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In this article, we define Vassiliev measures of
complexity for open curves in 3-space. These are
related to the coefficients of the enhanced Jones
polynomial of open curves in 3-space. These Vassiliev
measures are continuous functions of the curve
coordinates; as the ends of the curve tend to
coincide, they converge to the corresponding Vassiliev
invariants of the resulting knot. We focus on the
second Vassiliev measure from the enhanced Jones
polynomial for closed and open curves in 3-space.
For closed curves, this second Vassiliev measure can
be computed by a Gauss code diagram and it has
an integral formulation, the double alternating self-
linking integral. The double alternating self-linking
integral is a topological invariant of closed curves
and a continuous function of the curve coordinates
for open curves in 3-space. For polygonal curves,
the double alternating self-linking integral obtains a
simpler expression in terms of geometric probabilities.

1. Introduction
Many physical systems are composed of entangled
filamentous structures whose complexity affects their
mechanical properties and their function [1–8]. Under
some conditions, we can see these filamentous structures
like mathematical curves in 3-space whose entanglement
we can measure using tools from knot theory [9–25].
A knot (link) is one (or more) simple closed curve(s) in
3-space, and knots (links) are classified using the notion

2021 The Author(s) Published by the Royal Society. All rights reserved.
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of topological equivalence. Many sophisticated topological invariants exist, such as knot and link
polynomials [26–30]. However, there are two major throwbacks in measuring the entanglement
complexity of filamentous structures in practice: these may be open curves in 3-space (i.e. they
have a distinct starting point and endpoint) and entanglement in these systems is very complex, at
least in terms of the number of crossings in diagrams, making the calculation of such polynomials
intractable.

The only measure of entanglement of open curves in 3-space until recently was the Gauss
linking integral [31]. This measures self or pairwise entanglement of open curves and has had
a lot of success across disciplines [32–45]. Characterizing the entanglement of open curves in
3-space using stronger measures of entanglement that can detect knotting of open curves has
attracted a lot of attention in the last 20 years (see [46–50] and references therein). However, all
these approaches focused on approximating the open curve in 3-space by a knot (a simple closed
curve in 3-space) or by a knotoid (a two-dimensional diagram of an open-ended knot). In 2020
[51], the Jones polynomial of open curves in 3-space was introduced, and it was shown that it is a
polynomial with real coefficients that are continuous functions of the curve coordinates. Therein,
it was shown that the Jones polynomial of open curves in 3-space generalizes the conventional
Jones polynomial. In other words, the conventional Jones polynomial expression is a special case
of the Jones polynomial introduced in [51].

The approach introduced in [51] provided a framework that we can use to study entanglement
of both open and closed curves. This paper focuses on deriving Vassiliev invariant-type measures
of entanglement of both open and closed curves. In addition, an integral formula of the second
Vassiliev invariant measure is introduced that provides a way to compute such entanglement
measures directly from the coordinates of an open curve in 3-space.

Vassiliev invariants are related to the coefficients of the Jones polynomial and can distinguish
knots and links, as the polynomials do [52–56]. Combinatorial expressions for calculating some
Vassiliev invariants from knot diagrams exist [53,54,56] and integral expressions for Vassiliev
invariants also exist; however, their calculation remains elusive [57,58]. A major issue with
computing Vassiliev invariants in practice is that physical filaments are usually composed by
open curves in 3-space. The theory of knotoids provides a way to study the complexity of open-
ended knot diagrams [59–61], for which Vassiliev invariants are rigorously defined [62]. However,
these are not well defined for open curves in 3-space.

In this article, we define Vassiliev measures for open curves in 3-space using the coefficients
of the Jones polynomial with enhanced states of the open curves in 3-space. We show that they
are continuous functions of the curve coordinates. An integral formula for the second Vassiliev
invariant from the enhanced Jones polynomial is introduced, which involves a Gauss map, the
double alternating self-linking integral. For polygonal curves in 3-space, the double alternating
self-linking integral is expressed as a finite sum of geometric probabilities. For open curves, the
double alternating self-linking integral is a continuous function of the curve coordinates. The
double alternating self-linking integral that we introduce provides a unique—to our knowledge—
measure of the conformational complexity of open curves in 3-space that is stronger than the
Gauss self-linking integral and does not require the computation of any knot polynomial. This
can be extremely helpful in practice when studying entanglement in physical systems and we
are aware of the potential impact this could have in the study of proteins and polymers. We
point out that the method introduced here can be applied to other Vassiliev invariants as well.
This generates well-defined integrals over closed or open curves in 3-space that capture higher
degrees of entanglement.

More precisely, in §2, we derive the exact formulae of the Vassiliev invariants for knots and
knotoids obtained from the enhanced Jones polynomial. In §3 we introduce the Vassiliev measures
for open curves in 3-space and study their properties. In §4 we focus on the second Vassiliev
invariant of the enhanced Jones polynomial and show that it can be computed using a Gauss
code. In §5, a skein relation satisfied by the second Vassiliev invariant of the enhanced Jones
polynomial for knotoids is derived and, in the case of knot-type knotoids, it is shown that this
second Vassiliev invariant can be calculated by using a Gauss code diagram. In §6, we introduce
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the double alternating self-linking integral and we show that it is equal (up to some specified
constants) to the second Vassiliev invariant of the enhanced Jones polynomial in the case of closed
curves. In the case of open curves, it is a continuous function of the curve coordinates. Finally, in
§7, we show that, for polygonal curves, the double alternating self-linking integral has a simpler
expression as a finite sum of geometric probabilities and we give a finite form for the computation
of those probabilities for polygonal curves with three or four edges in 3-space.

2. Vassiliev invariants of the enhanced Jones polynomial of knots and knotoids
In this section, we present the definitions of Vassiliev invariants of knots and knotoids defined
through the coefficients of the Jones polynomial of knots and knotoids, respectively.

