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Abstract
Biopolymers, like chromatin, are often confined in small volumes. Confinement
has a great effect on polymer conformations, including polymer entanglement.
Polymer chains and other filamentous structures can be represented by polyg-
onal curves in three-space. In this manuscript, we examine the topological
complexity of polygonal chains in three-space and in confinement as a func-
tion of their length. We model polygonal chains by equilateral random walks
in three-space and by uniform random walks (URWs) in confinement. For the
topological characterization, we use the second Vassiliev measure. This is an
integer topological invariant for polygons and a continuous functions over the
real numbers, as a function of the chain coordinates for open polygonal chains.
For URWs in confined space, we prove that the average value of the Vassiliev
measure in the space of configurations increases asO(n2) with the length of the
walks or polygons. We verify this result numerically and our numerical results
also show that the mean value of the second Vassiliev measure of equilateral
random walks in three-space increases as O(n). These results reveal the rate
at which knotting of open curves and not simply entanglement are affected by
confinement.
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1. Introduction

Polymers and biopolymers are made of repetitive units that are bonded to form long filaments.
Those macromolecules, entangle with each other and with themselves. Entanglement in sys-
tems of polymers has a very important effect to their mechanics and function [4, 18, 19, 34]
and is affected by polymer architecture, polymer chemical composition, solvent quality, den-
sity and spatial confinement. Under the so-called theta conditions, long enough polymers, can
be seen as random walks in Kuhn unit length [34]. A random walk representation of polymers
allows to make theoretical predictions on the asymptotic behavior of polymer characteristics.
For example, the radius of gyration, or themean end-to-enddistance of a polymer is well under-
stood using randomwalks [34]. In this manuscript, we study theoretically the expected scaling
of knotting complexity of a polymer chain in confinement, using the uniform random polygon
(URP) and uniform random walk (URW) model, and we confirm our theoretical predictions
with numerical results on URPs and URWs. We also compare these to numerical results on
equilateral random walks of varying length in three-space.

Examples of confined polymers can be found in our cells, where biopolymers, like chro-
matin, which has approximately 6 billion base pairs, are confined in a space of radius 6–20 μm.
[1]. Knotting in such systems would have significant impact on cell functions. To understand
biological mechanisms of biomolecules in the cell and other confined spaces, it is important to
compare the characteristics of these polymer conformations to those of random walks in the
absence of any physical interactions. Previous results in studying knotting of random walks
have focused on identifying knots in random polygons [2, 4–6, 8–11, 14, 16, 17, 20–23, 25,
26, 31, 35, 36, 38, 39]. It is well established that the probability of knotting and the complexity
of knotting both increase with the length of the chains, as well as with confinement. In partic-
ular, it is shown that the probability of knotting increases exponentially with the length of a
polygon. However, it is more difficult to answer how does the knotting complexity scale with
the length of the polygons? A reason why this has been difficult is that the focus of previous
work has been on identifying knot types in polygons, which provides a characterization of
knotting that has been difficult to put in a simple quantitative measure of knotting complexity
[39]. However, one could infer an answer to this question by examining how the maximum of
the probability of a knot type scales with its length. An even more difficult question is how
does knotting complexity of random walks (open polygons) increase with their length?

The problem with random walks is that they do not form topological knots. In order to
study knotting of open curves in three-space, typically, a closure scheme is applied in order
to approximate the open chain with a knot and then identify its knot-type [24]. Until recently,
the only measure of entanglement that could be directly applied to open polygons with no
closure scheme required, was the Gauss linking integral. When applied over one curve, the
Gauss linking integral gives the Writhe and the average crossing number, ACN. The Writhe
and the ACN are not topological invariants even for closed curves and do not detect knotting
accurately. It is true that more complex knots and links have higher Writhe and the average
crossing number, ACN, in general, but an unknot can have high Writhe and ACN as well. The
Writhe and theACNgive real numberswhich are continuous functions of the chain coordinates,
for both closed and open polygons.Due to their simple definition however, theWrithe andACN
provide the best estimates in the literature of the question raised above. It has been shown
that the Writhe and the ACN scale as O(

√
n) and O(n ln n), respectively, with the length, n,

of equilateral random walks in three-space and as O(n) and O(n2), respectively, for URWs in
confinement [3, 12, 13, 15, 27, 30, 33, 37].

