
PHYSICAL REVIEW B 104, 134308 (2021)

Fermi’s golden rule for heating in strongly driven Floquet systems
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We study heating dynamics in isolated quantum many-body systems driven periodically at high frequency
and large amplitude. Combining the high-frequency expansion for the Floquet Hamiltonian with Fermi’s golden
rule (FGR), we develop a master equation termed the Floquet FGR. Unlike the conventional one, the Floquet
FGR correctly describes heating dynamics, including the prethermalization regime, even for strong drives,
under which the Floquet Hamiltonian is significantly dressed, and nontrivial Floquet engineering is present.
The Floquet FGR depends on system size only weakly, enabling us to analyze the thermodynamic limit with
small-system calculations. Our results also indicate that, during heating, the system approximately stays in the
thermal state for the Floquet Hamiltonian with a gradually rising temperature.

DOI: 10.1103/PhysRevB.104.134308

I. INTRODUCTION

Floquet engineering, i.e., controlling functionalities of
physical systems by external periodic drives, has attracted
renewed attention partly due to the advancement of laser
technology [1–5]. A key concept is the (approximate) lo-
cal Floquet Hamiltonian HF [2] that is generically only
defined when the driving period T is short compared to
the system’s characteristic response time. Then HF approx-
imately reproduces the actual unitary dynamics at short
and intermediate times. By cleverly designing the driving
protocol, one can convert a commonplace undriven Hamil-
tonian H0 into the “dressed” HF corresponding to intriguing
physical systems such as topological insulators [6–8] and
Floquet time crystals [9–11], part of which have been realized
experimentally [12–16].

Despite its usefulness, the local Floquet Hamiltonian HF

fails to describe long-time dynamics in interacting/nonlinear
systems. This is because the unitary evolution by HF intro-
duces a new Floquet energy conservation law absent in the
original driven model and thus cannot capture heating, which
accompanies periodic driving eventually bringing isolated
systems to the featureless infinite-temperature state [17–19].
Nonetheless, especially for high-frequency drives, the heating
has been rigorously proven to occur exponentially slowly in
the driving frequency [20–23]. In one-dimensional systems, a
tighter, faster than exponential, bound was later found [24].
At short and intermediate times, the dynamics is well approx-
imated by the unitary evolution by HF . While these rigorous
results provide upper bounds, it is still elusive to obtain the
heating rates accurately in concrete systems. This especially
applies to large-amplitude high-frequency drivings, where HF

can significantly differ from the time-averaged Hamiltonian
[2].

Several theoretical works have attempted to understand
heating dynamics quantitatively. Since heating is inherent to

large systems, simulating those is numerically demanding and
has become accessible only recently [25–33]. Beyond sim-
ulations, a theory based on Fermi’s golden rule (FGR) has
been developed to describe heating rates [34–36]. However,
this theory is limited to weak drives, where HF ≈ H0 up to
small 1/ω corrections. When strong, the driving is responsible
for both heating and dressing (H0 → HF ), it is quite subtle to
separate the two effects, and the simple FGR does not work
well [32,33] (see also Refs. [37,38] for a random driving).

In this work, we develop a Floquet-theoretical extension of
FGR (Floquet FGR) that can describe heating dynamics even
in the strong-drive regime, where nontrivial Floquet engineer-
ing is possible with a well-defined local Floquet Hamiltonian
HF �≈ H0. The Floquet FGR calculation rapidly converges
with the system size, enabling us to access the thermodynamic
limit (TDL) more efficiently than the direct simulation. We
also show that, during heating dynamics, the system is thermal
for HF at an instantaneous (inverse) temperature β(t ), which
evolves self-consistently with the injected energy. This re-
sult implies that the Floquet-Hamiltonian description survives
even after heating sets in, where the finite-temperature Floquet
engineering is realized.

II. FLOQUET FGR

We consider a periodically driven quantum many-body
system whose Hilbert-space dimension d is large but finite. Its
time evolution is characterized by a Floquet unitary U , under
which the stroboscopic evolution of a many-body (pure) state
is given by |�k〉 = U k |�0〉 with |�0〉 being the initial state.

