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ABSTRACT: Quantitative analysis of quartz microtextures by means of scanning electron microscopy (SEM) can
reveal the transport histories of modern and ancient sediments. However, because workers identify and count
microtextures differently, it is difficult to directly compare quantitative microtextural data analyzed by different
workers. As a result, the defining microtextures of certain transport modes and their probabilities of occurrence are
not well constrained. We used principal-component analysis (PCA) to directly compare modern and ancient aeolian,
fluvial, and glacial samples from the literature with nine new samples from active aeolian and glacial environments.
Our results demonstrate that PCA can group microtextural samples by transport mode and differentiate between
aeolian transport and fluvial and glacial transport across studies. The PCA ordination indicates that aeolian samples
are distinct from fluvial and glacial samples, which are in turn difficult to disambiguate from each other. Ancient and
modern sediments are also shown to have quantitatively similar microtextural relationships. Therefore, PCA may be a
useful tool to constrain the ambiguous transport histories of some ancient sediment grains. As a case study, we
analyzed two samples with ambiguous transport histories from the Cryogenian Bravika Member (Svalbard).
Integrating PCA with field observations, we find evidence that the Bravika Member facies investigated here includes
aeolian deposition and may be analogous to syn-glacial Marinoan aeolian units including the Bakoye Formation in
Mali and the Whyalla Sandstone in South Australia.

INTRODUCTION and glacial sediments across workers. Because experimental studies have
shown that certain microtextures form in specific transport settings

Quantitative analysis of quartz microtextures by means of scanning (Krinsley and Takahashi 1962; Lindé and Mycielska-Dowgiatlo 1980;
electron microscopy (SEM) reveals microscale features (microtextures) Costa et al. 2012, 2013, 2017), we expect the PCA ordinations to
that are formed during transport (Krinsley and Takahashi 1962; Krinsley ’ ! 7

and Doornkamp 1973; Bull 1981). Because different transport modes
imprint specific suites of microtextures onto quartz grains, quartz
microtextural analysis is a useful technique to understand the transport
histories of modern and ancient sedimentary deposits (Krinsley and .. o constrained using this method.

D(.)ornkamp 1973; I\I/Iahanejy 2002; Vos et al. 2014). Quantitative. quartz One such case of an ambiguous ancient sedimentary environment is the
microtextural analysis, which treats microtextural data as a multidimen- Cryogenian (720-635 Ma) Brivika Member (northeastern Svalbard,
sional statistical problem, is a particularly promising method to quantify Norway). The Brivika Member is a northward-thickening and coarsen-
the probabilities of occurrence of each microtexture in a specific transport ing-upward wedge of quartz arenite with lenses and beds of dolomite
mOdf‘f (Mahaney et a_l' 2001; Riha_et al. 2019). However, beca‘_lse workers (Halverson et al. 2004). Since the Bravika Member was first recognized as
identify and count microtextures differently—even for sand grains from the | .0 by Halverson et al. (2004), there have been three prevailing

se?me depositional en\{lropmer{t (Culver et al. 1983)—it is difficult to hypotheses for what depositional environment the Bravika could represent:
directly compare quantitative microtextural data analyzed by more than one

distinguish aeolian, fluvial, and glacial sediments from each other
regardless of worker. We also hypothesize that the modern and ancient
samples will be quantitatively similar to each other in PCA space, and that
the depositional histories of ambiguous ancient sedimentary environments

worker in the same reference frame. 1) a glaciofluvial outwash plain associated with the overlying

Here we use principal-component analysis (PCA) to directly compare Wilsonbreen Formation (Halverson et al. 2004), which is correlated

quantitative microtextural data from modern and ancient aeolian, fluvial, with the Marinoan “Snowball Earth™ pan-glaciation (Hoffman et al.
2012);
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FiG. 1.—Global map of all samples analyzed in this study. The number in each marker corresponds to the sample group number in Tables 1 and 2.

3) a tropical fluvial environment associated with the upper Elbobreen
Formation (Hoffman et al. 2012).

To test if our PCA analysis method can constrain the transport histories
of ambiguous ancient sedimentary environments, we transformed two
microtextural samples of the Bravika Member from Buldrevagen (north-
northeast Spitsbergen) into the PCA ordinations. Integrating the micro-
textural data with field observations from Buldrevagen, Geerabukta (Ny
Friesland), and Gimleodden (Nordaustlandet), we show that PCA is not
only able to distinguish aeolian, fluvial, and glacial transport modes from
each other using microtextural data, but it is also able to help elucidate the
ambiguous transport histories of ancient sediment grains.

MATERIALS
Modern Samples

New Modern Samples.—We present five new aeolian samples from the
McMurdo Dry Valleys (Antarctica), Algodones Dunes of California
(Cocopah (Kwapa), Kumeyaay, Salt River Pima—Maricopa (O’ odham-
Piipaash), and Quechan (Kwatsdan) territory), and Waynoka Dunes of
Oklahoma (Comanche (MNwmunw), Keechi (Ki:che:ss), Kiowa
(/Gauildoni:gya), Osage (Wahzhazhe), Tawakoni (Tawd:kharih), Waco
(Wi:ko?), and Wichita (Kirikir?i:s) territory), as well as four new glacial
samples from the Llewellyn Glacier in British Columbia on Taku River
Tlingit (Lingit) territory (Fig. 1; Table 1). Each of these samples are briefly

described in the following paragraphs, and more detailed descriptions can
be found in the Supplemental Material.

Of the five aeolian samples, three are sourced from perennially ice-
covered lakes in the McMurdo Dry Valleys: one from Lake Fryxell
(documented in Jungblut et al. 2016), one from Lake Joyce (documented in
Mackey et al. 2015), and one from Lake Vanda (documented in Mackey et
al. 2017). The bulk of coarse-grained sedimentation under the ice cover of
these lakes is wind-blown quartz- and feldspar-rich sand that melts through
the ice and is deposited within layers of microbial mats on the lake floor
(Gumbley 1975; Green et al. 2004; Shacat et al. 2004; Jungblut et al.
2016). The lakes’ lack of wind-driven turbulence (Spigel and Priscu 1998)
and neutral to high pH (Green et al. 2004; Shacat et al. 2004; Jungblut et
al. 2016) suggest that these acolian grains are negligibly overprinted by
lacustrine transport or acidification processes after they melt through the
ice.

The remaining two aeolian samples are from the Algodones Dunes and
the Waynoka Dunes (both documented by Adams 2018; Adams and
Soreghan 2020). Both dunefields are sourced from fluvial deposits
(Winspear and Pye 1995; Lepper and Scott 2005) and have been active
since the late Holocene (Stokes et al. 1997; Lepper and Scott 2005). Given
that aeolian transport over short distances and timeframes rapidly imprints
aeolian microtextures on quartz grains (Costa et al. 2013), we expect there
to be negligible fluvial overprinting on these samples.

