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Abstract
Under environmental stress, plants and algae employ a variety of strategies to protect the photosynthetic apparatus and 
maintain photostasis. To date, most studies on stress acclimation have focused on model organisms which possess limited to 
no tolerance to stressful extremes. We studied the ability of the Antarctic alga Chlamydomonas sp. UWO 241 (UWO 241) 
to acclimate to low temperature, high salinity or high light. UWO 241 maintained robust growth and photosynthetic activ-
ity at levels of temperature (2 °C) and salinity (700 mM NaCl) which were nonpermissive for a mesophilic sister species, 
Chlamydomonas raudensis SAG 49.72 (SAG 49.72). Acclimation in the mesophile involved classic mechanisms, including 
downregulation of light harvesting and shifts in excitation energy between photosystem I and II. In contrast, UWO 241 
exhibited high rates of PSI-driven cyclic electron flow (CEF) and a larger capacity for nonphotochemical quenching (NPQ). 
Furthermore, UWO 241 exhibited constitutively high activity of two key ascorbate cycle enzymes, ascorbate peroxidase 
and glutathione reductase and maintained a large ascorbate pool. These results matched the ability of the psychrophile to 
maintain low ROS under short-term photoinhibition conditions. We conclude that tight control over photostasis and ROS 
levels are essential for photosynthetic life to flourish in a native habitat of permanent photooxidative stress. We propose to 
rename this organism Chlamydomonas priscuii.
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PSI	� Photosystem I
PSII	� Photosystem II
ROS	� Reactive oxygen species
RT-qPCR	� Real time quantitative PCR
SOD	� Super oxide dismutase
t½

red	� Half-time for P700 re-reduction

Introduction

Photostasis is a phenomenon common to all photosynthetic 
organisms: it encompasses processes which contribute to 
cellular homeostasis by balancing rates of photosynthetic 
energy absorbed with energy consumed by metabolism 
(Öquist and Hüner 2003). Disruption of photostasis is mani-
fested as an accumulation of a reduced pool of the mobile 
electron acceptor, plastoquinone (PQ), leading to photooxi-
dative stress. This phenomenon occurs under excessive light 
conditions; however, any environmental condition which 
impacts an organism’s ability to use absorbed light energy 
can lead to an over-reduction of the PQ pool (Hüner et al. 
2012; Morgan-Kiss et al. 2006). Thus, any alteration in an 
organism’s environment can exacerbate disruption to photo-
stasis and enhance the probability of photooxidative stress, 
including day/night cycle, salinity, drought, heat, chilling, 
and nutrient status (Bartels and Sunkar 2005; Ensminger 
et al. 2006; Sharma et al. 2012; Takahashi and Murata 2008; 
Liu et al. 2012).

A major biproduct of unbalanced photosynthesis is the 
production of reactive oxygen species (ROS). ROS accu-
mulates when the photosynthetic electron transport chain 
becomes over-reduced, causing oxidative injury and dam-
age to proteins, lipids, nucleic acids, and many components 
of the photosynthetic apparatus (Asada 1996; Apel and 
Hirt 2004; Møller et al. 2007; Sirikhachornkit and Niyogi 
2010). Oxidative stress responses are influenced by time 
scale and can be classified into mechanisms for short-term, 
acute oxidative stress occurring over seconds to minutes, or 
long-term, constitutive stress occurring over hours to years 
(Niyogi 1999; Suzuki et al. 2012). Short-term responses 
are non-heritable adjustments to physiology and biochem-
istry which avoid ROS production (Sirikhachornkit and 
Niyogi 2010; Ledford et al. 2007). Common short-term 
stress response mechanisms are phototaxis, state transi-
tions, nonphotochemical quenching (NPQ), and alternative 
electron transport pathways, such as the water-water cycle 
and PSI-associated CEF (Asada 2000; Cournac et al. 2002; 
Minagawa 2011; Müller et al. 2001; Witman 1993). In C. 
reinhardtii, induction of NPQ requires the Light Harvesting 
Complex Stress Related proteins (LHCSRs), LHCSR1 and 
LHCSR3 (Maruyama et al. 2014; Peers et al. 2009).

Changes in gene expression and protein translation aid 
in maintenance of photostasis over longer time scales. 

Long-term responses can involve minimizing ROS produc-
tion and/or increasing ROS detoxification, including changes 
to antenna size or PSI/PSII stoichiometry increased CO2 
fixation capacity, and activation of antioxidant pathways 
(Asada 2006; Falk et al. 1993; 1994; Tanaka and Melis 1997; 
Lucker and Kramer 2013; Yamori et al. 2016). Enzymatic 
antioxidants used for ROS detoxification include superox-
ide dismutase (SOD), catalase (CAT), and enzymes of the 
ascorbate–glutathione (AsA-GSH) cycle (Noctor and Foyer 
1998). Maintenance of high antioxidant capacity has been 
associated with tolerance to environmental stress in plants 
and algae (Aldesuquy et al. 2013; Chen et al. 2011; Van 
Alstyne et al. 2020). The AsA-GSH pathway is particularly 
important for antioxidative defense in plants but appears to 
play a lesser role in algae and cyanobacteria (Foyer and Hal-
liwell 1976; Foyer et al. 1997; Hu et al. 2008).

Some photosynthetic organisms have evolved to survive 
and grow in permanent stressful environments. Relative to 
the well-studied processes of short- and long-term stress 
acclimation, strategies of photosynthetic adaptation to per-
manent abiotic stress are significantly less understood. Low 
temperature environments are abundant at high latitudes 
(Young and Schmidt 2020): photopsychrophiles are pho-
tosynthetic organisms which are physiologically adapted 
to permanent low temperatures (Morgan-Kiss et al. 2006). 
The Antarctic Chlamydomonas sp. UWO 241 (UWO 241) 
resides in the deep photic zone of a permanently ice-covered, 
hypersaline lake (Lake Bonney, McMurdo Dry Valleys, Ant-
arctica). UWO 241 is one of the few models for photosyn-
thetic adaptation to combined low temperatures and high 
salinity (Cvetkovska et al. 2017). Early studies reported that 
UWO 241 exhibits minimal capacity for short-term acclima-
tory mechanisms, such as the xanthophyll cycle and state 
transitions (Morgan et al. 1998; 2002b), and sensitivity to 
short-term thermal or high light stress (Morgan-Kiss et al. 
2002a; Pocock et al. 2007). In lieu of short-term acclimation, 
UWO 241 has evolved to rely on constitutive mechanisms as 
a consequence of adaptation to permanent low temperatures 
and high salinity (Morgan-Kiss et al. 2006). While UWO 
241 exhibits high susceptibility to high light stress, it also 
possesses the ability to rapidly recover from photoinhibition 
(Pocock et al. 2007). Despite the presence of cold-active 
thylakoid kinases, it lacks state transitions and energy trans-
fer from PSII to PSI may occur though a poorly understood 
spill-over mechanism (Szyszka-Mroz et al. 2019).

