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ABSTRACT
We use correlative field studies and high-resolution multispectral 
remote sensing data from the WorldView-2 instrument to estimate 
the abundance of photosynthetically active biomass (photoauto-
trophs consisting primarily of microbial mats and mosses) in 
Canada Stream in Taylor Valley, McMurdo Dry Valleys (MDV), 
Antarctica. In situ field investigations were performed to (1) acquire 
ground validation targets for atmospherically correcting satellite 
imagery, (2) derive spectra of “pure” geologic and biological end-
members, (3) estimate photoautotroph cover from remote sensing 
data, and (4) convert these coverage estimates to biomass using 
data collected in the field. Our results suggest that, on the morning 
of 12 December 2018, the Canada Stream system contained more 
than 3,800 kg of photosynthetically active carbon. Extrapolating our 
unmixing results to the entirety of the Fryxell basin of Taylor Valley, 
Antarctica, we model the presence of more than 750,000 kg of 
photosynthetically active carbon across the landscape and carbon 
fixation rates roughly equivalent to five hectares of tropical rain-
forest. The ability to spatially and temporally quantify the amount 
of photosynthetically active biomass using remote sensing data in 
the MDV of Antarctica is a revolutionary development that will help 
elucidate the ecological drivers and environmental responses in 
this cold desert landscape.

1.0 Introduction

Ice-free regions of Antarctica are among the most extreme terrestrial environments on 
Earth, with the McMurdo Dry Valleys (MDV) representing some of the best studied 
examples of these landscapes. Persistent cold temperatures and hyper-arid conditions 
exemplify this polar desert landscape: liquid water is rare, precipitation (primarily in the 
form of snow) rarely accumulates for more than a few hours at a time, and there is an 
absence of macro-scale vegetation. As a result, this seemingly barren landscape is mini-
mally impacted by biological influences that dominate most terrestrial landscapes. In 
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addition, seasonal variations in environmental conditions are dramatic (Doran et al. 2002). 
Summer conditions are characterized by perpetual daylight, temperatures near (and 
periodically above) freezing, and high ultraviolet (UV) radiation fluxes resulting from the 
polar ozone hole. These conditions promote the melting of snow, glacial ice, and subsur-
face ice for ~6–10 weeks per year, charging the environment with the most limiting 
ecological resource in the MDV: liquid water (McKnight et al. 1999; Barrett et al., 2008; 
Wlostowski et al. 2016; Niederberger et al. 2019). In contrast, winter conditions are beset 
by perpetual darkness, temperatures near -50°C, wind speeds that can regularly reach 100 
miles per hour, and the complete absence of liquid water in terrestrial environments.

Despite these extreme environmental conditions, unique biological communities 
composed of prokaryotes, protists, and invertebrates occupy the MDV and are well- 
adapted to the extreme environmental seasonality (Takacs-Vesbach et al. 2010). MDV 
lakes, streams, and soils all host unique communities that are adapted to survive in the 
harsh Antarctic environment (Wynn-Williams 1996; Alger et al., 1997; McKnight et al. 1999; 
Fritsen et al., 2000; Barrett et al. 2006; Kohler et al. 2015; Zhang et al. 2015; Van Horn et al. 
2016). While the diversity and function of these communities has been extensively 
investigated by the McMurdo Dry Valleys Long-Term Ecological Research (MCM LTER) 
Programme and other researchers, quantifying biomass and productivity throughout the 
region has been historically difficult. This is, in part, because of the “patchiness” of these 
communities throughout the landscape and their rapid response to changes in the 
availability of organic and inorganic materials, sunlight, and liquid water (Moorhead 
et al. 1999; Virginia and Wall 1999; Niederberger et al. 2019). Fountain et al. (1999) 
describe the MDV as an “extremely climate-sensitive environment,” where small changes 
in environmental conditions can have large effects on ecosystem dynamics. This is high-
lighted by processes including cryptobiosis, where ecosystems can suspend critical biolo-
gical functions when environmental conditions become unfavourable, only to recover 
within minutes (Vincent and Howard-Williams 1986; Hawes, Howard-Williams, and 
Vincent 1992; McKnight et al. 2007; Kohler et al. 2015). Aeolian redistribution of biological 
materials has also been shown to result in variations in both the abundance and composi-
tion of biotic communities throughout Taylor Valley (Nkem et al. 2006; Michaud, Šabacká, 
and Priscu 2012). This “patchiness” (in space, time, and composition) of ecological com-
munities throughout the MDV makes it difficult to accurately quantify primary production 
and biomass in the MDV without the ability to resolve all three dimensions of ecosystem 
dynamics.

The eastern end of Taylor Valley of the MDV has been particularly well studied because 
of the diversity of soil biota and the numerous meltwater streams, which exhibit seasonal 
variability of environmental conditions. Specifically, the area surrounding perennially 
frozen Lake Fryxell (hereafter, the Fryxell basin) has been shown to host a variety of soil 
and stream communities that exhibit high degrees of spatial and temporal variations in 
water availability and soil properties (Gooseff et al. 2017). Photoautotrophic communities 
composed of cyanobacteria, eukaryotic microalgae, and mosses are the most conspicuous 
of these communities, as they form spatially coherent mats within and near ephemeral 
stream channels and lake margins. Each community is uniquely adapted to survive and 
take advantage of microenvironmental conditions that are present throughout the basin 
(Alger et al., 1997; Kohler et al. 2015). For example, microbial mat communities dominated 
by the desiccation-resistant cyanobacterial genus Nostoc (colloquially and broadly 

8598 M. R. SALVATORE ET AL.



referred to as “black mats”) dominate the exposed subaerial margins of stream channels 
where they are less likely to be scoured by high stream flow (Kohler et al. 2015). 
Alternatively, microbial mats dominated by Oscillatoria and Phormidium genera (referred 
to as “orange mats”) primarily occupy the higher flow thalwegs of stream channels where 
they are more firmly anchored to the streambed. Nostoc and Oscillatoria comprise the 
most areally abundant microbial mat communities found in the Fryxell basin (Alger et al., 
1997), while “green mats” (dominated by the green algal genus Prasiola) and “red mats” 
(dominated by Oscillatoria, Phormidium, and Leptolyngbya) are generally less abundant 
(Alger et al., 1997). These algal mats are clearly growing during the austral summer as 
daily pulses of meltwater generate enough shear stress to cause sloughing and release of 
mat material (Cullis, Stanish, and McKnight 2014), instigating re-growth. Mosses (domi-
nated by the genus Bryum) are also widespread throughout Taylor Valley, primarily 
occupying landscape positions that are intermittently wet like stream margins and soils 
influenced by snow packs (Schwarz, Green, and Seppelt 1992; Seppelt et al. 1992; Alger 
et al., 1997; McKnight and Tate 1997; Ball and Virginia 2014).

