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ABSTRACT: There has been substantial progress in applying machine learning techniques
to classification problems in collider and jet physics. But as these techniques grow in
sophistication, they are becoming more sensitive to subtle features of jets that may not
be well modeled in simulation. Therefore, relying on simulations for training will lead
to sub-optimal performance in data, but the lack of true class labels makes it difficult to
train on real data. To address this challenge we introduce a new approach, called Tag N’
Train (TNT), that can be applied to unlabeled data that has two distinct sub-objects. The
technique uses a weak classifier for one of the objects to tag signal-rich and background-rich
samples. These samples are then used to train a stronger classifier for the other object.
We demonstrate the power of this method by applying it to a dijet resonance search. By
starting with autoencoders trained directly on data as the weak classifiers, we use TNT to
train substantially improved classifiers. We show that Tag N’ Train can be a powerful tool
in model-agnostic searches and discuss other potential applications.
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1 Introduction

Despite numerous searches for physics beyond the standard model [1-5], the experiments
at the Large Hadron Collider have not yet provided evidence for new particles or new
fundamental forces of nature. While ATLAS, CMS and LHCb have explored many possible
signatures, their searches have often been tailored with a particular signal model in mind
and have left unexplored a variety of final states [6-8]. Given that it is impractical to
perform a dedicated search for every possible new physics signature, it is natural to consider
designing model-agnostic searches that make minimal assumptions about the nature of
the signal. Such searches have traditionally been performed at collider experiments by
comparing distributions in data to simulation in many different final states [9-20]. However,
this technique is insensitive to signals with very small cross sections or in final states not
well modeled by simulation.

At the same time, classifiers used to tag hadronic jets of different types have greatly
increased in performance thanks to the use of machine learning [21-32], but in almost all
applications, classifiers have been trained using simulation.

Because simulations do not perfectly model the actual radiation pattern in jets [33],
their use in training will lead to sub-optimal performance on real data. Training a model
directly on data seems to be the only way not to compromise performance, but this is
challenging due to the lack of true labels.

These two predicaments naturally motivate further explorations of how to directly
train classifiers on actual data, and how to use them to perform model-agnostic searches
on LHC data.



In [34], the Classification Without Labels (CWoLa) approach was introduced as a way
to train classifiers directly on data. Instead of relying on fully labeled examples, the CWoLa
approach trains by using statistical mixtures of events with different amounts of signal;
allowing the use of many of the techniques from fully-supervised training. To apply this
technique in practice, one must find information orthogonal to the classification task that
can be used to select the mixed samples in data. One application of this technique has been
in a model-agnostic dijet resonance search [35, 36]. In this approach, called CWoLa hunting,
a particular invariant mass region is used to select the potentially signal-rich sample and
neighboring sidebands are used to select the background-rich sample. This method has
been shown to be highly sensitive to resonant new physics, but it is unclear how to extend
the approach to non-resonant signals where the anomaly is not localized in a particular
kinematic distribution, such as the resonance mass. The technique further relies on the
information used in classification being completely uncorrelated with the resonance mass.
Slight correlations may lead to the classifier preferentially selecting background events at
a particular resonance mass as signal like, distorting the distribution of background events
and complicating the background estimate.

Another approach that has been explored [37-40] is to scan for anomalous events by
using autoencoders trained directly on data. Autoencoders are a type of network that
learns how to compress an object to a smaller latent representation and then decompress
it to reconstruct the original object. An autoencoder trained on a background-rich sample
can learn how to compress and decompress objects in background events, but will not learn
to do the same for anomalous events. The reconstruction loss, the difference between the
original and reconstructed representation of the object, can then be used as a classification
score that selects anomalous signals. While the autoencoders have the advantage of making
very minimal model assumptions about the signal, their signal-vs-background classification
performance is worse than a dedicated classifier. This is because their training aim is
compression and decompression, not classification; they learn how to effectively represent
the data’s dominant component (i.e. background events), but they do not learn anything
about what the sought-after signal looks like.

Recent proposals have also been made to use other machine learning techniques for
anomaly searches with varying degrees of model independence [41-51]. See [50] for an
overview of recent techniques.