Under native low temperature and high salinity condi-
tions, UWO 241 forms a novel PSI supercomplex which 
allows the organism to maintain a strong capacity for PSI-
driven CEF (Cook et al. 2019; Szyszka-Mroz et al. 2015). 
The additional proton motive force (pmf) derived from 
CEF is used for constitutive capacity for NPQ and produc-
tion of additional ATP in cells grown under high salinity 
(Kalra et al. 2020). The adjustments to the photosynthetic 
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apparatus are accompanied by alterations in carbon metabo-
lism, including upregulation of several enzymes within the 
Calvin Benson Bassham cycle (CBB), and key enzymes of 
the shikimate pathway, a high carbon flux pathway which 
synthesizes precursors for aromatic metabolites (Kalra 
et al. 2020; Julkowska 2020). Together, these novel adap-
tive strategies allow UWO 241 to maintain robust growth 
and photosynthesis under the combined stress of permanent 
low temperature and high salinity.

Acclimation is the capacity of an organism to the return 
to cellular homeostasis following an initial disruption in cel-
lular processes due to the action of environmental stressors 
(Borowitzka 2018). While activation of CEF is known to be 
essential in plants and algae exposed to short-term stress, the 
discovery of a strong CEF capacity in a psychrophilic, halo-
tolerant alga suggests that there is an unappreciated role for 
CEF during acclimation to persistent environmental stress. 
We hypothesized that UWO 241 utilizes CEF and ROS 
detoxification as long-term stress acclimation mechanisms 
to maintain photostasis and protect the photosynthetic appa-
ratus from photooxidative damage. We tested this hypothesis 
by comparing growth physiology as well as PSII and PSI 
photochemistry in UWO 241 and a related mesophilic spe-
cies, Chlamydomonas raudensis SAG 49.72, during accli-
mation to high light, low temperature and high salinity. We 
also monitored production of a major ROS (O2

−) as well 
as activity of two key enzymes of the AsA-GSH pathway 
(Ascorbate Peroxidase, APX; Glutathione Reductase, GR). 
Our study shows that UWO 241 possesses robust ability for 
long-term acclimation by both avoiding ROS production and 
relying on constitutive ROS detoxification. We suggest that 
tight control over ROS production/destruction allows this 
extremophile to survive and thrive under long-term exposure 
to multiple environmental stressors in its native habitat.

Materials and methods

Strains, growth conditions and growth physiology

Cultures of the psychrophilic Chlamydomonas sp. UWO 
241 (CCMP1619) and a mesophilic strain, Chlamydomonas 
raudensis SAG 49.72, were grown in Bold’s basal medium 
(BBM) (Nichols and Bold 1965) under ambient CO2 

conditions in 250 mL Pyrex tubes submerged in tempera-
ture-regulated aquaria as described in Morgan-Kiss et al. 
(2008). The mesophilic SAG 49.72 was chosen for compari-
son as it has been used in several comparative studies with 
UWO 241 (Pocock et al. 2011; Szyszka et al. 2007; Szyszka-
Mroz et al. 2015, 2019). Cultures were grown under either 
control (C) conditions or exposed to one of three long-term 
stress treatments: high light (HL), low temperature (LT) or 
high salt (HS). For control conditions, cultures were grown 
under temperature/light regimes of 8 °C/50 μmol −2 s−1 and 
20 °C/50 μmol −2 s−1 for UWO 241 and SAG 49.72, respec-
tively, and NaCl levels of 0.43 mM for both strains (Table 1). 
Conditions were chosen based on previous studies (Pocock 
et al. 2011; Szyszka et al. 2007; Morgan-Kiss et al. 2006) 
to reflect the maximum level of a particular stress to which 
the organism could fully acclimate and not show chronic 
stress symptoms, that is achieve exponential growth and high 
photochemical activity (maximum photosynthetic efficiency 
values, FV/FM, above 0.5). Long-term stress conditions for 
UWO 241 and SAG 49.72, respectively, were: (i) high light, 
250 μmol m−2 s−1 and 500 μmol m−2 s−1; (ii) low tempera-
ture, 2 °C and 11 °C; (iii) high salinity, 700 mM NaCl and 
100 mM NaCl.

Growth kinetics were monitored as change in optical den-
sity at 750 nm. All other measurements were performed on 
mid-log phase cultures. Chlorophyll a and b concentrations 
were determined from whole cell extractions in 90% acetone 
according to Jeffry and Humphrey (1975).

Room temperature chlorophyll fluorescence

The activities of PSI and PSII were measured in dark-
adapted (10 min) exponentially growing cultures with a 
Dual-PAM-100 system (Heinz Walz GmbH, Effeltrich, 
Germany) as described in Szyska et al. (2007). All sam-
ples were supplemented with 10 mM sodium bicarbonate 
and measurements were performed in a water-jacketed 
cuvette at the corresponding growth temperatures. The 
fluorescence parameters FV/FM (maximum photochemical 
efficiency), qL (proportion of open PSII reaction centers, 
assuming the “lake” model for antenna connectivity between 
reaction centers, qL = qP. [Fo′/FS]), Φ (PSII) (quantum 
yield of photochemistry, ΦPSII = (Fm ′ − Fs) /Fm′,), and 
NPQ (nonphotochemical energy dissipation from antenna 

Table 1   Growth conditions for 
UWO 241 and SAG 49.72 used 
in this study

Growth condition UWO 241 SAG 49.72

Control (C) 8 °C/0.43 mM NaCl/50 μmol m−2 s−1 20 °C/0.43 mM 
NaCl/50 μmol m−2 s−1

High light (HL) 250 μmol m−2 s−1 500 μmol m−2 s−1

Low temperature (LT) 2 °C 11 °C
High salinity (HS) 700 mM NaCl 100 mM NaCl
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quenching—Fm − Fm ′)/Fm′, were calculated during steady 
state photosynthesis (Kramer et al. 2004). All measurements 
were performed under temperature and irradiance values 
which matched the growth conditions.

Low temperature Chl a fluorescence (77 K)

Low temperature (77 K) Chl fluorescence emission spectra 
were measured using a Perkin Elmer Luminescence Spec-
trometer (LS50B) (Buckinghamshire, England) equipped 
with liquid nitrogen accessory. Algal cultures (~ 250 µL) 
from dark-adapted (10 min) mid-log phase cultures were 
transferred to NMR tubes and flash frozen in liquid nitro-
gen. Fluorescence spectra were collected at the excitation 
wavelength of 435 nm and recorded at a slit width of 4 nm 
for excitation and emission. Decompositional analysis of 
fluorescence emission spectra in terms of five Gaussian 
bands was performed by a non-linear least squares algorithm 
according to Morgan-Kiss et al. (2002a) using the program 
OriginPro 8.5.1.