In this study, we build on previous studies (Salvatore 2015; Power et al. 2020; Salvatore 
et al. 2020) to develop and validate a means of quantifying the distribution and abun-
dance of photosynthetically active terrestrial biomass throughout the Fryxell basin using 
high-resolution multispectral satellite data, concurrent spectral validation in the field, and 
spectral mixture analysis (SMA) techniques. We are able to remotely characterize these 
active photoautotrophic communities because of the absence of vascular plant canopies. 
Significant spectral differences between these communities and underlying geologic 
materials simplifies our remote sensing efforts relative to other more complex ecological 
systems. Despite this relative simplicity, the rapid changes in ecosystem processes and 
photoautotroph response to local environmental conditions requires coordinated spatial 
and spectral validation efforts. Beyond this instantaneous characterization of photoauto-
trophic communities throughout the Fryxell basin, our work develops a critically impor-
tant “Rosetta Stone” for remotely quantifying biomass in the MDV using validated orbital 
data and remote sensing techniques that can be implemented when concurrent field 
validation is not possible.

2.0 Study Region

Taylor Valley in the MDV is an approximately WSW-ENE trending glacial valley with its 
mouth approximately 80 km northwest of McMurdo Station. To the west, Taylor Valley is 
bounded by Taylor Glacier, which originates from the East Antarctic Ice Sheet. To the east, 
the valley broadens towards Explorer’s Cove located on the McMurdo Sound. Between 
Taylor Glacier and the McMurdo Sound, Taylor Valley hosts three main topographic basins 
that contain permanently ice-covered lakes fed by streams that drain meltwater from 
nearby glaciers: Lake Bonney to the west, Lake Hoare in the centre, and Lake Fryxell 
(Figure 1) to the east. From west to east, these basins transition from narrower with 
steeper walls to broader and more shallow slopes in the Fryxell basin. A result of this 
broadening is that meltwater streams can reach a greater width and length in the Fryxell 
basin than any other sub-basin in Taylor Valley, which also facilitates a greater abundance 
of stream-fed ecosystems.
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Lake Fryxell is fed by eleven meltwater streams that are intermittently active for 
up to ~10 weeks of the year during the peak solar illumination and temperatures of 
the austral summer (Alger et al., 1997). The channels range in morphology from 
broad and braided to highly incised with steep slopes, with channel floors also 
ranging from sand- to cobble-dominated. Discharge from each stream channel is 
extremely variable and intermittent relative to temperate streams, and is dependent 
on several variables, most notably air temperature and solar insolation at their source 
(Conovitz et al. 1998; Wlostowski et al. 2016). The variability in morphology and 
activity of these stream systems significantly influences their resident communities, 
with greater biomass present in broad flat streams with cobble-dominated beds and 
more consistent discharge (Alger et al., 1997).

Canada Stream is located northwest of Lake Fryxell, draining the eastern margins 
of Canada Glacier into Lake Fryxell down a relatively steep (0.041 m m−1) topo-
graphic gradient (Figure 2). The stream hosts a wide range of morphological and 
hydrological settings, from relatively flat and braided expanses, to large ponds, to 
deeply incised and narrow channels, to anastomosing channels within a deltaic 
formation at the terminus of the stream (McKnight and Tate 1997). This diversity, 
in addition to the regularity of fluvial activity of this system, fuels one of the densest 

Figure 1. An overview of the Fryxell basin of Taylor Valley, Antarctica. The Canada Antarctic Specially 
Protected Area (ASPA) and three spectral sampling grids, indicated by black numbers, can be seen to 
the east of Canada Glacier. Ca = Canada Stream, Hu = Huey Creek, LS = Lost Seal Stream, M = 
McKnight Creek, A = Aiken Creek, VG = Von Guerard Stream, Ha = Harnish Creek, C = Crescent Stream, 
D = Delta Stream, G = Green Creek, and B = Bowles Creek. Data © 2018 DigitalGlobe, Inc.
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and most biologically diverse ecosystems in the entirety of the MDV (McKnight and 
Tate 1997), which led to its designation as an Antarctic Specially Protected Area 
(ASPA; Seppelt et al. 1992).

A WorldView-2 (WV02) image of the Fryxell basin was acquired on 12 December 2018 
at 08:00:21 local time (11 December 2018 21:00:21 GMT), approximately 1 h after our team 
began collecting field data in the Canada ASPA. Field spectra were collected in three 
predetermined grids within the Canada Stream system (Figs. 1 and 2). Grid 1 is located in 
the Canada Stream delta, which is dominated by patchy distributions of primarily black 
and orange microbial mat communities with spatially limited exposures of green mat and 
moss. Grid 2 is located in the main channel of Canada Stream approximately 
200 m upstream of the stream gauge maintained by the MCM LTER Programme. At the 
time of this study, Grid 2 was dominated by shallow flowing water (~10–30 cm depth) 
with a mixture of sand, cobbles, and orange microbial mats along the streambed. Grid 3 is 
located in the heavily vegetated region adjacent to Canada Glacier known as the “Flush,” 
which is dominated largely by black microbial communities and mosses that occupy 
saturated sandy and pebbly substrates (Seppelt et al. 1992; Power et al. 2020).

3.0 Methods

3.1 Field Methods

3.1.1 Reflectance Spectroscopy
Reflectance spectra were acquired in the field for three primary applications: orbital image 
calibration, surface endmember characterization, and spectral comparison with orbital 
data over ecological regions of interest. Prior to our field campaign, grids of 20 m × 
20 m with individual points 5 m apart were established using ArcGIS and previously 
collected WV02 multispectral data over areas of variable biological coverage as well as 
invariant geologic landscapes (e.g., Figure 3). The invariant geologic surfaces were used to 

Figure 2. A closer view of the Canada ASPA, with Canada Stream and the three spectral sampling grids 
identified. Data © 2018 DigitalGlobe, Inc.
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calibrate orbital data to surface reflectance (see below), while the other grids were 
designed to capture the full range of spectral signatures over different types of 
ecosystems.

At each of the 25 individual points per grid, 150 individual spectra were acquired in 
three orientations relative to the direction of solar illumination. Data were collected at 
shoulder height above the surface and at arm’s length from the collector, who only wore 
matte black clothing during spectral collection to minimize the risk of spurious scattering 
into the spectrometer (Figure 3b). Data were only collected under cloud-free conditions to 
minimize indirect atmospheric scattering and for the best comparison to orbital data. In 
addition to spectral grids, spectra of archetypal geologic materials and photoautotrophic 
communities were also acquired. These spectra were acquired to represent the full range 
of potential spectral endmembers that might be present in orbital multispectral data.