In [28, 29] new measures of entanglement of open curves in three-space were intro-
duced. Namely, in [28] a framework by which knot polynomials -in particular the Jones
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polynomial—can be applied to measure knot complexity of open curves was introduced. In
[29] it was shown that within the same framework, Vassiliev measures of complexity are well
defined for open curves in three-space. These Vassiliev measures give continuous functions of
knotting complexity for open curves and, as the endpoints of a chain tend to coincide, they tend
to the correspondingVassiliev invariant of the resulting knot. The second Vassiliev invariant of
open and closed curves in three-space is a measure of knotting for both open and closed curves
that has a simple geometric interpretation and can be calculated using an integral over one
curve [29].

In this manuscript, we use the second Vassiliev measure to examine how knotting com-
plexity increases with the length of random walks or polygons in confined space. One of the
simplest models of random walks and polygons in confined space is the URW (resp. URP)
model [3, 30]. In that model, each vertex of the walk or polygon is chosen with respect to the
uniform distribution in a cube (or another convex space). We prove that the second Vassiliev
measure scales as O(n2) with the length, n, of URPS and URWs. Moreover, we obtain esti-
mates of the constants involved in this scaling, which we prove represent specific geometric
probabilities in the space of URPs or URWs.

The manuscript is organized as follows: section 2 presents the second Vassiliev measure of
open and closed curves in three-space, section 3 presents our analytical results on the scaling of
the secondVassilievmeasure of aURWor polygonas a function of its length. Section 4 presents
our numerical data on the second Vassiliev measure of URWs and polygons of varying length
in confined space and the secondVassiliev measure of equilateral randomwalks in three-space.
In section 5 we discuss the conclusions of this study.

2. The second Vassiliev measure of open and closed curves in three-space

The second Vassiliev invariant, also known as the Casson invariant, is equal to the coefficient
of x2 in the Conway polynomial of a knot. It is also related to the coefficients of other knot
polynomials [7]. In [32] an easy combinatorial formula for the second Vassiliev invariant of
knots (closed curves) was derived. In [29], an integral formula for the second Vassiliev invari-
ant, as a double alternating self-linking integral was derived which is applicable to both open
and closed curves in three-space, namely:

Definition 2.1. Let l denote a curve in three-space with parametrization γ. We define the
double alternating self-linking integral as:

SLL(l) =
1
8π

∫ 1

0

∫ j1

0

∫ j2

0

∫ j3

0
(γ̇( j1)× γ̇( j3)) ·

γ( j1)− γ( j3)
|γ( j1)− γ( j3)|3

(γ̇( j2)× γ̇( j4))

· γ( j2)− γ( j4)
|γ( j2)− γ( j4)|3

χ( j1, j2, j3, j4)d j4 d j3 d j2 d j1, (1)

where Γ(s, t) = γ(s)−γ(t)
|γ(s)−γ(t)| , for s, t ∈ [0, 1], 0 � j4 < j3 < j2 < j1 � 1 and where

χ( j1, j2, j3, j4) = 1, when ( j1, j2, j3, j4) ∈ E and χ( j1, j2, j3, j4) = 0, otherwise, where
E ⊂ [0, 1]4, such that 0 � j1 < j2 < j3 < j4 � 1, Γ( j1, j3) = −Γ( j2, j4).