P700 reduction/oxidation kinetics

Far red induced photooxidation of P700 was used to deter-
mine rates of CEF as described by Morgan-Kiss et  al. 
(2002b). A volume of exponential phase cultures represent-
ing 25 μg Chl a was dark-adapted for 10 min and then filtered 
onto 25 mm GF/C filters (Whatman, Cat No. 1822–025). 
Filters were measured on the Dual-PAM 100 instrument 
using the leaf attachment. The proportion of photooxidizable 
P700 was determined by monitoring absorbance changes at 
820 nm and expressed as the parameter (∆A820/A820). The 
signal was balanced, and the measuring light switched on. 
Far red (FR) light (λmax = 715 nm, 10 Wm−2, Scott filter RG 
715) was then switched on to oxidize P700. The half time 
for the reduction of P700+ to P700 (t½

red) was calculated as 
an estimate of relative rates of PSI-driven CEF (Ivanov et al. 
1998; Kalra et al. 2020). The re-reduction time for P700 
was calculated using the program OriginPro 8.5.1 using first 
order exponential decay kinetics.

ROS

Superoxide (O2
−) and H2O2 levels were semi-quantified 

according Förster et al. (2005) with some modifications. 
A volume representing ~ 12,500 cells of UWO 241 or SAG 
49.72 mid-log phase cultures grown under control conditions 
was treated with 20 µL of 1 mM nitroblue tetrazolium (NBT; 
Sigma) or 5 mM 3,3’-diaminobenzidine-HCL (DAB; Sigma) 
for O2

− or H2O2 detection, respectively, in the dark for 5 min 
prior to the stress treatment. Samples were then filtered 
onto 25 mm GF/C filters (Whatman, Cat No. 1822–025) 
and exposed to short-term stress either LT (5 °C) or HL 

(300 μmol m−2 s−1) in an AlgaeTron 130 growth incuba-
tor (Photon Systems Instruments, Czech Republic) for up to 
1 h. Following treatment, filters were immediately immersed 
in 80% acetone to remove Chl, and then allowed to dry in 
a fume hood prior to imaging. O2

− levels were measured 
semi-quantitatively by densitometric analyses using the 
program ImageJ (http://​imagej.​nih.​gov/​ij/). H2O2 was also 
quantified using the fluorescent dye H2DCFDA (Invitrogen) 
as described by the methods in Pérez-Pérez et al. (2012) with 
some modifications. Cells were pelleted by centrifugation 
and resuspended in 10 mM TRIS–HCl pH = 7.3. Cells were 
then broken by bead beating (2 × 30 s cycles) and stored at 
-80˚C until use. Samples (90 µg total protein) were incubated 
for 30 min at 30 °C, and transferred to a 96-well plate and 
fluorescence was measured using a plate reader (SpectraMax 
iD5, Molecular Devices), with an excitation and emission 
wavelengths of 485 nm and 535 nm respectively.

Ascorbate Pathway

Glutathione reductase (GR) activity was measured using a 
glutathione reductase assay kit based on NADPH oxidations 
(Kit 703,202, Cayman Chemicals, Ann Arbor). Mid-log 
phase cultures (~ 3–10 × 106 cells) were collected by centrif-
ugation and resuspended in GR assay buffer (50 mM potas-
sium phosphate, 1 mM EDTA, pH 7.5). Cells were lysed by 
4 × 30 s beadbeating cycles. Twenty microliters of lysed cell 
supernatant was mixed with 100 μL GR assay buffer and 20 
μL oxidized glutathione. The reactions were initiated with 
50 μL NADPH, and oxidation of NADPH was measured 
kinetically over 10 min at 340 nm at an assay temperature of 
25 °C. Activity was calculated by ΔA340 min−1 mg−1 protein 
using an NADPH extinction coefficient of 0.00373 μM−1.

APX activity was measured according to Venisse et al. 
(2001) with some modifications. Sample extracts were pre-
pared as described for the GR activity assay. Ten microlit-
ers of supernatant was added to 190 µL of reaction buffer 
(50  mM potassium phosphate buffer, pH 7.8), supple-
mented with 0.5 mM ascorbic acid and 0.1 mM hydrogen 
peroxide. Oxidation of ascorbate was monitored spectro-
photometrically as a decrease A290 (extinction coefficient 
0.00168 μM−1) over 10 min to determine APX activity 
(Venisse et al. 2001).

For ascorbate quantitation, the protocol of Kovács et al. 
(2016) was followed with some modifications. 25 mL of 
culture (6 to 7 × 107 total cells) was pelleted and washed 
once in HPLC grade H2O. Pellets were resuspended in an 
extracted in 2 mM ETA containing 5 mM dithiothreitol 
and 1% orthophosphoric acid. Cells were broken using a 
bead beater (2 × 30 s cycles) and samples were centrifuged 
for 30 min at 19,000 × g and total cellular ascorbate levels 
(ascorbate + dehydroascorbate) were determined using a 

http://imagej.nih.gov/ij/
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commercial kit (Ascorbate Assay Kit, Cayman Chemical. 
#700,420).

The genome and transcriptome of UWO 241 were 
sequenced and assembled as described before (Cvetko-
vska et al. 2019; Raymond & Morgan-Kiss 2013; Zhang 
et al. 2021). The assembled genome and transcriptome 
dataset are deposited at NCBI database under BioProject 
accessions PRJNA547753 and PRJNA575885, respec-
tively. These datasets were screened for the presence of 
the genes encoding for enzymes of the AsA-GSH cycle. 
Previously identified genes from the model alga Chla-
mydomonas reinhardtii were obtained from the Phyto-
zome database (v12, Joint Genome Institute) and used 
as a query. Genomic sequences with a high degree of 
identity (E-value cutoff 10–20) were obtained and anno-
tated using Geneious Prime (Biomatters Ltd, Auckland, 
New Zealand).

The amino acid sequence was predicted based on the 
gene coding sequence, and the identity of the enzyme 
was confirmed based on conserved motifs (Pitsch et al. 
2010; Wu and Wang 2019). Multiple sequence align-
ments were performed using Clustal Omega (Sievers and 
Higgins 2018), and protein localization was predicted 
using PSORT (Horton et al. 2007) and PredAlgo (Tardif 
et al. 2012). Sequence data for the UWO 241 genes can 
be found in GenBank/EMBL database under accession 
numbers listed in Tables S1 and S2.

