃i )
= (q � 1) +Õp+1

i=0 (�l̃i ) +
ÕK

i=q�1 li +
Õq�2

i=p+2(�� ) (sum all the 1’s)

From Lemma B.3,
Õp+2

i=0 (�l̃i ) +
Õq�2

i=p+2(�� ) +
ÕK

i=q�1 li 2 [�1, 1]. Thus,
U

0
1 2 [q � 2, q]

L
0
2 = (p � 1)(1 � � ) (sum of left bound)
= (p � 1) + (p � 1)(�� ) (rearrange terms)

Because � 6 1
K+1 , and �K 6 p � 1 6 K , we have (p � 1)(�� ) 2 [�1, 1]. Hence,

L
0
2 2 [p � 2, p]

U
0
2 = (p � 1) + (K � q � 1)� + (q � p � 3) + 3 + 3 (sum of right bound)
= (p � 1 + q � p � 3 + 3 + 3) + (K � q � 1)(� ) (rearrange terms)
= q + 2 + (K � q � 1)(� ) (sum all the 1’s)

Because � 6 1
K+1 , and �K 6 (K � q � 1) 6 K , we have (K � q + 1)(�� ) 2 [�1, 1]. Then,

U
0
2 2 [q + 1, q + 3]

Step C: Analyze the bound. It remains to show that l � � 6 L2 6 L1 6 l + � and u � � 6 U1 6
U2 6 u + � .

Recall that we have set that � = 3� . Also l 2 [p� , (p + 1)� ), then
l � � < (p � 2)� and l + � > (p + 3)�
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Since u 2 [q� , (q + 1)� ), then
u � � < (q � 2)� and u + � > (q + 3)�

We have just analyzed L01, L
0
2,U

0
1 andU

0
2 above. Now we have:

L1 = �L
0
1 6 (p + 3)� L2 = �L

0
2 > (p � 2)�

U1 = �U
0
1 > (q � 2)� U2 = �U

0
2 6 (q + 3)�

It follows from the above inequalities that

l � � < (p � 2)� 6 L2 6 L1 6 (p + 3)� 6 l + �

and
u � � < (q � 2)� 6 U1 6 U2 6 (q + 3)� 6 u + �

This concludes the proof for the case where q > p + 3.
Excluded case. Previously, we have shown that Terms 1, 3, and 5 are almost precise. The imprecise
terms can only come from Terms 2 and 4. If q 6 p + 2, the only analyses that will be a�ected are
those of Terms 2 and 4. Since q 6 p + 2, we have p + 1 > q � 1, which means Terms 2 and 4 have
potentially less sub-terms in this case. Thus imprecise terms are less than the q > p + 3 case and
we can apply the same analysis as above and derive the same bound.

We have thus shown that the neural network N that we construct � -interval approximates f ,
and therefore the IUA theorem is true.

B.11 Real-valued computational model
We consider the standard Turing machine, and when we use polynomial, we mean polynomial in
terms ofm, the dimensions of the input space. The input xi has �nite precision, which means the
bit-representation of the input takes �nite space, say IEEE 754 �oat. The bit-representation of �
and k are polynomial in terms ofm in Eqs. (7) to (9). Note that the �oating point arithmetics can
invalidate a theoretically sound veri�er in practice, as shown in Jia and Rinard [2021]; however,
because we are considering the theoretical complexity of the RA problem, �oating point arithmetics
is not a concern. Our goal in the complexity part is the hardness result—range approximating a
neural network is both NP-hard and coNP-hard—it does not rely on the assumption that the input
has �nite precision and the neural network is poly-time executable.

Now each activation function is a conditional function—if-else function, on multiplications and
additions of polynomial-sized bits—so the execution of the activation function takes poly-time.

To give a concrete example of the activation, let k = 2m. In Eq. (8), we only require that the right
limit is between 1/(2k) and 1/k , and there is at least one number in the range that can be represented
using �nite bits. Without loss of generality, we can assume that 1/(2m) can be represented using
�nite bits. Now we can transform Eq. (8) to the following conditional function:
(1) if z > 0.1: return 1/(2m);
(2) elif z 6 0: return �1;
(3) else: return 10(1/(2m) + 1)z � 1.
The execution of this function takes poly-time because the operations in the function take

poly-time in terms of the bit-representations of 1/(2m) and z.
Because the 3SAT instance has poly-size, the corresponding neural network also has polynomial

size in the bit-representation, and its execution takes polynomial time. The reduction itself also
only takes polynomial-time: it is merely scanning the Boolean formula, and then constructing the
network accordingly. Again, if we do not impose the �nite-precision and polynomial-time-execution
assumptions, the NP-hardness and coNP-hardness results are still true.
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B.12 coNP-hardness of Range Approximation
To show the coNP-hardness of the range approximation problem, we will show that approximating
the minimum value of a neural network can decide whether a 3DNF formula is a tautology. For
� < 1/2, let

G
+
� =

ÿ
m>1

⇢
f 2 Fm

���� min
x2[0,1]m

(f (x)) > 1/2 + �
�

(15)

G
�
� =

ÿ
m>1

⇢
f 2 Fm

���� min
x2[0,1]m

(f (x)) < 1/2 � �

�
(16)

L���� B.4. Given f 2 G
+
� [G

�
� , it is coNP-hard to determine whether f 2 G

+
� or f 2 G

�
� .