(a) Vassiliev invariants of the enhanced Jones polynomial of knots
The Jones polynomial is defined using the normalized bracket polynomial. An expression of the
Jones polynomial, which is helpful for deriving Vassiliev invariants, relies on using enhanced
states [63].

The bracket polynomial can be computed using the following relation:

(2.1)

The smoothings with coefficient 1 in the aforementioned equation are called A smoothings,
and the smoothings with coefficient q are called B smoothings. Through A and B smoothings of
the crossings in a diagram, we obtain a set of enhanced states. In enhanced states, circles have an
associated sign in their diagram, and a circle with no sign is a sum of two such states. A circle
with a positive sign corresponds to q and a circle with negative sign corresponds to q−1.

For s an enhanced state, let i(s) be the number of B smoothings and

λ(s) = number of positive circles − number of negative circles. (2.2)

Then, each state corresponds to a term of the form (−q)i(s)qλ(s) = (−1)i(s)qj(s), where j(s) = i(s) +
λ(s), and the bracket polynomial can be expressed as follows:

〈K〉 =
∑
s∈S

(−1)i(s)qj(s). (2.3)

We define the enhanced Jones polynomial in q as follows:

JK(q) = qn+−2n− (−1)n−〈K〉, (2.4)

where n+ is the number of positive crossings and n− is the number of negative crossings. The
enhanced Jones polynomial, JK, is related to the Jones polynomial, VK, through the relation

JK(q) = (q + q−1)VK(q), (2.5)

with the substitution q= t−1/2.
The enhanced Jones polynomial satisfies the following relation:

q−2JK+ (q) − q2JK− (q) = (q−1 − q)JK0 . (2.6)
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We use the substitution t= ex, i.e. q= e−x/2, in JK(q) and then expand it in series of x.

JK =
∑
s∈S

(−1)i(s)+n−qj(s)+n+−2n−

=
∑
s∈S

(−1)i(s)+n− e−(j(s)+n+−2n−)x/2

=
∑
s∈S

(−1)i(s)+n−
∞∑
k=0

1
k!2k

((j(s) + n+ − 2n−)x)k

=
∞∑
k=0

(−1)kxk

2kk!

∑
s∈S

(−1)i(s)+n− (j(s) + n+ − 2n−)k. (2.7)

The coefficients of xk are Vassiliev invariants of order k.

vk = (−1)k

2kk!

∑
s∈S

(−1)i(s)+n− (j(s) + n+ − 2n−)k, (2.8)

where S is the set of enhanced states of the knot diagram, i(s) is the number of B smoothings,
j(s) = i(s) + λ(s), λ(s) is the algebraic number of circles and n− (resp. n+) is the number of negative
(resp. positive) crossings in the diagram.

To verify that vk is a finite-type invariant of order k, we notice that, after substitution of
q= e−x/2 in equation (2.6), we obtain

JK+ (x) − JK− (x) = x(other terms). (2.9)

For a singular knot K with k double points, JK(x) is divisible by xk; thus, the coefficient of xk

does not vanish. However, if K has k + 1 double points, the coefficient of JK(x) is divisible by xk+1,
which suggests that the coefficient of xk vanishes. Thus, the coefficient of xk, vk, is a finite-type
invariant of degree k.

(b) Vassiliev invariants of the enhanced Jones polynomial of knotoids
A knotoid is an open-ended knot diagram whose ends can be in different regions. Similarly, a
linkoid is a diagram of a link with some open-ended components. Examples of knotoids and
linkoids are shown in the electronic supplementary material, Supplementary Information and
in [59,61]. We will use the enhanced states expression of the Jones polynomial. Note that, in
enhanced states of knotoids, circles and arcs have an associated sign; if a circle or an arc has
no sign, it is a sum of two states. A circle or an arc with a positive sign corresponds to q and a
circle or an arc with a negative sign corresponds to q−1.

The enhanced states expression of the Jones polynomial in q of a knotoid K is

JK(q) = qn+−2n−
∑
s∈S

(−1)i(s)+n−qj(s). (2.10)

We use the substitution q= e−x/2 and then expand JK(q) in series of x,

JK(x) =
∞∑
k=0

(−1)kxk

2kk!

∑
s∈S

(−1)i(s)+n− (j(s) + n+ − 2n−)k. (2.11)

The coefficient of xk in JK(x) is a Vassiliev invariant of order k of the knotoid K,

vk(K) = (−1)k

2kk!

∑
s∈S

(−1)i(s)+n− (j(s) + n+ − 2n−)k, (2.12)

where S is the set of enhanced states of the knotoid K, i(s) is the number of B smoothings, j(s) =
i(s) + λ(s), λ(s) is the algebraic number of circles and n− (resp. n+) is the number of negative (resp.
positive) crossings in the knotoid diagram.
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3. Vassiliev measures of the enhanced Jones polynomial of open
curves in 3-space

In this section, we define a set of new measures of entanglement of open curves in 3-space that
we call Vassiliev measures because of the similarity of their definition to Vassiliev invariants.
However, these are not invariants for open curves; to avoid any confusion, we will denote them
wk (instead of vk). In the following, we will show that the same definition applies to both open
and closed curves in 3-space. For this reason, we give the definition in general for any curve in
3-space.

Definition 3.1. Let l denote an open or closed curve in 3-space. We define the kth Vassiliev
measure as follows:

wk = (−1)k

4π2kk!

∫
ξ∈S2

∑
sξ ∈Sξ

(−1)i(sξ )+n−,ξ ((j(sξ ) + n+,ξ − 2n−,ξ )k)dA, (3.1)

where S is the set of enhanced states of a projection of l, lξ , i(s) is the number of B smoothings,
j(s) = i(s) + λ(s), λ(s) is the algebraic number of circles and n− (resp. n+) is the number of negative
(resp. positive) crossings in the diagram and where the integral is over all vectors in S2 except a
set of measure zero (corresponding to non-generic projections).