RNA isolation and RT‑qPCR

Total RNA was isolated from UWO241 cultures grown 
under control and long-term stress conditions in mid-
log phase using the Maxwell 16 LEV Plant RNA Kit 
(Promega, Cat No. AS1430). RNA extraction was per-
formed according manufacturer’s instructions with a 
few minor changes. Cell pellets from 25 mL of culture 
were resuspended in 700 µL Homogenization buffer, 
transferred to a Lysing Matrix E tube (MP Biomedicals, 
Cat No. MP116911100), and by bead beat for 2 × 30 s 
(BioSpec). Residual genomic DNA was removed suing 
Ambion DNase (Thermo Fisher Scientific). cDNA was 
synthesized using iScript cDNA synthesis kit (Bio-Rad). 
Real-time quantitative PCR (RT-qPCR) was performed 
according to Raymond et al. (2020) using the SensiFast 
SYBR green Hi-ROX One-Step Kit (Bioline). Primers 
used in this study (Table S3) were designed using Primer-
Quest Tool (https://​www.​idtdna.​com/​Prime​rquest/​Home/​
Index).. Relative gene expression was determined on a 
Bio-Rad CFX Connect Real-Time thermal cycling using 
the delta-delta Ct method (2−ΔΔCT). Histone H2B and 40S 
ribosomal protein S10 (rps10) were used as reference 

genes which were previously determined to exhibit stable 
expression in UWO241 (Raymond et al. 2020).

Statistical Analyses

Statistical significance was determined using Student’s 
paired t-test, uneven variance (OriginPro 8.5.1) between 
stress conditions and control within a single organism as 
well as between stress conditions in both organisms. Statis-
tical significance was accepted when P value was less than 
0.05.

Results

Growth physiology and PSII photochemistry

To compare the long-term acclimation mechanisms between 
the psychrophilic UWO 241 and the mesophilic SAG 49.72, 
the two strains were grown under control growth conditions 
and then shifted to one of three different treatments, rep-
resenting high light (HL), low temperature (LT) and high 
salt (HS) (Table 1). First, it was confirmed that both strains 
exhibited full acclimation to each long-term treatment by 
exhibiting log-phase growth and high photochemical activ-
ity in mid-log phase cultures. UWO 241 and SAG 49.72 
exhibited exponential growth and high PSII photochemical 
efficiency (FV/FM) under all treatments (Fig. S1; Table 2).

Even though UWO 241 tolerates significantly lower tem-
perature and high salinity levels compared with SAG 49.72, 
the two strains generally exhibited comparable growth rates 
under control vs. treatment conditions (Table 2). On the 
other hand, Chl a/b ratios were significantly lower in UWO 
241 vs. SAG 49.72 across all growth conditions (Table 2). 
Moreover, SAG 49.72 cultures grown under all long-term 
stress conditions exhibited higher Chl a/b ratios compared 
with control cultures; although, this difference was only sig-
nificant between the control and low temperature-grown cul-
tures (Table 2). Both organisms exhibited qL values > 0.70 
under control vs. treatment, with the exception of HL-cul-
tures which exhibited lower qL in both species relative to 
controls (Table 2). Steady state NPQ levels remained low in 
both algal species under LT or HS, while HL-treated cells 
exhibited a 24- and 7.5-fold increase in NPQ in UWO 241 
and SAG 49.72, respectively (Table 2).

77 K Chl a fluorescence emission spectra

77 K emission spectra of whole cells of the mesophilic 
SAG 49.72 exhibited prominent fluorescence peaks at 
684 nm and 714–716 nm consistent with LHCII-PSII and 
PSI fluorescence emission, respectively (Fig. 1a). In con-
trast with the mesophile, UWO 241 exhibited major Chl 

https://www.idtdna.com/Primerquest/Home/Index
https://www.idtdna.com/Primerquest/Home/Index
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a fluorescence emission peaks at 685 nm and 697 nm but 
lacked a prominent emission peak for PSI at longer wave-
lengths 715–720 nm (Fig. 1b). Acclimation to long-term 
stress resulted in significant changes in the 77 K Chl a fluo-
rescence emission spectra of SAG 49.72 (Fig. 1a). Gaussian 
analysis of the fluorescence spectra revealed that SAG 49.72 
exhibited a 1.5- to 3.2-fold decrease in the ratio of PSII/PSI 
fluorescence in response to LT, HL or HS (Table S4). In 
contrast with stress-acclimated cells of SAG 49.72, UWO 
241 cells exhibited minimal changes in PSI fluorescence 
(Fig. 1b), and only HS resulted in a minor decrease (1.18-
fold relative to control) in the PSII/PSI ratio of UWO 241 
(Table S4).

Photosystem I activity

PSI activity was monitored in mid-log cultures of both 
strains acclimated to control or treatments by far red (FR) 
light inducible P700 photooxidation (Fig. 2). The rise in 
absorbance at 820 nm (ΔA820) is a relative measure of the 
fraction of photooxidizable P700 reaction centers, while 
rates of P700 re-reduction in the dark (t½

red) reflect electron 
donation from alternative donors and mainly CEF (Ivanov 
et al. 1998). UWO 241 exhibited significantly lower FR-
inducible ΔA820 compared to SAG 49.72 under both control 
and stress-acclimated conditions (Fig. 2a). UWO 241 cells 
grown in control or stress-acclimated conditions exhibited 
significantly faster t½

red compared with SAG 49.72 grown 
under all conditions, suggesting that UWO 241 exhibited 

Table 2   Growth physiology parameters in cultures of UWO 241 and SAG 49.72 grown under control versus long-term stress conditions

Values are means with standard deviations (n = 3 biological replicates)
FV/FM maximum photochemical efficiency; qL photochemical quenching
a Statistical significance between control vs. stress within one algal species
b Statistical significance between UWO 241 vs. SAG 49.72 when grown under same treatment (p < 0.05)

Growth condition Doubling time (h) FV/FM qL NPQ Total chlorophyll 
(μg ml−1)

Chl a/b

UWO 241
 C 49.30 ± 3.80 0.67 ± 0.02b 0.72 ± 0.08b 0.02 ± 0.04 6.99 ± 1.09 1.00 ± 0.02b

 HL 43.13 ± 4.14 0.60 ± 0.01a 0.60 ± 0.05b 0.48 ± 0.15a,b 4.02 ± 0.45a,b 0.80 ± 0.14b

 LT 111.7 ± 6.75 0.55 ± 0.02a,b 0.82 ± 0.04b 0.09 ± 0.08 4.79 ± 0.59a 0.97 ± 0.10b

 HS 35.15 ± 1.62 0.60 ± 0.05b 0.70 ± 0.10b 0.16 ± 0.04 a,b 5.06 ± 0.46 0.90 ± 0.10b

SAG 49.72
 C 29.74 ± 3.79 0.70 ± 0.02 0.94 ± 0.04 0.02 ± 0.00 9.26 ± 1.62 2.28 ± 0.77
 HL 11.82 ± 3.60 0.65 ± 0.04 0.24 ± 0.00a 0.15 ± 0.03 a 6.86 ± 0.08 4.29 ± 0.29a

 LT 39.12 ± 2.77 0.66 ± 0.01a 1.00 ± 0.00 0.01 ± 0.01 4.31 ± 0.15 a 5.66 ± 0.29a

 HS 43.15 ± 3.58a 0.66 ± 0.04 0.94 ± 0.09 0.04 ± 0.02 8.13 ± 0.84 3.51 ± 0.05

Fig. 1   77 K Chlorophyll a 
fluorescence emission spectra 
of the mesophile SAG 49.72 (a) 
and the psychrophile UWO 241 
(b) acclimated to control and 
long-term stress conditions. C 
control; HL high light; LT low 
temperature; HS high salt. See 
Table 1 for long-term conditions
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constitutively higher rates of CEF (Fig. 2b). Furthermore, 
t½

red was also significantly faster in stress-acclimated ver-
sus control cultures of UWO 241 (Figs. 2b and S2). These 
results agreed with a recent report which compared P700 
photooxidation with electrochromic shift measurements to 
show that UWO 241 possesses increased CEF under high 
salt versus low salt conditions (Kalra et al. 2020).