The four glacial samples from the Llewellyn Glacier on the Juneau
Icefield were collected from lateral glacial moraines (JIF19-C26-02 and
JIF19-C26-03) and an ephemeral glaciofluvial melt stream 10 m
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TaBLE 1.—List of the samples from modern depositional environments considered in this study. Each group of samples is assigned a number for later
reference in Figures 1 and 5 (Column #). Column S indicates the number of samples in each sample group, and column N indicates the number of quartz
grains in each sample group.

Study # Sample Location Transport S N GPS Point
This Study 1 Lake Fryxell, McMurdo Dry Valleys, Antarctica Aeolian 1 31 77°36’48"S, 163°06'40"E
2 Lake Joyce, McMurdo Dry Valleys, Antarctica Aeolian 1 34 77°43'11"S, 161°36'25"E
3 Lake Vanda, McMurdo Dry Valleys, Antarctica Acolian 1 30 77°31'38"S, 161°36'24"E
4 Algodones Dunes, California, U.S. Aeolian 1 44 33°08’57"N, 115°18'48"W
5 Waynoka Dunes, Oklahoma, U.S. Aeolian 1 48 36°33'35"N, 98°53'56"W
6 Llewellyn Glacier, B.C. (JIF19-C26-01) Glacial 1 31 59°00"49"N, 134°07'15"W
7 Llewellyn Glacier, B.C. (JIF19-C26-02) Glacial 1 39 59°00'48"N, 134°07'13"W
8 Llewellyn Glacier, B.C. (JIF19-C26-03) Glacial 1 36 59°00"48"N, 134°07'13"W
9 Llewellyn Glacier, B.C. (JIF19-C26-04) Glacial 1 40 59°00'50"N, 134°07'14"W
Smith et al. (2018) 10 Anza-Borrego Desert, California, U.S. Fluvial 5 250 32°54’00”N, 116°16’00"W
11 Auster and Storelvi Rivers, Norway Fluvial 7 346 61°32’00”N, 06°57'00"E
12 Austerdal Glacier Moraine, Norway Glacial 1 50 61°32'00"N, 06°57'00"E
13 Rio Guayanés, Puerto Rico Fluvial 6 297 18°03’00"N, 65°54'00"W
14 Rio Par6n, Peru Fluvial 5 250 09°00"00"S, 77°42"00"W
15 Moraine Proximal to Lake Paron, Peru Glacial 1 48 09°0000"”S, 77°42'00"W
Kalinska-Nartisa et al. (2017) 16 Russell Glacier, Greenland (CE1, CE2, CE8) Aeolian 3 60 67°05'00"N, 50°20"00"W
17 Russell Glacier, Greenland (CE12, CE13) Glacial 2 40 67°07’00”N, 50°05'00"W
Sweet and Brannan (2016) 18 Chitina Glacier Moraine to 12 km Past Tana River Confluence, Glacial 22 626 61°05’44"N, 142°11'03"W

Alaska, U.S. (CR-1 to CR-23)

19 12 km Past Tana River Confluence to the Copper River, Alaska,

U.S. (CR-24 to CR-41)

Stevic (2015) 20 Coastal Sand Dune, Vittskovle, Sweden

21 Inland Sand Dune, Brattforsheden, Sweden

Lichen Valley, Vestfold Hills, Antarctica (Site A)

23 Ackerman Ridge, Scott Glacier area, Antarctica (Sites B — C)
24 Southern Inexpressible Island, Antarctica (Site D)

25 Taylor Glacier, McMurdo Dry Valleys, Antarctica (Site E)

Mahaney et al. (1996) 22

26 Hatherton Glacier, Antarctica (Site F)

27 Roberts Massif, Antarctica (Sites G — H)

28 Barwick Valley, Antarctica (Site I)
29 Cambridge Glacier, Antarctica (Site J)

30 Southern Inexpressible Island, Antarctica (Site D)
31 Luther Peak Basin, Edisto Inlet, Antarctica (Site L)

Fluvial 18 450 61°2142"N, 143°46'34"W
Aeolian 1 15 55°51’56"N, 14°10'02"E

Aeolian 1 15 59°36’26"N, 13°53’03"E

Glacial 1 25 68°28'53"S, 78°10'24"E

Glacial 1 25 85°45700"S, 153°00'00"W
Glacial 1 25 74°54’00"S, 163°39'00"E
Glacial 1 25 77°4400"S, 162°10'00"E
Glacial 1 25 79°55’00"S, 157°35'00"E
Glacial 2 50 85°32700"S, 177°05'00"W
Glacial 1 25 77°23'24"S, 161°02'18"E
Glacial 1 25 76°57'00"S, 160°31'00"E
Glacial 1 25 75°38700”S, 161°05'00"E
Glacial 1 25 72°22'00"S, 169°50'00"E

downstream from a separated branch of ice from the Llewellyn Glacier
(JIF19-C26-01 and JIF19-C26-04; Fig. S1, see Supplemental Material).
Because many kilometers of fluvial transport are needed to create a fluvial
microtextural overprint on glacial sediment (Pippin 2016; Sweet and
Brannan 2016; Kfizek et al. 2017), samples JIF19-C26-01 and JIF19-C26-
04 are more representative of a glacial setting than a fluvial setting.

Modern Literature Samples.—Previously published aeolian, fluvial,
and glacial samples comprise the remainder of modern samples considered
in this study (Fig. 1; Table 1). We selected five studies to use in this
modern dataset: Mahaney et al. (1996), Stevic (2015), Sweet and Brannan
(2016), Kalinska-Nartisa et al. (2017), and Smith et al. (2018).

Mabhaney et al. (1996) analyzed 11 glacial samples distributed around
the Antarctic continent. Stevic (2015) analyzed two aeolian samples, one
from a coastal dune in Vittskovle, Sweden, and another from an inland
sand dune near Brattforsheden, Sweden. Sweet and Brannan (2016)
investigated the microtextural transition from glacially dominated samples
to fluvially dominated ones using 46 samples of sand collected along a
transect from the Chitina Glacier to the Copper River in Alaska. For the
purposes of sorting these samples into glacial and fluvial bins, we use
Sweet and Brannan’s (2016) five-point averaged fluvial-glacial (F/G)
microtextural ratio. Samples with a five-point averaged F/G > 1 are
classified as fluvial samples, and samples with a five-point averaged F/G
< 1 are classified as glacial. Kalinska-Nartisa et al. (2017) analyzed three
acolian samples and two glacial samples from the Russell Glacier in

southwest Greenland. Finally, Smith et al. (2018) analyzed 25 fluvial and
glacial samples from the Anza—Borrego Desert in California, the Auster
and Storelvi rivers in Norway, the Rio Guayanés in Puerto Rico, and the
Rio Paron in Peru. Because Smith et al. (2018) saw no significant change
in percussion features along each of the river transects—even in
glaciofluvial settings—the fluvial samples in Smith et al. (2018) are
defined as those collected along river transects and the glacial samples are
defined as those collected at moraines.

