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Abstract

The computational identification of long non-coding RNAs (lncRNAs) is important to study lncRNAs and their functions.
Despite the existence of many computation tools for lncRNA identification, to our knowledge, there is no systematic
evaluation of these tools on common datasets and no consensus regarding their performance and the importance of the
features used. To fill this gap, in this study, we assessed the performance of 17 tools on several common datasets. We also
investigated the importance of the features used by the tools. We found that the deep learning-based tools have the best
performance in terms of identifying lncRNAs, and the peptide features do not contribute much to the tool accuracy.
Moreover, when the transcripts in a cell type were considered, the performance of all tools significantly dropped, and the
deep learning-based tools were no longer as good as other tools. Our study will serve as an excellent starting point for
selecting tools and features for lncRNA identification.
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Introduction
Only about 1.5% of the human genome is transcribed into mes-
senger RNAs (mRNAs), which can further be translated into
proteins. A vast proportion (>90%) of the genome is transcribed
into non-coding RNAs (ncRNAs) and do not possess protein-
coding ability [1–5]. For a long period, the non-coding part of the
genome is usually regarded as the ‘dark matter’ of the genome
and the resulting ncRNAs are ignored from further studies. With
the development of high-throughput technologies, a variety of
functions of the ncRNAs, especially the long ncRNAs (lncRNAs),
are now being revealed in numerous biological processes, such
as gene regulation, gene silencing and RNA modification [6–13].

To further understand the properties and functions of lncR-
NAs, efficient identification of lncRNA transcripts is essential
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[14]. The most common definition of lncRNAs so far is the
ncRNA transcripts longer than 200 nucleotides (nt). Because
of their longer sizes, which are similar to those of mRNAs,
distinguishing lncRNA transcripts from mRNAs efficiently has
remained a challenging task. LncRNAs are just like mRNAs, as
both are transcribed by RNA polymerase II from the genomic loci
with similar chromatin states [15]. However, they can have del-
icate differences. For instance, lncRNAs tend to be shorter than
mRNAs; lncRNAs may also have fewer but longer exons, lower
level of expression, shorter open reading frames (ORFs), etc. Note
that all characteristics mentioned above have exceptions [16, 17].
For instance, the lncRNA NEAT1, which plays an important role
in various biological processes, has a single exon of 227 000 nt
in length, longer than most mRNAs [18, 19]. Also, some well-
studied lncRNAs, including HOTAIR, MALAT1, ANRIL and NEAT1,
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are found to be highly expressed in different types of cancer cells
[20–28].

The first discovered eukaryotic lncRNA, H19, was identified
in mouse in 1984 [22]. Later, the discovery of the pervasive tran-
scription phenomenon revealed thousands of lncRNAs such as
Xist, Airn, MALAT1 and HOTAIR in animals [29, 30]. Studies found
that lncRNAs play roles in gene expression regulation during
both developmental and differentiation processes. Also, devel-
opmentally complex organisms tend to have a higher number of
lncRNAs, indicating the importance of lncRNAs in multicellular
development processes [30]. LncRNAs were found to act both in
cis by regulating the expression of neighboring coding genes [31]
and in trans by regulating the expression of distant genes [32,
33]. Based on their functionalities, lncRNAs are also categorized
into three major groups, where they regulate chromatin states
and gene expression at regions distant from their transcription
sites, influence nuclear structure and organization and regulate
the behavior of proteins and/or other RNA molecules [34].

A variety of experimental approaches have been in practice
to identify lncRNAs. Microarrays and RNA-seq can perform high-
throughput analysis of lncRNA expression [35, 36]. Northern
blots, reverse transcription polymerase chain reaction (RT-PCR),
fluorescence in situ hybridization (FISH) and RNA interference
(RNAi) are used to verify the authenticity of high-throughput
data [37–39]. RNA pull-down assay, RIP-chip/seq and CLIP are
used to identify lncRNA–protein interactions [40]. Conducting
such experimental methods in diverse cell-specific conditions
can be time-consuming and expensive. Hence, in recent years,
various computational methods have been introduced that take
advantage of these technologies and the increased computa-
tional power to identify lncRNAs. Efficient identification of lncR-
NAs by computational methods minimizes the need for experi-
mental identification in many cases.

Dozens of lncRNA prediction tools are available that are
built on the machine learning and deep learning technologies
and utilize a variety of features. Although these computational
methods have yielded encouraging results to identify lncRNAs,
to our knowledge, they have not been systematically evaluated,
especially the recently developed methods and tools [41–52].
To date, there is no consensus regarding the performance of
these tools. To fill this void, we evaluated the following 17 tools
published after 2012: CPAT, CNCI, PLEK, FEELnc, CPC2, lncRNAnet,
CPPred, LGC, lncFinder, lncRNA_Mdeep, CNIT, CREMA, LncADeep,
Lncident and PredLnc-GFStack [53–69]. We compared their effi-
ciency and accuracy and studied the importance of the features
used by these tools for lncRNA identification. Our study shed
new light on the study of lncRNAs and their functions.

Features commonly used in lncRNA
identification
The computational problem to identify lncRNAs is to essentially
distinguish lncRNA transcripts apart from the mRNA transcripts,
given the corresponding sequences. The features that can be
derived directly from the sequences have thus been popular
from the beginning. Many efforts have been made so far to
engineer the features from sequences to allow a better under-
standing of the lncRNA transcripts and thus improve the lncRNA
prediction performance [57, 62, 63].

Since ORFs have a strong correlation with the coding poten-
tial, several features were introduced based on ORFs, such as the
ORF size, the ORF integrity and the ORF coverage [53, 54, 56–58,
60, 61, 63–67, 69]. Deep learning models were also used to model

ORFs, which serve as an ORF indicator to improve the overall
performance [53]. The k-mer (k nt long DNA or RNA segment)
based features can also be directly derived from sequences [62,
63, 65, 70–72]. Along with the standard k-mer profiles, several
other features were engineered from the k-mers that can better
explain the coding potential of a sequence, such as the Fickett
TESTCODE score, the hexamer score, the adjoining nucleotide
triplet (ANT) frequencies, the multi k-mer frequencies, and the
composition, transition and distribution (CTD) features [41, 54–
56, 59–63, 65–67, 69]. There were some attempts to model the
relationship between the ORF size and the GC content as well
[60, 61, 64, 69]. While investigating the lncRNA functions, studies
revealed that certain lncRNAs with short ORFs (ORF <300 nt) can
still code for short peptides, which have certain key biological
functions [60, 73–84]. These studies led to the features that focus
on the formation and stability of the resulted peptides, such
as the isoelectric point, instability index, grand average hydro-
pathicity and electron–ion interaction pseudo-potential (EIIP)
[57, 58, 60, 63, 69]. The isoelectric point denotes the pH at which
a peptide molecule does not carry any electrical charge [64].
The instability index feature measures the stability of a peptide,
which can be calculated for a simulated test tube atmosphere.
The grand average hydropathicity tells about the hydrophobicity
of the protein molecule. The emerging powerful deep learning
models can capture more complicated patterns directly from
sequences; hence the sequences themselves are also encoded as
input features [53, 54]. In the following, we discuss the features
used in the published tools under three categories: ORF features,
k-mer features and peptide-level features.

ORF features

An ORF consists of a set of consecutive non-overlapping codons
that can be translated into a protein. An ORF is bounded by
a start codon (AUG) and a stop codon (UAA, UAG, UGA). The
translation starts from the start codon and stops after the stop
codon. The high correlation between ORFs and the ability of
protein translation makes ORFs one of the popular features that
can separate lncRNAs from mRNAs. The ORF size is another fun-
damental feature that is commonly used to distinguish lncRNAs
from mRNAs. Sometimes the ORF size is used indirectly, such
as the ORF coverage, which is defined as the ratio of the ORF
size to the total transcript length. Note that, considering the
ORF size feature as a sole ORF feature may misclassify lncRNAs
containing large ORFs into mRNAs [16]. Hence the ORF integrity
is introduced as a stand-alone feature to make up the deficiency
of the ORF size. The ORF integrity is a Boolean value feature,
which tells where the ORF starts and ends. Sometimes an ORF
contains non-canonical (non-AUG) start codons, which makes it
difficult to correctly identify the exact start position of the ORF.
Therefore, instead of considering the start and stop codons to
define an ORF, some studies use the stop-to-stop ORFs to model
lncRNAs [53] (Table 1).