We propose a technique for training classifiers on data that utilizes the CWoLa
paradigm to improve weak classifiers. The method, called Tag N’ Train (TNT), is based on
the assumption that signal events contain two separate objects; and thus the appearance
of these objects is correlated. By using the weak classifier and one of the objects, one can
tag events as signal-like or background-like. This then provides samples of signal-rich and
background-rich events which can be used to train a classifier for the other object. This
technique has a natural application to a model-agnostic searches for new physics in di-object
events. We explore a dijet resonance search based on TNT that uses autoencoders as the
initial weak classifiers. We find that its sensitivity compares favorably to that of CWoLa
hunting and autoencoder-based approaches. We also highlight that the TNT approach
naturally allows data-driven ways to estimate QCD backgrounds in anomaly searches.



This paper is organized as follows. Section 2 outlines the Tag N’ Train technique and
its key assumptions. The remainder of the paper illustrates the power of TNT through an
example based on a dijet search using jet substructure. Section 3 describes the simulation
and deep learning setup. Section 4 emulates an LHC dijet anomaly search and includes
signal sensitivity comparisons of the TNT technique to the CWoLa hunting and autoen-
coder based searches. Conclusions and possible future applications of the TNT approach
are discussed in 5.

2 Tag N’ Train

The Tag and Train technique is a method for training classifiers directly on data. The
technique assumes that the data has 2 distinct objects and, each of the objects can be
“tagged”, i.e. each has a weak classifier can select signal-like events. It takes as input a set
of unlabeled data events and the initial classifiers, and outputs two new classifiers which
may be substantially improved. The original classifiers might be trained directly on data
with an unsupervised approach (e.g. autoencoders), trained on simulation that is known
to mis-model data, or might be single features of the data which are known a priori to be
useful in distinguishing signal vs. background.

The main idea behind the approach is to exploit the paired nature of the data, where
one can use one sub-component of the data to tag examples as signal-like or background-
like. These signal-rich and background-rich samples can then be used to train a classifier for
the other sub-component. The approach bears some similarity to the commonly used Tag
and Probe technique, that uses the two body decays of resonances to measure efficiencies
in data [52, 53].

TNT needs a consistent decomposition of the data into two sub-components hereafter
named Object-1 and Object-2. It assumes one has initial classifiers for Object-1 and Object-
2. It is worth pointing out that the technique can work if the data has more than two sub-
components by combining multiple sub-components into a single ‘Object’ for the purposes
of classification.’

The procedure to train new classifiers is as follows:

1. Classify events as signal-like or background-like using the Object-1’s in each event.

2. Train a classifier to distinguish between the Object-2’s in the signal-rich sample and
the Object-2’s in the background-rich sample.

3. Repeat the procedure, constructing samples by classifying the Object-2’s in each
event, and training a classifier for Object-1 using these samples.?

The Tag N’ Train sequence is shown graphically in figure 1.

'E.g. if the data has natural components A,B, and C, one could take Object-1 to include both A and B.
Then the classifier for Object-1 would receive as input the features of A and B and produce a single
classification score.

20ne could also use the new classifier trained for Object-2 to train the classifier for Object-1, avoiding
the need for initial classifiers for both objects. But this risks correlating the two classifiers.
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Figure 1. An illustration of the Tag N’ Train technique. Here O1 and O2 represent Object-1 and
Object-2, the two components of the data one wishes to train classifiers for.

We stress that the signal-rich and background-rich samples obtained from the original
classifiers do not need to be very pure for the technique to work. In our example use case,
detailed in section 4, we find that even for a few percent signal in the signal-rich sample,
TNT can improve on the original classifiers. This allows one to use weak classifiers as inputs,
and/or apply the technique to data samples with very small amounts of signal present.

One of the main assumptions behind this technique is that the information used for
the classification tasks of Object-1’s and Object-2’s is uncorrelated in background events.
This ensures the background objects in the signal-rich and background-rich samples have
identical distributions even though they were selected using the other object in the event.
If this is not the case, then the classifier may learn the difference between the background
objects in these two samples, instead of learning information about the signal. If this
condition is satisfied, then the requirements of the CWoLa paradigm are fulfilled and the
classifier will be asymptotically optimal. Additionally, the scores of the classifier for object
1 and object 2 on background events will remain uncorrelated, which is often desirable.
In practice, one can afford to slightly violate this condition and still achieve good results,
as long as the difference between the background in the two samples is smaller than the
difference caused by the presence of signal.