Ancient Samples

Cryogenian Bravika Member, Svalbard, Norway—We analyzed
two samples of the Bravika Member from a site at Buldrevagen in north-
northeast Spitsbergen (Fig. 2), one at 12 m and another at 22 m above the
base of the Bravika Member. We will present field observations of the
Bravika Member from outcrops in Buldrevagen, Geerabukta (Ny Fries-
land), and Gimleodden (Nordaustlandet) as context for the microtextural
samples.

The Cryogenian Bravika Member is a northward-thickening and
coarsening-upward wedge of quartz arenite with lenses and beds of
dolomite that crop out in northeastern Svalbard, Norway (Halverson et al.
2004). The Bravika Member is situated between two units that are
interpreted to represent different Cryogenian climate states (Fig. 2). The
underlying siltstone and dolomite of the upper Elbobreen Formation
(MacDonaldryggen and Slangen members) are correlated with the warm
Cryogenian interglacial period (Fairchild et al. 2016), which spanned from
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FiG. 2.—Geologic context and stratigraphy of the Cryogenian Bravika Member in Svalbard. A) Map of the Svalbard archipelago. Each star indicates a site observed in this
study: Buldrevagen (red), Geerabukta (white), and Gimleodden (black). B) Generalized stratigraphic nomenclature for the Cryogenian Polarisbreen Group in Svalbard after
Halverson et al. (2018). As shown here, the Bravika Member is assigned to neither the Wilsonbreen nor the Elbobreen formations, as its assignment is a key question explored
in this study. The Petrovbreen Member is correlated with the Sturtian pan-glaciation and the Wilsonbreen Formation is correlated with the Marinoan pan-glaciation. The
MacDonaldryggen and Slangen members are correlated with the Cryogenian interglacial (Fairchild et al. 2016). C) Stratigraphic column of the Bravika Member at
Buldrevagen. The black circles indicate where samples 32 (J1701-156) and 33 (J1701-166) were collected for microtextural analysis.

the Sturtian deglaciation to the Marinoan glacial initiation. Absolute age
constraints on this period are limited, but the Sturtian deglaciation is
constrained between > 662.7 = 6.2 Ma (U-Pb SIMS in South China; Yu et
al. 2017) to > 657.2 * 2.4 Ma (Re-Os in southern Australia; Kendall et al.
2006), and the Marinoan glacial onset is constrained between < 654.6 *
3.8 Ma (U-Pb SIMS in South China; Zhang et al. 2008) to > 639.29 =
0.26/0.31/0.75 Ma (U-Pb CA-ID-TIMS in Congo; Prave et al. 2016). The
overlying glacial diamictites of the Wilsonbreen Formation share a
reciprocal thickness relationship with the Bravika Member and are
correlated with the Marinoan glaciation (Hoffman et al. 2012), which
ended between 636.41 = 0.45 Ma (U-Pb CA-ID-TIMS in Southern
Australia; Calver et al. 2013) and 635.2 = 0.6 Ma (U-Pb zircon in South
China; Condon et al. 2005).

Ancient Literature Samples.—In addition to the two Bravika Member
samples, we compiled a set of ancient aeolian, fluvial, and glacial
microtextural samples from four studies: Mahaney and Kalm (1995),
Mahaney et al. (2001), Deane (2010), and Nartiss and Kalinska-Nartisa
(2017) (Fig. 1; Table 2).

Mahaney and Kalm (1995) analyzed 23 glacial samples from the
Pleistocene Dainava, Ugandi, Varduva, and Latvia tills in Estonia.
Mahaney et al. (2001), following Mahaney and Kalm (2000), used
quantitative microtextural analysis and Eucledian distances to characterize
29 Pleistocene glacial samples, three Pleistocene glaciofluvial samples, and
21 Middle Devonian fluvial samples from Estonia. All of these samples
were previously collected and analyzed in Mahaney and Kalm (2000).
Deane (2010) compared nine Last Glacial Maximum (LGM) glaciogenic
samples from Costa Rica with nine potentially glaciogenic samples from
the Dominican Republic and found that the two sample sets were
statistically indistinguishable, supporting a glaciogenic history for the

samples from the Dominican Republic. In our study, we include samples
from Deane (2010) that were collected directly from known or
hypothesized glacial diamicts and moraines in Costa Rica and the
Dominican Republic; we did not include samples from glaciolacustrine
environments and debris flows. Nartiss and Kalinska-Nartisa (2017)
analyzed two aeolian samples from periglacial aeolian dunes associated
with the retreat of the Fennoscandian ice sheet after the LGM in Latvia.

METHODS
Field Work and Sample Collecting

Samples analyzed for the first time in this study were collected over
multiple field seasons using a variety of methods. The samples from the
McMurdo Dry Valleys were originally collected as microbial mats using
the methods described in Mackey et al. (2015), Jungblut et al. (2016), and
Mackey et al. (2017). Samples from the Algodones Dunes and Waynoka
Dunes were collected using the methods described in Adams and Soreghan
(2020). On the Juneau Icefield, four sand samples of ~ 50 g each were
collected in August 2019 from glacial moraines and an ephemeral
glaciofluvial melt stream on the Llewellyn Glacier (Camp 26) nunatak.
Field work on the Bravika Member in Buldrevagen, Geerabukta, and
Gimleodden was performed in 2017.

Microtextural Sample Disaggregation and SEM Preparation

Most samples collected for this study were unconsolidated sediment, but
consolidated samples were disaggregated before analysis. Both dolomite-
cemented Bravika Member samples from Svalbard were disaggregated
using IN hydrochloric acid (HCI) at 50°C for 24 hours. Sand samples from
Lake Joyce, Lake Fryxell, and Lake Vanda were disaggregated from the
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TABLE 2.—List of the samples from ancient depositional environments considered in this study. Each group of samples is assigned a number for
reference in Figures 1, 2, and 6 (Column #). Column S indicates the number of samples in each sample group, and column N indicates the number of
quartz grains in each sample group.

