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Abstract—An efficient feature selection method can signifi-
cantly boost results in classification problems. Despite ongoing
improvement, hand-designed methods often fail to extract fea-
tures capturing high- and mid-level representations at effective
levels. In machine learning (Deep Learning), recent developments
have improved upon these hand-designed methods by utiliz-
ing automatic extraction of features. Specifically, Convolutional
Neural Networks (CNNs) are a highly successful technique for
image classification which can automatically extract features,
with ongoing learning and classification of these features. The
purpose of this study is to detect hydraulic structures (i.e., bridges
and culverts) that are important to overland flow modeling and
environmental applications. The dataset used in this work is a
relatively small dataset derived from 1-m LiDAR-derived Digital
Elevation Models (DEMs) and National Agriculture Imagery
Program (NAIP) aerial imagery. The classes for our experiment
consist of two groups: the ones with a bridge/culvert being
present are considered “True”, and those without a bridge/culvert
are considered “False”. In this paper, we use advanced CNN
techniques, including Siamese Neural Networks (SNNs), Cap-
sule Networks (CapsNets), and Graph Convolutional Networks
(GCNs), to classify samples with similar topographic and spec-
tral characteristics, an objective which is challenging utilizing
traditional machine learning techniques, such as Support Vector
Machine (SVM), Gaussian Classifier (GC), and Gaussian Mixture
Model (GMM). The advanced CNN-based approaches combined
with data pre-processing techniques (e.g., data augmenting)
produced superior results. These approaches provide efficient,
cost-effective, and innovative solutions to the identification of
hydraulic structures.

I. INTRODUCTION

Digital Elevation Models (DEMs) utilizing grid data have

been developed to facilitate terrain modeling and analysis

using computers. Such gridded DEMs automatically derive

thematic maps for calculating terrain attributes, including

concavity, convexity, aspect, and slope. This efficient and

expansive functioning of DEMs has engendered interest in

exciting applications. For example, DEMs have proved useful

in maintaining geographical databases, assessing damage from

natural disasters like floods and earthquakes, and supporting

crucial military training and other [15]. The uses of DEMs,

however, present unique challenges in some applications. For

example, DEMs, especially those high-resolution DEMs, are

only available as Digital Surface Models (DSMs), which often

represent the land surface elevation without the consideration

of potential underground structures. This is especially the

case in hydrological modeling in which drainage flowlines

may falsely terminate at the hydraulic structures (i.e., road

culverts and bridges) near interactions of roads and streams

[15]. Presently, the dataset of hydraulic structures is either

largely missing or available in variable quality, which affects

proper use of high-resolution DEMs for many hydrological

applications [10]. In many cases, laborious on-screen digitiza-

tion using aerial photos has been used to identify hydraulic

structures or improve their locational accuracy. Thus, it is

imperative to develop an efficient approach for identifying

hydraulic structures.

Traditional machine learning classification tasks can be time

consuming and burdensome [19]. First, a feature must be

selected from the imagery(using hand-picked or analytical

methods), and then a classifier must be used to detect different

group types in the image. Analyzing DEM samples with

such a method to extract good features/attributes can, then,

be a formidable task. The use of CNNs [19] obviates the

necessity of prior feature selection by assimilating useful

features through extraction and classification automatically,

into a single framework. Feature selection is automatically

assigned to the network which, for a given classification task,

optimally selects the most relevant features. CNN is also

flexible and works quite well on images’ datasets. However,

CNNs rely on data to perform well [23]. Before investing

the time and money needed to collect data and move it into

a system, stakeholders (particularly in a business context)

want to see and understand how such a deep learning system

will work. This necessitates alternative methods. This paper

investigated the potential of different advanced deep CNN

models, such as SNNs [23], CapsNets [5], [1], and GCN [11],

towards classifying images with or without a culvert/bridge

as “True” or “False” in a given DEM sample. These CNN

models build more accurate prediction of culvert existence,
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(a) DEM (b) Red Band (c) Blue Band (d) Green Band (e) Near IR Band

Fig. 1: Five bands of the two samples in our dataset,

where (up) is the True sample group where the culvert

exists, and (down) is the False sample group where the

culvert does not exist. The red circles in the truth sample

in (up) point to the position of the culvert/bridge in each

band of the image. [20]

Fig. 2: The site of the study area is color-coded to

indicate elevation information, the location of anthro-

pogenic drainage structures (ADS), stream crossings, and

roads. The green, orange and blue circles show the three

zoomed-in locations of the ADS at stream crossings.