Figure 3. (a) A pan-sharpened view of Grid 1 in the delta of Canada Stream. Each individual point 
represents a spectral sampling location. The yellow dot indicates the location of (b), which is where 
the investigator is collecting data from in the photograph. Data © 2018 DigitalGlobe, Inc. Photograph 
courtesy of MRS.
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Field spectra were acquired using a portable visible/near-infrared FieldSpec4 Hi-Res 
field spectrometer manufactured by Analytical Spectral Devices, Inc. (now Malvern 
Panalytical). This hyperspectral instrument collects data between 0.35 µm and 2.50 µm 
over 2,151 spectral bands, with a spectral sampling of 1 nm and a resolution of 3 nm and 8 
nm over the visible and near-infrared wavelength ranges, respectively. Data were cali-
brated to surface reflectance using a Spectralon white reference at least once every 20 
min or whenever solar illumination conditions were observed to change. Spectralon 
contains weak absorption features at 2.14 µm and 2.43 µm (Clark et al. 1990; Zhang 
et al. 2014), which can be empirically removed by multiplying the resultant reflectance 
spectra by the measured Spectralon reference spectrum. This simple empirical correction 
is effective for most field applications (Zhang et al. 2014). Once acquired, spectral data 
were individually investigated for spectral artefacts or issues before being averaged as an 
entire grid. This average spectrum was then interpreted to represent the surface signature 
that should be observable from orbit at that specific location. Hyperspectral field data 
were downsampled to WV02 bandpasses using the spectral bandpass information con-
tained in Updike and Comp (2010), making it possible to directly compare these data to 
those derived from the WV02 instrument.

Lastly, downsampled field spectra were linearly unmixed using a library derived from 
in situ spectra of pure geologic and biological materials, which served as spectral “end-
members” in our efforts to model their abundances (Figure 4). We use a linear SMA to 
mathematically model the spectral contribution of individual surface components present 
at the subpixel level (Lawson and Hanson 1974; Adams, Smith, and Gillespie 1993; Ramsey 
and Christensen 1998; Salvatore et al. 2020). SMA linearly combines a library of “pure” 

Figure 4. Spectral endmembers used in our linear unmixing models. Hyperspectral field data are 
shown in lighter lines, with the darker lines representing the data following downsampling to 
WorldView-2 resolutions. Data are offset for clarity.
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spectral endmembers to match the measured spectral signature while reducing the misfit 
between measured and modelled spectra, recorded as the root-mean-square (RMS) error. 
The reflectance (R) measured for each band (λ) at each pixel (p) is modelled as the sum of 
reflectance values for all combined endmembers (integers i through n) in each band, 
weighted by their areal abundance in that pixel (ζ). The residual error between the 
measured reflectance spectrum and the model result at each wavelength (δ(λ)) is also 
calculated, providing the ability to quantify the model’s goodness of fit as its RMS error. 
There is also a constraint that requires all endmember fractions to sum to unity (1.0), 
which indicates that each pixel is made entirely of a combination of the provided 
endmembers: 

R λÖ Üp à
Xn

ià1
ζ iR λÖ Üi á δ λÖ Ü �

Xn

ià1
ζ i à 1:0 (1) 

Linear SMA is appropriate for this investigation because volumetric and multiple scatter-
ing is relatively small in this environment, which is dominated by optically opaque 
geologic and photoautotrophic endmembers (Roberts, Adams, and Smith 1993; Peddle, 
Hall, and LeDrew 1999; Salvatore et al. 2020). Endmember libraries for use with linear SMA 
can contain up to eight spectral endmembers, which is restricted based on the number of 
spectral bands and degrees of freedom in the data that are being unmixed (Adams, Smith, 
and Gillespie 1993; Ramsey and Christensen 1998). We chose to first downsample our 
hyperspectral data to the eight WV02 spectral bands to ensure consistency between our 
field and orbital observations, as one of the goals of this investigation is to determine the 
accuracy of remote sensing techniques for ecological observations in the MDV. Our 
chosen endmember library (Table 1 and Figure 4) contained seven individual endmem-
bers that were representative of both the surrounding landscape and the photoauto-
trophic communities present within the Canada Stream system. Desiccated and inactive 
microbial mat and moss communities were not included in our endmember library, as the 
diagnostic spectral features found in actively photosynthesizing communities are signifi-
cantly reduced in desiccated communities, becoming largely indistinguishable from local 
soils (Barták et al. 2016; Trnková and Barták 2017). As a result, our methods are only able to 
identify and quantify the abundance of active photosynthetic biomass and not the total 
amount of active and inactive biomass that is present. The eighth spectral endmember 

Table 1. Spectral endmembers used in the linear unmixing of both field and orbital data

Endmember
Date of 

Collection
Location of 
Collection Notes

Soil #1 12/20/2018 Crescent Stream Dry, bright
Soil #2 12/22/2018 Bowles Creek Damp, dark
Water 

(Derived)
01/16/2019 Fryxell Camp Derived from experiment to test the effect of shallow water depths on 

spectral signatures
Black Mat 01/10/2019 Canada Stream Active, saturated
Moss 01/25/2019 Bowles Creek Active, damp
Orange Mat 

#1
01/15/2019 Bowles Creek Active, saturated

Orange Mat 
#2

01/25/2019 Bowles Creek Active, lighter (lightly bleached)
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was an artificial linear spectrum that is designed to scale the overall brightness of the 
surface, accounting for properties that include variations in solar illumination, topogra-
phy, and surface roughness, among other factors that influence surface albedo.

Due to spectral and radiative nonlinearities present in the visible and near-infrared 
(VNIR) portions of the electromagnetic spectrum, linear unmixing models are typically not 
used on VNIR reflectance data. Instead, complex nonlinear radiative transfer modelling is 
most commonly used to account for these complexities (e.g., Hapke 1993). We chose to 
use a linear unmixing model in this investigation for several reasons. Linear models are far 
less computationally taxing than nonlinear models, which allows us to use this same 
technique to unmix both individual field spectra in addition to the tens of millions of 
spectra contained within a single WV02 multispectral image in relatively short order. In 
addition, nonlinear behaviours are typically absent or minor among most materials being 
modelled, as these materials are generally opaque throughout the relatively short wave-
length range covered by the WV02 sensor (Rodríguez-Caballero, Escribano, and Cantón 
2014). Their opacity, therefore, ensures that the areal abundance of surface materials is 
generally representative of the bulk volumetric abundances as well. While some photo-
autotrophic communities have been found to create partially transparent films, the areal 
distribution of these complex relationships was observed to be the exception rather than 
the norm. Additionally, the unmixing model used here will still be able to positively 
identify both spectral contributions so long as each of the biological components is 
provided as a spectral endmember in our library, even if the relative abundance of 
these components is imprecise. For these reasons, in addition to the observed consistency 
between field-measured surface abundances and those modelled using field spectra and 
remote sensing data, the use of a linear unmixing algorithm is appropriate for this work.

Our linear unmixing efforts were validated in the field using 30 cm diameter circular 
plots (~707 cm2) that were demarcated and measured using our field spectrometer. The 
abundance of different surface materials was estimated by eye to the nearest 5% and 
matched to the surface abundances derived using our linear unmixing technique. We 
analysed 29 different combinations of photoautotrophic and non-biological surface 
components to calculate the error between observed and modelled endmember abun-
dances. The results of these validation efforts are presented below.