K-mer features

The composition of the DNA sequences is fundamental to dis-
tinguish lncRNAs from mRNAs. Other than the ORF features
that can be extracted from the DNA sequences, there are some
efforts to extract more useful composition information from the
sequences (Table 1). Most of these involve the frequency profiles
of k-mers with different values of k.

Several studies applied k-mer frequencies as the direct
features [59, 66], while others used these features to design more
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Table 1. Machine learning models and features used by the tools

Tools Classifier ORF size Peptide features k-mer profile Other features

CPAT LR ORF size, ORF
coverage

Fickett score,
hexamer score

CNCI SVM ANT frequency
matrix

PLEK SVM Frequency of k-mer
(k = 1–5) patterns

FEELnc RF ORF coverage Multi k-mer
frequencies

Sequence length

CPC2 SVM ORF size, ORF
integrity

Isoelectric point Fickett score

lncRNAnet CNN + RNN ORF size, ORF
coverage, ORF
indicator

Sequence profile

CPPred SVM ORF size, ORF
coverage, ORF
integrity

Isoelectric point,
instability index,
Gravy

Fickett score,
hexamer score, CTD

LGC MLE ORF size GC content
lncFinder SVM ORF size, ORF

coverage
EIIP Distance between

hexamer frequencies
of a new transcript
and lncRNA
transcripts

RNA secondary
structure features

lncRNA_Mdeep DNN + CNN ORF size, ORF
coverage

Fickett score,
hexamer score,
k-mer frequency

Sequence profile

CNIT XGBoost ANT frequency
CREMA LR stacked on the GB

models
ORF size Fickett score,

hexamer score
GC content,
transcript length,
alignment identity,
alignment length,
alignment
length:transcript
length, alignment
length:ORF length

LncADeep DBN ORF size, ORF
coverage, EDP of ORF

Fickett score,
hexamer score, EDP
of 3-mer from 7
amino acid (codons)
groups, EDP of LCDS

HMMER index

Lncident SVM ORF size, ORF
coverage

Adjoining k
nucleotide frequency
in ORF

PredLnc-GFStack Ensemble of RF ORF size, ORF
coverage, ORF
integrity, EDP of ORF

Isoelectric point,
instability index,
Gravy

Fickett score,
hexamer score, EDP
of transcript, CTD

GC content

BASiNET Decision tree Adjacency of k-mers
NCResNet ResNet ORF size, ORF

coverage, ORF
integrity

Isoelectric point,
instability index,
Gravy, molecular
weight, EIIP

Fickett score,
hexamer score, CTD,
codon number,
codon ratio

GC content, GC
variance

Here, Gravy is the short form of grand average hydropathicity.

sophisticated features [53, 57, 62, 63, 65]. Incorporating the idea
of codon and k-mer frequencies, CNCI uses the ANT profiles to
generate the ‘most-like’ coding domain sequence region feature,
which represents the sub-sequences that have the most ability
to code [62]. CPAT and CPPred use the hexamer score, which
bears almost the same idea as the ANT profiles except that they
score a test sequence by using a pre-calculated log-likelihood
ratio of the hexamer scores from the coding and non-coding
training sequences. The positive hexamer score represents a

mRNA, and the negative score corresponds to an lncRNA [63,
65]. LncFinder considers the Euclidean distances between the
hexamer score of a query transcript with the hexamer scores of
the lncRNAs and the mRNAs in the training data, then uses the
ratio between these two distances to identify the lncRNAs [57].
CPPred, PredLnc-GFStack and NCResNet use a set of features
named CTD that record the individual frequency of the 4 nt
(Composition), the number of transitions from one nucleotide
type to another (Transition) and the occurrence locations of
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0%, 25%, 50%, 75% and 100% of every nucleotide types in the
sequence (Distribution) [60, 63, 69]. In 1982, Fickett introduced
the Fickett TESTCODE score that could be calculated by com-
bining the position and composition values (nucleotide content)
of the four types of nt in a DNA sequence [85]. This score is a
simple linguistic feature to distinguish mRNAs from ncRNAs [54,
58, 63, 65]. Although this score is commonly used, it is computed
differently in different tools. In CPAT, it is calculated on the
longest ORF region, while CPC2 calculates it on the full length
of the sequences [58, 65]. Apart from these manually designed
sequence features, the deep learning-based tools lncRNAnet and
lncRNA_Mdeep learn the abstract features from the sequence
patterns of the transcripts using the recurrent neural network
(RNN) and convolution neural network (CNN), respectively, as
the deep learning models are more facilitated than the vanilla
machine learning methods to deal with the sequence data
[53, 54].

Peptide features

Proteins or peptides are formed with multiple amino acid
molecules linked by peptide bonds. A peptide bond is formed
when the amino group of one amino acid molecule is linked to
the carboxyl bond of another amino acid molecule through a
covalent bond. Features regarding the formation and stability of
a peptide bond are thus used by several studies. For example,
CPC2 inspects several peptide-level features at the feature
selection stage and selects the isoelectric point as one of its
features. As pointed out above, the isoelectric point denotes the
pH at which a peptide molecule does not carry any electrical
charge [58]. Besides CPC2, isoelectric point is used by several
other tools such as CPPred, PredLnc-GFStack and NCResNet [60,
63, 69]. These three tools also use the instability index and the
grand average hydropathicity scores as primary peptide features
[60, 63, 69]. LncFinder and NCResNet use a feature named EIIP,
which is an improved version of isoelectric point and can be
directly applied to RNA sequences [57, 69] (Table 1).

A few studies employ other features that do not belong to
the above three categories. For example, LncFinder uses several
RNA secondary structure features calculated by the minimum
free energy-based algorithms [57]. LGC considers a relationship
between the ORF size and the GC content in the given sequence
to model the coding potential score [64]. NCResNet is another
tool that considers the GC content and the GC variance [69].
LncADeep and PredLnc-GFStack use the entropy density pro-
file (EDP) in ORFs or the whole transcript regions to estimate
the entropy of the k-mer or amino acid compositions [60, 67].
LncADeep and CREMA use features from the alignment informa-
tion of a transcript to a protein database [61, 67]. Although a vari-
ety of features have been utilized by different studies, in most
cases, the commonly used features are slightly updated to adapt
with the newly published datasets and emerging technologies
(Table 1).

Computational methods for lncRNA
identification
We surveyed 17 recently published tools on lncRNA identifi-
cation (Table 1). A tool published after 2012 was chosen if (i)
the tool has publicly available source codes or a ready-to-use
package and does not depend a third-party library or database;
(ii) the tool takes only sequences as input and (iii) the tool
provides the trained human models or species-independent
models. The classifiers used by these tools include traditional

statistical method like maximum likelihood estimation (MLE);
popular machine learning methods such as logistic regression
(LR), support vector machines (SVM), random forests (RF), gra-
dient boosting (GB) and extreme gradient boosting (XGBoost);
and the latest deep learning-based methods like deep neural
network (DNN), CNN, RNN, deep belief network (DBN) and resid-
ual neural network (ResNet) [52, 55, 61, 67, 69, 86–104]. Some of
these tools apply similar classifiers with different feature sets or
different classifiers with similar feature sets. Therefore, side-by-
side comparison of these tools can provide insights about the
classifiers or feature sets that contribute the most to identify
lncRNAs, which can further assist the study of lncRNAs and their
functions. It is also interesting to see whether the performance
of deep learning-based methods can justify the higher demand
for computational resources.

Coding Potential Assessment Tool

Coding Potential Assessment Tool (CPAT), published in 2013,
uses a LR model to classify the lncRNA sequences based on
the ORF size, ORF coverage, Fickett score and hexamer score
features [65]. CPAT takes the FASTA formatted sequence data as
input and outputs the four feature scores, the coding probability
and the predicted class (coding or non-coding) for the input
sequence. CPAT claims a higher performance [area under the
receiver operating characteristic curve (AUROC) 0.99] than the
contemporary tools like CPC, PhyloCSF and PORTRAIT [65]. CPAT
also provides a web service, which is more user-friendly than its
local installation version.

Coding-Non-Coding Index

Coding-Non-Coding Index (CNCI) was introduced in 2013, which
classifies lncRNAs and mRNAs by profiling the ANT feature
using SVM [62]. CNCI takes the FASTA formatted sequence data
as input. Given a transcript sequence, CNCI identifies the most-
like coding region among the six reading frames and calculates
the S-score, ORF coverage, score-distance and codon-bias fea-
tures in this most-like coding region using the profile of the ANT
feature. It trains the SVM model with the four features from
the training sequences and outputs a coding potential score
between −1 and 1 with a predicted class label indicating non-
coding or coding for each input testing sequence. CNCI reported
a high accuracy (97.3%).