TABLE I: List of datasets with details and sources

Dataset Description Source
Aerial orthophoto 1m aerial imagery from the National Agriculture Imagery Program (NAIP) USDA’s Farm Service Agency [20]

Medium resolution DEM 10-m resolution DEM U.S. Geological Survey [22]
High-resolution digital elevation model (HRDEM) LiDAR-derived HRDEM with 1m spatial resolution 3D Elevation Program [21]

Road network Polylines representing road centerlines U.S. Census Bureau TIGER/Line [2]

a first step crucial in developing auto-detection algorithm on

large images. The key contributions in this work are two folds:

1) Data Augmentation: We explore Generative Adverse-

rial Networks based data augmentation technique, yield-

ing better results for classification of DEM samples

when compared with classical data augmentation tech-

niques.

2) Classification using Advanced Deep Neural Net-
work Architectures: We explore SNNs (CNN based),

CapsNet and GCN archictures for classifiying DEM

samples. To the best of our knowledge, no prior work

exists to classify DEM samples with aforementioned

architectures.

The rest of the paper is organized as follows: section II

reviews related works and introduce the necessary background

about machine learning/deep learning models applied on hy-

draulic structures datasets, section III describes the study area

and dataset , section IV represents our proposed model, section

II details experimental design, the evaluation, and results, and

section VI concludes the paper with remarks on the achieved

results.

II. RELATED WORKS

Recently, many hydraulic-related applications have adopted

deep learning models. Jakovljevic et al. [7] developed the

Neural Network (NN) and deep learning-based method to

classify point cloud and ground point filtering. The model

succeeded to improve the process of ground classification of

LiDAR and Unmanned Aerial Vehicle (UAV) data, leading

to produce DEM with the desired accuracy for flood risk

mapping. This study’s LiDAR and UAV data are huge and

allowed the model to extract 6 million points from intensity

data and local and global geometric features. Jiang et al. [8]

used a multi-scale CNN model to deal with the complicated

features of urban topography and to rebuild high-resolution

urban DEMs. In this work, the data, approximately 17 million

DEM samples, were collected from London, one of the biggest

cities in the world. Kabir et al. [9] proposed an effective

hydraulic model based on CNN architecture to predict rapidly

flood volume and inundation maps. It showed that a fast and

robust model for the real-time problem is crucial for estimating

the multidimensional social and economic effects and giving

credible predictions to improve societal resilience to flooding.

Further, the results showed that the model is quite accurate in

extracting flooded cells as pointed out by different quantitative

assessment matrices. Most of the deep learning hydraulic CNN

models proposed need a large dataset to achieve decent results.

In our work, we expose limitations of the standard deep CNN

model, such as the overfitting problem [19] when applied to

the classification task by using our small dataset. Further, since

CNNs poorly encode the different representations of pose and

orientation, traditional CNNs could only make predictions on

an image if the original image on which they were trained and

the test image were almost perfectly aligned. This problem

in CNN is what Professor Hinton called the Invariance vs.

Equivariance problem [5]. We investigate using advanced deep

CNN-based models, such as SNNs CapsNets, and GCNs as an

alternative to standard CNNs.

III. STUDY AREAS AND DATASET

In this paper, the datasets used include the LiDAR-

derived topographic DEMs, Farm Service Agency (FSA) 4-

band digital orthophotos, and other supplemental geospatial

datasets (e.g., administrative boundaries, National Hydrogra-
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(a) CNN Architecture.

265 Fully Connected Layer + PReLU embedding − size Fully Connected Layer 2× 2 Max Pooling Layer

embedding − size Fully Connected Layer + PReLU 5× 5 Convolutional Layer + PReLU + BN n− classes Fully Connected Layer +Softmax

x0/T

x1/F

Shared Weights LContrastiveLoss(x0, x1, 0)

xa/T
Triplet Embedding
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f(xn)

f(xa)

Shared Weights
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(c) Triplet Siamese Network’s Architecture.(b) Pair Siamese Network’s Architecture.