3.1.2 Biology Coverage Estimates
Estimates of the areal abundance of biological materials within the three grids in Canada 
Stream were made using the National Ecological Observatory Network (NEON) Digital 
Hemispherical Photo (DHP) protocol, which was originally designed for skyward-facing 
estimates of canopy cover and revised for downward-facing estimates of ground cover. 
As designed for the standard DHP protocol, fisheye photos were acquired at waist 
height with the camera positioned horizontally towards the ground using a monopod. 
Images were acquired in the cardinal directions at distances of 2 m, 6 m, and 10 m from 
the centre of each grid within the Canada Stream system, resulting in a total of 12 
images from each grid.

Following DHP data acquisition, it became apparent that the software used to auto-
mate the identification of biological materials from DHP imagery was incapable of 
definitively differentiating between biological and nonbiological materials in these set-
tings. Specifically, the combination of standing water, shadow, and the similar colour of 
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the biological communities and the adjacent non-biological materials all led to incon-
sistent automated results that were not reproducible. Differentiating between pure 
microbial communities and complex mixtures of mats and mosses was also difficult 
given the nature of these images. Despite being less confident in our ability to differ-
entiate between different biological communities, our methods demonstrate consistency 
when estimating total biological coverage. To mitigate these aforementioned issues, we 
refined our methods to instead perform repeated manual and automated image classifi-
cations, the combination of which allowed us to confirm that our approach produced 
consistent results when estimating total coverage of biology.

In our refined approach, images were subset to the central 50% of the image, mini-
mizing the edge effects of the fisheye lens. The spatial coverage of biological materials 
was then estimated using various manual and automated techniques, including super-
vised and unsupervised classification schemes as well as manual identification. 
A demonstration of this DHP image analysis process can be seen in Figure 5. Data from 
Grid 2 in Canada Stream were deemed unusable for estimating biological coverage due to 
turbidity in the water that caused significant and spatially variable sun glint (Figure 6). As 
a result, accurate estimates of coverage could not be quantified at this grid location, and 
so Grid 2 was omitted from our field validation efforts and our correlative field and orbital 
spectroscopic study. Results for Grid 1 and Grid 3, however, are consistent between the 
different counting techniques.

Figure 5. Illustration of the methods used to estimate surface cover of biological materials in the field. 
(a) Original hemispherical image. (b) Central 50% of the image. (c) Non-biological materials identified 
and highlighted in red, which is used to approximate the surface cover of biological materials. (d) The 
results from three separate estimates of biological cover for the same image, along with the average 
value of ~90%. Image corresponds to Photo 6910 in Grid 3 of Canada Stream. Photos courtesy of LFS.
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3.1.3 Biological Sampling and Biomass Estimation
Biological samples were collected from within the Canada Stream system to derive areal 
estimates of biomass from different biological communities. Samples were collected from 
24 locations within the three Canada Stream spectral grids: 12 black mat samples, nine 
orange mat samples, and three moss samples. Sampling locations were determined based 
on observed spatial and biological variability within the microbial mat and moss commu-
nities present in the Canada Stream system. Samples were acquired using a 13 cork borer 
(2.27 cm2 circular plug) rinsed with deionized (DI) water. The cork borer was twisted and 
pressed through the entirety of the biological material until contact was made with the 
underlying sediments or cobbles. The biological material was then extracted using 
tweezers and placed in a sterile Whirl-Pak with local water from the stream (Figure 7).

Upon return to our field camp, the Whirl-Paks were emptied into filter units loaded 
with ashed Whatman® GF/C filters. DI water and a vacuum pump were used to facilitate 
the concentration of all biological material onto the filter. The filter containing the 

Figure 6. An example of a digital image collected for biological cover estimates in Grid 2 of Canada 
Stream. The shallow flowing water creates turbidity and ripples that make it impossible to accurately 
estimate biological coverage. Photo courtesy of LFS.

Figure 7. A photo of an investigator sampling orange mat using a cork borer. Photo courtesy of MRS.
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biological sample was then folded onto and sealed within aluminium foil, labelled, and 
stored in plastic petri dishes in a lab freezer at -20°C. Upon return to McMurdo Station, the 
filters were separated from the aluminium foil onto pre-weighed aluminium tins, dried at 
100°C for 24 h, and weighed before being moved to a muffle furnace and combusted at 
450°C for 5 h. Samples were reweighed to calculate ash-free dry mass (AFDM) per unit 
area for comparison to estimated biological surface cover from in situ and orbital 
measurements.

3.2 Remote Sensing

The WV02 sensor was launched by DigitalGlobe, Inc., on October 08, 2009, into a near- 
polar (98.4° inclination) sun-synchronous orbit with an altitude of 770 km and an orbital 
period of 100.2 min (Updike and Comp 2010). The sensor consists of eight multispectral 
bands spanning 0.427 µm to 0.908 µm and capable of achieving a maximum spatial 
resolution of roughly 3.39 square meters per pixel (m2/pixel), in addition to 
a panchromatic band capable of achieving a maximum spatial resolution of 0.21 m2/ 
pixel (Updike and Comp 2010). WV02 image 1030010089D13500 was acquired from the 
Polar Geospatial Center (PGC) through a cooperative agreement between the National 
Science Foundation and the National Geospatial Intelligence Agency and was orthorecti-
fied by the PGC using their catalogue of ground control points, resulting in geographic 
accuracies on the order of 1–2 pixels as determined based on studies using similar 
techniques (Aguilar et al., 2013).

3.2.1 Image Calibration
Raw digital number (DN) data were corrected and calibrated using the ENVI image 
processing software and the methods described in Salvatore (2015) and Salvatore et al. 
(2020). Sensor- and scene-specific information required for image processing and calibra-
tion can be found in Table 2 and Table 3, respectively. DN were first converted to top-of- 
atmosphere spectral radiance using the following equation from Updike and Comp 
(2010): 

Lλ;b;p à
Kb ⇥ qb;p
� �

Δλb;p
(2) 

Table 2. WorldView-2 sensor-specific information used in image calibration. From Updike and 
Comp (2010).

Band Center Wavelength (µm) Effective Bandwidth (µm) Esunλ (W m−2 µm−1)

1 0.427 0.0473 1758.2229
2 0.478 0.0543 1974.2416
3 0.546 0.0630 1856.4104
4 0.608 0.0374 1738.4791
5 0.659 0.0574 1559.4555
6 0.724 0.0393 1342.0695
7 0.831 0.0989 1069.7302
8 0.908 0.0996 861.2866
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where the top-of-atmosphere spectral radiance (Lλ) for each band (b) at each pixel (p) is 
equal to the product of the absolute radiometric calibration factor for each band (Kb) and 
the radiometrically corrected DN in each band at each pixel (qb,p) divided by the effective 
bandwidth for each band (Δλb,p) and applied to every pixel in the scene. These data were 
then converted to top-of-atmosphere reflectance using the following equation: 

ρλ;b;p à
Lλ;b;p ⇥ d2

ES ⇥ π
Esunλ;b ⇥ sin θS

(3) 

where the top-of-atmosphere reflectance (ρλ) for each band (b) at each pixel (p) is equal to 
the product of the top-of-atmosphere spectral radiance (Lλ,b,p), the square of the Earth- 
Sun distance (dES), and a π term that assumes a Lambertian surface, and divided by the 
product of the mean exoatmospheric solar irradiance calculated for each band (Esunλ,b) 
and the sine of the solar elevation angle at the time of image acquisition (θS). This 
calculation is again performed for each pixel in the image. Mean exoatmospheric solar 
irradiances were calculated using an exoatmospheric solar spectral irradiance standard 
(Thuillier et al., 2003).