The technique works better if the initial classifier can create a larger separation be-
tween signal and background in the mixed samples used for training. Thus, if the TN'T’s
output classifiers achieve better separation than the starting ones, multiple iterations of
this technique can further improve classification performance until a plateau is reached.

In appendix A we show why the Tag N’ Train approach is appropriate, because it is
not possible to use only one object to train an improved classifier on unlabeled data.



3 Methods

3.1 Sample generation

To test our search strategy we use the research development dataset from the LHC Olympics
2020 challenge [54]. The dataset consists of 1M QCD dijet events and 100k W’ — XY
events, both produced with PyTHIA 8 [55, 56] with no pileup or multiple parton interactions
included. The W’ has a mass of 3.5 TeV, and the X and Y have masses of 500 GeV and
100 GeV respectively and both decay promptly to pairs of quarks. Because of the large
Lorentz boost, the hadronic decays of the X and Y bosons can each be captured in a single
large radius jet.

Detector simulation is performed with Delphes 3.4.1 [57] and particle flow objects are
clustered into jets using the FASTJET [58, 59] implementation of the anti-k; algorithm [60]
with a radius parameter of R = 1.0.

For every event, we construct separate jet images [24, 28-31] for the two highest pp
jets, to be used in event classification. Following [31], we apply pre-processing steps to
our jets images before they are pixelated. We center the image based on the pr weighted
center of the jet constituents and rotate the jet so that the principle axis is in the 12 o’clock
position. Then the image is flipped along both axes so that the hardest pr constituent of
the jet is in the upper left quadrant of the image. After these steps, the image is pixelated
into a 40 x 40 pixel image. The image covers an 71 range and ¢ range of -0.7 to 0.7 around
the center of the jet. In order to reduce dependence on the pr of the jet, each image is
normalized so that the sum of all the pixel intensities sums 1. The sample of images is
then normalized so that each pixel has zero mean and unit variance.

3.2 Architectures

We use neural networks built and trained in Keras [61] with a TensorFlow [62] backend
for all the classifiers considered in this work. All networks are trained with the Adam
optimizer with a learning rate of 0.001, first and second moments decay rates of 0.8 and
0.99 respectively and a learning rate decay of 0.0005. Unless otherwise stated, all nodes
use a Rectified Linear Unit (ReLu) activation function.

As this work is a proof of concept for the Tag N’ Train technique, none of the network
architectures have been optimized.

To train the autoencoders we use a convolutional network with filter sizes of 3x3 where
the image’s dimensionality is reduced through max pooling layers after each convolutional
layer. The output is then fed through a dense layer which outputs the latent representation.
Based on [37, 38] we choose the size of our latent dimension to be 16 as this was seen
to be within the performance plateau in both. Then the architecture is mirrored, with
2D sampling layers in place of the max pooling layers to output an image of the same
dimensions. We use a Mean Squared Error loss function during the classifier training.

To train the image based classifiers we also use a convolution network with filter sizes
of 3x3 for all convolutional layers followed by dense layers. The final layer has a sigmoid
activation function. A binary cross-entropy loss is used during training.



4 A dijet anomaly search

4.1 Search strategy

One exciting application of the Tag N’ Train technique is two-body searches at the LHC.
We consider specifically a dijet anomaly search where one uses a autoencoder trained
directly on data as the initial classifier, then uses the TNT technique to train improved
classifiers. These improved classifiers are then used to suppress QCD backgrounds and a
resonance is searched for in the invariant mass of the dijet events.

We implement the search strategy as follows. For each event, we consider the highest
two pr jets to be the dijet candidate. In order to apply the Tag N’ Train technique, we
treat our Object-1 as the more massive jet in each event and Object-2 as the less massive
jet. For each event we then have a separate image for the heavier and lighter jet. To
evaluate how well the strategy works with varying levels of signal, we vary the amount of
signal present in the dataset by filtering out signal events. We run the search in the case
where 9%,1% 0.3% and 0.1% of the events in the dataset are signal.?