Fig. 3: (a) An example showing how Softmax NLLLoss works to identify the label of the DEM sample. (b) An example

showing how ContrastiveLoss works to distinguish the dissimilarity between the pair of the embedded images belonging to

the different classes. (c) An example showing how TripletLoss works to pull the embedded images of the same label closer

together, and push the embedded images of the different labels further apart.

phy Dataset) located in northeastern Nebraska, USA, with a

dimension of 100×100 pixels (see Fig. 1). The datasets along

with its description are displayed in Table I. The watershed

contains four HUC-12 subwatersheds, namely South Sand

Creek Branch, Lower Sand Creek, Middle Sand Creek, and

Upper Sand Creek, with a total surface area of approximately

552 km2. The dataset contains 1968 images containing at

least one culvert (True) and 1968 that contain no culverts

(False). To develop and test the efficacy of methods in broader

geographic contexts, we selected the Sand Creek watershed

in the northeast Nebraska of the United States to conduct

our experiments Fig. 2. The landscape is characterized by

intensive agriculture, relatively level topography, and a dense

network of roads. The embankments of these roads complicate

flow patterns and significantly fragment the agro-hydrologic

landscape, making these areas representative of regions in

which human structures have led to broadly segmented agro-

hydrologic systems. In these areas, then, development of

hydrologic drainage networks that are accurate and fully

connected is critical. In all experiments, to evaluate the models

(the traditional machine learning and advanced CNNs’ mod-

els), we used K-Fold Cross-Validation , where we divided the

data into 10 folds, each being (10%) of the full dataset. To

update iterative network weights based on training data, in

all the advanced CNNs’ models Adam optimizer was utilized

through an inceptive learning rate of 10−3.

IV. PROPOSED METHOD

Most traditional machine learning models are unsuccessful

to extract useful features from images with complex data struc-

tures. In binary classification, classifiers like SVM [4], GC

[17], and GMM [14] are task-specific algorithms utilizing the

location of hyperplanes or decision boundaries to determine

if a data point is to be positively or negatively labeled. On

the other hand, CNN model is based on learning patterns

and representations found in the given data (understanding

the data patterns). It extracts the relevant features from the

input using the convolution operation, and then selects the

essential features that improve the performance for various

image classification problems. Recently, some rather exciting

advancements in CNNs have been reported, such as using ben-

eficial types of optimizers, activation functions, loss functions,

and regularizers [19]. Furthermore, a notable improvement

has been achieved in representing CNNs’ architectures by

exploiting spatial and channel information, controlling in depth

and width of architecture, and processing multi-path infor-

mation, which in turn led to the emergence of sophisticated

CNNs. This section will discuss the effectiveness of the

three significant CNN architectures to solve our classification

problem.

A. Siamese Learning Pair/Triplet Mining

In the modern Deep learning era, traditional CNNs are

sufficient for most classification problems. Unfortunately, in

real-world datasets, CNNs need a large dataset to perform

well. Recently, SNNs have become increasingly popular in

deep learning research and applications because of their ability

to learn from relatively small data. For this reason, we explore

using SNNs to deal with the lack of our training set. The

main advantages of using SNNs are [23]: (1.) they make

training with a small dataset possible by using a one-shot

learning strategy. (2.) they do classification based on semantic

similarity by creating embeddings for inputs derived from the

deeper layers in CNN, where the similar embeddings belong

to the same class. (3.) they perform better than ensemble

classifiers (e.g. Gradient Boosting Machine (GBM) and Ran-

dom Forest (RF) classifier), where using two or more parallel

CNN networks can do much more efficiently than simple

average over many traditional classifiers. SNN can be used

as a classification model. SNNs generate images’ embeddings

that have a meaningful Euclidean relationship using CNNs,

where images of the same class will be eventually embedded

close together, or at least closer than images from another

class. SNN is comprised of a similar chain of the layers of

CNN, but in this case the output layer lacks a Softmax function

(see Fig. 3). In addition, since the training of SNNs involve

pairwise or triplet learning, cross-entropy loss [27] interpreted

as a negative log-likelihood (NLLLoss) cannot be used in this

case.

In our experiment, we use two types of learning to train

SNNs: (1.) learning with offline pair/triplet mining [3], and
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Fig. 4: The Proposed DEM-CAPS Architecture. Convolutional layers are used to form the capsules, and the decision is

made based on the agreement among these capsules. The ’True’ capsule in the DEM-CAPs is represented by the ‘deep blue’

indication. Based on the integration of three layers, this can efficiently predict the input.

(2.) learning with online pair/triplet mining [28]. An offline

pair mining model takes a pair of images and produces

their embeddings using the two parallel identical CNNs. The

Contrastive loss function (ContrastiveLoss) is used to learn

the offline pair mining model as follows:

(1)
L(x0, x1, y) =

1

2
y‖f(x0)− f(x1)‖22 +

1

2
(1− y)

max(0,m− ‖f(x0)− f(x1)‖22 ,

where f(x0) and f(x1) are the representation of an em-

bedding’s pair for the images x0 and x1, y is a binary flag

equal to 0 for a negative sample pair (from the same class)

and to 1 for a positive sample pair (from different classes),

m is a margin that often equals 0.2, and the distance ‖.‖2
is the Euclidean distance. While the traditional loss aims to

predict class labels, the contrastive loss aims to intuit within

intervals of inputs Euclidean distances when those inputs are

projected onto a hyperspace. An offline triplet mining model

takes three inputs which we call a triplet. These include an

anchor xa, a positive xp demonstrating an equivalent class

as anchor, and a negative xn demonstrating a different class

than the anchor. At training time, each input of this triplet

will be fed to its own CNN branch to be embedded. These

embeddings f(.) are passed to what is referred to as triplet loss

[3]. This triplet loss aims to learn the embeddings in order to

produce a mariginal value by which the anchor is rendered

more similar to the positive example than to the negative.