In [29], it was proved that the second Vassiliev invariant of the enhanced Jones polynomial
of knots is related to the double alternating self-linking integral through the equation v2(l) =
1
4 + 6SLL(l). From [29], one can see that for the second Vassiliev invariant of the Conway
polynomial, v2 = SLL(l). Due to this association of the double alternating self-linking integral
with the second Vassiliev invariants, in the following, we will call the double alternating self-
linking integral, simply second Vassiliev invariant.
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The double alternating self-linking integral defined provides a well defined integral for the
second Vassiliev invariant which has a simple geometric interpretation as an average of the
algebraic sum of alternating pairs of crossings in a projection, over all possible projection
directions. More precisely, we define an ‘alternating’ pair of crossings as follows:

Definition 2.2. Let j1 < j2 < j3 < j4 be points on a knot diagram. We will say that this
four-tuple corresponds to an alternating crossing when j1, j3 and j2, j4 are two crossing points
in the diagram such that if j1 belongs to the over-arc in the crossing, j2 belongs to the under-arc
in the crossing or vice-versa.

In [29] it was proved that for closed curves in three-space, the double alternating self-linking
integral has a simple expression as an average of products of alternating signs of crossings:

Theorem 2.1. Let l denote a curve in three-space with parametrization γ. The double
alternating self-linking integral can be expressed as:

SLL(l) =
1
8π

∫
�ξ∈S2

∑
j1> j2> j3> j4∈I∗�ξ

ε( j1, j3)ε( j2, j4)dA, (2)

where ε(s, t) = ±1, is the sign of the crossing between the projection of γ(s) and γ(t), and
where I∗�ξ denotes the set of four-tuples of alternating crossings in the projection to the plane

with normal vector �ξ.

For closed curves, the double alternating self-linking integral is a topological invariant that
can detect knots as the second Vassiliev invariant can. For open curves it was proved in [29]
that it is a continuous function of the chain coordinates. As the endpoints of the chains tend to
coincide, it tends to the Vassiliev invariant of the resulting knot.

In the case of a polygonal curve, the double alternating self-linking integral has an
expression as a finite sum of geometric probabilities.

Proposition 2.1. The double alternating self-linking integral of a polygonal curve (open or
closed) can be expressed as follows:

SLL(l) =
1
2

∑
1� j4� j3� j2� j1�n

p∗j1, j2, j3, j4ε(e j1 , e j3 )ε(e j2 , e j4), (3)

where p∗j1, j2, j3, j4 denotes the probability that the projections of e j1 and e j2 as well as the
projections of e j3 and e j4 both cross in a projection.

3. The second Vassiliev measure of uniform random walks and polygons

In the URP model each coordinate of a vertex of the URW or polygon is drawn from a uniform
distribution over C = [0, 1]. This generates a random walk or polygon confined in C3.

We are interested in the average of the second Vassiliev measure (double alternating self-
linking integral) over the space of configurations of URWs (or polygons, resp.) in confined
space. We point out that the second Vassiliev invariant can take positive and negative val-
ues. However, mirror images contribute the same value instead of canceling. Therefore, the
expected value of the second Vassiliev measure is not zero.
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Figure 1. Examples of conformations contributing nonzero values to the product ε1ε2 in
the case 4 (left), case 5 (middle) and case 6 (right), respectively, of lemma 3.1.

First, we study the expected value of the second Vassiliev measure of a URW (open polygo-
nal chain) in confined space (theorem 3.1) and next we study the expected value of the second
Vassiliev invariant of a URP (closed polygonal chain) in confined space (theorem 3.2).

Theorem 3.1. The expected value of the second Vassiliev measure, E[V2(Wn)] of an oriented
URWof n edges, Wn, contained inC

3 is of the order O(n2). In particular, for URWs in confined
space, E[V2(Wn)] = αn2 + βn + γ, where α > 0, β < 0, γ > 0.

Remark 3.1. In the following it is shown that α, β and γ are the geometric probabilities
of obtaining conformations like those shown in figure 1, in a diagram, independent of sign.
More precisely, α = 1

2u+
1
4v, β = 1

2 (−5u− 7
2v + w) and γ = 3u+ 3v − 3

2w, where u, v,w
are defined as in lemma 3.1.