Using an initial sample of 200k events we train separate autoencoders for the heavier
and lighter jets in the sample. We use the autoencoder architecture described in section 3.2
for both autoencoders, use 10% of events for validation, and train for 30 epochs. We then
use these autoencoders and a new sample of 200k events to train new classifiers with
the Tag N’ Train technique. Specifically, we define our signal-rich samples as the 20% of
events with the highest autoencoder loss, and the background-rich samples as the 40%
of events with the lowest autoencoder loss. We iterate the TNT procedure for a total of
3 iterations, each time using the classifiers from the previous iteration and a new set of
200,000 events as the inputs. For the second iteration onward we use the 10% events with
the highest classifier score for our signal-rich sample, but still use the same selection for the
background-rich sample. We did not extensively optimize these selections, but did check
that the performance of the technique is robust to the exact values used.*

Because we are searching for a resonance we have additional information about the
nature of our signal: it is likely to be localized to particular region in the dijet mass spec-
trum. In such cases, where one has a priori assumptions about the anomalous events, one
can add them as additional selection requirements for events to be signal-like. Specifically,
we require the events in the signal-rich sample to fall within a dijet invariant mass window
in addition to the cut on the classifier score. In a real search in data, one would scan the
dijet mass range, training a separate set of networks for each dijet mass window (as is
suggested in [35, 36]), but we simplify things here by just requiring the dijet mass to be
near the resonance mass of 3.5 TeV, i.e. within 3.3 and 3.7 TeV. We do not apply any dijet
mass selection to the background-rich sample, so that events from this sample populate
this mass window as well. These additional requirements improve the fraction of signal

3These correspond to an S/B in the dijet mass range 3250 to 3750 GeV of 35%, 6%, 1.7% and 0.5% re-
spectively.

4For future work, it might be interesting to explore the use of a “soft” labeling scheme where the label
for each event is not required to be strictly 0 or 1, but allowed to be a value in between based on the score
of the initial classifier.



events in the signal-rich sample. That is, for the dataset with 0.3% signal events, there
is 1% signal in the signal-rich samples without a dijet mass cut, 1.5% signal in the mass
window with no additional requirement, and 5% when both are used together.

Because the TNT technique creates separate classifiers for each jet, one must combine
them in a sensible way in order to select anomalous events. Given the unsupervised nature
of the search, one will not know a priori what the optimal event selection will be for each
object, and likely multiple criteria will be tried. We select events by choosing a certain
percentile X and requiring that the respective classifier score for both jets in that event
to be above that percentile in their respective distributions. For example, if we pick a
percentile selection of X = 20% for our search, we select events where jet-1 must be in the
top 20% of jet-1 scores and jet-2 must be in the top 20% of jet-2 scores. One can scan over
this percentile to produce a selection of the desired efficiency.”

Once the classifiers have been trained, we select signal-like events from a sample of
300k events not used in training. To extract the final p-value of the anomaly search, we
explore two different methods.

The first is a count-and-count method, where one compares the number of selected
events to an estimated number of background estimate. Because our signal events are
selected using two independent classifiers, one can estimate the amount of background
using an ABCD-like approach. This approach uses a jet-2 selection to obtain a sample of
background-like events which are then used to measure the efficiency of the jet-1 selection
on background, and vice versa. We select our background-like sample using the 40% of
scores with the lowest jet-2 scores and measure the rate of background events having jet-1
scores above the selection threshold. The same procedure can then be used to measure the
rate of background events passing the jet-2 selection. Once the background efficiency of
the jet-1 and jet-2 selection has been measured, the number of background events in the
signal region can be estimated by multiplying these two efficiencies by the total number
events before selection. A p-value can then be computed based on the number of observed
events in the signal region and the number of estimated background events.

The second approach is a simple bump-hunt; applicable only to resonant signals. After
selecting the signal-like events we bin this dataset in M;; and perform the signal extrac-
tion. We model the shape of the falling QCD background component with a third degree
polynomial and propagate the uncertainties on the polynomial parameters as systematic
uncertainties of the fit. We assume the signal is relatively narrow, and fit the resonant sig-
nal with a Gaussian peak. We do not attempt to perform a more complicated parametric
fit to the background nor explore a different functional form. Instead, we assume that after
the selection on the classifier, the mass distribution will fall smoothly, and this will allow for
a sufficient number of sideband events to reliably constrain the QCD multijet background.