Study # Sample Transport S N GPS Point Geologic Period

This Study 32 Bravika Mbr., Buldrevagen (J1701-156) Unknown 1 39 79°59'29”N, 17°31'20"E Cryogenian
33 Bravika Mbr., Buldrevagen (J1701-166) Unknown 1 40 79°59'29"N, 17°31'20"E

Nartiss and Kalinska-Nartisa (2017) 34  Middle Gauja Lowland, Latvia (Mielupite 1.3)  Acolian 1 16 57°30'00"N, 26°00'00"E Pleistocene
35  Middle Gauja Lowland, Latvia (Mielupite 1.7)  Aeolian 1 18 57°30'00"N, 26°00'00"E

Deane (2010) 36 Till, Costa Rica (Sample 2) Glacial 1 300 09°29'35"N, 83°29'07"W  Pleistocene
37  Till, Costa Rica (Sample 3) Glacial 1 100  09°29'35"N, 83°29'07"W
38  Till, Costa Rica (Sample 4) Glacial 1 100 09°2935"N, 83°29'07"W
39  Till, Costa Rica (Sample 5) Glacial 1 100  09°29'35"N, 83°29'07"W
40  Till, Costa Rica (Sample 8) Glacial 1 100  09°29'35"N, 83°29'07"W
41  Till, Dominican Republic (Sample 10) Glacial 1 100  19°02'01"N, 71°04'22"W
42 Till, Dominican Republic (Sample 11) Glacial 1 100 19°01'60"N, 71°04'26"W
43 Till, Dominican Republic (Sample 17) Glacial 1 100 19°02’07"N, 71°04'38"W
44 Till, Dominican Republic (Sample 18) Glacial 1 100  19°01'39”N, 71°02'30"W

Mahaney et al. (2001) 45 Arkiila Stage Sandstone, Estonia Fluvial 21 420  58°15’00”N, 26°30'00"E Middle Devonian
46  Glaciofluvial Sand, Estonia Fluvial 3 60  58°15’00”N, 26°30'00"E Pleistocene
47  Till, Estonia Glacial 29 580  58°15’00”N, 26°30'00"E

Mahaney and Kalm (1995) 48  Latvia Till, Estonia Glacial 5 100  58°13'28"N, 26°25'16"E  Pleistocene
49  Varduva Till, Estonia Glacial 5 100  58°13’28"N, 26°25'16"E
50  Upper Ugandi Till, Estonia Glacial 5 100  58°13/28"N, 26°25'16"E
51  Lower Ugandi Till, Estonia Glacial 5 100  58°13’28"N, 26°25'16"E
52 Upper Dainava Till, Estonia Glacial 3 60  58°13/28"N, 26°25'16"E

microbial mats using 30% hydrogen peroxide (H,O,) solution at 50°C for
24 hours to remove organics and 1N HCI at 50°C for 24 hours to remove
carbonate.

All of the samples were then prepared for blind microtextural analysis in
the style of Smith et al. (2018). Samples were distributed into vials and
given unique codes unknown to the primary researcher. These blinded
conditions were maintained until after each sample’s microtextural data
were collected.

After sample randomization, each sample was gently wet sieved into a
125 pm—1 mm grain-size fraction and dried in an oven. After drying, the
samples were treated with 30% H,O, solution at 50°C for 24 hours to
remove organics. Samples were then treated with 1N HCI solution for 24
hours at 50°C to remove any remaining carbonate coatings. Neither H,O,
nor low-concentration HCI at these temperatures and time frames affects
quartz microtextures (Pye 1983; Keiser et al. 2015; Smith et al. 2018).

Samples were then treated using the citrate-bicarbonate-dithionite
(CBD) method (Janitzky 1986) to remove iron-oxide and manganese-
oxide coatings. Between all chemical treatments, the samples were
thoroughly rinsed and dried. These samples were not sonicated, to prevent
artificially inducing microtextures (Porter 1962).

Following these treatments, 50 grains that appeared to be quartz (e.g.,
translucent, no obvious cleavage, etc.) were randomly selected from each
sample for microtextural analysis using a reflected-light microscope. The
selected grains were mounted on an aluminum SEM stub with double-
sided carbon tape in a 10 X 5 grid and then coated with a 5 nm thick
platinum—palladium alloy (Pt/Pd; 80/20) sputter coating to prevent
charging under the SEM. Although a gold (Au) or gold—palladium alloy
(Au/Pd) coating is frequently used for SEM samples (Vos et al. 2014), Pt/
Pd is a better alternative to Au coatings because Pt/Pd coatings have a
smaller grain size that permits higher-resolution analysis (5-10 nm Au vs.
4-8 nm Au/Pd vs. 2-3 nm Pt/Pd; Goldstein et al. 1992).

SEM Imaging and Analysis

All grains in each sample were photographed at a 30° tilt on a Zeiss
FESEM Supra55VP using a secondary electron (SE2) detector at 20 kV
EHT. Viewing the grains at a 30° angle helps to identify smaller

microtextures that are difficult to identify at a 0° angle (Margolis and
Krinsley 1971). During imaging, energy-dispersive spectroscopy (EDS)
was used to confirm the composition of each quartz grain.

After imaging, each quartz grain was analyzed for the presence or
absence of 20 microtextures (Fig. 3) according to the methods of Mahaney
et al. (2001) and Mahaney (2002). The microtextures are grouped into five
bins as defined by Sweet and Soreghan (2010) that differentiate features by
formation process: polygenetic, percussion, high-stress, chemical, and
grain relief. The following formation descriptions are from Sweet and
Soreghan (2010). Polygenetic features are formed through a variety of
processes. Percussion features are formed via grain saltation. High-stress
features are formed when grains are subjected to high shear stresses.
Chemical features are formed via silica dissolution or precipitation. Grain
relief refers to the difference between the high and low points on the grain
surface.

Grains with extreme diagenetic overprint (e.g., greater than or equal to
approximately 90% estimated coverage of diagenetic overprint; Fig. S2)
were removed from the sample dataset. The probability of occurrence for
each microtexture p,, was calculated by dividing the sum of the counts for a
given microtexture by the total number of grains in the sample (Smith et al.
2018).

Previous microtextural studies have used a range of sample sizes, from
less than 20 grains per sample (Krinsley and Funnell 1965; Coch and
Krinsley 1971; Blackwelder and Pilkey 1972) to 100 grains or more per
sample (Vincent 1976; Setlow 1978; Deane 2010). This study analyzed
< 50 grains per sample as a midpoint between these. However, non-quartz
grains and diagenetically overprinted grains were removed from the sample
dataset, making 50 grains the upper limit for samples in this study. To
address this, samples with > 15 eligible quartz grains were considered
statistically significant for analysis; samples with < 15 eligible quartz
grains were not analyzed. This limit of 15 grains was selected because it is
the midpoint of the lower limit recommended sample sizes of Costa et al.
(2012), who advocated for a median number of 20 grains per sample, and
of Vos et al. (2014), who advocated for a lower limit of 10 grains per
sample.
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Principal-Component Analysis (PCA)

We performed PCA on the modern and ancient suites of microtextural
data using Scikit-learn 0.21.2 (Pedregosa et al. 2011). This ordination
excluded microtextures that were not analyzed by all authors, leaving 12
microtextures that were analyzed by every author in the dataset. These
microtextures were arc-shaped steps, conchoidal fractures, linear steps,
sharp angular features, subparallel linear fractures, edge rounding, v-
shaped percussion cracks, curved grooves, precipitated features, low relief,
medium relief, and high relief (Fig. 3; Tables S1-S2).