Let us consider two (independent) oriented random edges l1 and l2 of an oriented URWWn

and a fixed projection plane defined by a normal vector �ξ ∈ S2. Since the end points of the
edges are independent and are uniformly distributed in C3, the probability that the projections
of l1 and l2 intersect each other is a positive number which we will call 2p. We define a random
variable ε in the following way: ε = 0 if the projection of l1 and l2 have no intersection, ε = −1
if the projection of l1 and l2 has a negative intersection and ε = 1 if the projection of l1 and l2 has
a positive intersection. Note that, in the case the projections of l1 and l2 intersect, ε is the sign of
their crossing. Since the end points of the edges are independent and are uniformly distributed
in C3, we then see that P(ε = 1) = P(ε = 1) = p,E[ε] = 0 and var(ε) = E[ε2] = 2p. We will
need the following lemma, modeled after the lemma 1 in [2], concerning the case when there
are four edges involved (some of themmay be identical or theymay have a common end point):
l1, l2, l′1 and l

′
2. Let ε1 be the random number ε defined above between l1 and l′1 and let ε2 be

the random number defined between l2 and l′2. We are interested in the product ε1ε2, where the
edges involved are ordered in the polygon as l1 < l2 < l′1 < l′2, and such that, if ε1, ε2 �= 0, then
the pair of crossings is alternating. We will denote this statement as ‘ε1ε2‖alternating’.
Lemma 3.1.

(a) If the end points of l1, l2, l′1, and l
′
2 are distinct, then E[ε1ε2‖alternating] = 0 (this is the

case when there are eight independent random points involved).
(b) If l1 = l2, and the end points of l1, l′1 and l

′
2 are distinct or if l

′
1 = l′2 and the endpoints

of l1, l2 and l′1 are distinct, or if l2 = l′1 and the endpoints of l1, l2, l
′
2 are distinct (this

reduces the case to where there are only three random edges with six independent points
involved), then E[ε1ε2‖alternating] = 0.

(c) If l1 and l2, or l′1 and l
′
2, or l2 and l

′
1, or l

′
2 and l1 have a common end point, while the rest

have distinct endpoints, then E[ε1ε2‖alternating] = 0.

5
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Figure 2. Cases (i) and (ii) are the only non-zero contributions to u in lemma 3.1. Cases
(iii) and (iv) are the only non-zero contributions to u′ in lemma 3.2. Cases (v) and
(vi) are the only non-zero contributions to v in lemma 3.1. Cases (vii) and (viii) are
the only non-zero contributions to v′ in lemma 3.2.

(d) In the case where l1 = l2, the endpoints of l1 and l′1 and l1 and l
′
2 are distinct, and l

′
1 and l

′
2

share a common point or if l′1 = l′2 and the endpoints of l
′
1 and l1 and l

′
1 and l2 are distinct

and l1 and l2 share a common point (so there are only five independent random points
involved in this case), let E[ε1ε2‖alternating] = u. Then u > 0 and u = P(alternating) (the
probability that these edges form an alternating crossing).

(e) In the case where l1 and l2 share a common point, the endpoints of l1 and l′1 and l1 and l
′
2

are distinct, and l′1 and l
′
2 also share a common point (so there are four edges defined

by six independent random points involved in this case), let E[ε1ε2‖alternating] = v.
Then v > 0 and v = P(alternating) (the probability that these edges form an alternating
crossing).

( f ) In the case where l1, l2, l′1 and l
′
2 are consecutive (so in this case, there are four edges

defined by five independent random points), then E[ε1ε2‖alternating] = w, where w < 0
and |w| = P(alternating) (the probability that these edges form an alternating crossing).

Proof.

(a) In this case ε1 and ε2 are independent random variables, from which the result follows.

6
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Figure 3. The expected values of the second Vassiliev measures obtained for URWs.