Proposition 3.2. Let l denote an open or closed curve in 3-space. The kth Vassiliev measure, wk(l),
is defined by the coefficients of the enhanced Jones polynomial of l.

Proof. Let l denote a curve in 3-space. Let (l)ξ denote the projection of l on a plane with normal
vector ξ . Let K((l)ξ ) denote the knotoid corresponding to (l)ξ .

The normalized bracket polynomial of l was defined in [51] as follows:

VK(l) = 1
4π

∫
ξ∈S2

(−A3)−wr(K(l)ξ )〈K((l)ξ )〉dA, (3.2)

where the integral is over all vectors in S2 except a set of measure zero (corresponding to non-
generic projections). The integrand is the Jones polynomial of the knotoid K((l)ξ ).

Using the enhanced states expression of the Jones polynomial in this case, we get

JK(q) = 1
4π

∫
ξ∈S2

qn+,ξ −2n−,ξ
∑
sξ ∈Sξ

(−1)i(sξ )+n−,ξ qj(sξ )dA. (3.3)

We use the substitution q= e−x/2 and then expand this in series of x.

JK(q) =
∞∑
k=0

(−1)kxk

2kk!
1

4π

∫
ξ∈S2

∑
sξ ∈Sξ

(−1)i(sξ )+n−,ξ ((j(sξ ) + n+,ξ − 2n−,ξ )k)dA. (3.4)

Therefore, wk is the coefficient of xk in the enhanced Jones polynomial of l. �

Corollary 3.3. Let l denote an open curve in 3-space. The kth Vassiliev measure of l derived from the
enhanced Jones polynomial of l is the average of the Vassiliev invariant in a projection over all possible
projection directions, namely

wk(l) = 1
4π

∫
ξ∈S2

vk(lξ )dA. (3.5)

Proof. It follows directly from definition 3.1 and equation (2.12). �

Proposition 3.4. If l is a closed curve in 3-space, then the kth Vassiliev measure, wk(l), is equal to the
kth Vassiliev invariant, vk(l), obtained from the enhanced Jones polynomial of l, i.e. wk(l) = vk(l).
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Proof. If l is a closed curve in 3-space, then vk(l) is a topological invariant, independent of the
projection direction. Thus,

wk(l) = 1
4π

∫
ξ∈S2

vk(lξ )dA= vk(lξ ) = vk(l). (3.6)

�

Proposition 3.5. Let l denote an open curve in 3-space, then wk can be expressed as follows:

wk(l) =
∑

Ki∈K(l)

p(Ki)vk(Ki), (3.7)

where Ki is a knotoid that appears in a projection of l and p(Ki) is the geometric probability that the
projection of l gives the knotoid Ki and K(l) is the set of possible knotoids that can result as a projection of l.

Proof. Any fixed curve in 3-space can give projections that result in only a finite number of
knotoids, we denote Ki, where i= 1, . . . , n. Then, p(Ki) = (1/4π)Ai, where Ai is the sum of two
antipodal spherical areas that define normal vectors to planes where the projection of l gives the
knotoid Ki. Since vk(lξ ) is constant in these areas,

wk(l) = 1
4π

∫
ξ

vk(lξ )dA

=
∑

1≤i≤n

1
4π

∫
ξ∈Ai

vk(lξ )dA= 1
4π

∑
1≤i≤n

vk(Ki)
∫
ξ∈Ai

dA

= 1
4π

∑
1≤i≤n

vk(Ki)Ai =
∑

1≤i≤n

p(Ki)vk(Ki). (3.8)

�

Remark 3.6. We can also write wk as follows:

wk = (−1)k

2kk!

∑
S,n+,n−

pK,S,n−,n+

∑
s∈S

(−1)i(s)+n− ((j(s) + n+ − 2n−)k), (3.9)

where pK,S,n+,n− denotes the geometric probability that a projection of K has n+, n− positive and
negative crossings, respectively, and gives the set of enhanced states S and the sum is taken over
all possible sets of states S that can be generated by projections of K with a given type of crossing
n+, n−.

Proposition 3.7. Let l denote an open curve in 3-space. Then, the kth Vassiliev measure of l, wk(l), is a
continuous function of the curve coordinates.

Proof. Let us consider a polygonal curve of n edges, ln. Then, by proposition 3.5,

wk(ln) =
∑

Ki∈K(l)

p(Ki)vk(Ki), (3.10)

where Ki is a knotoid that appears in a projection of l and p(Ki) is the geometric probability that
the projection of l gives the knotoid Ki and K(l) is the set of possible knotoids that can result as a
projection of l. In [51], it was shown that p(Ki) is a continuous function of the curve coordinates.
Thus, wk(ln) is a continuous function of the coordinates of ln. As n→ ∞, the result follows for any
curve l. �

4. The second Vassiliev invariant of the enhanced Jones polynomial of knots
In this section, we study the second Vassiliev invariant of knots derived by the enhanced Jones
polynomial and show that it can be calculated using a Gauss code diagram from any knot
diagram.
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Theorem 4.1. For a knot K, the first three Vassiliev invariants defined by the enhanced Jones polynomial
satisfy the following equations:

v0(K) = v0(©) = 2,

v1(K+) = v1(K−)

and v2(K+) − v2(K−) = −6lk(K0),

⎫⎪⎪⎬
⎪⎪⎭ (4.1)

where K0 is a link and lk denotes the linking number.

Proof. See electronic supplementary material, Supplementary Information. �

Remark 4.2. It is interesting to point out that a similar relation exists for the Casson invariant,
the second Vassiliev invariant obtained from the Conway polynomial [64].

Theorem 4.3. For a two-component link, L, the first three Vassiliev invariants defined by the enhanced
Jones polynomial satisfy the following equations:

v0(L) = v0(©©) = 4,

v1(L) = −6lk(L),

v2(L+) − v2(L−) = 12lk(L) − 6

and v2(L) = 2v2(K1) + 2v2(K2) + 12lk2(L) − 6lk(L),

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.2)

where lk denotes the linking number and K1,K2 are the two knots obtained by smoothing the crossings in
L to obtain two components.