Relationship between NPQ and CEF

We measured the capacity for NPQ under a range of meas-
uring irradiance levels. The mesophilic strain SAG 49.72 
maintained low NPQ levels over the range of irradiance lev-
els under all conditions (Fig. 3). In contrast, control UWO 

241 cells exhibited significantly higher NPQ compared with 
that of SAG 49.72. Furthermore, stress acclimation in UWO 
241 resulted in a further increase in NPQ capacity; however, 
with HL- and HS-UWO 241 exhibiting higher maximum 
NPQ relative to LT-UWO 241 cultures (Fig. 3).

Fig. 2   Photosystem I (P700) oxidation/reduction of the mesophile 
SAG 49.72 and the psychrophile UWO 241 grown under control and 
long-term stress conditions. a Oxidation state of P700. b Re-reduc-
tion kinetics of P700

+. P700 oxidation/reduction was monitored in the 
presence of far red light. Letters—a, statistical significance between 
control vs. stress within one algal species; b, statistical significance 
between UWO 241 vs. SAG 49.72 when grown under same treatment 
(n = 3; p < 0.05). C control; HL high light; LT low temperature; HS 
high salt. See Table 1 for long-term conditions

Fig. 3   Capacity for nonphotochemical quenching in UWO 241 
(UWO) and SAG 49.72 (SAG) grown under control and long-term 
stress conditions. Letters—a, statistical significance between control 
vs. stress within one algal species; b, statistical significance between 
UWO 241 vs. SAG 49.72 when grown under same treatment (n = 3; 
p < 0.05). C control; HL high light; LT low temperature; HS high salt. 
See Table 1 for long-term conditions

Fig. 4   NPQ and CEF exhibit a linear relationship. SAG 49.72 and 
UWO241 grown under control and long-term stress conditions. 
NPQ axis represents maximum NPQ values determined from light 
response curves in Fig.  3. CEF represents P700

+ re-reduction rates. 
Dashed and solid lines show linear regression for all data points or 
individual organisms, respectively (n = 3 or 7–9 for NPQ and CEF, 
respectively)
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Next, we determined whether high CEF was associated 
with a stronger capacity for NPQ (Fig. 4). All UWO 241 
cultures exhibited faster rates of CEF and higher maximum 
NPQ levels relative to SAG 49.72. A strong negative correla-
tion was observed between NPQ capacity and CEF within 
either the dataset across all experiments or within UWO 241 
samples (r2 = 0.93 and 0.99, respectively). In contrast, SAG 
49.72 exhibited a weak positive correlation between NPQ 
and CEF (r2 = 0.52).

Expression of key NPQ, CEF genes

We monitored expression of several key genes of photo-
synthesis, NPQ and CEF in cells of UWO 241 grown under 
either control or long-term stress (Fig. 5). Gene expression 

of major reaction center proteins psbA and psaA were 
generally comparable to or lower in the treatments rela-
tive to control cultures (Fig. 5a,b). Since all stress treat-
ments resulted in a higher capacity for NPQ in UWO 241, 
we searched the UWO 241 genome and transcriptome 
for LhcSR homologues, which are essential for NPQ in 
green algae (Maruyama et al. 2014; Peers et al. 2009). 
We identified several potential LhcSR homologues in the 
UWO 241genome (Accession numbers KAG1678527, 
KAG1678528, KAG1678497 and KAG1678500), two 
of which (KAG1678527 and KAG1678528; LhcSR1.1 
and LhcSR2.1, respectively) were also expressed in the 
transcriptome (Fig. S3). We designed qPCR primers for 
LhcSR1.1 and LhcSR2.1 (Table S3) and monitored their 
expression in UWO 241 cultures grown under control and 

Fig. 5   Transcript levels of 
several key genes in UWO 241 
grown under control and long-
term stress conditions. Expres-
sion levels were determined by 
RT-qPCR. a Statistical signifi-
cance between control vs. stress 
(n = 4; p < 0.05). C control; HL 
high light; LT low temperature; 
HS high salt. See Table 1 for 
long-term conditions
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long-term stress conditions. Expression of both LhcSRs 
was upregulated 3.5- and fourfold in HL- and HS-UWO 
241, respectively, relative to control. In contrast, LhcSR 
expression in the LT-UWO 241 cultures was comparable 
with the control (Fig. 5c, d).

We also identified homologues of the proton gradi-
ent regulation genes pgr5 and pgrL in both the genome 
and the transcriptome of UWO 241 (Accession Num-
bers KAG1678016 and KAG1672779, respectively). We 
designed qPCR primers for both genes (Table S3) and moni-
tored their expression in UWO 241 cultures grown under all 
four conditions. Expression of pgr5 was comparable across 
all three treatments and the control cultures. Relative to 
control, pgrL expression was significantly upregulated in 
all three treatments, with HL-UWO 241 cells exhibiting the 
highest increase in expression relative to control conditions 
(2.35-fold; Fig. 5 e, f).

Antioxidant response

We monitored the capacity of UWO 241 and SAG 49.72 to 
avoid ROS accumulation under short-term stress. Control-
grown cultures were exposed to either high light or low tem-
perature stress for up to 1 h and monitored the production of 
O2

− (Fig. 6) and H2O2 (Figs. S4, S5a). The mesophile SAG 
49.72 exhibited significantly higher levels of O2

− relative 
to pre-treated cells following either short-term HL or LT 
treatment. Conversely, UWO 241 exhibited no significant 
change in levels of either ROS after the short-term stress 
treatments (Figs. 6 and S4). Last, we used a second assay to 
compare H2O2 levels between UWO 241 and C. reinhardtii. 
Relative to C. reinhardtii, UWO 241 exhibited > 200-fold 
lower levels H2O2 both prior to and after the short-term HL 
treatment (Fig. S5a).