(b) First, note that in the configuration where the projections of l′1 and l
′
2 do not intersect the

projection of l1, we have ε1ε2 = 0. So we consider only configurations where the pro-
jections of l′1 and l

′
2 both intersect the projection of l1. There are eight different ways to

assign the orientations and labels to the edges. Four of them yield ε1ε2 = −1 and four of
them yield ε1ε2 = 1. Since the joint density function of the vertices involved is simply 1

V6 ,
where V is the volume of the confined space C3, thus by a symmetry argument we have
E[ε1ε2] = 0. The proof is similar when l′1 = l′2 or l2 = l′1 and the rest of the endpoints are
distinct.

(c) Since two edges have distinct endpoints from each other and from the other two, the
crossing signs are independent in any projection direction and have equal probability of
occurring.

(d) In the case where l1 = l2, the endpoints of l1 and l′1 and l1 and l
′
2 are distinct, and l

′
1 and l

′
2

share a common point, there are four possible cases of an alternating pair of crossings, all
of which give ε1ε2 = 1. See figures 2(i) and (ii). The other two cases are obtained by taking
the mirror image of these. Thus, E[ε1ε2‖alternating] = u, where u denotes the probability
that we obtain a pair of alternating crossings from these three edges.

(e) In the case where l1 and l2 share a common point, the endpoints of l1 and l′1 and l1 and l
′
2

are distinct, and l′1 and l
′
2 also share a common point then there are only four cases, which

both give ε1ε2 = 1. See figures 2(iii) and (iv). The other two cases are obtained by taking
the mirror image of these. Thus, E[ε1ε2‖alternating] = v, where v denotes the probability
that we obtain a pair of alternating crossings from these three edges.

7
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(f ) In the case where l1, l2, l′1 and l
′
2 are consecutive, then there are only four configurations

possible, which contribute two pairs of alternating crossings each, with negative product
of signs. Thus this configuration contributes a total E[ε1ε2‖alternating] = w, where w is
-1 times the geometric probability that the 4 edges create an alternating pair of crossings
between l1, l′1, l2, l

′
2.

�

Proof of theorem 3.1. Let �ξ ∈ S2 and let (V2)�ξ(Wn) denote the Vassiliev measure in the
projection ofWn.

The second Vassiliev invariant in a projection is given as follows;

V2((Wn)�ξ) =
1
2

∑
i� j�k�l
alternate
crossings

εikε jl.

The expected value of the second Vassiliev invariant,

E[V2((Wn)�ξ)] =
1
2
E

⎡
⎢⎢⎢⎢⎣

∑
i� j�k�l
alternate
crossings

εikε jl

⎤
⎥⎥⎥⎥⎦ =

1
2

∑
i� j�k�l
alternate
crossings

E[εikε jl].

We then split the sum according to lemma 3.1 and the only non-zero contributions are

E[V2((Wn)�ξ)] =
1
2

⎡
⎣ ∑
1�i�n−3

∑
i+2� j�n−1

E[εi jεi( j+1)‖alt.] +
∑

1�i�n−3

∑
i+3� j�n

E[εi jε(i+1) j‖alt.]

+
∑

1�i�n−4

∑
i+3� j�n−1

E[εi jε(i+1)( j+1)‖alt.] +
∑

1�i�n−3

E[εi(i+2)ε(i+1)(i+3)‖alt.]

⎤
⎦

=
1
2

⎡
⎣ ∑
1�i�n−3

∑
i+2� j�n−1

u+
∑

1�i�n−3

∑
i+3� j�n

u +
∑

1�i�n−4

∑
i+3� j�n−1

v +
∑

1�i�n−3

w

⎤
⎦

=
1
2
n2

(
u+

1
2
v

)
+

1
2
n

(
−5u− 7

2
v + w

)
+ 3u+ 3v − 3

2
w. (4)

Then,

E[V2(Wn)] = E

[
1
4π

∫
�ξ2
V2((Wn)�ξ)dA

]
=

1
4π

∫
�ξ2
E[V2((Wn)�ξ)]dA

=
1
2
n2

(
u+

1
2
v

)
+

1
2
n

(
−5u− 7

2
v + w

)
+ 3u+ 3v − 3

2
w. (5)

Since u, v > 0 and w < 0, we obtain that

E[V2(En)] = αn2 + βn+ γ, (6)

where α, γ > 0 and β < 0. �

8
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Figure 4. The expected values of the absolute second Vassiliev measures obtained for
URWs.