Proof. See electronic supplementary material, Supplementary Information. �

Remark 4.4. This result agrees with the statement in [65] that the second Vassiliev invariant of a
two-component link is a linear combination of the second Vassiliev invariant of each component
and the linking number of the link. Note that when v2(K1) = v2(K2) = 0, then v2(L) = 12lk2(L) −
6lk(L).

Theorem 4.5. Let v̂2 be defined as follows:

v̂2(K) = 1
2

∑
j1>j2>j3>j4∈Iξ ′

ε(j1, j3)ε(j2, j4), (4.3)

where I′ denotes the set of pairs of alternating crossings in the diagram of the knot K.
v̂2 is a second Vassiliev invariant of knots, and v2 = 1

4 + 6v̂2, where v2 denotes the second Vassiliev
invariant from the enhanced Jones polynomial.

Proof. The proof is similar to theorem 1.A in [54], and is given in the electronic supplementary
material, Supplementary Information. �

5. The second Vassiliev invariant of the enhanced Jones polynomial of knotoids
Here, we study the second Vassiliev invariant of the enhanced Jones polynomial of knotoids.

Definition 5.1. We will define a separated linkoid diagram of two components: a linkoid
diagram where one of the two components is either all above or all below the other one.

Theorem 5.2. Let K be a knotoid and let K+,K−,K0 be derived by changing and smoothing a positive
crossing of K. Let r be the algebraic sum of crossings needed to convert K to an ascending knotoid diagram
and let l denote the algebraic sum of crossings needed to convert K0 to a separated linkoid. Let vk(Ks

0)
denote the kth Vassiliev invariant of the separated linkoid diagram obtained by K0. The first three Vassiliev
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invariants defined by the coefficients of the enhanced Jones polynomial satisfy the equations

v0(K) = v0( ) = 2,

v1(K+) − v1(K−) = rv0(Ks
0) − 4r

and v2(K+) − v2(K−) = v1(Ks
0) − (2l + 2r + 1)v0(Ks

0) + 2l + 8r + 4.

⎫⎪⎪⎬
⎪⎪⎭ (5.1)

Proof. We follow the same steps as in the proof of theorem 4.1. Namely, by expanding
the enhanced Jones polynomial of the knotoid K in the skein relation of the enhanced Jones
polynomial and equating the coefficients of x0 we get the following relation for knotoids:

0 =
∑

s+∈S+

(−1)i(s+)+n(+)
− −

∑
s−∈S−

(−1)i(s−)+n(−)
−

⇔
∑

s+∈S+

(−1)i(s+)+n(+)
− =

∑
s−∈S−

(−1)i(s−)+n(−)
−

⇔ v0(K+) = v0(K−). (5.2)

Thus, v0 is invariant upon a crossing change. So, if K is a knotoid, then we can change crossings
so that we obtain an ascending diagram of a knotoid, which is the trivial knotoid [62]. Thus,

v0(K) = v0( ) = 2. (5.3)

Similarly, if L is a linkoid of two components, we can change crossings in order to get a
separated linkoid of two components,

v0(L) = v0(Ls). (5.4)

By equating the coefficients of x in the expansion of the enhanced Jones polynomial of
knotoids, we obtain the following relation:

v1(K+) − v1(K−) = v0(K0) − v0(K+) − v0(K−). (5.5)

If K+ is a knotoid and K0 is a linkoid of two components, then equations (5.5) and (5.3) give

v1(K+) − v1(K−) = v0(Ks
0) − 4, (5.6)

from which we can get the relations

v1(K+) = v1(K−) + v0(Ks
0) − 4

and v1(K−) = v1(K+) − v0(Ks
0) + 4.

}
(5.7)

Thus, by repeatedly changing crossings to make K+ into an ascending knotoid diagram (for
which v1 = 0), we get

v1(K+) = rv0(Ks
0) − 4r, (5.8)

where r is the algebraic sum of the signs of the crossings that need to be changed to make the
knotoid K+ into an ascending knotoid diagram.

If L+ is a linkoid, then L− is also a linkoid and L0 is a knotoid. Then, equation (5.5) gives

v1(L+) − v1(L−) = v0(L0) − v0(L+) − v0(L−) = 2 − 2v0(Ls), (5.9)

from which we get the following relations:

v1(L+) = v1(L−) + 2 − 2v0(Ls)

and v1(L−) = v1(L+) − 2 + 2v0(Ls).

}
(5.10)

We can convert L+ to a separated linkoid by repeatedly changing crossings. Suppose that the
algebraic sum of crossings we need to change to get a separated linkoid diagram, Ls, is l. Then we
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get
v1(L+) = v1(Ls) + 2l − 2lv0(Ls). (5.11)

By equating the coefficients of x2 in the expansion of the enhanced Jones polynomial of
knotoids, we get

v2(K+) − v2(K−) = v1(K0) − v1(K+) − v1(K−). (5.12)

Thus, if K+ is a knotoid,

v2(K+) − v2(K−) = v1(Ks
0) + 2l − 2lv0(Ks

0) − [v1(K−) + v0(Ks
0) − 4] − v1(K−)

= v1(Ks
0) + 2l − 2lv0(Ks

0) − v0(Ks
0) + 4 − 2v1(K−)

= v1(Ks
0) − (2l + 1)v0(Ks

0) + 2l + 4 − 2(rv0(Ks
0) − 4r)

= v1(Ks
0) − (2l + 2r + 1)v0(Ks

0) + 2l + 8r + 4. (5.13)

�

Definition 5.3. Let L define a linkoid of two components. We define the linking number of
L, we denote lk(L), to be half the algebraic sum of inter-crossings in a diagram of L, i.e. lk(L) =
1
2

∑
c∈D sign(c), where D is the set of crossings between the two components in the diagram.