An approximate Floquet Hamiltonian HF plays a central
role in understanding the periodically-driven system, and the
associated approximate Floquet unitary UF is defined by

UF ≡ e−iHF T , (1)
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where T is the driving period (and ω ≡ 2π/T ). There are
various ways to define HF , and the following argument
equally applies to them. For concreteness, we focus on the
high-frequency (i.e., short-period) Magnus expansion [39,40],
which gives HF as a power series for T . For a stepwise drive
[see Eqs. (11) and (12) below], this expansion corresponds to
the Baker-Campbell-Hausdorff (BCH) formula, giving HF by
nested commutators between H0 and the driving term V ac-
companied by T N (N = 1, 2, . . . ). Thus the dressing strength
HF − H0 roughly increases with T ‖V ‖ ∼ ‖V ‖/ω.

The Magnus expansion is an asymptotic series and is
generally not convergent. However, it was rigorously proven
[22] and confirmed numerically [41] that the expansion up
to an optimal order N∗ = O(ω) tends to converge to a local
HF and well approximates the Floquet unitary UF ≈ U . If
we continued the expansion till higher orders than N∗, the
Magnus expansion would tend to diverge or, if converging in
finite-size systems, approach a highly nonlocal Hamiltonian.
Throughout this work, we only consider low-order expansions
in which HF is local and UF ≈ U . To the authors knowl-
edge, finding the optimal order N∗ is still an open question,
although reasonable estimates are given in inequality analy-
ses [22,23]. Since UF �= U , the difference between the exact
evolution |�k〉 and approximate one |�app

k 〉 = U k
F |�0〉 grows

with k. This difference underlies the origin of Floquet heating.
While previous works gave upper bounds on the heating rates
[20,22,24], they usually did not allow for quantitative esti-
mates of these rates, which is the main subject of this paper.

Our idea of describing the heating dynamics is to focus
on transitions between the eigenstates of HF . As U ≈ UF and
[UF , HF ] = 0, these states are approximately stationary under
the actual evolution U , while residual transitions between
them are caused by

δU ≡ U †
FU �= I, (2)

where I denotes the identity operator. If UF = U held, δU = I
and no transitions could occur. Let us comment that there is
an ambiguity in defining δU . Other possible choices are δU =
UU †

F or δU = U
1
2 †

F UU
1
2 †

F . We will find that these choices give
the same physical result [see Eq. (4) below] and that the
choice (2) is most natural (see Appendix A for details). We
assume that HF describes well the system’s dynamics within
one period, implying that δU is close to identity for local
bounded Hamiltonians [22]).

More precisely, we assume that at each moment
of time the system is well described by a local
Floquet diagonal ensemble: ρ(t ) = ∑

n Pn(t ) |n〉 〈n|,
where |n〉 are the eigenstates of the Floquet Hamiltonian:
HF |n〉 = En |n〉 (n = 1, 2, . . . , d ), and correspondingly
UF |n〉 = e−iθn |n〉 (θn≡EnT ). The weights Pn(t ) are
determined by the master equation

dPn(t )

dt
=

∑
m

[wm→nPm(t ) − wn→mPn(t )], (3)

where wm→n are the transition rates from |m〉 to |n〉 given by
(see below for its derivation)

wm→n = ω
∑
l∈Z

δ(θn − θm − 2π l )| 〈n|δU |m〉 |2 (4)

for m �= n. Clearly, we can freely assign the diagonal elements
wn→n without changing the master equation (3). Note that
in isolated systems generally the only attractor of the master
equation is an infinite temperature state [42], i.e., Pn = const.
We term this formalism as the Floquet FGR since it inherits
the spirit of original FGR: The transition rate wm→n is time
independent and determined by the perturbation matrix ele-
ments 〈n|δU |m〉.

The Floquet FGR is a natural extension of the standard
(bare) FGR [34] for Hamiltonians of type H (t ) = H0 + V (t ).
In the standard FGR, we consider the energy eigenstates of the
undriven Hamiltonian (H0 |n〉0 = E (0)

n |n〉0) and the transitions
between them when the driving amplitude ‖V (t )‖ is small.
The two FGRs coincide when the driving amplitude is small
and HF ≈ H0 (see Appendix B for a proof).