PLEK

PLEK employs an SVM model that learns from the frequency
profiles of k-mer patterns (k = 1–5) [59]. It claimed to achieve
up to 95.6% accuracy on human RefSeq mRNAs and GENCODE
lncRNAs. PLEK introduced an improved k-mer scheme according
to the length k to increase its performance. PLEK takes the FASTA
formatted sequence data as input and provides a score for each
sequence, where a score ≤0 indicates that the input sequence is
an lncRNA sequence.

CPC2

CPC2, published in 2017, is an updated version of the Coding
Potential Calculator (CPC) algorithm [58, 105]. CPC2, reportedly,
is 1000 times faster than CPC. CPC2 applies an SVM model
that uses the ORF size, ORF integrity, Fickett TESTCODE score
and isoelectric point as the input features. CPC2 claims over
95% accuracy on the human dataset and 93.7–99.1% accuracies
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for mouse, zebrafish, fly, nematode and Arabidopsis. For each
FASTA formatted sequence input, CPC2 generates the features
and trains the SVM classifier to predict the coding or non-coding
label for the sequence, along with a coding probability. The CPC2
model is species-neutral, which comes in handy for ever-growing
non-model organism transcriptomes, especially those without
the genome assembly.

FEELnc

FEELnc was also published in 2017, which uses the RF model
and considers the ORF coverage and multiple k-mer schemes
(k = 1–12) as the training features [66]. FEELnc achieved a 95.6%
accuracy with 10-fold cross-validation on the human training
datasets. The authors claimed that FEELnc had higher perfor-
mance on the reads generated by PacBio and 454 platforms due
to longer read length. FEELnc is the first tool that allows users
to annotate conservative sets of lncRNAs and mRNAs by auto-
matically fixing their own specificity thresholds. The authors
also developed a score named ‘k-mer in short’ to combine the
multiple k-mer frequencies in a faster way. FEELnc takes the
FASTA formatted sequence data as input, calculates the feature
scores and uses the trained RF model to predict a coding or
non-coding label along with a coding potential score.

LncRNAnet

lncRNAnet is one of the earliest published tools that use deep
learning techniques to identify lncRNAs [66]. Instead of finding
the ORF region in a traditional way, which may not include
non-canonical start codons, it considers the stop-to-stop codon
frames as the ORF indicator. It uses the sequence within the
ORF indicator frames to train a network of 1-D convolutional
layers to predict the ORF indicator. For a given sequence, first,
it predicts the ORF indicator values across the sequence as a
vector of the same length as the sequence. Then, it uses both
the sequences and the ORF indicator vectors to train an RNN
to predict the coding probability score. The score >0.5 indicates
that the provided sequence is an lncRNA. LncRNAnet claims a
91.79% accuracy and an AUROC of 0.97 on the human dataset.

CPPred

CPPred, published in 2019, is another SVM-based tool [63]. The
perk of this tool is that it also focuses on distinguishing the
‘small’ coding RNAs and ‘small’ ncRNAs along with the regular
coding RNAs and lncRNAs. It uses the same ORF features as
CPC2 with two additional peptide-level features, the stability and
grand average hydropathicity; k-mer features such as hexamer
score and 30 CTD features. The CTD features include the four
frequencies of A, T, C, G; six transitions between A and T, A
and C, A and G, T and C, T and G and C and G; 20 distribution
features containing the positions of occurrences of the first 25%,
50%, 75% and 100% of A, T, C and G. CPPred is the first tool that
uses the CTD features to predict coding potential in eukaryotes.
They show that the CTD features are important to predict the
sequences with small ORFs. CPPred claims a 96.23% accuracy and
a 0.99 AUROC with its human test set. CPPred extracts all the
features from the input FASTA formatted sequences and uses
the trained SVM model to predict the coding or non-coding label
along with the coding potential.

LGC

LGC is the first tool to consider the GC content to differentially
characterize lncRNAs and mRNAs [64]. For each FASTA formatted
sequence, LGC calculates the length and the GC content of the
longest ORF, along with coding potential score and coding label.
LGC models the relationship between the ORF size and the GC
content with four parameters and uses the MLE to estimate the
values of the four parameters. LGC reported a 94.5% accuracy on
the human test data and a higher accuracy than CPC, CNCI, CPAT
and PLEK to identify lncRNAs in a cross-species manner without
the need for species-specific adjustments.

LncFinder

Another SVM-based tool, LncFinder, considers carefully curated
feature sets including the ORF size, ORF coverage, EIIP, the dis-
tance between hexamer frequencies of a new transcript and
lncRNA transcripts, and features extracted from the secondary
folding structure of functions. LncFinder performs feature selec-
tion to rule out redundant features and model selection to find
the optimized model. The reported highest accuracy is 97% on
the human test data. LncFinder can be installed as an R package
or can be accessed directly via the web server. It takes FASTA
formatted sequences as input and outputs coding or non-coding
label for each sequence. Other than lncRNA identification, the
stand-alone version of LncFinder also provides sequence inputs
with varying lengths.

LncRNA_Mdeep

Another deep learning-based tool lncRNA_Mdeep uses a CNN to
learn from the sequence and two separate DNNs to learn from
the k-mer frequency profile and other features (ORF size and
coverage, Fickett score and hexamer score) [54]. The final hidden
layers of the three neural networks are concatenated together
to predict coding probability scores. lncRNA_Mdeep takes FASTA
formatted sequences as input and outputs the coding or non-
coding label along with coding potential score for each sequence.
It reported a 98.73% accuracy on the human validation dataset.

CNIT

CNIT, an updated version of CNCI, was published in 2019. It
uses the same ANT features used by CNCI with a more powerful
ensemble machine model XGBoost [55, 62]. CNIT reported higher
AUROC scores than CNCI, CPC2, CPAT and PLEK on a variety of
species from both animal and plant kingdoms. Similar to CNCI, it
also takes the input sequence in the FASTA format and outputs
a value from −1 to 1, where a value <0 indicates an lncRNA.

CREMA

CREMA is another ensemble method-based tool that was pub-
lished in 2018, which applies LR as a stacking generalizer of an
ensemble of gradient boosting models [61]. Eight models were
trained using negative data sets from eight different combi-
nations of species. The prediction results of the eight models
were then used to train a LR classifier. The prediction of the
LR classifier is considered as the final output. CREMA uses a
recursive feature elimination strategy to remove a set of features
from its initial set. On an independent training dataset, CREMA
showed an 88.3% AUROC and a 99.4% specificity. The model
takes transcript sequences in the FASTA format and outputs a
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value between 0 and 1, where a score ≥0.5 indicates an lncRNA
prediction.

LncADeep

LncADeep is a deep learning-based tool that employs DBN as
the classifier [67]. LncADeep is designed to handle partial anno-
tated transcripts when making a prediction. From an initial
dataset containing both partial-length and full-length mRNA
transcripts, 21 DBN classifiers were trained with datasets con-
sisting of partial- and full-length mRNAs. The final output of
LncADeep was decided by the majority votes of the 21 trained
classifiers. It uses the following features to classify transcripts:
ORF length and coverage, EDP of ORF, mean hexamer score, Fick-
ett score, HMMER index, UTR length and GC content. LncADeep
showed a higher harmonic mean of sensitivity and specificity
than other tools on datasets containing 100% full-length, 100%
partial-length and mixed length transcripts.

Lncident

Lncident applies an SVM model to classify the lncRNA tran-
scripts [57]. For a given transcript, it uses the length and coverage
of the longest ORF and 5-mer usage within the ORF region as
features. Compared with other tools like CPAT, CNCI, PLEK and
CPC, it showed a higher F1-score on both human and mouse
datasets. It takes the FASTA formatted transcript sequences as
input and outputs a score between 0 and 1, where a score <0.5
indicates an lncRNA.

PredLnc-GFStack

Another ensemble-based tool named PredLnc-GFStack was pub-
lished in 2019 [60]. It uses a genetic algorithm as its feature selec-
tion strategy. The best feature subsets are employed to train sep-
arate RF models. The average prediction scores of the RF models
are considered as the final score. The common selected features
of the high performing RF models for human and mouse include
the GC content, ORF integrity, EDP of transcripts and ORFs, k-mer
profile, isoelectric point, etc. PredLnc-GFStack showed higher
AUROC scores than several well-known tools on both human and
mouse datasets.