Although we have not done so here, in a real implementation of an anomaly search
one would want to use a cross-validation scheme so all the data could be used to search for
a signal and none is “wasted” by the training (as in [35, 36]). This would involve splitting

5This approach for combining the jet scores makes sense when both scores have roughly equal discrimina-
tion power and a “tight” selection is desired. In other use cases one might want to pursue a different strategy.
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Figure 2. Classification performance for distinguishing signal and background events. The numbers
next to each label show the Area Under Curve (AUC) of each classifier. We show results for when the
fraction of signal events is 9%, 1%, 0.3% and 0.1% in the top left, top right, bottom left and bottom
right respectively. We show the performance of the Tag N’ Train technique with and without the
dijet mass cut, and the CWoLa hunting and autoencoders. Two fully supervised classifiers trained
with ground-truth labels, are shown for reference. The one labeled ‘separate’ consists of 2 classifiers,
trained on each jet separately and combined in the same way as the TNT classifiers, and the one
labeled ‘both jets’ is trained on both jets at the same time.

up the data into multiple samples and cycling through which samples are used for training
and which were used for searching. Then one would simultaneously fit all of the signal
regions to achieve full sensitivity.

4.2 Results

We evaluate the performance of the pure TNT classifiers, and the classifiers trained using
TNT and a dijet mass cut (hereafter called TNT + M;; classifiers). For this purpose, we
use the sample of 300k events not used in the training step. In figure 2, we compare their
performance against fully supervised classifiers, those trained using the CWoLa hunting
method [37, 38] and autoencoders. We also compare the performance of supervised classi-
fiers trained using the images of both jets at the same time and classifiers trained on each
jet individually and combined in the same way as the TNT classifiers. One can see that
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Figure 3. The QCD dijet mass distribution after applying different selections on the TNT +
M;; classifiers, trained with the 1% signal in the dataset. The QCD dijet mass distribution re-
mains smooth even down to a selection efficiency of 1%, allowing the use of data-driven back-
ground estimates.

there is a noticeable drop in performance when separating the jets, but that good classifi-
cation performance is still possible. Although the 9% signal test is rather optimistic from
an anomaly search perspective, it shows that the both the TNT and TNT + M;; converge
to the performance of a fully supervised classifier given sufficient signal. For the 1% signal
test, the TNT classifier is somewhat worse than the TNT 4+ M;; classifier, but still has
significantly improved performance with respect to the autoencoder. Finally, for the 0.3%
and 0.1% signal tests, we can see that there is too little signal for the TNT classifier to
learn from, and TNT performs significantly worse than the autoencoder. The TNT + M;;
classifier performs similarly to CWoLa hunting for the 3 tests with larger signal, but for the
0.1% test the TNT + M;; is able to maintain better performance better than the CWoLa
hunting method, but without improving with respect to the autoencoders approach.

It is important to point out that because the signal chosen is a narrow resonance, it
naturally favors the TNT + M;; and CWoLa hunting methods which assume this type of
signal. If the signal was a wide resonance, or a non-resonant signal, of similar cross section
it is likely that these techniques will not perform as well, while the autoencoders and the
regular TNT will have similar performance. We leave a comparison of performance on

non-resonant signals for future work.

In addition to achieving good classification performance, we also highlight that neither
the TNT or TNT 4 M;; classifiers significantly sculpt the QCD dijet mass distribution.
In figure 3, we show the QCD dijet mass distribution after applying various cuts using
the TNT + M;; classifier. We can see that the shape of the distribution is not altered by
any of these cuts. This is crucial because it allows the use of data driven estimates of the
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Figure 4. Correlation between classifier scores for the TNT classifier trained on a dataset with
1% signal (left) and a classifier trained using CWoLa on mixed samples with similar signal to
background ratio as the samples used in the TNT training (right). Blue dots are QCD background
and red dots are signal. In the top right we report the Pearson correlation coefficient of the jet 1
and jet 2 scores for background events.