Before closing this section, let us formally derive Eq. (4).
The central idea of the derivation is an assumption that δU =
U †

FU is a unitary operator, which is close to the identity I . We
can then write U as

U = UFU †
FU = UF δU ≈ UF (I + iδK ), (5)

where δK is some “small” Hermitian operator. If, e.g., UF is
obtained using the high frequency expansion, then δK is sup-
pressed correspondingly to the order of the expansion power
of the driving frequency. Note that we have 〈n|δU |m〉 ≈
i 〈n|δK|m〉 for m �= n. We consider the transition probability
pm→n from |m〉 to |n〉 (m �= n) during N (� 1) Floquet cycles.
In the leading-order approximation in δK it is given by

pm→n ≡ ∣∣〈n∣∣U N
∣∣m〉∣∣2 ≈

∣∣∣∣∣
N∑

k=1

〈n|U k
F δKU N−k

F |m〉
∣∣∣∣∣
2

≈
∣∣∣∣∣

N∑
k=1

ei(θn−θm )k

∣∣∣∣∣
2

|〈n|δU |m〉|2. (6)

Now, we note
∑N

k=1 ei(θn−θm )k ≈ 2π
∑∞

l=−∞ δ(θn − θm −
2π l ), which leads to∣∣∣∣∣

N∑
k=1

ei(θn−θm )k

∣∣∣∣∣
2

≈ 2πN
∑
l∈Z

δ(θn − θm − 2π l ), (7)

where the factor of N comes from the observation that for θn −
θm = 2π	 we have

∑N
k=1 ei(θn−θm )k = ∑N

k=1 1 = N . Combin-
ing Eqs. (6) and (7) and defining the transition probability
per unit time wm→n = pm→n/(NT ) = pm→nω/(2πN ) we
derive Eq. (4).

III. SELF-CONSISTENT EVOLUTION OF TEMPERATURE

The master equation (3), together with the expression for
the transition rates (4), is sufficient for computing heating of
Floquet systems. To advance further, we will assume, from
now on, that HF is quantum ergodic and the eigenstate ther-
malization hypothesis [43–45] holds. In such a case, aside
from initial transients, we can regard |�k〉 as thermal at an
appropriate (inverse) temperature β [42,46–48]. Thus, at each
time t , it is reasonable to set the canonical distribution

ρF
β(t ) =

∑
n

Pβ(t )
n |n〉 〈n| , Pβ(t )

n ≡ e−β(t )En/Zt , (8)
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with the time-dependent temperature β(t ) and partition
function Zt = ∑

n e−β(t )En . Within this ansatz the expectation
values of observables O are obtained as 〈O〉t =∑

n 〈n|O|n〉 Pβ(t )
n . In driven isolated systems, generally,

the correct statistical ensemble is different from the Gibbs en-
semble [49], but the emerging differences vanish in the TDL.

We then can obtain a self-consistent evolution equation for
β(t ) by first computing the Floquet energy EF and its variance
σ 2

F corresponding to a given temperature β(t ):

EF =
∑

n

EnPβ(t )
n , σ 2

F =
∑

n

E2
n Pβ(t )

n − E2
F . (9)

Then, using the chain rule together with Eq. (3), we find

dβ

dt
= − 1

σ 2
F

dEF

dt
,

dEF

dt
=

∑
n,m

Pβ(t )
n (En − Em)wn→m,

(10)

where we used the fact that for a canonical ensemble: σ 2
F =

−dEF /dβ [50].

IV. NUMERICAL VERIFICATION

Let us verify how well the Floquet FGR describes actual
heating dynamics in concrete models. Following Ref. [26], we
consider a periodically driven spin-chain Hamiltonian H (t ) =
H0 + g(t )V with

H0 = J
∑

i

σ z
i σ z

i+1 + J ′ ∑
i

σ z
i σ z

i+2 + hz

∑
i

σ z
i

+ Jx

∑
i

σ x
i σ x

i+1, V = hx

∑
i

σ x
i , (11)

and g(t ) = sgn[cos(ωt )], which give the Floquet unitary

U = e−i(H0+V )T/4e−i(H0−V )T/2e−i(H0+V )T/4. (12)