A 3DNF instance � is a disjunction of clauses of the form C1 _ . . . _Ck , where each clause Cj is
a conjunction of 3 literals.

t4(z) =
(
6 �0.5 and > �0.6, z 6 0.3
> 0.1 and 6 0.2, z > 0.4

(17)

t5(z) =
(
> � 1

2k and 6 � 1
4k , z 6 0

> 1, z > 0.1
(18)

We simulate the 3DNF instance using a neural network in the following way. For each variable
Xi , construct an input node xi . Simulate the negation operator using li = 1 � xi . If there is no
negation operator for li , we use li = xi directly. Then transform each literal using t4.
For each conjunction operator, we will use t5 to control the output value. For example, if Cj =

Lj1 ^ Lj2 ^ Lj3, build the gadget c j = t5(t4(lj1) + t4(lj2) + t4(lj3)). For the disjunction operator, we
will use t3. For example, if � =

‘k
i=1Ci , then let � = t3(

Õk
i=1 ci ).

P���������� B.5. For a 3DNF instance �, let N� be the encoding neural network. Let �l =
minN� ([0, 1]m). The following two statements are true:
(1) If the 3DNF instance � is not a tautology, then �l < 1/2 � � .
(2) If � is a tautology, then �l > 1/2 + � .

P����. S�������� (1): If � is not a tautology, let �i be an unsatisfying assignment of Xi and
use them as the input to N� . All clauses are evaluated 0, thus at least one literal from each
clause are valued 0. WLOG, assume Lj1 = 0 for j = 1, . . . ,k . Therefore, t4(lj1) 6 �0.5, and
t4(lj1)+ t4(lj2)+ t4(lj3) 6 �0.5+ 0.2+ 0.2 = �0.1. c j = t5(t4(lj1)+ t4(lj2)+ t4(lj3)) 6 � 1

4k . Therefore,Õk
i=1 ci 6 k

Õ
i,j ci 6 �1/4, then � = t3(

Õk
i=1 ci ) < 1/2 � � , and so �l < 1/2 � � .

S�������� (2): We will prove that if �l < 1/2 + � , then � is not a tautology. Let z be such that
N� (z) < 1/2 + � . For each i 2 {1, . . . ,m}, if zi > 0.4, let xi = 1; otherwise, let xi = 0. We will show
that x is an unsatisfying assignment for �.

We need to show that for all clause Cj , the assignment makes Cj false. Equivalently, there exists
at least one literal in Cj that is false. Let us consider the corresponding gadget c j in the network.
Because N� (z) < 1/2 + � , from Eq. (9) and the construction � = t3(

Õk
i=1 ci ), then

Õk
i=1 ci (z) < 0.5.

This implies that for all j 2 {1, . . . ,k} such that c j (z) < 1. Otherwise the remaining k � 1 gadgets
are at least � 1

2k ,
Õk

i=1 ci (z) > 1 � (k � 1) 1
2k > 0.5.

Because c j (z) < 1 and c j = t5(t4(lj1) + t4(lj2) + t4(lj3)), [t4(lj1) + t4(lj2) + t4(lj3)](z) < 0.1.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.



1:40 Zi Wang, Aws Albarghouthi, Gautam Prakriya, and Somesh Jha

For all the three literals Lj1, Lj2, Lj3 in Cj , consider the three gadgets corresponding to them in
the neural network. Because [t4(lj1) + t4(lj2) + t4(lj3)](z) < 0.1, at least one literal is valued < 0.4.
Otherwise, the [t4(lj1) + t4(lj2) + t4(lj3)](z) > 0.1 + 0.1 + 0.1 = 0.3. WLOG, let’s assume lj1 < 0.4.
Let the corresponding literal Lj1 come from variable Xe . Either Lj1 = Xe or Lj1 = ¬Xe . In the

former case, because lj1(z) < 0.4, then li j (z) = li j (ze ) = ze < 0.4. According to our assignment
rule, xe = 0 and Xe is evaluated false. In the latter case, li1(z) = li1(zj ) = 1 � zj < 0.4, so zj > 0.6.
According to the assignment rule, x j = 1, and so X j is evaluated to true, and ¬X j is evaluated to
false. In either case, Cj is evaluated to false, because Cj is a conjunction of literals.

We have shown that the assignment x unsatis�es Ci , and so the 3DNF Boolean instance � is not
a tautology. ⇤
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