BASiNET

BASiNET, published in 2018, applies a graph theory to extract fea-
tures from the input transcript sequences to classify ncRNAs and
mRNAs [68]. It takes a transcript sequence in the FASTA format
as input and creates an adjacency graph between all k-mer pairs
in the sequence with a provided step size. Each node of the graph
represents a unique k-mer and the edge between two nodes
represents the number of times the two k-mers are adjacent in
the sequence. From the adjacency graph of each sequence, it
calculates 10 topological properties that include ‘assortativity’,
average, minimum and maximum degrees, ‘average between-
ness centrality’, etc. It then trains the decision tree classifiers
with the 0–1 normalized values of the topological properties
to classify ncRNA and mRNA transcripts. In comparison with
CNCI, PLEK and CPC2, BASiNET showed higher accuracies in six
different species.

NCResNet

NCResNet is published in 2020 [69]. It extracts 57 features from
the input transcripts that convey sequence, protein, RNA struc-
ture and physicochemical property information. It then trains
a deep ResNet-based model containing four modules: input,
feature enhancement, deep feature learning and prediction. The
input model takes sequences as input and calculates the 57
features. The feature enhancement module enhances the fea-
ture information using repeated layers and combines the infor-
mation with a flatten layer. The deep feature learning module
contains 6 units, where 3 of them contain the residual units
designed to capture the high-level features. Finally, the predic-
tion module integrates the learned features to predict the out-
put. Compared with five other tools on seven species datasets,
NCResNet showed higher accuracy scores in five of the seven
species for long transcripts and in all seven species for short
transcripts.

Most of the 17 tools consider ORF-based features and/or some
type of k-mer-based features with traditional machine learning
models such as SVM and RF. A few of the recently published tools
also consider the peptide level features and deep learning mod-
els of varied flavors and structures. Several tools used feature
selection strategy like feature elimination, feature selection by
genetic algorithm, feature expansion by deep learning layers [57,
60, 61, 69]. While all tools reported high performance in terms
of different performance metrics on their own test datasets, a
comprehensive comparison among them on a unified dataset
is necessary to find the best performing tools in terms of both
accuracy and efficiency. Alongside, a proper investigation of the
feature patterns used by the tools is needed to identify the role
of the feature set used in the lncRNA identification problem. In
the following, we thus evaluate these tools and the features on
unified datasets.

Testing data and comparison criteria
Datasets

The aforementioned 17 tools were tested using different test
data sets as reported in the corresponding studies. To obtain
an unbiased conclusion on the superiority of the tools in the
identification of lncRNAs, we here present several benchmark
datasets on which we evaluate these tools in terms of the
runtime, memory requirements and accuracy.

The first dataset is the protein-coding and lncRNA transcript
sequences in human from GENCODE Release 32 (GRCH38.p13),
which we denote as the ‘HA1 dataset’ (Supplementary Table S1
available online at https://academic.oup.com/bib). The HA1
dataset contains 100 291 mRNA and 48 351 lncRNA transcript
sequences, downloaded directly in the FASTA format, which is
the required input format of all tools we surveyed here. Since
some tools (such as CPAT) have alternative models for mouse, for
a more comprehensive comparison, we also used the annotated
protein-coding and lncRNA transcript sequences in mouse from
GENCODE Release M24 (Supplementary Table S1 available online
at https://academic.oup.com/bib). The mouse dataset consists of
the FASTA formatted 67 056 mRNA and 18 800 lncRNA transcript
sequences.

Because GENCODE contains genome-wide annotations
for the transcript sequences independent of experimental
conditions, only a small portion of the annotated transcripts
are expressed in a given cell type. To produce a reliable context-
specific human annotation dataset, we considered the total
RNA-seq data in human T cells differentiated under TH1
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condition (SRR1817386, TH1 Primary_2695 data) [106]. This RNA-
seq dataset was also used by lncRNAnet for the performance
evaluation [53]. We generated the new dataset by overlapping
the GENCODE protein-coding and lncRNA transcript annotations
with the expressed transcripts from these RNA-seq data. We
denote this dataset as the ‘HA2 dataset’, which consists of 9728
mRNA and 1170 lncRNA sequences (Supplementary Table S1
available online at https://academic.oup.com/bib). Note that
context-specific mRNAs and lncRNAs in this study mean these
transcripts are expressed in a specific cell type and do not mean
that they are not expressed in other human cell types or cell
lines.

We used the HA1 dataset to compare the accuracy of the
17 tools. This dataset is relatively large, and the number of
sequences within each length interval is also different. In order
to distinguish the performance of the tools in terms of runtime
and memory requirement and finally establish relationships
between runtime and memory requirements with respect to
the length of the input sequences, we needed a dataset that
is rich with the consistent number of sequences of different
lengths of our choice. To serve this purpose, we designed an ‘HM
dataset’ consisting of 80 000 mRNA and 80 000 lncRNA transcript
sequences chosen from the HA1 dataset that fall evenly under
the four following length ranges: (0, 1000], (1000, 2000], (2000,
3000] and (3000, 100 000]. In other words, each length range
contains 20 000 mRNA transcript sequences and 20 000 lncRNA
transcript sequences.

To evaluate how the tools perform on more species, we
created the ‘HA3 dataset’ comprising transcripts from 30 species.
This dataset was generated from the different species dataset
published by Duan et al. [107]. The original dataset contains tran-
scripts from 33 species, which are categorized into 18 representa-
tive core species and 15 peripheral species by their phylogenetic
relationships. To create the HA3 dataset, we considered all 18
representative core species and 12 of the 15 peripheral species
and excluded the 3 peripheral species (Homo sapiens, Macaca fas-
cicularis and Gorilla gorilla) that contained the NONCODE defined
lncRNA transcripts (Supplementary Table S2 available online at
https://academic.oup.com/bib). NONCODE was built on the pos-
itive prediction of CNIT, which is one of the tools we evaluate
here. Using the NONCODE transcripts from the three species
would thus create bias towards CNIT and be unfair to other
tools [55]. For each core species, we randomly chose 2000 mRNAs
sequences and 2000 lncRNAs sequences. We only considered
sequences with length between 200 nt and 5000 nt. For each
peripheral species, 500 mRNA and 500 lncRNA sequences with
length between 200 nt and 5000 nt were selected. Because the
number of lncRNA sequences required is not available for some
species, the HA3 dataset consists of 42 000 mRNA and 33 155
lncRNAs. We evaluated all provided models of each tool on this
dataset.

Feature interpretation

To assess the importance of the features used by the 17 tools, we
applied three popular feature interpretation techniques: analy-
sis of variance (ANOVA) F-value [108], feature ranks by recursive
feature elimination (RFE) [109] and information gain using deci-
sion trees [110], to measure the importance of the features in
terms of identifying lncRNAs.

ANOVA F-value selects n most significant features by apply-
ing an ANOVA test on the dataset. Here, n is the desired number
of features provided as an input. RFE needs a classifier to fit
the dataset with the feature scores, such as RF and LR. It ranks

the features in the order of their importance scores calculated
by the classifier. Then, it removes the least important feature
from the dataset and fits the classifier again with the remaining
features. It iterates the above steps until the desired number of
features is obtained. Information gain, also known as Kullback–
Leibler divergence [111], is a characteristic used by the decision
tree classifiers to decide which feature and feature value should
be used as the threshold to bifurcate the dataset. In a decision
tree structure, every feature value divides the dataset into two
groups. The ‘entropy’ of a group is decided by the following
equation:

H(g) = −
∑

i∈C

pilog2pi

Here, C = {0, 1} represents the two classes of a binary classi-
fication task and pi denotes the percentage of data in the class
i. Information gain can be calculated for each feature value. If
a feature value f divides the parent group g into two children
groups g1 and g2, IG(f ) is calculated by the difference between
the entropies of the parent and children groups,

IG(f ) = H(g) − (
H

(
g1

) + H
(
g2

))

The maximum information gain for all values of a feature
F on a dataset is considered the weight or importance of the
feature.

Running time and memory usage

The runtime and memory usage of the 17 tools were obtained
under the following conditions on a dedicated machine. The
testing platform we used was an AMD Ryzen 2700X (8 cores
@3.7GHz) with 80 gigabytes memory, with Ubuntu 18.04 Long
Term Support. For the tools that allow users to provide a maxi-
mum computational resource (e.g. number of CPU threads), we
used the maximum available resource of our machine (e.g., 16
threads). The runtime of a tool was calculated by obtaining the
difference between the timestamps when the tool started and
when it finished the running. We recorded the memory usage
of our system using the ‘free’ command in Ubuntu. We obtained
the memory usage of a tool by subtracting the memory usage
recorded before the tool was executed from the maximum used
memory during the tool was running. All other activities were
suspended during the execution of a tool. Since the memory of
our testing platform was enough for all tools, no virtual memory
or swap memory was used by the tools.