Here, σα
i ’s are the Pauli matrices acting on site i (=

1, 2, . . . , L), and the periodic boundary conditions are im-
posed. We set J = −1, hz = 0.6, J ′ = −0.4, and Jx = 0.75,
ensuring that H0 is ergodic enough. Taking a thermal pure
state [51,52] at energy density ε0 as our initial state |�0〉
(see Appendix C for details), we numerically obtain |�k〉 =
U k |�0〉 by the Krylov evolution method [53]. Below, we
focus on the high-frequency drives ω � 10 � J, J ′. In the
other regime ω � 10, the heating occurs very fast, and there
is no well-defined Floquet Hamiltonian.

Typical heating dynamics of the energy density εk ≡
〈�k|H0|�k〉 /L is shown in Fig. 1 for two parameter sets,
(ω, hx ) = (13, 0.37) and (16,3.0). In both cases, strong finite-
size effects make heating saturate at some energy density, and
the infinite-temperature state (εk = 0) can be reached only
at large system sizes. Although the computational complex-
ity limits us to L � 24, we observe systematic tendencies to
the TDL.

For weak driving amplitudes, the Floquet and bare FGRs
give similar results, both describing the heating dynamics
well, as is evident from Fig. 1(a). The bare FGR’s accuracy
is also consistent with Ref. [34]. Note that, to avoid the ini-
tial transients, we evolved β(t ) from t = 20T , at which β is
chosen to satisfy tr[ρF

β(t )H0]/L = εk=20, where ρF
β(t ) is given

FIG. 1. Typical heating dynamics for εk = 〈�k |H0|�k〉 /L under
(a) weak (ω = 13 and hx = 0.37) and (b) strong (ω = 16 and hx =
3.0) drives. The horizontal axis denotes the Floquet cycle k. Solid
curves are the results obtained by numerically simulating the unitary
evolution. Dashed (dotted) curves show that obtained by the Floquet
FGR with the sixth-order Magnus expansion at L = 14 (L = 16) and
dash-dotted ones by the bare FGR at L = 16.

by Eq. (8). For the Floquet FGR, we used HF obtained by
the sixth-order Magnus expansion (we will discuss the order
dependence below) and approximated the delta function in
Eq. (4) by a Gaussian of width δθ = T δE with δE = 0.03L.
As Fig. 1(a) shows, the FGRs capture the unitary dynamics
in the TDL reasonably well. Remarkably, the FGR shows a
rapid size convergence as L increases giving a clear advantage
of FGR in studying the TDL. In the following we will use
L = 14 for FGR calculations.

For strong drivings, the Floquet FGR better describes dy-
namics than the bare one, as shown in Fig. 1(b). This happens
because the bare FGR heating rates are proportional to h2

x ,
obviously overestimating them at large hx. Meanwhile, in the
Floquet FGR, both HF and δU depend intricately on hx cap-
turing well the actual heating dynamics. The Floquet FGR’s
accuracy justifies the assumption that, at each instance of time,
the system is in approximate equilibrium for the dressed HF .

V. SUPPRESSION OF HEATING AT STRONG DRIVES

To uncover further nontrivial aspects of strong drives,
we systematically study how the heating rate depends on
the driving amplitude hx. With ω = 16 fixed, we simulate
the unitary evolution for various hx and extract the heating
rates at an energy density εk = −0.48 as the slope dε/dt
obtained by the linear least-squares fit (see Appendix D for
details). This energy density is chosen to minimize finite-size
effects for unitary evolution simulations, which are espe-
cially strong near the saturation energy as seen in Fig. 1
for k � 103. The heating rates thus extracted from dynam-
ics and from FGRs are shown in Fig. 2. Interestingly, the
rate does not monotonically increase with hx but becomes
maximum at hx ≈ 3 then decreases for further larger hx.
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FIG. 2. Heating rates extracted from unitary dynamics at energy
density ε = −0.48 by the linear least squares. The solid (dashed)
curves show the heating rates obtained by the Floquet (bare) FGR,
and the Floquet FGR’s order from zeroth to sixth in the legend shows
that of the Magnus expansion for HF (see also text). All the FGR
calculations are for L = 14.