The atmospheric contributions to this WV02 image were derived by comparing the 
WV02 top-of-atmosphere reflectance data to the five invariant geologic surfaces that were 
spectrally characterized during the 2018–2019 field campaign in Taylor Valley (Table 4). 
These five locations were selected based on their variable surface albedos (estimated from 
orbit), which provides a suitable dynamic range to determine the contributions of atmo-
spheric scattering irrespective of surface brightness. Spectral data for each of these five 
grids were acquired in a manner identical to the spectral grids for biological characteriza-
tion described above. Individual spectra were averaged to generate a single spectrum 
representative of the 20 m × 20 m surface. Data were then downsampled to WV02 
resolutions and quantitatively compared with the orbital data calibrated to top-of- 
atmosphere reflectance. Correlations between orbitally derived top-of-atmosphere reflec-
tance and field-derived surface reflectance were established and used to generate a suite 
of atmospheric corrections for the WV02 data (Table 3). WV02 data were then converted 
to surface reflectance by applying the band-specific correction factors to each top-of- 
atmosphere reflectance pixel. The accuracy of this calibration technique was confirmed 
using spectra of other regions within the Fryxell basin, including those containing 
biological and non-biological surface features. While previous studies in the Antarctic 

Table 3. WorldView-2 scene-specific information for the data used in this study, including derived 
atmospheric information

Image Image Properties Band
Absolute Radiometric Calibration Factor  

(Kb, W m−2 sr−1 count−1)

Atmospheric Correction 
Parameters

Slope Intercept R2

1030010089D13500 Date/Time of 
Acquisition: 
11 Dec. 2018 
21:00:21 GMT 
Earth-Sun 
Distance: 
0.98457 AU 
Solar Elevation: 
28.8°

1 0.01238844 0.955 -0.188 0.976
2 0.01783568 0.797 -0.122 0.999
3 0.01364197 0.770 -0.056 0.995
4 0.01228423 0.746 -0.021 0.991
5 0.01851735 0.704 -0.009 0.989
6 0.01095514 0.648 +0.006 0.984
7 0.02050828 0.641 +0.013 0.984
8 0.01206941 0.677 +0.025 0.978
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have had success using scene-derived atmospheric correction techniques for spectral 
comparisons and the generation of spectral parameters (Salvatore et al., 2014, Salvatore 
et al. 2020; Salvatore 2015; Power et al. 2020), quantitative comparisons to field-derived 
data necessitate validation beyond what is possible through remote scene-derived cali-
bration efforts. However, because of numerous unique aspects of Antarctic remote 
sensing, including the dearth of atmospheric information, the rapidly changing weather 
conditions, and the extreme viewing and illumination geometries, traditional atmospheric 
correction techniques using radiative transfer modelling have been found to inadequately 
calibrate data to surface reflectance (Salvatore et al., 2014). Consequently, the use of in situ 
ground validation targets provides a consistent means of deriving atmospheric properties 
without the need to make assumptions about atmospheric conditions or to derive atmo-
spheric spectra from scene-derived extrapolations.

3.2.2 Image Unmixing
Once calibrated to surface reflectance, each 8-band WV02 pixel was linearly unmixed 
using the same endmember library and methods described above for field spectra 
(Figure 8). The resultant dataset provides a two-dimensional view of modelled endmem-
ber abundances and RMS errors across the landscape, helping to identify whether 
a surface endmember was mistakenly omitted from the model. RMS errors are generally 
very low (typically less than 0.25%), indicating the good modelled fits between the input 
spectra and the modelled spectral results. Pixels where RMS errors surpassed 1% were 
omitted from our analyses as they indicate a lack of appropriate endmembers and 
typically correspond to features like snow packs or ice. Following this RMS omission, 

Table 4. Locations and descriptions of the five invariant grids used for deriving atmospherically 
corrected surface reflectance. “B#” represents the corresponding WorldView-2 bands, where B1 
denotes band 1, etc.

Location
Central 

Coordinates Description

Field-Measured Reflectance

B1 B2 B3 B4 B5 B6 B7 B8

Fryxell 
Camp

77.6048° S, 
163.1295° 
E

Flat alluvium deposit near 
terminus of Huey Creek. 
Surface dominated by 
pebbles.

0.125 0.139 0.165 0.178 0.178 0.176 0.172 0.169

Green 
Creek

77.6237° S, 
163.0587° 
E

Undulating surface between 
Green and Bowles creeks. 
Surface dominated by 
cobbles and sand.

0.113 0.128 0.154 0.169 0.171 0.170 0.165 0.161

North 
Fryxell

77.5959° S, 
163.1559° 
E

Gentle slope uphill from the 
margin of Lake Fryxell. 
Surface dominated by 
cobbles and sand.

0.100 0.111 0.130 0.141 0.143 0.142 0.138 0.134

F6 Camp 77.6132° S, 
163.2640° 
E

Upslope from F6 Camp. Basaltic 
clasts darken the surface 
relative to other nearby 
locales. Surface dominated by 
cobbles and sand.

0.095 0.105 0.121 0.131 0.132 0.131 0.127 0.125

Crescent  
Stream

77.6495° S, 
163.2161° 
E

Flat area east of Crescent 
Stream. Relatively bright 
materials dominated by 
granitic and 
metasedimentary pebbles.

0.104 0.117 0.139 0.151 0.152 0.151 0.178 0.145
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spatially coherent areas of higher RMS errors were still visible and were typically asso-
ciated with areas of complex endmember mixtures, deeper water, snow pack or ice 
margins that did not meet our RMS error threshold, or other factors. However, because 
of the overall low RMS errors and the good fits between the input and modelled spectra, 
these higher RMS errors are not concerning. Our ground validation demonstrates that, 
despite these slightly higher RMS errors, our model results are still consistent with field 
observations. These results verify that our chosen endmember library was sufficiently 
representative of the spectral complexity observed throughout the WV02 scene.