The principal-component axes are first derived from the modern suite of
microtextural data and then the ancient samples are fitted to these new
axes. These axes are shown in three biplots: PC1 vs. PC2; PC1 vs. PC3;
and PC2 vs. PC3. In each biplot, 95% confidence ellipses centered at the
mean were calculated for each modern transport mode using the methods
of Schelp (2019). The broken-stick criterion (Frontier 1976; Jackson 1993;
Legendre and Legendre 1998; Peres-Neto et al. 2003) was used to
determine the significance of the microtextural loadings.

RESULTS
Bravika Member Field Observations

Field observations of the Bravika Member in Buldrevagen (79° 59’ 29”
N, 17° 31" 20” E), Geerabukta (79° 38" 06” N, 17° 43’ 48” E), and
Gimleodden (79° 48" 19”7 N, 18° 24’ 04" E) show evidence of bedforms
with 5-10 m wavelength and 1-3 m amplitude, trough cross-bedding,
adhesion ripples, pinstripe lamination (at 9 m in Fig. 2C) and grains that
are frosted, well rounded, and well sorted (Fig. 4A—G). At the Gimleodden
site, there is also evidence of soft-sediment deformation in the Bravika
Member at the contact with the Wilsonbreen Formation (Fig. 41). At the
Buldrevagen site, the Bravika Member hosts sandstone intraclasts with
diffuse boundaries and no obvious cements at 22 m above the base of the
Bravika Member, as well as pebbly sandstone intraclast conglomerates at
18 m and 22 m (7 m and 3 m below the Wilsonbreen Formation contact,
respectively; Figs. 2C, 4J, K). The pebbly sandstone intraclast conglom-
erate is similar in color to the overlying Wilsonbreen Formation (Fig. 4L).

Microtextural Dataset Description

This microtextural dataset is composed of 113 data points from modern
and ancient aeolian, fluvial, and glacial settings. Ninety-two of these data
points come from modern settings and 21 come from ancient settings. The
data are compiled from 10 studies: this study (10% of the total datapoints),
Smith et al. (2018) (22%), Kalinska-Nartisa et al. (2017) (4%), Nartiss and
Kalinska-Nartisa (2017) (2%), Sweet and Brannan (2016) (35%), Stevic
(2015) (2%), Deane (2010) (8%), Mahaney et al. (2001) (3%), Mahaney et
al. (1996) (10%), and Mahaney and Kalm (1995) (4%). Most data points in
this analysis represent a single sample of N grains. The data points from
Mahaney and Kalm (1995) and Mahaney et al. (2001) are instead the
published averages of larger sets of unavailable raw data from each study.

In the modern samples, 10% of the samples are aeolian, 45% are fluvial,
and 45% are glacial. 60% of the modern aeolian samples come from
periglacial settings, and 73% of the modern fluvial samples come from
glaciofluvial settings. All of the modern glacial samples come from active
glacial environments. In the ancient samples, 90% are constrained to
particular depositional environments: 10% of the samples are aeolian, 10%
are fluvial, and 71% are glacial. The remaining 10% of the ancient samples
are from the Cryogenian Bravika Member, and determining their
depositional setting is a goal of this study.

Probability of Occurrence

Modern Samples—Modern aeolian samples are the most likely to
have edge rounding (0.90 avg.), precipitated features (0.59 avg.), and low

J.N. REAHL ET AL.

relief (0.31 avg.) compared to modern fluvial and glacial samples, which in
turn are more likely to have high relief (0.40 fluvial avg.; 0.36 glacial avg.)
and subparallel linear fractures (0.63 fluvial avg.; 0.50 glacial avg.) (Fig.
5). These transport modes also share similar probabilities of occurrence for
some features. Glacial and aeolian samples share similar probabilities of
curved grooves (0.33 glacial avg., 0.27 aeolian avg.) compared to fluvial
samples. Fluvial and aeolian samples also share similar probabilities of v-
shaped percussion cracks (0.45 fluvial avg., 0.48 aeolian avg.) compared to
glacial samples. The probability of occurrence of arc-shaped steps,
conchoidal fractures, linear steps, sharp angular features, and medium
relief are not substantially different between the three transport modes.

Study-specific variations in microtextural probabilities occur in each
transport mode. In the aeolian transport mode, samples from Stevic (2015)
(samples 20, 21; Table 1) are more likely to have curved grooves (0.80—
0.93) compared with other aeolian samples in the dataset (0.13-0.19). The
fluvial grains from Sweet and Brannan (2016) (sample 19) are more likely
to have v-shaped percussion cracks (0.82) compared with the remaining
fluvial samples from Smith et al. (2018) (0.15-0.40). Glacial grains from
this study (samples 6-9) and Kalinska-Nartisa et al. (2017) (sample 17)
have the highest probabilities of edge rounding (0.29-0.91) and
precipitated features (0.55-0.88) compared with the remaining glacial
samples. The glacial grains from Kalinska-Nartisa et al. (2017) are also the
most likely to have low relief (0.68).

Ancient Samples.—Both samples from the Cryogenian Bravika
Member (samples 32, 33; Table 2) have high probabilities of edge
rounding (1.00), precipitated features (1.00), and upturned plates (0.85—
0.97; Fig. 6). Pleistocene aeolian sand samples from Nartiss and Kalinska-
Nartisa (2017) (samples 34, 35) have high abundances of edge rounding,
dissolution etching, and precipitated features (all categorized as “abun-
dant”; > 0.75 probability of occurrence). Grains from the middle
Devonian Arkiila Stage fluvial sand samples (sample 45) and Pleistocene
glaciofluvial sand samples (sample 46) from Estonia (Mahaney et al. 2001)
are more likely to have edge rounding (0.56-0.64), v-shaped percussion
cracks (0.53-0.61), and low relief (0.35-0.59) compared with grains from
the modern fluvial average. The fluvial samples from Mahaney et al.
(2001) also have lower probabilities of arc-shaped steps (0.00-0.23),
conchoidal fractures (0.06-0.39), linear steps (0.00—0.26), subparallel
linear fractures (0.08—0.35), upturned plates (0.00-0.04), and high relief
(0.05-0.18) compared with the modern fluvial average. Grains from the
Pleistocene tills in Costa Rica and the Dominican Republic (samples 36—
44; Deane 2010) are more likely to have subparallel linear fractures (0.86—
0.96) and medium relief (0.60-0.76) compared with the modern glacial
average. The Pleistocene tills from Mahaney et al. (2001) (sample 47) and
Mahaney and Kalm (1995) (samples 48—52) are broadly comparable to the
modern glacial average.