Comparison of the 17 tools
Prediction accuracy

The most important criteria to evaluate the reliability of a tool
is to investigate whether its predictions are consistent with
the ground truths. To evaluate the performance of these tools,
we used the HA1 and mouse datasets and divided each of the
datasets into different length intervals. Based on the results on
the two datasets, we investigated the changes in the perfor-
mances of the tools in terms of the length of the input sequence
and the features that might contribute to the changes. Due to
the unbalanced size of the HA1 and mouse datasets, AUROC,
the area under the precision recall curve (AUPR) and F1-score
were also calculated along with accuracy, precision, sensitivity
and specificity scores (Table 2, Supplementary Table S3 available
online at https://academic.oup.com/bib).
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Table 2. Performance of the tools on HA1 dataset

Tool Pos Neg AUROC AUPR F1 MCC Accuracy Precision Recall Specificity

CPAT 48 351 100 291 0.9482 0.8530 0.8419 0.7630 0.8859 0.7664 0.9340 0.8627
CNCI 48 351 100 291 0.8647 0.6282 0.8098 0.7207 0.8508 0.6919 0.9761 0.7904
PLEK 48 060 99 917 0.8851 0.7542 0.7104 0.5633 0.7515 0.5715 0.9385 0.6616
FEELnc 48 342 100 227 0.9293 0.8119 0.7761 0.6713 0.8165 0.6436 0.9775 0.7389
CPC2 48 351 100 291 0.8899 0.7519 0.7194 0.5777 0.7610 0.5819 0.9419 0.6738
LncRNAnet 48 350 100 282 0.9798 0.9433 0.9020 0.8549 0.9311 0.8397 0.9742 0.9103
CPPred 48 351 100 291 0.7923 0.5029 0.7108 0.5696 0.7440 0.5618 0.9673 0.6363
LGC 48 351 100 291 0.8421 0.6622 0.6833 0.5158 0.7219 0.5427 0.9220 0.6255
LncFinder 48 351 100 291 0.9273 0.7924 0.8145 0.7242 0.8586 0.7103 0.9543 0.8124
LncRNA_Mdeep 48 351 100 291 0.9744 0.9158 0.8984 0.8499 0.9281 0.8317 0.9767 0.9047
CNIT 48 351 100 291 0.9383 0.8172 0.8324 0.7538 0.8719 0.7249 0.9772 0.8212
CREMA 48 351 100 291 0.7977 0.7245 0.6910 0.6473 0.8445 0.9771 0.5345 0.9939
LncADeep 48 351 100 291 0.9872 0.9676 0.9297 0.8956 0.9520 0.8881 0.9753 0.9408
Lncident 48 351 100 291 0.8269 0.5480 0.7379 0.6151 0.7732 0.5912 0.9815 0.6728
PredLnc-GFStack 48 351 100 291 0.9618 0.915 0.948 0.9225 0.9659 0.9455 0.9501 0.9736
BASiNET 48 351 100 291 0.56 0.358 0.406 0.1201 0.6137 0.4063 0.4065 0.7136
NCResNet 48 351 100 291 0.5116 0.325 0.405 0.0209 0.5111 0.3352 0.5112 0.5111

The best scores are highlighted in bold. PLEK filtered out 291 lncRNAs and 374 protein-coding sequences. FEELnc filtered out 9 lncRNAs and 64 protein-coding sequences.
LncRNAnet filtered out 1 lncRNAs and 9 protein-coding sequences.

By having a quick look at the performance results of the tools,
we can safely declare that the three of the four deep learning-
based tools lncRNAnet, lncRNA_Mdeep and LncADeep were the
best in terms of all the performance metrics (Table 2). In terms of
AUROC and AUPR performance metric, LncADeep was the best
performing tool. In every performance metric, LncRNAnet and
lncRNA_Mdeep were very close to LncADeep. It is also notewor-
thy that, using a relatively simple feature set that includes a
unique ORF indicator feature, lncRNAnet beat most of the other
tools. This shows the power of the deep learning models to
pick up intricate features directly from sequence inputs, which
helps the models keep the number of false positives down. But
using complicated deep learning layers could not ensure high
performance, as another deep learning-based tool NCResNet,
which considered almost all features and a very deep model with
a lot of layers, surprisingly underperformed and was the worst
performing tool on both the HA1 and mouse datasets. Apart from
NCResNet, another poorly performing tool was BASiNET, which
used the topological properties of the adjacency graph of unique
k-mers in a sequence to train decision tree models. Among other
machine learning tools, PredLnc-GFStack performed the best on
both HA1 and mouse datasets. It outperformed all other tools
including the deep learning tools in terms of F1, MCC and accu-
racy scores (Table 2). The specialty of PredLnc-GFStack is that
it uses feature selection by genetic algorithm, trains multiple
RF models with the best performing feature subset and finally
considers the maximum voting prediction of the models as the
final prediction.

We also noticed that all tools showed steady improvement
rates in their performances with the growth of sequence length
up to 2000 nt (Figure 1, Supplementary Figure S1 available online
at https://academic.oup.com/bib). When the sequence length
went beyond 2000 nt, the specificity scores of the tools kept
improving, while the recall scores degraded for most tools.
FEELnc showed consistently high recall scores for different
lengths of input sequences. When the sequence length was over
10 000 nt, the AUPR, F1-score and Precision metrics dropped
significantly for most tools.

CPAT and CPC2 use the ORF size and the Fickett score
as common features. As additional features, CPAT uses the

ORF coverage and the hexamer score, while CPC2 uses the
ORF integrity and three peptide features. CPPred considers all
features from CPAT and CPC2 together with the additional 30
CTD features (Table 1). Despite using a simpler feature set and
simpler machine learning model (Table 1), CPAT outperformed
CPC2 and CPPred in terms of all prediction metrics except recall.
The only features, that both CPC2 and CPPred use but CPAT does
not, are the peptide features, which help CPC2 and CPPred have
a little higher recall than CPAT but ultimately generated many
more false positives.

Too many features may sometimes hurt the performance.
For example, PLEK only uses the k-mer profiles with different
k values as its feature set to train an SVM model. CPPred also
trains an SVM model, but with a much larger feature set (Table 1).
In terms of performance, PLEK was on par with CPPred, if not
better, showing the futility of having too many features. Another
example, NCResNet considers 57 features of different kinds,
while still shows a poorer performance compared with tools
using fewer features.

Some tools such as CNCI, PLEK and LGC do not consider
sequences smaller than 200 nt during the model training.
According to our benchmark datasets, none of the tools we
tested can accurately identify the protein-coding sequences
shorter than 200 nt, resulting in a huge number of false
positives in that length range (Figure 1, Supplementary Figure S1
available online at https://academic.oup.com/bib). The reason
may be some of these tools tend to classify shorter (<200 nt)
transcript sequences as ‘non-coding’. PLEK had comparatively
higher performance in the (0, 200] region on the surface, but
its specificity was as poor as the other tools on the HA1 and
mouse datasets. On a closer look we found that, out of the 375
mRNAs and 298 lncRNA sequences in the HA1 dataset, PLEK
generated results for only one protein-coding and seven non-
coding sequences. Similarly, in the mouse data set, only 2 of the
248 lncRNAs and 1 of the 290 mRNAs were recorded in the PLEK
prediction results. The few recorded transcripts by PLEK in the
(0, 200] range were exactly 200 nt long. The other transcripts
were filtered out due to their smaller lengths (<200 nt).

There were 16 lncRNAs from the HA1 dataset that could not
be predicted as lncRNAs by any tool. After visualizing the scores
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Figure 1. Comparison of prediction performance of the tools on the HA1 dataset. Six performance metrics are shown for different input sequence lengths. The X and

Y axis labels are shown for the first subfigure only as they are the same for all subfigures.

of the 17 tools for these 16 lncRNAs, it appeared that CNCI and
PLEK came close to predict them. We found that 13 out of the
16 lncRNAs were overlapped by at least one protein-coding RNA,
which could be a reason for the tools to mistake them for mRNAs
(Figure 2). On average, around 50% of the misclassified lncRNAs
by each of the 17 tools were found to overlap with a protein-
coding mRNA. These lncRNAs overlapped with protein-coding
gene transcripts were more challenging for the tools to classify
correctly. The remaining three lncRNAs had a much larger ORF
length (1107 nt, 951 nt and 1653 nt) than the median ORF length
(423 nt) of the lncRNAs in the HA1 dataset, which might explain
their misclassification.