Next, we study the expected value of V2 for a URP. We will need lemma 3.1, but some
additional cases need to be considered.

Lemma 3.2. Let Pn denote a polygon of n edges, and let e1, en denote the first and last edge
of the polygon. Then E[ε1ε2] for two pairs of crossings involving e1, en satisfy:

(a) In the case where there are three edges edges involved, two of which are e1, en and the
third has no common point with those, E[ε1ε2‖alternating] = u′. Then u′ < 0 and |u′| =
P(alternating).

(b) In the case where there are four edges involved which belong to two pairs of consec-
utive edges, two of which are e1, en and the two pairs have no points in common, then
E[ε1ε2‖alternating] = v′. Then v′ < 0 and |v′| = P(alternating).

Proof. By inspection, (see figures 2(v)–(viii) and their mirror images) we notice that the
only cases where (i) or (ii) give alternating crossings, have ε1ε2 < 0. �

Theorem 3.2. The expected value of the second Vassiliev measure, E[V2] of an oriented
URP of n edges, Pn contained in C

3 is of the order O(n2). In particular, for URPs in confined
space, E[V2(Pn)] = αn2 + β′n+ γ ′, where α > 0 and β < 0.

Remark 3.2. We notice that the coefficient of n2 in E[V2(Pn)] is the same as that in
E[V2(Wn)]. β

′ and γ ′ are also related to the geometric probabilities of obtaining conforma-
tions as shown in figure 1 in a random projection direction. More precisely, α = 1

2u+
1
4v,

9



J. Phys. A: Math. Theor. 55 (2022) 095601 P Smith and E Panagiotou

Figure 5. Expected Value of the second Vassiliev invariant, V2, of URPs in confined
space as a function of their length.

β′ = 1
2 (−5u− 7

2v + 2w + u′ + v′), γ ′ = −u− 1
2v +

3
2w − 2u′ − 5

2v
′, where u, v,w, u′, v′ are

defined in lemmas 3.1 and 3.2.

Proof. Note that for a polygon, Pn, V2(Pn) = V2((Pn)�ξ). To compute E[V2((Pn)�ξ)] we work
as in theorem 3.1, by taking into account the contributions of the closure end. Namely,

E[V2(Pn)] =
1
2

[ ∑
1�i�n−3

∑
i+2� j�n−1,alt.

E[εi jεi( j+1)]− E[ε1,n−1ε1,n]

+
∑

1�i�n−3

∑
i+3� j�n,alt.

E[εi jε(i+1) j]− E[ε1,nε2,n]

+
∑

1�i�n−4

∑
i+3� j�n−1

E[εi jε(i+1)( j+1)]− E[ε1,n−1ε2,n]

+
∑

1�i�n−3

E[εi(i+2)ε(i+1)(i+3)]

+
n−2∑
i=3

E[εi,nεi,1]+
n−3∑
j=3

E[εn, jε1, j+1]

+ E[εn−2,nεn−1,1]+ E[εn−1,1εn,2]+ E[εn,2ε1,3]

]
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=
1
2

⎡
⎣ ∑
1�i�n−3

∑
i+2� j�n−1

u− u+
∑

1�i�n−3

∑
i+3� j�n

u− u

+
∑

1�i�n−4

∑
i+3� j�n−1

v − v +
∑

1�i�n−3

w +

n−2∑
i=3

u′ +
n−3∑
j=3

v′ + 3w

⎤
⎦

=
1
2
n2

(
u+

1
2
v

)
+

1
2
n

(
−5u− 7

2
v + w

)
+ 3u+ 3v

− 3
2
w − u− 1

2
v +

3
2
w +

1
2
(n− 2− 3+ 1)u′ +

1
2
(n− 3− 3+ 1)v′

=
1
2
n2

(
u+

1
2
v

)
+

1
2
n

(
−5u− 7

2
v + 2w + u′ + v′

)