This nonmonotonic behavior implies the Floquet prether-
malization and is consistent with earlier results in similar
models [54,55].

The nonmonotonic heating rate in Fig. 2 is well captured by
the Floquet FGR with HF obtained by the Magnus expansion
at sufficiently high order. The Floquet-FGR results are ob-
tained by the following three steps. First, we use the Magnus
expansion of the Floquet unitary U to compute the Floquet
Hamiltonian as a power series of T . Note that for symmetric
drives only odd terms show up in the expansion [2]. Second,
we find the temperature β that reproduces our target energy
density ε = −0.48 = tr(ρF

β H0)/L. Note that ε is the physical
energy of the system. And finally, using Eqs. (4) and (10),
we compute the temperature increase dβ in a small time step
dt and the corresponding new energy ε′. Thus, we obtain the
heating rate as (ε′ − ε)/dt .

We remark that the Floquet FGR, even at the sixth order,
fails to describe the heating rate for very large amplitudes
hx � 6 (see Fig. 2). This is due to the failure of the Magnus
expansion for HF as it contains terms of the order O(T N hN+1

x ),
which do not decrease with N . Applying the Floquet FGR in
this limit would require a different approach for finding the ap-
proximate Floquet Hamiltonian, for example, high-frequency
expansion in the rotating frame [2,56,57], replica resumma-
tion of the BCH series [58], or flow equation method [59,60].
We anticipate that the Floquet FGR will remain accurate if we
use one of those methods.

It is instructive to extend the previous analysis to the en-
tire (hx, ω)-plane. The Floquet FGR enables this efficiently
due to its weak system-size dependence. It is thus sufficient
to use a relatively small system size L = 14 to extract the
two-dimensional heat map shown in Fig. 3(a). Here different
colors encode different heating rates dε/dt calculated using
the sixth-order Floquet FGR at a fixed temperature β = 0.1.
There is a clear triangular-shaped region in the bottom-right
corner of Fig. 3(a), where the Floquet FGR fails. This region
precisely corresponds to the region of failure of the Magnus
expansion. Also, the plot is cut below ω = 12 as, at lower
frequencies, there is no Floquet prethermal phase, and the
Floquet Hamiltonian becomes ill-defined.

FIG. 3. (a) Heating rate dε/dt calculated by the Floquet FGR
with the sixth-order HF at temperature β = 0.1. (b) Bures distance
DB(ρF

th, ρ
0
th ) (13) between thermal states for HF and H0 at temperature

β = 0.1. In each panel we used L = 14.

Aside from the corner, the heating-rate map in Fig. 3(a)
is reliable and provides key information. First, as ω in-
creases with hx fixed, the heating rate is rapidly suppressed
as expected [20,22,24]. Second, the rate is a nonmonotonic
function of hx for all shown frequencies. Consequently, the
heating rate is suppressed at either the top-left or top-right
corner of Fig. 3(a).

From the point of view of Floquet engineering, the top-
right corner in Fig. 3(a) is most interesting as there both the
heating rate is suppressed and the Floquet Hamiltonian is
strongly dressed, i.e., is significantly different from H0. To
quantify the difference between HF and H0 we introduce the
Bures distance between the corresponding thermal distribu-
tions [61,62]

DB(ρ, σ ) = [2(1 − tr
√

ρ1/2σρ1/2]1/2, (13)

where ρ = ρF
β and σ = ρ0

β are the thermal density matrices
for HF and H0, respectively, evaluated at the same temperature
β. Large Bures distance means that the Floquet prethermal
state is significantly different from the thermal state of the un-
driven Hamiltonian H0. Figure 3(b) shows the Bures distance
at β = 0.1, indicating the expected tendency of strong renor-
malization of HF at large driving amplitudes. We remark that
Fig. 3(b) has clear linear structures separating different color
regions. This reflects that the Magnus expansion is indeed
dominated by the powers of the dimensionless ratio hx/ω.