The enzymes APX and GR are key enzymes of an ROS 
detoxification pathway, the AsA-GSH cycle, catalyzing the 
first step of the pathway and regeneration of reduced glu-
tathione, respectively (Noctor and Foyer 1998). Enzymatic 
assays revealed low activity for both enzymes in SAG 49.72 
grown under control or HL, LT and HS stress conditions 
(Fig. 7). In contrast, UWO 241 exhibited significantly higher 
activity for both enzymes under control and all stress treat-
ments relative to SAG 49.72 (Fig. 7). GR activity was high-
est in HS-UWO 241 cells, while APX activity was highest 
in LT-UWO 241 cells relative to controls. Last, the major 
AsA-GSH pathway substrate, ascorbate, was significantly 
higher in UWO 241 compared with values typically reported 

Fig. 6   Production of reactive oxygen species in UWO 241 (P) vs. 
SAG 49.72 (M) during short-term incubation in low temperature 
(5  °C) or high light (300 μmol  m−2  s−1) stress. Algal samples were 
incubated for 1 h in the presence of NBT dye to detect superoxide. 
Data is normalized to time 0. Letters—a, statistical significance 
between control vs. stress within one algal species; b, statistical sig-
nificance between UWO 241 vs. SAG 49.72 when grown under same 
treatment (n = 3; p < 0.05)

Fig. 7   Activity of AsA-GSH pathway enzymes, ascorbate peroxidase 
(APX, a) and glutathione reductase (GR, b) in SAG 49.72 and UWO 
241 grown under control and long-term stress conditions. Letters—
a, statistical significance between control vs. stress within one algal 
species; b, statistical significance between UWO 241 vs. SAG 49.72 
when grown under same treatment (n = 3; p < 0.05). C control; HL 
high light; LT low temperature; HS high salt. See Table 1 for long-
term conditions
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for other algae (Gest et al. 2013). Total cellular ascorbate 
9.61 ± 1.20 and 18.52 ± 1.90 mM ascorbate in UWO 241 
cells grown under control and HS conditions, respectively, 
compared with 0.93 ± 0.30 mM in the mesophile, C. rein-
hardtii (Fig. S5b).

In addition to the ascorbate pathway, we checked 
expression of three other major antioxidant enzymes using 
qPCR (Fig. 8). Chloroplastic Fe-SOD expression levels 
were comparable or lower in the treatments relative to 
control, with the exception of HS-UWO 241 cells which 
exhibited a 3.3-fold increase. Other antioxidant enzymes 
(CAT and GPX) exhibited expression levels at or below 
control levels in all treatments (Fig. 8).

UWO 241 has multiple homologues of AsA‑GSH 
cycle enzymes

Screening of the UWO 241 genome and transcriptome 
revealed homologs for all genes involved in the AsA-GSH 
cycle, with the exception of monodehydroascorbate reduc-
tase (MDHAR) (Tables S1 and S2). The genome of UWO 
241 encodes 5 genes identified as APX (APX1, APX2-A to 
–D), which share a high sequence similarity with homolo-
gous genes from other photosynthetic organisms and the 
presence of conserved motifs involved in APX catalytic 
function (Fig. S6a). Four of these genes (APX2-A to –D) 
are found on the same contig in a head-to-tail orienta-
tion and share a high sequence similarity (83.1–93.3%), 
suggesting a recent gene duplication event (Fig. S6b). 
This is in contrast with other green algae that typically 
encode one or two APX genes with confirmed APX activ-
ity (Pitsch et al., 2010; Gest et al., 2013). All other genes, 

including GR, were present as a single copy and shared 
a high sequence identity with homologous genes from C. 
reinhardtii (Table S2).

Discussion

This study examined whether two Chlamydomonas species 
adapted to extreme contrasts in their native environments 
rely upon comparable strategies during acclimation to 
long-term stress conditions. SAG 49.72 was originally iso-
lated from a temperate lake: it is a mesophilic species and 
possesses limited ability to acclimate to either salinity or 
low temperature stress (Szyszka et al. 2007; Pocock et al. 
2011). In contrast, in its native Antarctic lake environment, 
UWO 241 has survived under permanent low temperature 
and hypersalinity stress for at least 1000 years, based on 
estimates of the last occurrence of ice-free conditions in 
Lake Bonney (Morgan-Kiss et al. 2006). Our results con-
firmed that although both the mesophilic SAG 49.72 and 
the psychrophilic UWO 241 exhibited the ability to grow  
under high light, low temperature or high salinity, their 
tolerance levels and long-term acclimatory strategies are 
distinct. For the mesophilic SAG 49.72, long-term accli-
mation can be summarized a reduction in PSII antenna 
size and energy re-distribution from PSII to PSI, both 
classic long-term acclimatory mechanisms described for 
other model algal species (Maxwell et al. 1994; Tanaka 
and Melis 1997). In contrast, the psychrophilic UWO 241 
showed minimal changes in either PSII antenna size or 
PSII/PSI energy distribution and relies on constitutive 
PSI-driven CEF and ROS detoxification.

Long-term stress acclimation in the mesophile SAG 
49.72 involved an increase in the ratio of Chl a/b and a 
concomitant decrease in PSII/PSI at the level of 77 K fluo-
rescence emission. Higher Chl a/b ratios in response to 
long-term stress have been reported across many algae 
and plants and coincides with a reduction in the size of 
LHCII (Maxwell et al. 1994; Wilson and Huner 2000; 
Smith et al. 1990). Reductions in PSII/PSI stoichiometry 
under either high light or low temperature stress reflect 
re-distribution of absorbed light energy from PSII to PSI 
(Smith et al. 1990; Velitchkova et al. 2020). UWO 241 
does not appear to rely on either of these classic acclima-
tory mechanisms to survive long-term stress. Morgan-Kiss 
et al. (2002b) demonstrated that UWO 241 is also unable 
to undergo state transitions, exhibiting minimal phos-
phorylation of light harvesting antenna proteins. More 
recently, Szyszka-Mroz and colleagues suggested that the 
psychrophile relies instead on spill-over mechanism under 
HS growth conditions (Szyszka-Mroz et al. 2019). Thus, 
UWO 241 is a natural variant lacking state transitions that 
maintains a relatively large LHCII and high PSII content 

Fig. 8   Transcript levels of genes ROS detoxification genes in 
UWO241 following acclimation to long-term stress. Expression lev-
els were determined by RT-qPCR. Letters—a, statistical significance 
between control vs. stress (n = 4; p < 0.05). C control; HL high light; 
LT low temperature; HS high salt. See Table 1 for long-term condi-
tions
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under long-term stress. Despite the apparent deficiency of 
some acclimatory mechanisms common model species, 
acclimated UWO 241 cells maintained a high qL and 
comparable energy partitioning relative to control condi-
tions. These results suggest that the psychrophile may use 
alternative processes to avoid high excitation pressure and 
increased risk of photooxidative stress.