Analyses on the RNA-seq and 30 species data

To reflect the performance of the tools on predicting context-
specific lncRNAs, we compared their performance using the
RNA-seq dataset HA2 (Table 3). The HA2 dataset is a subset of
the HA1 dataset. It was used to produce results that focused
on context-specific transcripts. All the mRNA transcripts in
this dataset are longer than 200 nt. CNCI could not handle the
HA2 mRNA transcripts with length over 10 000 nt in 400 h.
So, the tool was not executed on those transcripts. Due to
the filtering rules of PLEK, lncRNAs smaller than 200 nt and
mRNAs more than 10 000 nt could not be included to evaluate
this tool.

The overall performances of all tools were much lower on the
HA2 dataset, compared with the HA1 dataset. In terms of recall,
FEELnc was still the best on the HA2 dataset, as it was on the HA1
dataset. PLEK performed better than other tools in terms of AUPR

and precision. CNCI performed better than others in terms of F1-
score and precision. But due to the missing mRNA transcripts,
the negative dataset of PLEK and CNCI was smaller than other
tools. Keeping the consistency in the number of positive and
negative datasets in mind, LGC performed better than others
in terms of the AUROC, accuracy and specificity. Note that,
unlike other tools, LGC models the relationship between the
ORF size and the GC content in a sequence to decide its class
by MLE. Although the deep learning-based tools lncRNAnet and
lncRNA_Mdeep were the best performing tools on HA1, both
of them were among the lowest performing tools in terms of
specificity. The overall poor performance of the tools on the HA2
dataset suggests that the annotation datasets, these tools were
trained on, might be significantly different from the context-
specific annotations, and the models used by the tools are most
likely overfitted on the transcripts that are not expressed under
the context-specific conditions. Note that one cannot simply
filter the predicted lncRNAs based on their expression under
a given experimental condition to define the context-specific
lncRNAs under this condition, because at least more than 6.5%
of lncRNAs (highest recall 93.5%) cannot be correctly predicted
by the available tools in this case (Table 3), indicating that the
context-specific lncRNAs in at least certain cell types may not
be represented well enough in the GENCODE annotation.

When we evaluated the tools on the 30-species HA3 dataset,
we found that Lncident performed the best in terms of the F1-
score and AUROC (Table 4). Lncident uses a simple SVM model
with only ORF features and ANT features of k-mers. LncADeep
was the second best tool in this regard. Overall, all tools except
CREMA, BASiNET and NCResNet showed high AUROC and AUPR
on this dataset.
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Figure 2. The heatmap (top) shows the scores of the 10 tools for 16 lncRNAs unidentified by any of the tools. The bar plot (middle) shows the maximum percentage of

overlapping area of the lncRNAs with an mRNA. The bar plot (bottom) shows the length of the 16 lncRNAs.

Table 3. Performance of the tools on HA2 dataset

Tool Pos Neg AUROC AUPR F1 MCC Accuracy Precision Recall Specificity

CPAT 1170 9728 0.5833 0.1212 0.2287 0.1097 0.4448 0.1344 0.7667 0.4060
CNCI 1170 1157 0.4657 0.4937 0.6528 0.0887 0.5346 0.5223 0.8701 0.1953
PLEK 1153 2388 0.7041 0.5576 0.5452 0.2438 0.5609 0.4113 0.8083 0.4414
FEELnc 1170 9728 0.5593 0.1593 0.1877 -0.0494 0.1312 0.1043 0.9350 0.0345
CPC2 1170 9728 0.6927 0.3296 0.2468 0.1418 0.5139 0.1480 0.7419 0.4865
LncRNAnet 1105 8411 0.5592 0.1353 0.2119 0.0326 0.2732 0.1212 0.8416 0.1985
CPPred 1170 9728 0.7166 0.3380 0.2393 0.1375 0.4406 0.1401 0.8197 0.3950
LGC 1170 9728 0.7367 0.2901 0.4119 0.3354 0.8297 0.3273 0.5556 0.8627
LncFinder 1170 9728 0.7375 0.4409 0.3209 0.2417 0.6920 0.2102 0.6778 0.6937
LncRNA_Mdeep 1170 9728 0.6182 0.2190 0.1990 0.0354 0.2790 0.1130 0.8342 0.2122
CNIT 1170 9726 0.7361 0.4352 0.2750 0.1849 0.5910 0.1698 0.7222 0.5753
CREMA 818 2388 0.4422 0.2323 0.3119 -0.0712 0.4414 0.2275 0.4963 0.4225
LncADeep 1170 9728 0.5353 0.1192 0.1943 0.0184 0.2731 0.1103 0.8162 0.2078
Lncident 1172 9730 0.6648 0.2024 0.2079 0.0677 0.2765 0.1178 0.8831 0.2034
PredLnc-GFStack 818 2388 0.5581 0.2800 0.4198 0.1101 0.4482 0.2869 0.7824 0.3338
BASiNET 1172 2388 0.5804 0.4049 0.3150 0.2574 0.7093 0.7021 0.2031 0.9577
NCResNet 1170 9728 0.5054 0.1070 0.1789 0.0071 0.5223 0.1097 0.4846 0.5268

The best scores are highlighted in bold. All the tools except Lncident are missing some of the lncRNA and mRNA transcripts in HA2 dataset.

Feature analysis
We studied most of the feature scores calculated by the tools
on the HA1 and mouse datasets. In our analysis, we consid-
ered the ORF size, Fickett score and hexamer score features
from CPAT; the ORF coverage, grand average hydropathicity and
instability score features from CPPred; the ORF integrity and
isoelectric point features from CPC2; and 1, 2, 3, 6, 9 and 12-
mer features from FEELnc prediction results. We also inspected
the effectiveness of the features to classify the input sequences

of different lengths (Figures 3–5, Supplementary Figures S2–S4
available online at https://academic.oup.com/bib).

The ORF features are among the most important features
used by the tools we studied (Figure 3, Supplementary Figure S2
available online at https://academic.oup.com/bib). Five of the
17 tools (CPAT, CPC2, lncRNAnet, LGC and CPPred) consider the
ORF size as one of the input features. This feature may be
less significant for the shorter non-coding and protein-coding
sequences (<1000 nt) than for the longer ones (≥1000 nt). But it
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Table 4. Performance of the tools on the 30 species HA3 dataset

Tools Pos Neg AUROC AUPR F1 MCC Accuracy Precision Recall Specificity

CPAT (human) 33 155 41 966 0.9207 0.8960 0.9130 0.8549 0.9273 0.9670 0.8648 0.9767
CPAT (mouse) 33 155 41 966 0.9269 0.8980 0.9197 0.8626 0.9318 0.9573 0.8850 0.9688
CNCI (vertebrates) 33 155 41 534 0.8982 0.8305 0.8868 0.7942 0.8979 0.8728 0.9013 0.8952
CNCI (plants) 33 155 41 534 0.8728 0.8212 0.8568 0.7578 0.8799 0.9100 0.8094 0.9361
PLEK 33 155 41 999 0.8733 0.7789 0.8599 0.7414 0.8682 0.8095 0.9169 0.8297
FEELnc 33 141 41 999 0.8753 0.7768 0.8623 0.7457 0.8683 0.8003 0.9347 0.8159
CPC2 33 155 42 000 0.9239 0.8887 0.9160 0.8543 0.9280 0.9446 0.8890 0.9589
CPPred 33 155 42 000 0.9299 0.8787 0.9212 0.8579 0.9297 0.9105 0.9322 0.9276
LncRNAnet 33 155 41 964 0.9064 0.8701 0.8961 0.8244 0.9127 0.9443 0.8525 0.9603
LGC 33 155 42 000 0.9094 0.8582 0.8990 0.8214 0.9121 0.9115 0.8867 0.9320
LncFinder (human) 33 155 42 000 0.9272 0.8962 0.9199 0.8621 0.9317 0.9529 0.8892 0.9653
LncFinder (mouse) 33 155 42 000 0.9266 0.8925 0.9190 0.8594 0.9306 0.9465 0.8931 0.9601
LncFinder (wheat) 33 155 42 000 0.9081 0.8393 0.8969 0.8124 0.9064 0.8730 0.9221 0.8941
LncRNA_Mdeep 33 155 42 000 0.9105 0.8835 0.9011 0.8369 0.9181 0.9641 0.8458 0.9751
Lncident 33 155 42 000 0.9367 0.8976 0.9295 0.8745 0.9382 0.9351 0.9240 0.9494
LncADeep 33 155 42 000 0.9251 0.9028 0.9182 0.8635 0.9316 0.9715 0.8703 0.9799
CREMA 33 155 41 966 0.6458 0.6028 0.4530 0.4294 0.6871 0.9912 0.2936 0.9980
PredLNC-GFStack
(human)