QCD background which rely on the smoothness of the dijet mass distribution. The lack
of sculpting is due to our choice of classifier inputs, we normalize each jet image so that
the sum of all pixel intensities is 1. This means that each image does not carry very much
information about jet pr which can be used to sculpt the dijet mass distribution. But it is
also important to point out algorithmic differences that can mitigate the risk of sculpting,
between the TNT approach with a dijet mass cut and the CWolLa hunting. The first is that
TNT selects the background-like and signal-like events using more information than just
the dijet mass cut. This means that there are background events that populate the signal
window and that are used in the training with a dijet mass in the signal-window, whereas in
the CWoLa hunting approach all background events are in dijet mass sidebands. The other
advantage is that by training a classifier for each jet separately, one can try to explicitly
decorrelate the classifier’s dependence on jet pp through one of the techniques that have
been used in supervised jet classification [63-67]. We explored reweighting events in the
background-rich sample to have the same pr distribution as the signal-rich region, but as
there was not much mass sculpting to begin with, there were no significant differences in
the mass sculpting or classification performance.

Another key feature to point out is that the TNT procedure maintains the indepen-
dence of jet 1 and jet 2 scores on background events. In figure 4 we show the correlation
between the jet 1 and jet 2 classification scores for classifiers trained with TNT. We also
show a similar figure for ‘pure CWoLa’ classifiers trained using randomly selected mixed
samples with signal-rich and background-rich samples with similar S/B’s to the TNT train-
ing. We can see that the TNT classifier produces roughly similar distribution of jet 1 and jet
2 scores as the pure CWoLa classifier. We also compute the Pearson correlation coefficient
between jet 1 and jet 2 scores for background events. We can see that the TNT classifier

STn principle it is possible to do this in the CWoLa hunting approach as well if one trains a classifier for
each jet separately, and attempts to decorrelate classification score from jet pr.
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Figure 5. A comparison of the estimated and true number of background events as a function
of selection efficiency for the cut and count based analysis. The shaded regions around the cen-
tral values show the 1o uncertainties due to the Poisson uncertainty on the observed number of
background events. The black dashed lines shows a 5% around the ratio of 1.

does not develop a significant correlation between jet 1 and jet 2 scores. This is desirable
from an event-level classification standpoint because it means when a background event
passes the selection for one of the classifiers it is not biased to be more likely to pass the
other. Additionally this independence allows the use of background estimation techniques
that rely on creating control regions by inverting the selection on one of the jets.

We also test the signal extraction procedures detailed in the last section using this
sample of 300k events.

To test the cut-and-count approach, we use the sample with 1% signal and the TNT
classifiers and autoencoders to select events. In figure 5 we compare our estimated number
of background events to the true number of events at various selection efficiencies. One
can see that this method of background estimation works quite well even down to selection
efficiencies as small as 1072 for both the autoencoders and the TNT classifiers.

We also do a rough comparison of the expected and observed significance at different
selection efficiencies based on this background estimate. We take the uncertainty on the
background estimate to be the combination of the statistical uncertainty (from the selection
efficiency measurements) and a 3% systematic uncertainty. We compute the significance as:

N, obs — N, pred N, sig

Oobs = 2 Oexp = 727
\/Nobs+0b \/Nobs+0'b

where N is the number of events observed after selection, Np.eq is the number of predicted

(4.1)

background events, oy, is the total uncertainty on the background estimate, and Ng;e is the
true number of signal events after selection.

- 11 -



Selection Efficiency | Sig. Exp. (AE) | Sig. Obs. (AE) | Sig. Exp. (TNT) | Sig. Obs. (TNT)
10% 1.8 1.4 2.3 2.1
5% 2.1 1.7 3.9 3.2
3% 2.5 2.0 5.6 5.1
1% 2.9 3.1 > 10 > 10
0.5% 2.8 2.3 > 10 > 10

Table 1. A rough comparison of the expected and observed significance (in ¢’s) for the autoencoder
and Tag N’ Train based searches on a dataset with 1% signal. The shown significance is based on
the total uncertainty on the background estimate and the Poisson uncertainty on the number of
observed events.

We compare the significance of the autoencoder and TNT based approaches in table 1.
When using the autoencoders, the optimal working point achieves a 3¢ significance while
the TNT classifier can achieve a significance > 100. Of course such a high value of sig-
nificance should not be taken literally, especially for this rough estimate, but this does
illustrate the potential gains of the TNT approach.