4.0 Results

4.1 Validating Spectral Unmixing Analyses

Our linear SMA validation efforts exhibited strong correlations between the abundances 
of photoautotrophic materials estimated in our 30 cm-diameter circular calibration plots 
and model results (Figure 9), suggesting that our unmixing efforts were able to accurately 
quantify the abundances of different surface endmember components in both simple and 
complex mixtures. The coefficient of determination (R2) value for the relationship 
between estimated and modelled total biomass abundances was found to be 0.97, with 
less than 3% disagreement between the linear relationship defined to relate the observed 
and modelled abundances. The average difference between the measured and modelled 
areal abundances of all surface biology was ± 10.7%, which is used throughout the 

Figure 8. (a) Context image of Canada Stream. Pink circle indicates the pixels where the spectra from 
(b) were acquired. (b) Remotely measured (black) and spectral mixture model- (SMA-) derived 
modelled spectra (pink) from the delta of Canada Stream, showing a good spectral fit (RMS error of 
0.21%) and reported modelled surface abundances. (c) The spatial distribution of modelled biological 
surface cover throughout Canada Stream. (d) The spatial distribution of model RMS errors, showing 
slightly higher RMS errors within Canada Stream where surface cover is more complex than the 
surrounding biology-poor landscape. Data © 2018 DigitalGlobe, Inc.
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remainder of this investigation as an estimate for all of our spectroscopy-based photo-
autotrophic community abundance estimates where scale and extent prevented direct 
field validation from being conducted.

4.2 Correlating Field and Remote Sensing Measurements

DHP imagery from Grid 1 and Grid 3 in the Canada Stream system were analysed to 
estimate total abundances (i.e., ground cover) of biological materials within these 
spectral grids. Photosynthetic biology was estimated to constitute 47.4 ± 2.5% and 
56.9 ± 1.8% cover of Grid 1 and Grid 3, respectively (Table 5). The reported errors 
represent the standard deviations among the three separate abundance estimates. 
However, significant heterogeneity in the patchiness of biological coverage was 
found in each of the grids, with intra-grid variability measured at 18.1 ± 1.7% in Grid 
1 and 28.3 ± 0.4% in Grid 3. These relatively high values indicate the extent of spatial 
variability, while the small standard deviations confirm the repeatability of our cover 
estimates.

Calibrated in situ field spectra and WV02 surface reflectance data from all three grids 
show remarkable spectral similarity and demonstrate the efficacy of our calibration 
processes (Figure 10). The ~4% higher overall reflectance observed in the orbital data 
relative to the field spectra may be the result of an incomplete geometric calibration 
when converting orbital data to surface reflectance, or potentially the result of different 
surface or atmospheric properties between when field validation measurements and 
orbital data were acquired. Regardless of this minor offset, the remarkably similar spectral 
shapes suggest that the spectra are accurately capturing the surface signatures as they 
relate to endmember abundances. Standard deviations between biological surface cover 
using DHP imagery, field spectra, and orbital spectra for Grid 1 and Grid 3 were calculated 
at 4.4% and 0.8%, respectively. Additionally, the RMS errors between measured field and 
orbital reflectance spectra and the derived SMA models is very low (average of 0.195%). 
These small errors and standard deviations all demonstrate that our linear SMA techni-
ques and selected endmember library can accurately model the observed spectra and 
predict the surface abundance of biological materials (Table 6).

Figure 9. Comparisons between measured surface abundances of different endmembers and mod-
elled abundances using linear unmixing. SMA models were run using the same endmember library 
described above. Error bars represent the average offset between measured and modelled abun-
dances. (a) Black mat; (b) orange mat; and (c) total biomass.
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4.3 Extrapolating Beyond the Canada Stream Validation Sites

Once we have demonstrated that orbital multispectral data can be used to accurately 
estimate the areal coverage of actively photosynthesizing biological materials, we 
can expand these techniques beyond our validation sites and into the entirety of 
Canada Stream, the Canada ASPA, and the broader Fryxell basin (Figure 11). These 
broader model results are presented in Table 6. Our results suggest that, on average, 
the floor of Canada Stream was approximately 30% covered with actively photo-
synthesizing biology at the time of WV02 image acquisition. The Canada ASPA (see 
Figure 2) is modelled as having 12.3% cover of photosynthetic biomass, while the 
Fryxell basin (outlined in Figure 11 and defined as the area surrounding Lake Fryxell 
below 250 m elevation and bound by 162.99°E to the west and 163.36°E to the east) 
is modelled as having 5.7% cover by photoautotrophic communities. This basin-wide 
calculation contains both highly vegetated stream channels as well as relatively 
barren soils. Given the 53.5 km2 area of the Fryxell basin (excluding Lake Fryxell 
itself), this equates to roughly 3.2 km2 of biological surface materials, or equivalent to 
roughly half of the frozen extent of Lake Fryxell itself.

Table 5. Digital Hemispherical Photo- (DHP-) derived biological abundances at Grid 1 and Grid 3 
within Canada Stream. Reported are both the abundances of biological materials and the techniques 
used to estimate their abundances for each count. Abundances could not be estimated for Grid 1 
because of specular reflection and turbulence in the water. UC = Unsupervised Classification, SC = 
Supervised Classification, “Rocks” = quantified abundance of rocks, “Bio” = quantified abundance of 
mats.

Location Photo

Count 1 Count 2 Count 3 Average & 
Standard 

Deviation (SD) 
(%)

Biological 
Abundance 

(%) Technique

Biological 
Abundance 

(%) Technique

Biological 
Abundance 

(%) Technique
Grid 1 6845 73.7 UC 73.2 Rocks 70.7 Rocks 27.5 ± 1.6

6846 55.0 UC 53.8 Rocks 46.9 Bio 51.9 ± 4.4
6847 35.9 UC 36.2 Bio 38.1 Bio 36.7 ± 1.2
6851 71.0 Rocks 73.2 UC 63.6 Rocks 69.3 ± 5.0
6852 76.2 Rocks 75.3 UC 67.8 Rocks 73.1 ± 4.6
6853 62.2 Rocks 50.5 UC 50.3 Bio 54.3 ± 6.8
6854 14.5 Bio 17.5 Bio 15.7 Bio 15.9 ± 1.5
6855 32.8 Bio 41.7 Rocks 35.9 Bio 36.8 ± 4.5
6856 25.1 Bio 26.6 Bio 29.3 Bio 27.0 ± 2.2
6857 37.9 Rocks 41.3 Rocks 38.5 Bio 39.2 ± 1.8
6858 51.5 UC 46.1 SC 37.6 Bio 45.1 ± 7.0
6859 50.4 UC 34.5 UC 35.2 Rocks 40.0 ± 9.0

Average 48.8 47.5 44.1 47.4 ± 2.5
SD 19.9 18.7 16.5 18.1 ± 1.7

Grid 3 6902 17.0 UC 12.3 Bio 13.9 Bio 14.4 ± 2.4
6903 91.8 UC 90.6 Rocks 90.4 Rocks 90.9 ± 0.7
6904 55.8 UC 68.5 Rocks 62.8 Bio 62.4 ± 6.4
6905 45.4 Rocks 40.6 Bio 42.6 Bio 42.8 ± 2.4
6906 19.1 Rocks 19.2 Bio 19.3 Bio 19.2 ± 0.1
6907 33.6 Rocks 32.2 Bio 36.0 Bio 33.9 ± 1.9
6908 57.6 Bio 59.3 Rocks 57.0 Rocks 58.0 ± 1.2
6909 82.8 Bio 78.2 Rocks 81.5 Rocks 80.8 ± 2.4
6910 90.5 Bio 89.8 Rocks 90.3 Rocks 90.2 ± 0.4
6911 76.0 Rocks 75.3 Bio 76.8 Rocks 76.1 ± 0.8