33 155 42 000 0.8732 0.8476 0.8553 0.7796 0.8863 0.9745 0.7621 0.9843

PredLNC-GFStack
(mouse)

33 155 42 000 0.8384 0.8096 0.8088 0.7246 0.8557 0.9739 0.6915 0.9854

CNIT (vertebrates) 32 398 41 531 0.9272 0.8804 0.9183 0.8549 0.9286 0.9212 0.9154 0.9389
CNIT (plants) 32 398 41 531 0.8533 0.8213 0.8294 0.7455 0.8689 0.9651 0.7271 0.9795
BASiNET 33 155 42 000 0.7450 0.6638 0.6897 0.5195 0.7622 0.8128 0.5990 0.8911
NCResNet 33 155 42 000 0.4956 0.4390 0.4606 -0.0088 0.4965 0.4367 0.4873 0.5039

The best scores are highlighted in bold.

Figure 3. ORF feature values with respect to input sequence lengths. Three ORF features from CPAT are shown for different sequence lengths up to 5000 nt. The X and

Y axis labels are shown for the first subfigure only as they are the same for all subfigures.

is still one of the most significant features to classify sequences,
as most protein-coding transcripts usually have longer ORFs and
thus the sequences with longer ORFs could easily be classified as
‘protein coding’ (Figure 3). Other than the ORF size, several other
ORF features, such as the ORF coverage and the ORF integrity, are
also used by some tools. CPAT, FEELnc, lncRNAnet and CPPred
use the ORF coverage as one of the features. The ORF coverage
considers not only the size of the ORFs but also the size of the
input sequences. For up to a certain length (∼1000 nt) of the
input sequences, the protein-coding and non-coding sequences
could not be completely separated into two distinct clusters.
But for sequences longer than 1500 nt, the two groups showed
a significant difference, where the higher ORF coverage could

be confidently classified as ‘protein coding’ (Figure 3). The ORF
integrity scores a sequence based on whether it has a start codon
and a stop codon. This feature score did not help much in the
classification task, which may be due to the fact that either the
ORFs of a lot of lncRNA sequences have start and stop codons
or a lot of protein-coding sequences miss the canonical start or
stop codons (Figure 3).

The k-mer features also play an important part in lncRNA
identification (Figure 4, Supplementary Figure S3 available
online at https://academic.oup.com/bib). Among these features,
the Fickett TESTCODE scores and the hexamer scores have the
most discriminative potentials. For input sequences shorter
than 1000 nt, the protein-coding group and the non-coding
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Figure 4. K-mer feature values with respect to input sequence lengths. The Fickett score and hexamer score features from CPAT and 1-, 2-, 3-, 6-, 9- and 12-mer features

from FEELnc are shown for different sequence lengths up to 5000 nt. The X and Y axis labels are shown for the first subfigure only as they are the same for all subfigures.

group form visually indistinguishable clusters in terms of
the Fickett score. As the sequence becomes longer, the non-
coding group appears to obtain a lower Fickett score that
can be visually distinguished from the protein-coding group
(Figure 4). The hexamer scores on the other hand show a
consistent discrimination between the protein-coding and non-
coding sequences, where relatively the higher hexamer scores
(>0.5) can be confidently classified as protein coding (Figure 4).
Among the k-mer scores, 3-mer and 6-mer scores were the
best features. The distributions of the 3-mer and 6-mer scores
are separable for the two groups irrespective of the sequence
length, though the classification confidence increases with
the longer input sequences. In case of the other k-mer scores,
although the lncRNA sequence scores tend to be lower than
the mRNA sequence scores with the increment of the sequence
length, the scores for the two groups overlap for the most part
(Figure 4).

Only two of the tools use the peptide features (isoelectric
point, grand average hydropathicity and instability index).
LncFinder uses an EIIP as an improved version of the isoelectric
point. None of these feature scores seems useful in separating
mRNA sequences from lncRNA sequences for each sequence
length (Figure 5, Supplementary Figure S4 available online at
https://academic.oup.com/bib). This confirms the fact that since
a protein molecule has both acidic (-COOH) and basic (-NH2)
groups, it cannot be totally neutral (Figure 5). We also inspected
the distribution peptide lengths from the output of CPC2, which
shows the similar distribution of the ORF lengths (Figures 3 and
5). This shows when the ORF length is included as a feature,
considering the peptide length is redundant, since the ORF
length is synonymous with the peptide length [58].

To measure the importance of the 15 features mentioned
above, the three feature interpretation methods; ANOVA F-value,
RFE and Information Gain were applied (Table 5). To calculate
RFE, a RF classifier with 100 estimators was used with the

‘Gini-index’ criterion to calculate the feature importance [109]. In
case of information gain, a RF classifier with 100 estimators and
the ‘entropy’ criterion were provided [110]. Four k-mer features
(3-mer score, hexamer score, 6-mer score and Fickett score)
and two ORF features (ORF coverage and ORF size) were ranked
among the top six features by all three methods. The 3-mer score
was considered the best feature based on ANOVA F-value and
RFE, while the ORF size was considered the best feature in terms
of the information gain.

Runtime and memory analysis

With the availability of powerful computational resources, there
is usually more concern about how a tool performs in terms of
accuracy than in terms of processing time and computational
power. But in reality, the latter still needs to be taken into
consideration to fully assess the efficiency of a tool, especially
when evaluating on a large dataset. High maximum memory
requirements might delay the progress if users do not have
the adequate resources to perform such a task. Tools with a
higher runtime consume more computational power along with
longer time to produce the results. To present a comprehensive
comparison among the 17 tools, we thus also benchmarked the
tools in terms of the runtime and memory consumption on the
curated HM dataset.

Although all tools take the same FASTA formatted sequences
as inputs, a group of the tools showed significantly different
performance than others in terms of runtime on the HM dataset
(Figure 6A and B). Based on their runtime, the 17 tools were
divided into two groups. The first group had a runtime less
than 400 seconds when dealing with 20 000 sequences with the
length within (3000, 100 000] interval (Figure 6A). The runtime
of a tool is not only determined by the method it uses but also
the programming language it is designed on and the expense of
its feature calculation. This explains that although PLEK, CPC2,

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/22/6/bbab285/6343529 by Library Acquisitions user on 28 M

ay 2022

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab285#supplementary-data
https://academic.oup.com/bib


A systematic evaluation of the computational tools 13

Figure 5. Peptide feature values with respect to input sequence lengths. Isoelectric point feature from CPC2 and grand average hydropathicity (Gravy) and instability

index features from CPPred are shown for different sequence lengths up to 5000 nt. The X and Y axis labels are shown for the first subfigure only as they are the same

for all subfigures.

Table 5. Ranks and scores of the 15 features by 3 feature interpretation methods.

log(ANOVA F-value) RFE-rank Information gain

ORF size 4.2637 2 0.1766
ORF coverage 4.9382 4 0.1446
ORF integrity 3.7169 15 0.0128
Fickett score 4.7451 5 0.0574
1-mer score 1.4897 10 0.0264
2-mer score 1.9358 8 0.0271
3-mer score 4.9675 1 0.1735
6-mer score 4.8387 6 0.0800
9-mer score 3.9711 9 0.0298
12-mer score 0.1770 11 0.0265
Hexamer score 4.9601 3 0.1396
GC content 3.4784 7 0.0303
Isoelectric point 4.0300 13 0.0277
Grand average hydropathicity 3.4190 12 0.0242
Instability 3.1834 14 0.0236

The top six features are marked in bold.

CNCI, CPPred, and lncFinder all use SVM as their classification
methods, the runtimes of these tools have notable divergence.