PSI-driven CEF is an essential process in plants and algae 
for energy balance and photoprotection (Kramer and Evans 
2011; Lucker and Kramer, 2013; Kukuczka et al. 2014); 
although, most studies of CEF have been restricted to short-
term stress exposure (Iwai et al. 2010; Takahashi et al. 2013; 
Strand et al. 2015). Early reports identified that UWO 241 
exhibits relatively high rates of PSI-driven CEF compared 
with mesophilic strains (Morgan-Kiss et al. 2002b, 2006; 
Szyszka et al. 2007). Maximal CEF requires restructuring 
of the UWO 241 photosynthetic apparatus and assembly of 
a novel PSI supercomplex (Kalra et al. 2020; Szyszka-Mroz 
et al. 2015). The UWO 241 supercomplex is distinct from 
that of previously described complex from C. reinhardtii 
(Iwai et al. 2010) because the former is not associated with 
state-transition-inducing treatments and it lacks typical PSI 
77 K fluorescence emission despite the presence of many 
PSI core proteins (Kalra et al. 2020; Szyszka-Mroz et al. 
2015). Here we show that UWO 241 exhibits faster CEF 
rates under not only high salinity, but also high light and 
low temperatures, suggesting that this extremophile relies 
on CEF as a general long-term acclimatory strategy. The 
proteins PGR5 and PGRL1 have been implicated in CEF 
and formation of PSI supercomplexes (DalCorso et al. 2008; 
Hertle et al. 2013; Kukuczka et al. 2014). All UWO 241 
cultures acclimated to long-term stress showed an increase 
in PGRL1 but not PGR5 expression. A PGR5 Like-1 protein 
was also detected in the PSI supercomplex of UWO 241; 
however, PGR5 but not PGRL1 were upregulated in HS-
UWO 241 whole cell proteomes (Kalra et al. 2020). Cook 
et al. (2019) found that PGRL protein levels were down-
regulated in UWO 241 cultures grown in high iron which 
corresponded to a slower CEF in high Fe-grown cultures. 
Thus, it appears that PGRL1 is a probable candidate of the 
CEF mechanism or PSI supercomplex in UWO 241; how-
ever, more research is required to clarify the roles of the 
PGR proteins.

CEF generates additional transthylakoid pmf which can 
be utilized for several purposes, including balancing ATP/
NADPH production and photoprotection of both PSII and 
PSI (Bulte et al. 1990; He et al. 2015; Chaux et al. 2015; 
Lucker and Kramer 2013; Yamori et al. 2016). Kalra and col-
leagues showed that under long-term HS stress CEF serves 
multiple purposes in UWO 241, including additional ATP 
production as well as constitutive photoprotection (Kalra 
et al. 2020). Higher ATP levels are used in part to support 
enhanced CBB pathway activity which supplies substrates 

for storage compounds (starch), osmoregulants (glycerol), 
as well as the shikimate pathway (Kalra et al. 2020). It is 
likely that CEF is utilized for similar processes when UWO 
241 is acclimated to HL or LT. This current study provides 
evidence that high CEF in all three treatments is associated 
with enhanced photoprotection of PSII. Increased CEF rates 
in cells of UWO 241 acclimated to HL, LT or HS all exhib-
ited a higher capacity for NPQ compared with control cells. 
Unlike the mesophilic SAG 49.72, NPQ capacity and CEF 
levels were strongly correlated in the psychrophilic UWO 
241 (Fig. 4). These results suggest a constitutive capacity 
for PSII protection which is likely due to enhanced CEF-
generated pmf.

There is recent evidence that activation of CEF and NPQ 
are common acclimation strategies among high latitude 
phytoplankton communities (Young and Schmidt 2020). A 
second Lake Bonney chlorophyte, Chlamydomonas sp. ICE-
MDV, exhibited comparably fast CEF rates as UWO 241, 
which were further increased under Fe-stress (Cook et al 
2019). The snow alga, Chlamydomonas nivalis, increased 
CEF under low temperature stress (Zheng et al. 2020). Sim-
ilar to our findings, enhanced CEF in the snow alga was 
accompanied by activation of NPQ and antioxidant activity 
(Zheng et al. 2020). High NPQ has also been detected in 
phytoplankton communities in the Arctic sea ice (Galindo 
et al. 2017), and there are alternative NPQ mechanisms 
described in Arctic Prasinophytes (Liefer et al. 2018) and 
Southern Ocean diatoms (Strzepek et al. 2019).

In green algae, efficient induction of NPQ is dependent 
upon expression of one or more LHCSRs (Maruyama et al. 
2014; Peers et al. 2009). A previous study on acclimation 
to iron availability in UWO 241 detected upregulation of 
LHCSR1 under excess Fe conditions (Cook et al. 2019). 
More recently, Kalra et al. (2020) detected LHCSR1 in sev-
eral chlorophyll protein complexes isolated from HS-grown 
UWO 241. In this current work, we detected four possible 
LHCR homologues in the UWO 241 genome: transcripts 
of two (LhcSR1 and LhcSR2) were also detected in a tran-
scriptome. No homologues were found for the third LHCSR, 
lhcsr3, which along with LHCSR1 has been shown to be 
important for thermal dissipation in both PSII and PSI (Giro-
lomoni et al. 2019). Another related Antarctic green alga, 
Chlamydomonas sp. ICE-L expresses LhcSR1 and LhcSR2 in 
response to either UV-B radiation or high salt, but LhcSR3 
was not detected in this psychrophilic alga either (Mou et al. 
2012). The primitive plant Physcomitrella also expresses 
only LhcSR1 and LhcSR2 in addition to the plant psbS 
(Alboresi et al. 2010). In this current student, expression 
of both LhcSRs were upregulated in the HL- and HS-UWO 
241 cultures relative to controls; however, transcript levels 
in LT-grown cells were not different from controls. These 
data fit well with the NPQ capacity of UWO 241 which was 
highest in HL and HS conditions.
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CEF contributes to PSI photoprotection by preventing 
acceptor-side limitation of PSI electron flow (Huang et al. 
2009). Over-reduction of PSI manifests as production of the 
ROS, O2

− (Asada 1999). We show that UWO 241 possesses 
remarkable ability to avoid O2

− accumulation: cells exposed 
to either short-term LT or HL stress exhibited minimal accu-
mulation of this ROS. This ability to keep O2

− levels lows 
is in part due to CEF-associated prevention of PSI acceptor 
side limitation. In contrast, SAG 49.72 exhibited significant 
levels of O2

− when exposed to the same conditions. While 
PSII is typically considered sensitive to all environmental 
stresses, PSI photodamage occurs under specific environ-
mental conditions, including drought, high salinity and low 
temperature, and repair of PSI is slow and inefficient (Huang 
et al. 2012, 2016, 2017; Yamori et al. 2016; Ivanov et al. 
1998; Zhang and Scheller 2004). Thus, PSI photoinhibition 
can have a serious consequence for survival under long-
term stress. We suggest that constitutive CEF simultane-
ously plays critical roles in protecting both PSII and PSI 
from photodamage in UWO 241 for survival under long-
term environmental stress.