Principal-Component Analysis

In the PCA ordination, the PC1, PC2, and PC3 axes capture about 66%
of the variance in the modern dataset (27.01%, 21.33%, and 17.43%,
respectively). Along the PC1 axis (Figs. 7, 8; Table S3), the aeolian,
fluvial, and glacial samples are distributed along both sides of the axis with
no clear separation. However, the samples are generally separated by study
along PC1: the samples from Stevic (2015) and Smith et al. (2018) are
distributed between —2.9 and —1.1 and the samples from Mahaney et al.
(1996) and Sweet and Brannan (2016) are distributed between —0.2 and
3.5. The samples from this study and Kalinska-Nartisa et al. (2017) are
widely distributed on PCI, where the samples from this study are
distributed between —3.2 to 3.3 and the Kalinska-Nartisa et al. (2017)
samples are distributed between —3.1 and 1.7. The sample separation along
PCl1 is predominantly driven by the abundance of linear steps and arc-
shaped steps, which have the largest (—0.489) and second largest (—0.425)
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FiG. 4.—Field observations of the Bravika Member and related units. All field photographs are of the Bravika Member and are credited to K.D. Bergmann unless otherwise
noted. A) Annotated photograph of large-scale bedforms exposed at Gimleodden. Dashed lines trace bedding surfaces. Hammer for scale. B) Photograph of frost-shattered
trough crossbedding at 12 m in Buldrevagen (Fig. 2C), where the fracture planes are bedding surfaces. Arrow points upsection. The box highlights the location of Part C)
(Photo credit: A.B. Jost). C) Annotated close-up of trough crossbedding. The dashed lines trace bedding surfaces and the arrow points upsection. D) Adhesion ripples on a
bedding plane at Geerabukta. E) Potential adhesion ripples on a bedding plane at Gimleodden. F) Pinstripe lamination at Geerabukta. G) Photomicrograph of frosted grains
from the Bravika Member at Buldrevagen after dissolution of the dolomite cement with acid (Photo credit: J.N. Reahl). H) Close-up of sand intraclasts with diffuse edges at
Buldrevagen (photo credit: T.J. Mackey). I) Soft-sediment deformation in the upper Bravika Member under the Wilsonbreen tillite at Gimleodden, consistent with
deformation of unlithified Bravika sand by overriding ice. Dashed line marks the diffuse contact between the two units and solid lines trace contorted, folded beds in the
Bravika Member. Hammer for scale. J) Sandstone intraclasts with diffuse boundaries and greenish tan, pebbly, coarse sandstone intraclasts at 22 m in Buldrevagen (Fig. 2C).
Bar is 40 cm long. K) Line drawing of Part J at the same scale; sandstone intraclasts are shaded gray, and greenish tan pebbly, coarse sandstone intraclasts are shaded red. L)
The Wilsonbreen Formation at Buldrevéagen, pictured here, has a greenish tan pebbly sandstone matrix.
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Microtextures

Fic. 5.—Heatmap of the microtextural probabilities of occurrence from 0 to 1 for each modern sample group used in the analysis. Samples are binned into aeolian, fluvial,
and glacial transport modes. Refer to Table 1 for sample group numbers and descriptions. Data are averaged for sample groups that contain more than one sample (S > 1).
Refer to Figure 3A and B for microtextural abbreviations. The average of each transport mode for the modern samples (AVG) is at the bottom of each bin. Microtextures that

were not analyzed in a study are grayed out.

negative loadings along PC1 (Table 3). However, neither of these loadings
are strongly associated with PC1 according to the broken-stick criterion.

Along the PC2 axis, modern aeolian samples are distinctly separated
from modern glacial and fluvial samples. This separation between aeolian
and fluvial/glacial samples along PC2 is driven by low relief, edge
rounding, and precipitated features in the positive direction (loadings of
0.457, 0.455, and 0.432) and high relief in the negative direction (—0.427),
of which are all associated with PC2 according to the broken-stick
criterion.

Along the PC3 axis, the three transport modes are distributed along both
sides of the axis with no clear separation, similar to the distribution along
PC1. However, unlike the distribution along PC1, the samples are not as
distinctly separated by study. The significant microtextures along PC3 are
sharp angular features and high relief in the positive direction (0.592 and
0.411), and medium relief in the negative direction (—0.482). All of these

microtextures are associated with PC3 according to the broken-stick
criterion.

Along each principal-component axis, at least 89% of the ancient
aeolian, fluvial, and glacial samples plot within the upper and lower
adjacent values of the boxplot of their modern counterparts: 89% on PC1,
95% on PC2, and 100% on PC3 (Fig. 7). In each biplot (Fig. 8), at least
74% of these ancient samples plot within the 95% confidence ellipses of
their modern counterparts: 89% in the PC1-PC2 biplot (A3), 74% in the
PC1-PC3 biplot (B3), and 95% in the PC2-PC3 biplot (C3). The median of
the percent agreement between the ancient samples and their modern
counterparts is 92%.

The 92% median agreement between the modern and ancient samples
demonstrates that PCA of modern and ancient samples provides a valid
framework for interpreting the fingerprint of depositional environments in
ancient samples with ambiguous depositional histories. In this ordination,
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Fig. 6.—Heatmap of the microtextural probabilities of occurrence from 0 to 1 for each ancient sample group used in the analysis. Samples are binned into “unknown”
(UNK; Bravika Member), aeolian, fluvial, and glacial transport modes. Refer to Table 2 for sample group numbers and descriptions. Data are averaged for sample groups that
contain more than one sample (S > 1). Refer to Figure 3A and B for microtextural abbreviations. The average of each transport mode for the modern samples (M. AVG) from
Figure 5 is at the bottom of each bin. Microtextures that were not analyzed in a study are grayed out.
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TaBLE 3.—Ranked loadings and squared loadings of microtextures from the PCA ordination (Fig. 8). Refer to Figure 34 and B for microtexture
abbreviations. The microtextures in bold have squared loadings that are greater than the expected value of their associated principal component
according to the broken-stick criterion (Frontier 1976, Jackson 1993; Legendre and Legendre 1998, Peres-Neto et al. 2003).
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Microtexture Loading Loading® Microtexture Loading Loading® Microtexture Loading Loading®
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the two Bravika Member samples with ambiguous depositional histories
consistently plot within the upper and lower adjacent values of the modern
aeolian samples in each principal-component axis (Fig. 7) and the 95%
confidence ellipses of the modern aeolian samples in each biplot (Fig. 8).
This placement suggests that the Bravika Member samples analyzed in this
study have an aeolian origin.