VI. OTHER MODELS AND POSSIBLE EXPERIMENTS

The spin models analyzed above can be realized, for ex-
ample, in trapped ions [63,64], Rydberg atoms [65], nuclear
spins [66], nitrogen-vacancy centers [67], superconducting
qubits [68], and other systems. In particular, heating in
Floquet spin systems was observed in Refs. [66,69]. Even
wider applications of the developed Floquet FGR can be an-
ticipated in materials, where the recent advances of terahertz
spectroscopy and pump-probe methods enable us to access
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TABLE I. System size, number of particles, and Hilbert-space
dimension for the Fermi-Hubbard model at 1/4 filling.

L N↑ N↓ D

8 2 2 784
10 3 2 5400
12 3 3 48 400
14 4 3 3 312 400

timescales, where electron systems are effectively decoupled
from phonons and thus can be treated as isolated [70,71].

While analyzing specific experiments requires its own sys-
tematic analysis, which is beyond the scope of this work, we
want to illustrate that the methodology developed here can be
applied to interacting electrons described by a driven Hubbard
model

H0 = −t1

L−1∑
i=1

∑
s=↑,↓

(c†
i,sci+1,s + H.c.)

− t2

L−2∑
i=1

∑
s=↑,↓

(c†
i,sci+2,s + H.c.) + U

L∑
i=1

ni,↑ni,↓ + Hsb,

V = E0

L∑
i=1

(
i − L + 1

2

)
(ni,↑ + ni,↓). (14)

The undriven Hamiltonian H0 is an ergodic Fermi-Hubbard
chain of length L that includes the next-nearest-neighbor
hopping (t1 = 1, t2 = 0.5, and U = 4) and small symmetry-
breaking term Hsb = hb(n1,↑ − n1,↓) + μb(nL,↑ + nL,↓) with
hb = μb = 10−3 on the chain boundaries [72]. Our driving
term g(t )V is the alternating electric field along the chain
represented by the linear electric potential V with E0 being
the electric-field strength. Like in the spin model, the total
Hamiltonian is H (t ) = H0 + g(t )V , where g(t ) =
sgn[cos(t )]. Following Ref. [72], we consider even L’s
and the 1/4-filling, for which N↑ + N↓ = L/2 and N↑ = N↓
(N↓ + 1) when L/4 is the integer (noninteger). Their values
and the corresponding Hilbert-space dimensions are shown
in Table I. We simulate the unitary evolution by the Krylov
evolution method, and the initial state is created by the
method in Appendix C. The FGR calculations have also been
done similarly with the exact diagonalization of HF and the
thermal ansatz with the time-dependent temperature β(t ).

Like the spin model, the Floquet FGR works better than
the bare one for strong drives in the Fermi-Hubbard model.
Figure 4 shows a typical heating dynamics for such a case
(E0 = 4 and ω = 10) from an initial energy ε = −0.25, com-
pared with the bare and sixth-order-Floquet FGRs starting
from t = 10T . This result is qualitatively similar to that in the
spin model in Fig. 1, evidencing the general applicability of
the Floquet FGR and opening the possibility of experimental
verification in Fermi-Hubbard models. Thus, one could use
those models simulated in ultracold atoms [73] and possibly
in solid-state materials if dissipation is negligible.

FIG. 4. Typical heating dynamics in the open Fermi-Hubbard
chain for a strong drive (E0 = 4 and ω = 10). Solid curves are the
results obtained by numerically simulating the unitary evolution.
Dotted (dash-dotted) curves show that obtained by the sixth-order-
Floquet (bare) FGR at L = 10.

VII. SUMMARY AND PROSPECT

We formulated the Floquet FGR by combining the high-
frequency expansion with the conventional Fermi’s golden
rule. We verified that it correctly describes heating dynam-
ics of periodically driven many-body quantum systems even
in the strong-drive regime, where the bare FGR fails. The
Floquet FGR is practically useful because it captures the TDL
already at a small system sizes. High accuracy of the Floquet
FGR indicates that, aside from initial transients, the system
we analyzed can be characterized as an equilibrium state for
the Floquet Hamiltonian HF with a slowly changing inverse
temperature β(t ).