Remark 5.4. Note that the linking number of linkoids is an invariant of linkoids. The linking
number of linkoids is not an integer in general, but, for a link-type linkoid, lk is an integer.

Proposition 5.5. Let K denote a knot-type knotoid (a knotoid is said to be of knot-type if its ends are
in the same region). The first three Vassiliev invariants defined by the coefficients of the enhanced Jones
polynomial satisfy the equations

v0(K) = v0( ) = 2,

v1(K+) = v1(K−)

and v2(K+) − v2(K−) = −6lk,

⎫⎪⎪⎬
⎪⎪⎭ (5.14)

where lk is the linking number of the linkoid K0.

Proof. If Ls is a separated link-type linkoid, it is the trivial linkoid; thus, v0(Ls) = 4. The algebraic
sum of crossings needed to change to get a separated linkoid diagram from any link-type linkoid
diagram is l= lk, where lk denotes the linking number of a link-type linkoid. When K is a knot-
type knotoid, then K0 is a link-type linkoid. By using these facts, the results follow using the same
method as in the proof of theorem 5.2. �

In the following, we will refer to Gauss diagrams.

Definition 5.6. A Gauss diagram is a way to describe a knot diagram. A Gauss diagram is the
immersing of a circle with the pre-images of each double point (associated with the knot diagram)
connected with a chord. To incorporate the information on overpasses and underpasses, chords
have an orientation from the over arc to the under arc. Gauss diagrams can have a base point
and an orientation that matches a base point on a knot and the orientation of the knot. Given a
knot K, we will denote 〈Gauss diagram 1 + Gauss diagram 2,K〉 the sum over all subdiagrams of
K isomorphic to either Gauss diagram 1 or Gauss diagram 2.

A Gauss diagram can be used to describe knotoid diagrams as well. In this case, the Gauss
diagram has a starting point and an endpoint matching those of the knotoid.

Theorem 5.7. Let K denote a knot-type knotoid. Let v̂2 be defined as follows:

v̂2(K) = 1
2

∑
j1>j2>j3>j4∈Iξ ′

ε(j1, j3)ε(j2, j4), (5.15)

where I′ denotes the set of pairs of alternating crossings in the diagram of the knotoid K.
v̂2 is a second Vassiliev invariant of knot-type knotoids, and v2 = 1

4 + 6v̂2, where v2 denotes the second
Vassiliev invariant from the enhanced Jones polynomial.
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Proof. The proof follows a similar approach to the proof of theorem 4.5.
Notice that, in terms of Gauss diagrams of knotoids,

(5.16)

To calculate v2 of the knotoid K, we transform K to a descending knotoid, going from the
starting point along the orientation of K and replacing an undercrossing by an overcrossing, if at
the first passage through the point we go along the undercrossing. When we arrive at the endpoint
of the diagram, it becomes descending. Each time we change a crossing s, the value of v2 changes

by (−6)(−ε(s))lk( ), where ε(s) is the sign of the crossing. Since v2(descending) = 1
4 , this gives

v2(K) = 1
4

+ 6
∑

ε(s)lk(Ls), (5.17)

where Ls runs over linkoids that appeared as smoothings at points where the crossing changed.
To calculate lk(Ls), we can sum up the signs of all the crossing points of Ls in which the

component containing the endpoints goes below the other component. These points correspond
to chords of G intersecting the chord c(s) corresponding to s and directed to the side of c(s)
containing the endpoints. At the moment, all arrows of the original diagram G with heads
between the starting point and the head of c(s) have been inverted. Therefore, lk(Ls) is equal to the
sum of signs of arrows crossing c(s) and having heads between the tail of c(s) and the endpoints.
In other words, lk(Ls) is

∑
ε(c2), where the summation runs over all chords involved, together

with c(s), into subdiagrams of the type .
We can also calculate v2 by transforming K to an ascending knotoid. By a similar argument we

show that v2 gets an expression similar to equation (5.17), where for a crossing change at a chord
c(s), lk(Ls), is

∑
ε(c2), where the summation runs over all chords involved, together with c(s), into

subdiagrams of the type .
Thus, we obtain v2(K) = 1

4 + 6v̂2. �

6. The double alternating self-linking integral of curves in 3-space
In this section, we define the double alternating linking integral of open curves in 3-space and
examine its relation to the second Vassiliev measure of open curves in 3-space.

Definition 6.1. Let l denote a curve in 3-space with parametrization γ . We define the double
alternating self-linking integral as follows:

SLL(l) = 1
8π

∫ 1

0

∫ j1

0

∫ j2

0

∫ j3

0
(γ̇ (j1) × γ̇ (j3))

· γ (j1) − γ (j3)
|γ (j1) − γ (j3)|3 (γ̇ (j2) × γ̇ (j4)) · γ (j2) − γ (j4)

|γ (j2) − γ (j4)|3
χ (j1, j2, j3, j4)dj4dj3dj2dj1, (6.1)

where Γ (s, t) = (γ (s) − γ (t)/|γ (s) − γ (t)|), for s, t ∈ [0, 1], 0 ≤ j4 < j3 < j2 < j1 ≤ 1, and where
χ (j1, j2, j3, j4) = 1, when (j1, j2, j3, j4) ∈ E and χ (j1, j2, j3, j4) = 0; otherwise, where E⊂ [0, 1]4, such
that 0 ≤ j1 < j2 < j3 < j4 ≤ 1, Γ (j1, j3) = −Γ (j2, j4).