Average 57.0 56.6 57.1 56.9 ± 1.8
SD 28.0 28.7 28.2 28.3 ± 0.4
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4.4 Extrapolating Remote Sensing Data to Biomass

Our AFDM estimates are presented in Table 7 and average 0.6973 ± 0.2740 kg m−2 (n = 
12), 0.2047 ± 0.0548 kg m−2 (n = 9), and 0.6627 ± 0.2388 kg m−2 (n = 3) for black mats, 
orange mats, and mosses, respectively. Because our spectral unmixing analyses report 
per cent abundances of each endmember, and because the size of our remote sensing 
pixels and field grids are known, we are able to convert these percentages to biomass 
using these AFDM calculations. Our calculations and error estimates suggest that the 
Fryxell basin contains a total photosynthetic biomass of 1.43 × 106 kg (± 10.7%). 
Assuming an organic carbon content of 53% in the biological materials studied here 
(Wetzel, 1983; Power et al. 2020), this translates to an abundance of organic carbon of 
7.57 × 105 kg. This represents the first spatially, spectrally, and biologically validated 
estimate of biomass and organic carbon throughout the Fryxell basin, representing 
a singular snapshot in time that can be repeated using archived orbital data or data yet 
to be collected.

5.0 Discussion

Our spectral measurements acquired concurrently in the field and from orbit, in 
addition to the field sampling and surveying of photoautotrophic communities, 
serve as a critically valuable and complementary dataset that provides the founda-
tion for our quantitative investigation of biomass throughout the Fryxell basin. 
These concurrent measurements are the only means by which it is possible to 
validate our remote sensing and spectral modelling efforts of these highly variable 
ecosystems that can respond rapidly to changing environmental conditions. 
Calibrating these remote sensing techniques and quantitatively demonstrating the 
ability to accurately model biological surface coverage and biomass allows for 

Figure 10. Field- and orbital-derived spectra from the three gridded locations in Canada Stream. Light 
lines represent the original hyperspectral data collected using the field spectrometer before down-
sampling to WorldView-2 resolutions (bold lines). Despite the ~4% offset between field and orbital 
data, the spectral signatures are very similar and indicate the efficacy of the WorldView-2 atmospheric 
correction technique.
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future remote sensing investigations to do the same using our derived field 
validation efforts as opposed to requiring concurrent field validation. Therefore, 
this study validates this remote sensing technique and establishes a means of 
assessing the coverage of actively photosynthesizing communities and their bio-
mass remotely over both space and time.

To determine the relative contribution of soils to the total modelled photosynthetic 
carbon throughout the Fryxell basin, we subset the basin into low production areas (i.e., 
soils) and high production areas (i.e., streams, ponds, lake margins) using a photosynthetic 
carbon threshold of 75 g C m−2, which corresponds to half of the average total organic 
carbon abundance in Taylor Valley reported in Burkins, Virginia, and Wall (2001) (see 
below for a discussion corresponding to the similarities and differences between our 
estimates and those of previous field studies). Low production areas make up 96.25% of 
the basin’s total surface area with an average photosynthetic carbon abundance of 18.2 ± 
19.1 g C m−2, while high production areas make up 3.75% of the basin’s total surface area 
with an average photosynthetic carbon abundance of 90.7 ± 19.9 g C m−2. Importantly, 
these results suggest that only 16.2% of the total modelled active photosynthetic carbon 
in the Fryxell basin can be found in these high production areas, while the remaining 
83.8% of modelled photosynthetic carbon can be attributed to low production areas.

Figure 11. A map of modelled biomass across the entirety of the Fryxell basin. While individual stream 
channels and ponds appear to have high biomass, the vast majority of the landscape shows very low 
biomass abundances that, areally, are significant contributors to the overall Fryxell basin biomass. 
Data © 2018 DigitalGlobe, Inc.
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On average, our estimates of total active photoautotrophic biomass and organic 
carbon throughout the Fryxell basin are lower than, yet comparable to, previously 
derived estimates using field data and broad spatial extrapolations. Our SMA results 
and biomass conversions estimate that the soils of Canada ASPA outside of the 
vegetated stream channel contains approximately 20.2 ± 23.1 g C m−2 in photoauto-
trophic biomass exposed at the surface. This is slightly lower yet congruent with the 
results of Barrett et al. (2006), who measured organic carbon content in Taylor Valley 
soils between 23 ± 3.5 and 69 ± 10 g C m−2. Burkins, Virginia, and Wall (2001) derive 
an average Taylor Valley soil organic carbon content of ~150 g C m−2 with a range 
from 37 to 260 g C m−2.

Lastly, the MCM LTER Program’s Soil Elevational Transect Experiment (Wall and Virginia 
2005) measured organic carbon biomass in 26 soils samples from three locations in the 
Hoare basin and derived an average value of 11.1 ± 2.5 µg C g−1 soil (Table 8). The WV02 
image used in our study covers these sampling locations in the Hoare basin as well, and 
our modelled estimate over the same area was found to be 11.6 ± 11.6 µg C g−1 soil. We 
derived our statistics from an average of nine pixels centred over each of the MCM LTER 
soil sampling locations.

All three of the above studies (Burkins, Virginia, and Wall 2001; Wall and Virginia 
2005; Barrett et al. 2006) derived their soil carbon estimates using aggregated soils 
from the uppermost 10 cm of the surface, which integrated a much greater volume 

Table 7. Ash-free dry mass (AFDM) calculations from samples in Canada Stream. All samples were 
collected on 12 December 2018, the same day as the WorldView-2 and field spectral data were 
collected.

Location Sample Name Type AFDM (g) AFDM (kg m−2)
Grid 1 P01SP01 Orange Mat 0.0449 0.1978

P01SP02 Moss 0.1178 0.5189
P01SP03 Black Mat 0.1322 0.5824
P01SP04 Black Mat 0.1766 0.7780
P01SP05 Orange Mat 0.0544 0.2396
P01SP06 Orange Mat 0.0489 0.2154
P01SP07 Orange Mat 0.0309 0.1361
P01SP08 Black Mat 0.1093 0.4815
P01SP09 Orange Mat 0.0264 0.1163
P01SP10 Black Mat 0.0789 0.3476

Grid 2 P02SP01 Black Mat 0.1921 0.8463
P02SP02 Orange Mat 0.0674 0.2969
P02SP03 Orange Mat 0.0482 0.2123
P02SP04 Black Mat 0.1259 0.5546
P02SP05 Orange Mat 0.0424 0.1868
P02SP06 Black Mat 0.1433 0.6313
P02SP07 Orange Mat 0.0546 0.2405
P02SP08 Black Mat 0.0708 0.3119