We leave some important generalizations for future work.
First, we focused on ergodic HF having no relevant con-
served quantity and utilized the thermal ansatz (8). Yet, this
ansatz should be modified appropriately when HF has con-
served quantities like in, e.g., integrable models [57,74,75]
and Floquet time crystals (or pi glasses) [27–29]. Second, it
is interesting to combine this approach with other sophisti-
cated schemes for finding approximate Floquet Hamiltonians.
Finally, we are planning to apply the Floquet FGR approach
to open systems to find transient and steady states in driven-
dissipative systems [76,77].

Note added. The terminology, Floquet FGR, is also used
for slightly different concepts in kinetics [78–81].
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APPENDIX A: SYMMETRY OF TRANSITION RATES

We show that wm→n is approximately symmetric: wm→n ≈
wn→m. For this, let us use the wm→n’s expression by δU in
Eq. (4). As U †

FU is a unitary matrix, there exists a Hermitian
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matrix δK such that U †
FU = eiδK . Suppose that HF is a good

Floquet Hamiltonian and UF ≈ U , meaning that 〈n|δU |m〉 ≈
i 〈n|δK|m〉 for m �= n and hence

wm→n ≈ ω
∑
l∈Z

δ(θn − θm − 2π l )|〈n|δK|m〉|2. (A1)

Here we note that |〈n|δK|m〉| is symmetric under the inter-
change of m and n as δK is Hermitian and that

∑
l∈Z δ(θn −

θm − 2π l ) is also symmetric as δ(x) is an even function.
Therefore, the approximate wm→n in Eq. (A1) is symmetric
wm→n = wn→m.

We remark that, when 〈n|U |m〉 is a symmetric
matrix, wm→n = wn→m holds exactly. To show this, we
use 〈n|δU |m〉 = 〈n|U †

FU |m〉 = eiθn 〈n|U |m〉, having

wm→n = ω
∑
l∈Z

δ(θn − θm − 2π l )|〈n|U |m〉|2. (A2)

This expression implies that, if 〈n|U |m〉 is a symmetric matrix,
wm→n is also symmetric.

As one can check easily, 〈n|U |m〉 is symmetric in the
example model analyzed in the main text. More generally,
〈n|U |m〉 is symmetric if there exists an appropriate basis
where the HF is real symmetric, and the driving protocol is
time-reversal symmetric H (T − t ) = tH (t ).

APPENDIX B: EQUIVALENCE OF BARE AND FLOQUET
FGRS FOR SMALL DRIVING AMPLITUDES

Let us consider the following periodic Hamiltonian:

H (t ) = H0 + g(t )V,

g(t ) =
∑
l∈Z

gle
−ilωt ,

gl =
∫ T

0

ds

T
g(s)eilωs, (B1)

where g(t + T ) = g(t ) and the driving amplitude |g(t )| is
small. The bare FGR [34] is based on H0’s eigenbasis
(H0 |n〉0 = E (0)

n |n〉0) and gives the transition rate from |m〉0
to |n〉0 as

wbare FGR
m→n = 2π

∑
l∈Z

|Vnm|2|gl |2δ
(
E (0)

nm − lω
)
, (B2)

with Vnm ≡ 0〈n|V |m〉0 and E (0)
nm ≡ E (0)

n − E (0)
m .

Our aim here is to prove the equivalence of bare and
Floquet FGRs in the limit of g → 0 (g symbolically stands for
the driving amplitude). Specifically, we prove that Eq. (B2)
coincides with Eq. (4) in the leading order of g as g → 0.
To prove this, we begin by noticing that HF = H0 + O(g),
meaning that |m〉 → |m〉0 and Em → E (0)

m in this limit. Thus,
we can approximate Eq. (4) as

wm→n ≈ 2π

T

∑
l∈Z

δ
(
E (0)

n T − E (0)
m T − 2π l

)|0〈n|δU |m〉0|2

(B3)

= 2π

T 2

∑
l∈Z

δ
(
E (0)

nm − lω
)|0〈n|δU |m〉0|2, (B4)

where we used δ(ax) = δ(x)/|a|.