For the bump hunt approach, we try samples with 0.3% and 0.1% signal and select
events with the TNT + Mj;;, CwoLa hunting, autoencoder and supervised classifiers. For
each classifier we select events with an overall efficiency of 3%. In the presence of a signal a
dijet mass peak forms at the signal hypothesis, after a percentile selection on our data. We
fit for the presence of a resonant signal modeled as a Gaussian shape peaking at 3.5 TeV.
We verified that when no signal is present in our sample, no significant bump is created
by our procedure. In tables 2 and 3, we compare the significance on samples with 0.3%
and 0.1% signal respectively. We compare the significance obtained prior to any selection
and after events have been selected using each classifier. In both cases we observe that the
significance prior to any selection is < 20 meaning the signal would have gone unnoticed in
an inclusive dijet resonance search on a dataset of this size. We observe that for the 0.3%
case the signal significance roughly follows the classification performance shown in figure 2,
with both the TNT + M;; and CWoLa hunting classifiers obtaining significances close to
5c. For the 0.1% case we see a large drop off in significance enhancement for all three of
the anomaly classifiers, with all of the significances < 20 while the supervised classifier can
still clearly find the signal.

We remark that the p-value computed in the bump-hunt approach is only a local p-
value. The translation to a global p-value would depend on the procedure used to scan over
the full dijet mass range and how many different selections are tried in each mass window.”

If a local p-value is below some threshold, it would be crucial to characterize the nature
of the signal. While there are some known strategies that can be used to understand what a
deep CNN has learned [68-70], a simple approach would be to just examine the events that
the classifier has found to be most signal like. In figure 6 we compare the characteristics of

"Because the p-values observed with different selections in the same mass window will be correlated,
computation of a global p-value is non-trivial. We leave the exploration of this for future work.
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No Selection AutoEncoder CWOLA Hunting TNT + M,; Supervised
1.4 3.0 4.8 5.3 >10

Table 2. A comparison of the observed significance (in ¢’s) of a bump hunt search using various
different classifiers to select events with a 3% efficiency. We also compare to the significance of
a bump hunt on events prior to any classifier selection. Except for the supervised, the classifiers
were trained on a sample with 0.3% of signal events. All significances are obtained on a validation
sample that also has 0.3% signal events.

No Selection AutoEncoder CWOLA Hunting TNT + M;; Supervised
0.9 0.9 1.4 1.4 8

Table 3. A comparison of the observed significance (in ¢’s) of a bump hunt search using various
different classifiers to select events with a 3% efficiency. We also compare to the significance of
a bump hunt on events prior to any classifier selection. Except for the supervised, the classifiers
were trained on a sample with 0.1% of signal events. All significances are obtained on a validation
sample that also has 0.1% signal events.

the events the TNT classifier found to be most signal-like to the characteristics of the true
signal events. We show 2D scatter plots of jet mass and the N-subjetiness ratio o1 [71].
Despite not using the jet mass or N-subjetiness as direct inputs to the network, one can see
that the TNT classifier has learned the correct masses of the X and Y jets and that they
are both two pronged. Characterizing the signal in this way would also give an analyzer
confidence they had truly found evidence of new physics rather than a unknown feature of
the detector.

5 Conclusions

We have introduced a new method of training classifiers directly on data called Tag N’
Train. It relies on decomposing the data into two distinct sub-objects which can be clas-
sified separately. One can then use one of the sub-objects to tag events as signal-like or
background-like, and those samples can be used to train a classifier for the other object.
Here we have explored the possibility of using the Tag N’ Train technique to perform a dijet
anomaly search by using autoencoders trained directly on data as the initial classifiers. We
demonstrate that given sufficient signal in the data, the TNT technique is able to produce
classifiers that perform significantly better than the autoencoders. When a cut on the dijet
mass is used in addition to the autoencoders to select signal-like events, the TNT classifiers
achieve similar performance to those trained using the CWoLa hunting technique.

As this work was meant to be a proof of concept for the Tag N’ Train method, we believe
there is substantial room to improve the performance of the TNT dijet anomaly search,
both by optimizing the initial network used to detect anomalous jets, and the architecture
of the classifier trained with TN'T. An obvious direction to explore would be other variants
of the autoencoder architecture, such as variational autoencoders [43, 72] or normalizing-
flow based autoencoders [73], but in principle any anomaly detection method that is able
to isolate signal events using only one jet at a time could work as an initial classifier.
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Figure 6. Correlation between 757 and jet mass for the dataset with 1% signal. The top row
corresponds to the heavier jet and the bottom row the lighter jet. On the left (in red) are the
1% of events the TNT classifier found to be most signal-like and on the right (in blue) the true
signal events.