Grid 3 P03SP01 Black Mat 0.1814 0.7991
P03SP02 Moss 0.2130 0.9383
P03SP03 Moss 0.1205 0.5308
P03SP04 Black Mat 0.2410 1.0617
P03SP05 Black Mat 0.1658 0.7304
P03SP06 Black Mat 0.2821 1.2427

AVERAGES Black Mat (n = 12) 0.1583 ± 0.0662 0.6973 ± 0.2740
Orange Mat (n = 9) 0.0465 ± 0.0125 0.2047 ± 0.0548
Moss (n = 3) 0.1504 ± 0.0542 0.6627 ± 0.2388
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of soil (and organic carbon) per square meter than our remote sensing approaches. 
Reflectance spectroscopy is only sensitive to the uppermost optical surface (typically 
less than 1 mm), which is the likely reason for the discrepancy between our esti-
mates and previously derived estimates. Our large model error is likely the result of 
both spatial heterogeneity in modelled biomass abundance as well as the statistics of 
small values outside of the productive stream channels. Further ground validation 
efforts in areas of low photosynthetic biology abundances are ongoing and will help 
to constrain this model uncertainty.

Power et al. (2020) also utilized remote sensing to derive total organic carbon abun-
dance in the Canada ASPA by calculating the Normalized Difference Vegetation Index 
(NDVI) and validating these values with in situ validation points of ground sampling and 
surveying. They estimated a total organic carbon abundance of 21,715 kg C in the Canada 
ASPA using satellite data from January of 2018, which is slightly more than half of our 
estimated value of 38,559.1 kg C in December of 2018. The discrepancy between our 
study and that of Power et al. (2020) is potentially due to their use of a NDVI detection 
threshold that minimized the number of pixels aggregated into their overall calculation. It 
is also unclear how the activity (and, comparably, the detectability) of photosynthetic 
biomass outside of stream channels changes over time with changes in environmental 
conditions (e.g., weather). Similar to the activity of photosynthetic vegetation in many 
terrestrial landscapes, it is possible that soil communities outside of the stream channels 
undergo a “green-up” as conditions allow, which may also result in significant spatial and 
temporal heterogeneity in identified biological materials between different dates. 
Additional work is ongoing to characterize the spectral variability in typical Taylor Valley 
soils as a function of environmental conditions and associated biological and photosyn-
thetic activity.

This work allows for comparisons between total standing biomass in the MDV and other 
terrestrial ecosystems. For example, the density of actively photosynthesizing biomass 
recorded in the Fryxell basin in December of 2018 using our remote sensing techniques 
(26.7 ± 2.9 g m−2) is less than 5% of live aboveground biomass measured in the plains of the 
Sonoran Desert near Hermosillo, Mexico (578.0 ± 294.6 g m−2), which contains broadly spaced 
ironwood trees, palo verde trees, and shrubs (Búrquez et al. 2010). Interestingly, our orbital 

Table 8. Comparisons between measured microbial carbon biomass at three locations in the Hoare 
basin of Taylor Valley by the McMurdo Dry Valleys Long-Term Ecological Research (MCM LTER) 
Program and that derived orbitally in this investigation. Assumes a bulk soil density of 1.85 g cm−3 

(Burkins, Virginia, and Wall 2001) and a homogeneous abundance of organic carbon throughout the 
soil column. Reported orbital values are a 3 × 3 pixel average surrounding the central pixel as a means 
of estimating error.

Location
Sample Microbial Carbon Biomass (µg C g−1 

Soil)
Orbitally Modelled Organic Carbon (µg C g−1 

Soil)
77.63282° S, 

162.88940° E
12.4 ± 2.2 11.5 ± 8.4

77.63553° S, 
162.88931° E

9.8 ± 1.7 9.3 ± 13.4

77.63763° S, 
162.88661° E

11.0 ± 2.9 13.9 ± 12.7

AVERAGE 11.1 ± 2.5 11.6 ± 11.6
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estimate of biomass in Grid 3 in the Flush of Canada Stream (355.2 ± 38.0 g m−2) is 61.5% that 
of the biomass density found in the Sonoran Plains (Búrquez et al. 2010) and equivalent 
to biomass found in grass-dominated meadows (Proulx et al. 2015). These comparisons 
demonstrate that biological “hot spots” in the Fryxell basin contain significant amounts 
of biological materials, challenging the common perception that the MDV are barren and 
lifeless environments. Carbon fixation can also be estimated using previously calculated 
fixation rates of relevant microbial mats. Novis et al. (2007) estimated carbon fixation 
rates in healthy black microbial mats in the MDV at 21 g m−2 year−1 which, assuming 
a comparable rate for all biological organisms identified in this investigation, would 
amount to 64,074.6 kg C year−1 for the entirety of the Fryxell basin, or roughly equivalent 
to 5 ha of tropical rainforest (Soepadmo 1993).

This work provides a critically important, calibrated, standardized, repeatable, and accu-
rate means of remotely quantifying photosynthetically active biomass in terrestrial ecosys-
tems of the MDV (Figure 11). It is now possible to apply these techniques to past, present, 
and future remote sensing data to investigate critical relationships between environmental 
drivers and biological response in one of the most remote locations on Earth. These 
techniques will help to provide localized biological assessments made by the McMurdo 
Dry Valley Long-Term Ecological Research (MCM LTER) Program with broader spatial and 
temporal context. This critical capability is the necessary link to understand these extremo-
phile ecosystems and predict their responses to the changing environment. This work also 
demonstrates the utility of orbital multispectral remote sensing in deriving accurate spatial 
and temporal estimates of terrestrial biomass in the remote MDV of Antarctica. Despite the 
episodic nature of water availability and photosynthesis, the scarcity of photosynthetic 
communities, and their unique adaptations designed to protect them from the harsh 
surface conditions, it is possible to rapidly and accurately measure surface biomass on 
a per pixel basis. Together with the 30+ year records of meteorological and hydrological 
data collected and archived by the MCM LTER Program, application of these techniques to 
past and future orbital data will facilitate temporal studies of ecosystem dynamics in the 
MDV and particularly how they respond to climatic and hydrological variability.

6.0 Conclusions

Our work fills an important gap in correlating localized measurements of photosynthetic 
biological activity and biomass to regional-scale estimates of these important ecological 
properties. Through the assembly of a unique spectral endmember library, the validation 
of our unmixing efforts using coincident field measurements, and the regional extrapola-
tion of this technique, we have demonstrated the value of remote sensing data to not 
only identify local biological activity, but to serve as a valuable monitor for regional 
ecological processes associated with photoautotrophic communities. Work is ongoing 
to expand these methods to broader image suites, to identify future sites of remote 
investigation, and to identify where additional ground validation and/or field work is 
necessary to expand our confidence in these techniques. Ongoing and future studies of 
ecological processes in the MDV should utilize high-resolution multispectral remote 
sensing data and the techniques developed here for both local characterization and for 
understanding regional ecological context.
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