Definition 6.2. Let j1 < j2 < j3 < j4 be points on a knot diagram. We will say that this 4-tuple
corresponds to an alternating crossing when j1, j3 and j2, j4 are two crossing points in the diagram
such that, if j1 belongs to the over arc in the crossing, j2 belongs to the under arc in the crossing or
vice versa.
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Theorem 6.3. Let l denote a curve in 3-space with parametrization γ . The double alternating self-
linking integral can be expressed as follows:

SLL(l) = 1
8π

∫
ξ∈S2

∑
j1>j2>j3>j4∈I∗ξ

ε(j1, j3)ε(j2, j4)dA, (6.2)

where ε(s, t) = ±1 is the sign of the crossing between the projection of γ (s) and γ (t), and where I∗
ξ
denotes

the set of 4-tuples of alternating crossings in the projection to the plane with normal vector ξ .

Proof. Let γ (t) denote a parametrization of l and let Γ (s, t) denote the Gauss map Γ (s, t) =
(γ (s) − γ (t)/|γ (s) − γ (t)|). Let γ (j1), γ (j2), γ (j3), γ (j4) denote four points on l such that Γ (j1, j3) =
−Γ (j2, j4). Then, the projections of γ (j1), γ (j3) and of γ (j2), γ (j4) on the plane with normal vector
ξ = Γ (j1, j3) coincide, creating two crossings, one where the arc containing γ (j1) is ‘over’ and one
where the arc containing γ (j2) is ‘under’. Thus, the crossings are ‘alternating’.

Let ln denote a polygonal approximation of l obtained from a partition of the interval [0, 1]. Let
γ (t), t ∈ [0, 1] be a parametrization of the polygonal curve ln. Then, we can express the integral in
the right-hand side of equation (6.2) as follows:

1
8π

∫
ξ∈S2

∑
j1>j2>j3>j4∈I∗ξ

ε(j1, j3)ε(j2, j4)dA= 1
8π

∑
1≤i≤j≤k≤l≤n

∫
ξ∈S2

ε∗(j1, j3)ε∗(j2, j4)dA, (6.3)

where i, j, k, l are indices of the edges of the polygonal curve ln and where ε∗(s, t) can take values 0,
or ±1, depending on whether the projection of γ (s), γ (t) cross (and with what sign). We note that
the integral in the latter expression may be non-zero, when either i< j< k< l (thus, involving four
edges) or when at most two of the edges are identified, i.e. i= j< k< l or i< j= k< l or i< j< k= l.
If more indices are identified, thus only two edges or only one are involved, it is impossible to
have two crossings in their projection. We focus on the case where i< j< k< l; thus, we have four
different edges involved. (The case of three edges involved can be treated similarly and we will
not discuss it in this proof.) Two edges cross on a spherical quadrangle (and its antipodal) [66].
Thus, two pairs of edges cross at the intersection of the two spherical quadrangles. Let us denote
this intersection, which is a spherical polygon (and its antipodal), A. Then,

1
8π

∫
ξ∈S2

ε∗(j1, j3)ε∗(j2, j4)dA

= 1
8π

∫
ξ∈S2\A

ε∗(j1, j3)ε∗(j2, j4)dA + 1
8π

∫
ξ∈A

ε∗(j1, j3)ε∗(j2, j4)dA

= 1
8π

∫
ξ∈A

ε(j1, j3)ε(j2, j4)dA, (6.4)

since
∫

ξ∈S2\A ε(j1, j3)ε(j2, j4)dA= 0. Let us denote γ1(j1), γ2(j2), γ3(j3) and γ4(j4), where j1, j2, j3, j4 ∈
([0, 1])4, the parametrizations of the edges l, k, j, i, respectively. Let us define the map Γ ∗
from any 4-tuple in [0, 1]4 to S2 × S2, such that Γ ∗(j1, j2, j3, j4) = (Γ1(j1, j3), Γ2(j2, j4)), where
Γ1(j1, j3) = (γ1(j1) − γ3(j3))/|γ1(j1) − γ3(j3)|3 and Γ2(j2, j4) = (γ1(j2) − γ3(j4))/|γ1(j2) − γ3(j4)|3. Then,
by changing variables in the integral, we obtain

1
8π

∫
ξ∈A

ε(j1, j3)ε(j2, j4)dA= 1
8π

∫ 1∗

0∗

∫ 1∗

0∗

∫ 1∗

0∗

∫ 1∗

0∗
(γ̇1(j1) × γ̇3(j3))

· γ1(j1) − γ3(j3)
|γ1(j1) − γ3(j3)|3 (γ̇2(j2) × γ̇4(j4))

· γ2(j2) − γ4(j4)
|γ2(j2) − γ4(j4)|3 dj4dj3dj2dj1, (6.5)

where |( ˙γ (j1) × ˙γ (j3)) · ((γ (j1) − γ (j3))/|γ (j1) − γ (j3)|3)( ˙γ (j2) × ˙γ (j4)) · (γ (j2) − γ (j4))/|γ (j2) − γ (j4)|3|
is the Jacobian of Γ ∗ and where the sign of ( ˙γ (j1) × ˙γ (j3)) · (γ (j1) − γ (j3))/|γ (j1) − γ (j3)|3
is the sign of the crossing of the projections of the edges e1, e3 (when they cross in a
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projection direction) and the sign of ( ˙γ (j2) × ˙γ (j4)) · (γ (j2) − γ (j4))/|γ (j2) − γ (j4)|3 is the sign of
the crossing of the projections of the edges e2, e4 (when they cross in a projection direction). The
symbol ∗ in the integral indicates integration over the subset of [0, 1]4, which defines 4-tuples of
points on the knot that define vectors which give alternating crossings. This is the subset of [0, 1]4

whose image through Γ ∗ is A; we denote this subset E= ([0, 1]4)∗. Since Γ is a continuous function
and A is measurable, its pre-image, E= ([0, 1]4)∗, is also measurable. Instead of integrating over
E, we can integrate over [0, 1]4 as follows:

1
8π

∫
ξ∈A

ε(j1, j3)ε(j2, j4)dA

= 1
8π

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
(γ̇1(j1) × γ̇3(j3))