UWO 241 exhibits constitutive protection of PSII and PSI  
by minimizing ROS production; however, there is also evi-
dence that the psychrophile possesses enhanced ability for 
ROS detoxification. The AsA-GSH pathway is a major ROS 
detoxification pathway in plants and is responsible for regen-
eration of the antioxidant ascorbate (Foyer and Shigeoka 
2011; Foyer and Noctor 2012). The AsA-GSH pathway 
involves four enzymes, ascorbate peroxidase (APX), mono-
hydroascorbate reductase (MDHAR), dehydroascorbate 
reductase (DHAR), and glutathione reductase (GR) (Noc-
tor and Foyer 1998). Plants express multiple isoforms of 
each enzyme, in particular APX (Pitsch et al. 2010; Teixeira 
et al. 2004). High concentrations of ascorbate accumulate in 
plants, particularly under stress conditions, including high 
light, low temperatures and high salinity (Bartoli et al. 2017; 
Maruta and Ishikawa 2017; Wildi and Lütz 1996; Zechmann 
et al. 2011; Zhang et al. 2011). On the other hand, cyanobac-
teria and algae exhibit significantly lower levels of ascorbate 
and possess only one isoform or are missing one or more 
enzymes of the AsA-GSH pathway (Gest et al. 2013). For 
example, the model C. reinhardtii appears to lack the thyl-
akoid-bound APX found in plants, expressing only a single 
isoform of APX which is localized to the stroma (Pitsch 
et al. 2010). A second APX2 isoform has been predicted to 
localize to the chloroplast, but its function has not been stud-
ied (Wu and Wang, 2019). Three pieces of evidence indi-
cate that UWO 241 may rely on the AsA-GSH pathway to a 
greater extent than previously appreciated in other algal spe-
cies. First, activity of two enzymes, APX and GR, are con-
stitutively high in UWO 241 relative to the mesophile SAG 
49.72 under both control and all long-term stress conditions. 
Second, UWO 241 cells accumulated millimolar levels of 

the substrate ascorbate, which is atypically high compared 
to algal strains (Gest et al. 2013), which was correlated with 
extremely low levels of the ROS stubstrate of the AsA-GSH 
pathway, H2O2 (Fig. S5). Last, unlike other algae studied 
thus far, UWO 241 appears to possess more isoforms of 
several enzymes necessary for ascorbate cycling. A search 
of a previously published transcriptome of UWO 241 (Ray-
mond and Morgan-Kiss 2013) revealed multiple potential 
homologues for enzymes of the AsA pathway, including 3 
APX, 3 DHAR, and 3 GR genes (Tables S1 and S2). These 
genes were also detected at the level of the genome, with 
four APX genes present as highly similar tandem duplicates 
(Fig. S6). In addition, one of the putative UWO 241 APX 
proteins is related to a plant thylakoid-bound isoform from 
Triticum aestivum. APX catalyzes the oxidation of ascorbate 
by H2O2, while DHAR and GR work in concert to regenerate 
glutathione. We did not identify an isoform for MDHAR in 
the genome or transcriptome, which is needed for recycling 
of ascorbate. The additional isoforms may be localized to 
different cellular compartments, as in plants, or may contrib-
ute to constitutively high AsA-GSH pathway activity. Gene 
duplications have been shown for several other UWO 241 
genes including photosynthetic ferredoxin (Cvetkovska et al. 
2018), chlorophyllide a oxygenase (Cvetkovska et al. 2019) 
and the chloroplast kinase Stl-1 (Szyszka-Mroz et al., 2019).

We propose an updated model for the psychrophilic hal-
ophyte, C. sp. UWO241 which allows this extremophile to 
acclimate to a range of long-term stress conditions (Fig. 9). 
As an adaptation to extreme shade conditions, UWO241 
maintains a large LHCII antenna, regardless of its growth 
condition (Morgan et al. 1998; Szyska et al. 2007), while 
LHCI is apparently permanently downregulated (Morgan 
et al. 1998; Kalra et al. 2020; Fig. 9). A recent paper sug-
gested that energy is shared between the two photosys-
tems through a poorly understood spill-over mechanism 
(Szyska-Mroz et al. 2019); although, in an earlier report, 
it was suggested that PSI and PSII are relatively distant 
from each other compared with C. reinhardtii (Morgan-
Kiss et al. 2002a, 2002b). Regardless of the status of exci-
ton energy sharing between the photosystems, CEF is a 
central in this alga’s acclimation mechanism (Fig. 9, ②). 
High rates of CEF provide multiple opportunities for aid-
ing in survival and growth under long-term stress. First, 
there is for photoprotection of both photosystems, through 
LHSR-mediated NPQ at PSII (Fig. 9, ③) and avoidance of 
acceptor-side limitation at PSI. Second, high rates of CEF 
also provide the organism with the option of additional 
ATP production for maintaining energy balance (Kalra 
et al. 2020). A bestrophin-like protein dissipates CEF-gen-
erated membrane potential (Δψ) through Cl- influx into 
the lumen, supporting sustained high transthylakoid ΔpH 
(Cook et al. 2019; Fig. 9, ④). Despite this robust system of 
constitutive photoprotection which should minimize ROS 
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production, UWO 241 also relies on redundant pathways 
of ROS detoxification to ensure tight control over ROS 
levels (Fig. 9, ⑤).

Conclusions and renaming of UWO 241

This study builds upon more than two decades of work on 
the enigmatic, Antarctic alga, Chlamydomonas sp. UWO 
241 which have documented novel adaptation strategies 
to survive permanent extreme conditions. Over the years, 
the taxonomic identity of UWO 241 has experienced much 
change: originally identified on a morphological basis 
in 1995 as C. subcaudata by J. Priscu (Neale & Priscu 
1995), the organism was erroneously renamed in 2004 as 
C. raudensis UWO 241 (Pocock 2004). Recently, a thor-
ough revisiting on the taxonomy of the strain performed 
by Possmayer et al. (2016) concluded that UWO 241 repre-
sents a unique lineage within the Moewusinia clade, and it 
was therefore renamed Chlamydomonas sp. UWO 241 as a 
place holder name. Molecular phylogenetic analysis of the 
full length 18S rRNA gene revealed that the closest known 
relative of UWO 241 is a marine alga, Chlamydomonas 
parkeae SAG 24.89 (95% identity). Furthermore, a recent 
report revealed that the genome of UWO 241 is rela-
tively large (212 Mb) and features several novel charac-
teristics, including hundreds of duplicated genes (Zhang 
et al. 2021). Given its geographical isolation and unique 
physiology, combined with recent molecular and genomic 
analyses, we suggest that UWO 241 is a unique strain. 
According to requirements of the International Code of 
Nomenclature for algae, fungi, and plants (McNeill et al. 

2012) we propose to rename the strain Chlamydomonas 
priscuii in recognition of John C. Priscu, the investiga-
tor who originally isolated the strain in 1995 (Neale and 
Priscu 1995).
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