DISCUSSION
Interpreting the PCA Ordination

PC1 separates the modern samples by author and accounts for the most
variance in the dataset (27.01%), indicating that author-specific micro-
textural variance is the largest individual source of variance in the modern
dataset. This result is consistent with the observation that SEM operator
variance exerts significant influence on the probabilities of occurrence of
individual microtextures (Culver et al. 1983). However, as Culver et al.
(1983) observed using canonical variate analysis, author variance is overall
negligible in determining a sample’s depositional environment: the
combined variance of PC2 and PC3 accounts for over a third of the
variance in the modern dataset (21.33% and 17.43%, respectively). The
PC2 axis separates the samples into aeolian transport modes and fluvial
and glacial transport modes, and the PC3 axis separates the samples neither
by transport mode nor by study (Fig. 8).

Which Microtextures Distinguish Transport Modes?

Acolian sediment is defined by high probabilities of low relief, edge
rounding, and precipitated features, and fluvial and glacial sediments are
defined by high probabilities of high relief and subparallel linear fractures.
The modern (Fig. 5) and ancient (Fig. 6) heatmaps show that aeolian
samples have the highest probabilities of low relief, edge rounding, and
precipitated features, and fluvial and glacial samples have the highest
probabilities of high relief and subparallel linear fractures. PC2 also
separates the aeolian samples from the fluvial and glacial samples using
low relief, edge rounding, and precipitated features in the positive (aeolian)
direction and high relief in the negative (fluvial and glacial) direction (Fig.
8; Table 3). These findings are consistent with previous observations of
these microtextures: low relief, edge rounding, and precipitated features
have all previously been associated with windblown sediment (Nieter and
Krinsley 1976; Lindé and Mycielska-Dowgiatto 1980; Krinsley and Trusty
1985; Mahaney 2002; Vos et al. 2014); high relief can occur on both fluvial
and glacial sediments (Mahaney 2002; Vos et al. 2014); and subparallel
linear fractures are often associated with glacial and glaciofluvial settings,
the latter of which makes up 73% of the modern fluvial samples in this
study (Mahaney and Kalm 2000; Deane 2010; Immonen 2013; Vos et al.
2014; Woronko 2016).

Although fluvial and glacial samples are microtexturally distinct from
aeolian samples, it is difficult to disambiguate the fluvial and glacial
transport modes from each other in this dataset. Features that are typically
associated with glacial environments, such as arc-shaped steps, conchoidal
fractures, linear steps, and sharp angular features (Mahaney and Kalm
2000; Mahaney 2002; Immonen 2013; Woronko 2016), had comparable
probabilities across all three modern transport modes, indicating that these
features are not exclusively associated with glacial environments (Fig. 5).
Smith et al. (2018) also observed that arc-shaped steps and linear steps may
not be indicators of glacial transport. These results are consistent with
Sweet and Soreghan’s (2010) classification of these features as polygenetic
features that are formed through a variety of transport processes.
Subparallel linear fractures are also associated with glacial and glacio-
fluvial settings (Mahaney and Kalm 2000; Deane 2010; Immonen 2013;
Vos et al. 2014; Woronko 2016), but the modern fluvial average for
subparallel linear fractures is higher than the glacial average. Although
glaciofluvial samples make up 73% of the modern fluvial samples, the non-
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glacial fluvial samples (samples 10 and 13; Fig. 5) have similar
probabilities of subparallel linear fractures compared to glaciofluvial
samples (samples 11, 14, and 19), suggesting that subparallel linear
fractures may not be an exclusively glacial feature. These results suggest
that fluvial and glacial samples may share microtextural similarities, but
more studies comparing the microtextural features of non-glacial fluvial,
glaciofluvial, and glacial samples are needed to understand the differences
between these transport environments.

These results highlight the importance of precipitated features as a
primary indicator of transport instead of an exclusive product of
diagenesis. If precipitated features were only an indicator of postdeposi-
tional diagenesis, then the probability of precipitated features should
increase with age. However, all of the modern samples have some
probability of having precipitated features—particularly the aeolian
samples—and the ancient samples do not show a consistent increase in
the probability of chemical features as the sediment age increases (Figs. 5,
6). Both of these observations point to precipitated features being a
primary microtextural feature. Although Sweet and Soreghan (2010)
suggested that precipitated features should not be counted because they can
form via diagenesis and overprint a sample, our results indicate that these
features can also be a primary feature and should not be discounted, even
in situations where diagenesis is a concern.

Some microtextures often used in microtextural studies could not be
included in this analysis: abraded features, breakage blocks, crescentic
gouges, fracture faces, deep troughs, straight grooves, upturned plates, and
dissolution etching. Many of these microtextures have been previously
associated with certain transport environments. Breakage blocks, straight
grooves, and fracture faces have been associated with glacial environments
(Woronko 2016), and upturned plates and dissolution etching have been
associated with aeolian environments (Margolis and Krinsley 1974;
Mahaney 2002). For the purposes of comparing microtextural data from
multiple studies, we were limited to using the most often used
microtextures in the literature. Moving forward, it would be helpful to
establish a consistent minimum set of microtextures to be used in
microtextural studies.

Test Case: The Cryogenian Bravika Member

We now shift our focus to using the microtextural data, PCA, and
stratigraphic observations to constrain the depositional environment of the
Cryogenian Bravika Member from Buldrevagen, Svalbard. Our combined
field observations and microtextural data suggest that the Bravika Member
includes aeolian deposition that may be time equivalent with the onset of
the syn-glacial Marinoan Wilsonbreen Formation.

The microtextural evidence points to an acolian origin for the Bravika
Member. Both samples from the Bravika Member have particularly high
occurrences of edge rounding, precipitated features, and low relief
(samples 32 and 33; Fig. 6), all of which have been previously associated
with aeolian transport (Nieter and Krinsley 1976; Lindé and Mycielska-
Dowgialto 1980; Krinsley and Trusty 1985; Mahaney 2002; Vos et al.
2014). The Bravika Member samples also have high probabilities of
upturned plates, which have been associated with grain frosting (Margolis
and Krinsley 1971). Compared to the modern and ancient aeolian, fluvial,
and glacial samples, the Bravika Member samples are most similar to the
aeolian samples, sharing similar probabilities of low relief, edge rounding,
and precipitated features (Fig. 6). These samples also consistently plot
within the upper and lower adjacent values (Fig. 7) and 95% confidence
ellipse (Fig. 8) of the modern aeolian samples. Because the ancient aeolian,
fluvial, and glacial samples are accurately matched with their modern
counterparts 92% of the time when transformed into modern PCA space,
the PCA ordination is able to accurately plot samples with ambiguous
depositional histories alongside their most likely modern microtextural
analogs.
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An aeolian interpretation for the microtextural data is consistent with
field observations made in 2017 of the Bravika Member in Buldrevagen,
Geerabukta, and Gimleodden (Fig. 4). Bedforms with 5—10 m wavelengths
and 1-3 m amplitudes at the Gimleodden (Fig. 4A) and Buldrevagen (Fig.
4B, C) sites are consistent with acolian dunes in scale and style (Wilson
1972; Pye and Tsoar 2009). There is also evidence of adhesion ripples on
bedding planes at the Geerabukta (Fig. 4D) and Gimleodden (Fig. 4E)
sites. Adhesion ripples are formed when dry, windblown sand is blown
onto a wet surface, and these features have been previously observed on
ancient aeolian deposits (Kocurek and Fielder 1982). The presence of
pinstripe lamination at the Buldrevagen (Fig. 2C) and Geerabukta (Fig. 4F)
sites are a strong indicator for aeolian deposition (Fryberger and Schenk
1988). The high degree of grain rounding at this interval (Fig. 4G) is also
characteristic of grains transported by aeolian processes (Folk 1980);
subaqueous transport does not typically produce such a high degree of
grain rounding (Pettijohn 1957). The frosted grains in these samples (Fig.
4G) are also a strong indicator of aeolian transport (Pye and Tsoar 2009).