The deep learning-based tools lncRNA_Mdeep and lncR-
NAnet had the highest runtime on average among all tools
(Figure 6B). Although the run time of lncRNAnet was lower
for shorter sequences, lncRNA_Mdeep showed an equally
high run time for input sequences with different lengths.
lncRNA_Mdeep’s workflow includes three different neural
networks trained on different categories of features engineered
from the input sequences, which may be the reason behind

this consistently high runtime. For input sequences with longer
lengths (>3000 nt), the runtime of lncRNAnet and CNCI were
almost two times of lncRNA_Mdeep. lncRNAnet uses a CNN
module to calculate the ORF indicator feature and an RNN
module as its primary classifier, which is why despite using
‘Bucketing’ to minimize unnecessary cost, the time required
by RNN eventually grows linearly with the increasing length of
sequences.

Even though all tools were targeting the same problem, their
maximum memory usage statistics (Figure 6C and D) were also
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Figure 6. The run time and memory consumption of the tools on the HM dataset. The tools with lower (A) and higher (B) run times and lower (C) and higher (D) memory

consumptions with different length sequences as inputs are shown.

on very different levels. LGC, due to its straightforward model,
had indisputably the lowest maximum memory usage. Although
BASiNET showed a low run time, its memory consumption grew
faster than others with the increment of the input sequence
length. BASiNET builds separate adjacency graphs for different
input sequences and each graph can grow in size for larger
sequence occupying a large chunk of memory. The CPC2 and
CPPred, both using the SVM method with the same libsvm pack-
age, had almost identical memory footprints. The maximum
memory usage of all tools except lncRNAnet and CNCI had
only trivial differences when the length of the input sequence
increased. Having a steady memory requirement with differ-
ent sequence lengths would make these tools more suitable
for tasks involving longer input sequences, such as the pri-
miRNA classification. LncRNAnet and CNCI, on the other hand,
consumed a large amount of memory when dealing with the
longer sequences. FEELnc showed the highest memory con-
sumption for the shorter input sequences (<2000 nt). This is the
only RF classifier-based tool that calculates a novel multi k-mer
frequency feature that might contribute to this high memory
consumption.

CPAT, CPC2, LGC and lncFinder showed a consistently low
runtime and memory consumption than other tools. CPAT and
LGC use the LR classifier and MLE, respectively, as their base
models, while CPC2 and lncFinder use the SVM classifiers. LGC
was the best in terms of both runtime and memory consumption
among the 17 tools. LGC uses the most simplistic model to tackle
the coding potential prediction problem with the ORF size and
CG content features, which improves the efficiency. Among the
four tools, the memory consumption of lncFinder was higher
than the other three tools. CPAT, CPC2 and lncFinder use k-mer

features along with the ORF features. Both CPC2 and lncFinder
additionally use the peptide-level features. Therefore, the only
lncFinder features that are different from the other three tools
are the secondary structure features, which likely took the extra
memory load, especially for the longer input sequences. The
two deep learning tools were the worst in terms of runtime and
memory use.

Conclusions and outlook
We studied 17 published popular tools to predict lncRNA. We pro-
vided a side-by-side comparison scenario among the 17 tools in
terms of their accuracy, run time, memory consumption and the
features used by these tools. We also dissected the distribution of
the most popular feature scores with respect to different lengths
of the input sequences to find the impact of these features on
lncRNA identification.

In terms of accuracy and other prediction metrics, three of
the four deep learning-based tools, lncRNAnet, LncADeep and
LncRNA_Mdeep, outperformed other tools. But two of the three
tools suffered from the highest run time and all three tools
suffered from high memory consumption, due to the nature of
the deep learning-based systems. The performance of the tools
increases with the increment of the input sequence length to
certain range and eventually decreases when the input length
exceeds the thresholds. These thresholds where the perfor-
mance shifts are different for different tools. The tools with
relatively less features (e.g. PLEK) may work better than the ones
that use the same model but a larger feature set (e.g., CPPred).
Overall, the tools do not perform well when the input sequences
are too short (<200 nt) or too long (>5000 nt).
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We discovered that the direct use of the encoded sequences
as inputs of the deep learning-based tools can significantly
contribute to their performance. These tools use CNN or RNN
models that can capture the intricate sequence features, which
are otherwise uninterpretable by other algorithms. Several visu-
alization strategies [112] can be applied to interpret the learned
patterns, which may provide insights on the lncRNAs identifica-
tion features from different perspectives in the future.

Using too many features do not necessarily go well for better
performance, rather in some case, hinder the performance of
the models. Traditional machine learning models sometimes
require feature selection steps to remove redundant features
and improve performance. The deep learning-based models, due
to their higher fitting abilities, suffer less from the redundant
features but can also introduce the additional risk of overfit-
ting. Our comparison shows that even with a similar feature
set used by traditional machine learning-based methods, the
deep learning-based methods are more likely to have better
performance.

Among the ORF features, we could confirm the usefulness
of the ORF size feature based on the distribution of the feature
scores in terms of different input lengths. Among the popular
k-mer features, 3-mer and 6-mer scores showed the most classi-
fiable distribution with respect to different input lengths. The
effectiveness of the ORF size, 3-mer and 6-mer score features
was more clearly visible for longer input sequences (≥1000 nt).
The 3-mer score and ORF size features were also the top-ranked
features based on our feature evaluation techniques. The peptide
features did help the tools to improve their recall but had the
risk of increasing the false positives. The lncRNA classification
task becomes harder for those that are most likely to overlap
a protein-coding gene transcript. The performance of all tools
surprisingly dropped when the context-specific transcripts were
used as inputs (the HA2 dataset), which showed that the training
data of these tools might not have the context-specific sup-
port and thus were likely to be overfitted on the unexpressed
annotated transcript data.

Recent findings reported a plethora of lncRNAs coding for
small peptides. To observe the feature score distribution of the
lncRNA transcripts that are experimentally validated to code
small peptides, we downloaded and studied human lncRNA
genes reported to code small peptides [113, 114]. There were in
total 467 transcripts in the HA1 dataset associated with these
lncRNA genes. For all features, the feature score distribution for
the 467 transcripts overlapped with the feature score distribu-
tions of other lncRNAs and mRNAs (Supplementary Figures S5–
S7 available online at https://academic.oup.com/bib), suggesting
the challenges in distinguishing the 467 special lncRNAs from
other lncRNAs. By inspecting the performance of the tools on
the 467 transcripts, we noticed that all tools except CREMA,
BASiNET and NCResNet showed a very high recall (>90%) to
classify this set of lncRNAs (Supplementary Table S5 available
online at https://academic.oup.com/bib), indicating that these
lncRNAs are different from mRNAs. In the future, we should
explore new features to distinguish them from other lncRNAs.

Based on our analysis, deep learning-based tools showed
a higher performance than other tools. Although these tools
utilize GPU for training, they provide utilities that can be run
without GPU. However, the tools still require higher memory
and run time, which are more likely to become the bottleneck
when the user is trying to run them on a large dataset. With the
availability of large-scale computational resources, this may not
remain a problem anymore. Still, in order to efficiently utilize the

memory, users may need to split the data and run the tools on
each split separately.

If the user focuses on human and mouse datasets, lncR-
NAnet, LncADeep and PredLnc-GFStack can be the top choice,
according to their high overall performance and medium level
run time. CPAT can serve as an alternative, especially when
the user lacks the required computational resource (CPU core
count and memory) or deals with a very large dataset, since
CPAT can achieve top-tier performance with a low consumption
of computational resources. CPAT also provides a web server
that is convenient to test small-sized datasets. If the input data
mostly contain very short sequences (<200 nt), none of the 17
tools analyzed in this study can provide reliable performance, as
the short sequences are highly likely to be misclassified as the
non-coding class. For species with no ready-to-use model, Lnci-
dent, LncADeep, CPAT, LncFinder, CPC2 and CPPred can be good
choices (Supplementary Table S4 available online at https://aca
demic.oup.com/bib). The availability links and the installation
and execution steps of the 17 tools are also provided in the
supplementary file to help the users (Supplementary Section 2
available online at https://academic.oup.com/bib).

Key Points
• A systematic evaluation of computational tools on

lncRNA identification is necessary.
• Seventeen tools on lncRNA identification are assessed

on a set of unified data in human and mouse in terms
of accuracy, run time and memory consumption.

• Common features used by the popular tools are ana-
lyzed based on the feature score distribution and the
importance of the features on lncRNA identification.

• The peptide features do not contribute much to the
accuracy of the tools in lncRNA identification.

• Current tools do not perform well on context-specific
lncRNA identification.

Supplementary Data

Supplementary data are available online at https://academi
c.oup.com/bib.
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