· γ1(j1) − γ3(j3)
|γ1(j1) − γ3(j3)|3 (γ̇2(j2) × γ̇4(j4)) · γ2(j2) − γ4(j4)

|γ2(j2) − γ4(j4)|3
χ (j1, j2, j3, j4)dj4dj3dj2dj1, (6.6)

where χ (j1, j2, j3, j4) = 1, when (j1, j2, j3, j4) ∈ E and χ (j1, j2, j3, j4) = 0, otherwise.
At the limit when n→ ∞, we obtain the formula

1
8π

∫
ξ∈S2

∑
j1>j2>j3>j4∈Iξ

ε(j1, j3)ε(j2, j4)dA

= 1
8π

∫
j1

∫
j2

∫
j3

∫
j4

(γ̇ (j1) × γ̇ (j3)) · γ (j1) − γ (j3)
|γ (j1) − γ (j3)|3 (γ̇ (j2) × γ̇ (j4)) · γ (j2) − γ (j4)

|γ (j2) − γ (j4)|3

χ (j1, j2, j3, j4)dj4dj3dj2dj1

= SLL(l). (6.7)

�

Proposition 6.4. Let l denote a closed curve in 3-space. Then, the double alternating self-linking
integral is a topological invariant and it is related to the second Vassiliev invariant of the enhanced Jones
polynomial of l by

v2(l) = 1
4

+ 6SLL(l). (6.8)

Proof. By theorem 6.3 and by theorem 5.7,

v2(l) = 1
4

+ 6
(1

2

∑
j1>j2>j3>j4∈I∗ξ

ε(j1, j3)ε(j2, j4)
)

, (6.9)

where I∗
ξ

denotes the set of pairs of alternating crossings in a diagram lξ .
Since v2(l) is an invariant, it is independent of the projection direction. We can also express v2(l)

as follows:

v2(l) = 1
4π

∫
ξ∈S2

1
4

+ 6
(1

2

∑
j1>j2>j3>j4∈I∗ξ

ε(j1, j3)ε(j2, j4)
)

dA

= 1
4

+ 6
1

8π

∫
ξ∈S2

∑
j1>j2>j3>j4∈I∗ξ

ε(j1, j3)ε(j2, j4)
)

dA. (6.10)

By theorem 6.3, v2(l) = 1
4 + 6SLL(l). �

Remark 6.5. Note that this method of writing an integral in space for a Vassiliev invariant
would work for any combinatorial expression for a Vassiliev invariant. The double alternating
self-linking integral has similarities to the second Vassiliev invariant integral expression obtained
from the perturbative expansion of Witten’s integral [67]. This relation will be explored in a sequel
to this study.
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Proposition 6.6. Let l denote an open curve in 3-space. SLL(l) is a continuous function of the
coordinates of l.

Proof. We will prove this first for a polygonal curve of n edges and the result will follow for any
curve l ∈R3 as n→ ∞.

The double alternating self-linking integral of a polygonal curve can be expressed as follows:

SLL(ln) = 1
8π

∫
ξ∈S2

∑
j1>j2>j3>j4∈I∗ξ

ε(j1, j3)ε(j2, j4)dA

= 1
8π

∑
1≤i≤j≤k≤l≤n

∫
ξ∈S2

ε(j1, j3)ε(j2, j4)dA

= 1
2

∑
1≤i≤j≤k≤l≤n

pj1,j2,j3,j4ε(j1, j3)ε(j2, j4), (6.11)

where pj1,j2,j3,j4 denotes the geometric probability that the edges ej1 , ej3 and ej2 , ej4 both cross in a
projection direction and give an alternating crossing.

We can express pj1,j2,j3,j4 as the joint probability that ej1 , ej3 and ej2 , ej4 both cross. In [51], it was
proved that the geometric probability that ej1 , ej3 cross, pj1,j3 , and the geometric probability that
ej2 , ej4 cross, pj2,j4 , are continuous and are equal to the areas of the corresponding quadrangles
on the sphere. Their intersection, pj1,j2,j3,j4 , is the area of the intersection of the two spherical
quadrangles. Since both areas are continuous functions of the coordinates of the involved edges,
so is their intersection. �

Corollary 6.7. Let l denote an open curve in 3-space. Then, as the endpoints of l tend to coincide, SLL(l)
tends to 1

6 v2(l) − 1
24 .

Proof. It follows directly from propositions 6.4 and 6.6. �

Definition 6.8. We define a tight open knot to be a fixed open curve in 3-space whose
projections give only knot-type knotoids.

Proposition 6.9. Suppose that l is a tight open knot. Then the double alternating self-linking integral
is related to the second Vassiliev measure of l as w2(l) = 1

4 + 6SLL(l).

Proof. Let l denote a tight knot in 3-space. The second Vassiliev measure is defined as follows:

w2(l) = 1
4π

∫
ξ∈S2

v2(lξ )dA, (6.12)

where v2(lξ ) is the second Vassiliev invariant of the knotoid that results from the projection of l on
the plane with normal vector ξ .

Since l is a tight open knot, lξ is a knot-type knotoid for any ξ that defines a non-generic
projection.

The result follows by theorems 5.7 and 6.3. �

7. The double alternating self-linking integral of a polygonal curve
In the case of a polygonal curve, the double alternating self-linking integral has an expression as
a finite sum of geometric probabilities.

Proposition 7.1. The double alternating self-linking integral of a polygonal curve (open or closed) can
be expressed as follows:

SLL(l) = 1
2

∑
1≤j4≤j3≤j2≤j1≤n

p∗
j1,j2,j3,j4ε(ej1 , ej3 )ε(ej2 , ej4 )

+ 1
2

∑
1≤j3≤j2≤j1≤n

p∗
j1,j2,j3ε(ej1 , ej2 )ε(ej1 , ej3 ), (7.1)
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Table 1. The spherical polygon Q∗
i,j,j+1 in the case where the signs satisfy εi,j = εi,j+1, depending on the conformation. The

spherical polygon Q∗
i,j,j+1 contains the vectors that define planes where the projections of both ei , ej and ei , ej+1 cross and they

create an alternating crossing. (w1,w2, . . . ,wn) denotes the spherical polygon bounded by the great circles with normal
vectorswi , i = 1, . . . , n, in the counterclockwise orientation (see [51]).