Also, while using low-level inputs like jet images to the TNT classifiers offers robustness
to many types of signals using higher-level features may offer advantages as well. If there
was only a small amount of signal present, it would likely be easier for the network to
learn if higher level features were used. However, by restricting the information given to
a hand-selected subset of variables, one may lose sensitivity to anomalies exhibiting novel
features. We leave the exploration of these ideas for future work.

Although here we have applied the TNT technique to a dijet resonance search, the
performance of the TNT technique without using dijet mass window, shows it could be
applied to a non-resonant anomaly search as well. We have also demonstrated that Tag
N’ Train technique naturally pairs with an ABCD background estimate due to the two
classification scores of the two objects are independent by design.

A key point to explore for the future would be how the Tag N’ Train technique per-
forms in the presence of sub-dominant SM backgrounds with interesting sub-structure,
such as top quark pairs or W+Jets production. Preventing the TNT technique from learn-
ing these events as signal-like may require additional control regions to be added to the
background-rich sample in training, or explicitly veto-ing events that look like from known
SM backgrounds from the signal-rich sample during training.

— 14 —



The Tag N’ Train framework could also be applied to model-specific search as well.
Running the Tag N’ Train technique with classifiers for Standard Model jets as inputs, while
scanning for a resonance, could target models covered by existing searches. The possible
advantage of the Tag N’ Train framework would be that by training new classifiers directly
on data, one would mitigate the effects of imperfections in the simulation used in training.
It would be interesting to compare how the performance of this sort of Tag N’ Train search
compares to a traditional supervised search if there were significant mis-modeling of the
signal or background in simulation.

Code and data availability. Code to reproduce all of our results can be found on
Github and the dataset used is available on Zenodo [54].
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A Attempting to train using a single object

To demonstrate why the Tag N’ Train approach is necessary, we show here that one cannot
use a similar approach but with only one object to train improved classifiers on unlabeled
events. Using the same dataset and setup as in the main text, we attempt to train a
new classifier for jet-1 using anomalous events selected based on their jet-1 anomaly scores
(rather than jet-2 scores as in the TNT approach). To test whether this is possible at all,
we use a dataset with a very large amount of signal, 9%. Starting with an autoencoder as
an initial classifier, we select the 20% of events with the highest classifier scores to be the
signal-rich sample and the 40% of events with the lowest scores to be the background-rich
sample. We then train a classifier to distinguish between these two samples. Similar to
the TNT approach, this new classifier is then used with a new set of data events to train
another classifier. We repeat for a total of 3 iterations, with 200,000 events being used
in each iteration. In figure 7 we compare the performance of classifiers trained with this
method to one trained with TNT.

One can see that the classifier trained repeatedly with the same jet is not able to
perform any better than the autoencoders used for initial classification even after 3 itera-
tions, while the TNT classifier greatly surpasses the autoencoder in the first iteration and
improves further in the second iteration. Furthermore, we observe that the classification
scores for the same-jet classifiers all plateau to the exact same value, making selections
with low efficiency impossible. This behavior can be understood by considering the train-
ing procedure. First of all, the same-jet classifier is not able to learn any more information
about the signal than the autoencoders because its training objective was to classify the
jets in the exactly the same way as the labeling classifier. Additionally, the collapse of
classification scores to a single value occurs because the labeling procedure ‘collapses’ the
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Figure 7. A comparison of classifiers trained using the same jet repeated versus the TNT approach.
The ROC curves of the same-jet-trained classifiers are truncated because selections tighter than this
point are not possible due to the classifier scores of these events all being exactly the same.

signal-like events to all have a labels of 1. This issue could likely be solved by using a
soft-labeling scheme, but the fundamental challenge of surpassing the performance of the
initial classifier remains. The Tag N’ Train approach avoids these issues by using informa-
tion external to the classification task (namely the other object in the event) to construct

the signal- and background-rich samples.
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