To obtain equivalence between Eqs. (B4) and (B2), we look
into the matrix elements 0〈n|δU |m〉0. To do this, we recall that

δU = U †
FU ≈ eiH0T U (B5)

and notice that eiH0T U is the one-cycle evolution in the inter-
action picture

eiH0T U = exp+

[
−i

∫ T

0
ds g(s)VI (s)

]
, (B6)

with VI (s) ≡ eiH0sVe−iH0s and exp+ denotes the time-ordered
exponential. Substituting Eq. (B6) into Eq. (B5) and taking its
matrix element, we have, for m �= n,

0〈n|δU |m〉0 ≈ −i
∫ T

0
ds g(s)0〈n|VI (s)|m〉0

= −iVnm

∫ T

0
ds g(s)eiE (0)

nm s. (B7)

Finally, we substitute Eq. (B7) into Eq. (B4) and invoke
δ(E (0)

nm − lω) that allows us to replace E (0)
nm by lω, obtaining

wm→n = 2π

T 2

∑
l∈Z

δ
(
E (0)

nm − lω
)|Vnm|2

∣∣∣∣
∫ T

0
ds g(s)eilωs

∣∣∣∣
2

= 2π
∑
l∈Z

|Vnm|2|gl |2δ
(
E (0)

nm − lω
)
, (B8)

where we used the definition of gl in Eq. (B1). Equations
(B2) and (B8) mean the equivalence between bare and Floquet
FGRs in the limit of small driving amplitude g → 0.

APPENDIX C: INITIAL STATE PREPARATION

In the main text, we stated that |�0〉 is at the energy
density ε0. The explicit procedure to generate |�0〉 is what
was developed in Ref. [51]. First, we take |ψ0〉 randomly
following the uniform Haar measure on the whole Hilbert
space of dimension 2L. Second, we make iteratively

|ψp+1〉 ≡ (l − ĥ)|ψp〉
‖(l − ĥ)|ψp〉‖

, up ≡ 〈ψp|ĥ|ψp〉, (C1)

where ĥ ≡ H0/L and we set l = 50. As shown in Ref. [51],
the energy density up gradually decreases as we proceed,
and we encounter p0 such that up0+1 > ε0 � up0 . Then, we
set |�0〉 = |ψp0〉. All the presented results are obtained for a
single realization of |ψp0〉, and we confirmed that the average
over realizations does not change the results very much espe-
cially for larger system sizes like L = 20.

APPENDIX D: HEATING RATE EXTRACTION

We supplement technical details for extracting heating
rates shown in Fig. 2 in the main text. We simulate the unitary
evolution for hx = 0.25 × j ( j = 1, 2, . . . , 25) with ω = 16
being fixed. To obtain the heating rate from exact simulations,
we initialize the system at ε0 = −0.5 − 0.05hx and extract the
slope of the energy density εk when it reaches a fixed value
εk = −0.48 from the linear least-squares fit. Figure 5 shows
the simulated heating dynamics for each hx at L = 20 with
ω = 16 being fixed.
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FIG. 5. Heating dynamics for various driving amplitude hx in (a) 0.25 � hx � 3.25 and (b) 3.5 � hx � 6.25 calculated at frequency ω = 16
and system size L = 20. The inset shows the first 20 Floquet cycles in which εk > −0.48 for hx = 1.5 in panel (a) and hx = 5.5 in panel (b).
The inset also shows the linear least-squares fit.

We remark that the Floquet prethermalization is
manifest in Fig. 5(b). For strong drives (HF �≈ H0), the
system initially in a thermal state for H0 is strongly
kicked in the first few cycles and then gets stabilized.
This early-stage dynamics (Floquet prethermalization) is well
approximated by the unitary evolution by HF rather than
H0 [20,22,41]. The Floquet FGR describes the heating after
the perthermalization.

We extract the heating rates at a fixed value ε = −0.48
from the simulated dynamics as follows. We find k0 such
that εk0−1 < −0.48 < εk0 . To extract the slope of the energy
density εk , we take K data points {εk}k0+K

k=k0
. In this work, we

used K = 20 to reduce the effect of fluctuations. The insets of
Fig. 5 show the linear least-squares fit for two representative
hx = 1.5 and 5.5. To convert into the heating rate dε/dt , we
divide the slope by the driving period T .
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