εi,j = εi,j+1, w < 0, w0 < 0 Q∗
i,j,j+1

cj+1,i+1 > 0, cj+2,i+1 > 0, cj+1,i > 0, cj+2,i > 0 (n4,n1,−u2, v3)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

cj+1,i+1 < 0, cj+2,i+1 < 0, cj+1,i > 0, cj+2,i > 0 (n4,−u3,−u2, v3)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

cj+1,i+1 > 0, cj+2,i+1 < 0, cj+1,i > 0, cj+2,i > 0 (n4,n1,−u3,−u2, v3)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

cj+1,i+1 < 0, cj+2,i+1 > 0, cj+1,i > 0, cj+2,i > 0 (n4,−u3,n1,−u2, v3)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

otherwise 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

where p∗
j1,j2,j3,j4

denotes the probability that the projections of ej1 and ej2 as well as the projections of ej3 and
ej4 both cross in a projection and form an alternating crossing, and p(j1, j2, j3)∗ denotes the probability that
one of the edges ej1 , ej2 , ej3 intersects the other two in a projection and forms an alternating crossing.

Proof. As explained in the proof of proposition 6.6, if j1, j2, j3, j4 all lie on the same edge, then
there is no contribution to the integral. Similarly, if the four points lie only on two edges, they do
not contribute to the integral any pairs of crossings. However, it is possible that they contribute
when they lie in three or four edges. Similarly, if three edges or two pairs of edges cross in a
projection, then they create two pairs of crossings. The result follows by separating these cases in
equation (6.11). �

This expression of SLL shows that for a polygonal curve its calculation relies on calculating
the geometric probabilities p∗

j1,j2,j3,j4
, p∗

j1,j2,j3
. We note that if all of j1, j2, j3, j4 are consecutive, then

p∗
j1,j2,j3,j4

= 0. Similarly, if all of j1, j2, j3 are consecutive, then p∗
j1,j2,j3

= 0. The next proposition
provides a closed formula for the computation of p∗

j1,j2,j3
in the case where two of j1, j2, j3 are

consecutive.

Corollary 7.2. Let ei, ej, ej+1 denote three edges in 3-space. Then, the joint probability of crossing
between the projections of ei, ej and ei, ej+1 so that they give an alternating crossing, namely, p(i, j, j + 1), is
equal to (1/2π)A(Q∗

i,j,j+1), where Q∗(i, j, j + 1) is given in table 1, where c4,1 = (p4,1 · n1)ε1,3, w= (u2 ×
(−n2)) · (u2 × n4), w0 = (v3 × (−n1)) · (v3 × n3) and the vectors u2, n2, n4, v3, v2 and n1 are normal to
the planes containing the vertices (i − 1, i, j + 1), (i − 1, i, j), (i − 1, j − 1, i), (j − 1, j + 1, j), (j − 1, j + 1, i)
and (i − 1, j − 1, j), respectively.

Proof. In order for them to form an alternating crossing, the signs of the two crossings must
be the same. The geometric probability that three edges cross, two of which are consecutive,
ei, ej, ej+1, was found in theorem A.1 in [51]. To preserve the order of crossings, we need to ensure
that, as we move along ei in a projection, first we encounter the crossing with ej and then with ej+1.
This imposes the extra constraint that the spherical area is on the side of the great circle defined
by the vector v3 in the direction of v3. The results are presented in table 1. �

(a) The double alternating self-linking integral of a polygonal curve with four edges
A polygonal curve with four edges is the shortest polygonal curve that can have a non-
trivial double alternating self-linking integral. We will show that in this simple case the double
alternating self-linking integral has an even simpler interpretation as the geometric probability
that a projection of l gives the knotoid k2.1.

Proposition 7.3. Let l4 denote an open polygonal curve in 3-space. The double alternating self-linking
integral of l4 is equal to the signed geometric probability that it gives the knotoid k2.1 in a projection
direction, i.e. SLL(l4) = 1

2P(lξ = k2.1).
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Figure 1. The possible projections with crossings of a polygonal curve with four edges.

Proof. From figure 1, we see that the only possibilities of a pair of alternating crossings in the
projection of a curve with four edges are case B(i) or case B(ii), both of which correspond to the
knotoid k2.1. In [51], it was proved that for a given curve l either B(i) or B(ii) is a possible outcome
in the projections of l, but not both. The product of the two crossings is equal to 1 in both cases.

�

8. Conclusions
In this article, we defined Vassiliev measures for open curves in 3-space and showed that they
generalize the conventional Vassiliev invariants. For open curves, these are continuous functions
of the curve coordinates which tend to the Vassiliev invariants of the closed curves as the
endpoints tend to coincide. A geometric interpretation of Vassiliev measures of closed and open
curves was given, which allowed us to derive a well-defined integral expression of Vassiliev
measures. More precisely, the double alternating self-linking integral was introduced, and it was
shown that it coincides with the second Vassiliev invariant of closed curves. For open curves, this
integral is a continuous function of the curve coordinates and, when the open curves have tight
knots, the double alternating self-linking integral coincides with the Vassiliev measure of the open
curves. For polygonal curves, the double alternating self-linking integral has a simpler expression
as a sum of finitely many geometric probabilities. The double alternating self-linking integral
allows us to rigorously define and capture entanglement and knotting in open curves in 3-space,
avoiding the calculation of polynomials and avoiding artificial closures. The method introduced
in this study provides a framework in which other Vassiliev invariants can also be generalized to
open curves. These measures provide a novel and efficient method to measure entanglement and
knotting in physical systems of filaments and can lead to many impactful applications.
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