Field evidence also suggests that the aeolian strata of the Bravika
Member may be syndepositional with the Marinoan pan-glaciation as
opposed to the Cryogenian interglacial. The pebbly sandstone intraclast
conglomerates’ proximity to the contact with—and similar color and
texture as—the Wilsonbreen Formation (Figs. 2, 4) suggest that they are
sourced from this unit. These intraclasts’ occurrences at 7 m and 3 m below
the Wilsonbreen Formation contact (Fig. 2C) suggest that the Bravika
Member in Buldrevagen was syndepositional with the Wilsonbreen
Formation and the Marinoan pan-glaciation. The intraclasts with diffuse
boundaries and no obvious cements at 22 m (Figs. 2, 4) are putative ice-
cemented sand intraclasts. Ice-cemented intraclasts form when water in the
pore space of unconsolidated sand freezes parts of sand into discrete clasts
that can be transported and deformed into new orientations before the
cementing ice melts. Sand intraclasts are routinely identified as ice-
cemented in glaciogenic deposits (Browne and Naish 2003), and Runkel et
al. (2010) has reported putative ice-cemented sand intraclasts preserved in
rocks as old as the middle to late Cambrian. The putative ice-cemented
intraclasts indicate that the Bravika Member was at least unconsolidated
during the Marinoan pan-glaciation, and the occurrence of possible
Wilsonbreen intraclasts 3 m below the Wilsonbreen Formation contact
(Fig. 2C) suggests that the upper Bravika Member was syndepositional
with the Marinoan glaciation. Evidence of soft-sediment deformation at the
contact between the Bravika Member and Wilsonbreen Formation at
Gimleodden (Fig. 41) is also consistent with the upper Bravika Member
being unconsolidated during the Marinoan glaciation.

Integrating microtextural and field observations, we suggest that the
upper Bravika Member includes aeolian deposition and may represent a
syn-glacial aeolian sand sea, or erg, contemporaneous with the Marinoan
glaciation. This setting is akin to previously identified Marinoan syn-
glacial ergs in the Bakoye Formation of Mali (Deynoux et al. 1989) and the
Whyalla Sandstone (Elatina glaciation) of South Australia (Williams 1998;
Rose et al. 2013; Ewing et al. 2014). Hoffman and Li (2009) suggested that
katabatic winds coming off of the Marinoan ice sheet are the primary
transport mechanism for these syn-glacial ergs. The northward paleoflow
direction of the Bravika Member and the Bravika Member’s reciprocal
thickness relationship with the Wilsonbreen Formation (Halverson et al.
2004) may reflect this transport mechanism, where a northward-advancing
ice margin represented by the Wilsonbreen Formation drives the Bravika
Member to the north with katabatic winds coming off of the Marinoan ice
sheet.

The microtextural samples analyzed in this study are specific to the
interval in Buldrevagen that is proximal to the Wilsonbreen contact. Given
the wide range of possible facies proposed by Halverson et al. (2004),
Halverson (2011), Hoffman et al. (2012), and this study, the Bravika
Member may represent multiple depositional environments across
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localities that capture a transition from the Cryogenian interglacial to the
Marinoan pan-glaciation.

Important questions remain about the apportionment of time in the strata
that record the Cryogenian interglacial in Svalbard. The absence of the pre-
Marinoan Trezona negative 8'°C excursion below the Wilsonbreen
Formation has been used to suggest that the sedimentary package between
the Petrovbreen Member and the Wilsonbreen Formation is top-truncated
(Hoffman et al. 2012; Fairchild et al. 2016; Halverson et al. 2018). The
locations of the hiatal surfaces in the Bravika Member remain ambiguous,
and their locations are critical to understanding the apportionment of time
in these units and in the interglacial. Our work suggests that the uppermost
aeolian deposition in the Bravika Member is continuous with the start of
Wilsonbreen deposition, but there may be important hiatal surfaces lower
in the Bravika Member.

CONCLUSIONS

Quartz surface microtextures preserve the transport histories of modern
and ancient sediment. However, because workers count microtextures
differently for samples from the same depositional environment, the
defining microtextures of certain transport modes are not well constrained.
We used PCA to directly compare quantitative microtextural data from
modern and ancient aeolian, fluvial, and glacial sediments across workers.
Although differences between workers are the largest sources of variance
in the dataset, the PCA ordination shows that acolian samples are
microtexturally distinct from fluvial and glacial samples across studies.
Fluvial and glacial samples are difficult to disambiguate from each other in
this dataset, indicating that more work needs to be done comparing fluvial,
glaciofluvial, and glacial samples with each other. The PCA ordination also
demonstrates that ancient sediments and modern sediments have
quantitatively similar microtextural relationships. Therefore, PCA may be
a useful tool to elucidate the ambiguous transport histories of some ancient
sediment grains. As a test case, we used PCA to constrain the depositional
environment of the ambiguous Cryogenian Bravika Member from
Svalbard. This ordination, combined with field observations, indicates
that the Bravika Member includes aeolian deposition, and suggests that the
Bravika Member may be analogous to syn-glacial Marinoan aeolian sand
seas such as the Bakoye Formation in Mali and the Whyalla Sandstone in
South Australia. This study demonstrates that PCA can distinguish
sedimentary environments across multiple studies, which in turn helps
constrain the depositional history of ambiguous sedimentary deposits like
the Bravika Member.

SUPPLEMENTAL MATERIAL

All supplementary materials related to this study—including detailed sample
descriptions, additional notes on PCA analysis, code, raw microtextural data,
and SEM images—are available at https://github.com/jreahl/Reahl_2020 and
from the SEPM Data Archive: https://www.sepm.org/supplemental-materials.
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