− u− 1
2
v +

3
2
w − 2u′ − 5

2
v′. (7)

Since, u, v > 0 and u′, v′,w < 0, we find that

E[V2(Pn)] = αn2 + β′n+ γ ′, (8)

where α > 0 and β′ < 0. �

4. Numerical results

In this section we present numerical results on the expected value of the second Vassiliev
measure of URWs and polygons in confined space. We take averages of the second Vassiliev
measure in the space of configurations of URWs and polygons of 10 to 100 edges with stepsize
of 10. Each data point is an average over 500 random walks or polygons.

ForURPs, the secondVassilievmeasure is computedby using one projection of the polygon.
The second Vassiliev measure of URWs was computed by averaging the algebraic sum of
double alternating crossings in a projection over 500 projections. Projectionswere generated by
selecting random vectors along the unit sphere. In practice, this was done by using the normal
distribution to randomly select x, y, and z components and then dividing by the length of the
vector,

√
x2 + y2 + z2, to provide a unit vector that does not hold bias toward any directions

on the unit sphere. (Indeed, then the probability density function of a vector �v = (x, y, z) is
1

(2π)3/2
e−

1
2 (x

2+y2+z2) = 1
(2π)3/2

e−
1
2 ‖v‖

2
, independent of the direction.)

Section 4.2 presents our numerical results for URPs, section 4.1 presents our numerical
results for URWs. For comparison, in section 4.3 we also present numerical results on the
expected value of the second Vassiliev measure for equilateral random walks in three-space
(un-confined random walks).

4.1. The second Vassiliev measure of uniform random walks in confined space

Figure 3 shows how the second Vassiliev measure of a URW scales in relation to its number
of edges. The numerical show that E(V2(Wn)) increases as O(n2), confirming theorem 3.1. In
particular, we find that the data fit to a curveαn2 + βn+ γ, where α = 0.0022, β = −0.0247

11
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Figure 6. The expected value of the absolute second Vassiliev invariant, |V2|, of URPs
in confined space, as a function of their length.

and γ = 0.2316, with R2 = 0.9951. These results also confirm that α > 0, β < 0, γ > 0, as in
theorem 3.1. It is also evident that the expected value of V2 is always greater than zero, with V2

taking positive values more often that negative values. Comparing these results to the Writhe
and ACN of URWs in confined space, we find that E[|V2(Wn)|] scales faster that the Writhe,
similar to the ACN. Our results suggest that at N > 20, E[|V2(Wn)|] > 1, which suggests the
presence of knots in most of these random walks. In the appendix, we see that knots (most
likely open trefoils) appear already at N = 10.

Figure 4 shows how the expected value of |V2| for a URW scales in relation to its number
of edges, also increasing as O(n2). In particular, we find that the data fit to a curve αn2 +
βn+ γ, where α = 0.0029, β = −0.0064 and γ = −0.0872, with R2 = 0.9989. As expected,
the scaling is the same for E[V2] and E[|V2|] and E[|V2|] > E[V2]. Comparing the scaling of
the expected value of |V2| to the expected value of the Writhe, |Wr|, of URWs, we find that
E[|V2|] = O(n2), while E[|Wr|] = O(n). This suggests a big difference between the Writhe,
which is affected a lot by the local geometry of a walk, and the second Vassiliev measure,
which is a topological measure of knotting complexity.

4.2. The second Vassiliev measure of uniform random polygons in confined space

Figure 5 shows how the second Vassiliev measure of a URP scales in relation to its number of
edges. The numerical results support the finding that E(V2(Pn)) increases as O(n2). In partic-
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Figure 7. Expected values of the absolute second Vassiliev measure, |V2|, of equilateral
random walks, as a function of their length.

ular, we find that the data fit to a curve αn2 + βn+ γ, where α = 0.0021, β = −0.0139 and
γ = −0.016, with R2 = 0.9772. These results are in agreement with theorem 3.2. We also find
that α is the same for URPs and URWs, as predicted.

Figure 6 shows how the expected value of |V2| for a URP scales in relation to its number
of edges, also increasing as O(n2). In particular, we find that the data fit to a curve αn2 +
βn+ γ, where α = 0.0031, β = −0.0121 and γ = −0.1392, with R2 = 0.998. Note that the
trefoil knot has V2 = 1. We find that E[|V2(Pn)|] > 1 at N > 20. This is in agreement with
previous results on knotted polygons in confined spaces [14]. Comparing these results to the
mean absolute Writhe of URPs, we find that V2 increases faster than the Writhe. In fact, we
find a scaling of the expected value of |V2| that is similar to that of the ACN.

4.3. The second Vassiliev measure of equilateral random walks

Figure 7 shows how the expected value of |V2| of an equilateral randomwalk scales in relation
to its number of edges. We find that the second Vassiliev measure of equilateral random walks
increases as O(n). In particular, we find that the data fit to a curve an+ b, where a = 0.0031
and b = −0.0462with R2 = 0.9698.As expected, confinement increases the asymptotic power
scaling of V2 and we find by a factor of two. A similar difference in the power by two was
observed for the mean absolute Writhe [30]. We find that the expected value of the absolute
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second Vassiliev measure of equilateral random walks shows a scaling in between that of the
Writhe, which is O(

√
n) [30], and that of the ACN, which is O(n ln n) [15].

5. Conclusions

We used a new measure of topological entanglement sensitive to knotting that is applicable
to both closed and open curves to analyze the complexity of random walks and polygons in
confinement. Using the URW, URPmodel, we proved that the second Vassiliev measure scales
as O(n2) with the length n of a random walk or polygon. In fact, we found that the average
Vassiliev measure follows a function of the formαn2 + βn + γ and that the coefficientsα, β, γ
represent geometric probabilities of specific types of pairs of crossings in a projection. This
scaling is comparable to that of the ACN of URWs in confined space and not that of theWrithe.
We found that forN > 20, the mean Vassiliev measure is greater than 1. Indicatively, the trefoil
knot has second Vassiliev invariant 1. This suggests that the open polygonal chains contain
knots atN > 20.Our results on equilateral randomwalks in three-space showed a linear scaling
of the second Vassiliev measure with the length of the chains, similar to that of ACN. The
second Vassiliev measure of equilateral randomwalks is less than 1 for all the lengths analyzed
here. This makes evident how confinement induces knotting in open chains.
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Appendix

In this section we present the distributions of the second Vassiliev measure and the second
Vassiliev invariant for URWs and URPs, respectively of varying length.

Figure 8 shows the distribution of the second Vassiliev invariant for URPs of 10 to 90 edges.
We see that for URPs of less than 30 edges the distributions of V2 are narrow and centered
at zero, indicating that the occurrence of knotting is rare. However, values of V2 = 1 appear
already at N = 10, indicating the presence of knots (likely trefoil knots). As the number of
edges of a URP increases, the values of V2 tend to broaden and deviate farther from the zero
value, indicating an increase in knotting. A lean toward positive values also begins to become
visible. Similar results are found for URWs in figure 9.
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Figure 8. Distributions of the second Vassiliev measure for URPs of 10 to 90 edges.

Figure 10 shows the distribution of the absolute second Vassiliev measure for equilateral
random walks in three-space of 10 to 90 edges. We see that equilateral random walks of few
edges, |V2| is typically zero or very near zero, indicating that no or very little knotting is occur-
ring. However, values of v2 ≈ 0.8 are populated, indicating the occurrence of open knots, even
at N = 10. For longer chains, we see higher values of |V2| become more populated. The popu-
lation of the zero value decreases, indicating a decreasing probability of obtaining an unknotted
curve.
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Figure 9. Distributions of the second Vassiliev measure for URWs of 10 to 90 edges.
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Figure 10. Distributions of the absolute second Vassilievmeasure for equilateral random
walks of 10 to 90 edges.
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