Triplet loss (TripletLoss) is given as follow:

(2)L(xa, xp, xn) = max(0,m+ ‖f(xa)− f(xp)‖22
− ‖f(xa)− f(xn)‖22) .

The big plus of the offline pair/triplet strategy is that it is

easy to understand, it is supervised, and it is relatively straight-

forward to implement. However, the SCNN’s performance is

highly dependent on the creation of these pairs/triplets; if

pairs/triplets are too easy, there is nothing to learn, and if

they are too difficult the embedding might collapse into a

single point. Therefore, The target here is to create as many

semi-hard pairs/triplets as possible. Moreover, each image

that is provided to the network is applied only once for the

computation of contrastive/triplet loss for pairs/triplets. This

computation, then, is somewhat wasted; once the embedding

is generated, it should be reused for many pairs/triplets. In the

offline mining technique, the whole dataset is converted into

pairs/triplets before training. On the contrary, in online mining,

during a training phase impromptu pairs/triplets are generated

from data which is processed in the mini-batch of fed data . In

this case, if we feed our classification network with K images

per P classes, we can process up to (KP −1)∗ (KP )/2 pairs

and P ∗K ∗ (K − 1)/2 ∗ ((P − 1) ∗K) triplets, compared to

KP/2 pairs and KP/3 triplets in offline implementation. This

technique gives more pairs/triplets for a single batch of inputs.

It is, therefore, much more efficient. Additionally, the selected

pairs/triplets can be considered moderate sample (semi-hard),

since they are the hardest within a small subset (mini-batch)

of the data, which is exactly what is best for learning with the

contrastive/triple loss model. As a general rule, online mining

ought to be performed wherever possible, since it allows for

much faster training.

B. Capsule Networks (CapsNets)

Despite CNNs’ architectures success in many classification

problems, they have various conceptual drawbacks: (1.) the

average-pooling and max-pooling layer in CNNs waste away

the position information about some entity that the network

seeks to recognize, (2.) they require much data to learn

efficiently, and (3.) they do not take into consideration spatial

hierarchical relation between simple and complex objects in

the image. CapsNet, with CNN capabilities and without its

shortcomings, was conceptualized by Geoffrey Hinton [5].

It processes visual information in much the same way as

the brain, which means it can maintain hierarchical spatial

relationships; theoretically, this architecture may learn faster

and use fewer samples per class. Recently, Sabour et al.

[16] introduced the applicable implementation of CapsNet by

extended it with an iterative routing-by-agreement algorithm

to classify and segment multiple digits within an image. What

makes CapsNet different from a CNN is this routing-by-

agreement, which further gives it the ability to identify the
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Fig. 5: DEM-AC-GAN complete Architecture with generator and discriminator.

spatial relations. In a CapsNet, convolution layers extract low-

level features from the image and forward them to capsule

layers containing vectors of equal dimension, where the first

capsule layer shape must fit the output from the previous

convolution layer. The orientation of the input vector sj is

kept, while length is changed within 0 and 1 using the non-

linear activation function “squashing”, with length of this

vector representing the probability of the presence of an entity.

As the equation, (3) shows that the capsule j represents the

squashing function for the input vector sj (before squashing),

and the output vector vj . For a specific entity, the attributes in

the vector vj generate varying aspects, for example the length,

texture, position, and scale of that entity.

vj =
‖sj‖2

1 + ‖sj‖2
sj

‖sj‖′ , (3)

Similar to a traditional CNN, the input sj is a weighted sum

through all multiplications between the coupling coefficients

cij computed by the iterative “Routing by Agreement” process

and prediction vectors ûj|i, where each prediction vector is

created through multiplication of the output ui from a specific

capsule in the previous layer by a trainable weight matrix Wij ,

as follows [13]:

ûj|i = Wijui, (4)

cij =
exp(bij)∑
k exp(bik)

, (5)

sj =
∑

i

cij ûj|i, (6)

From capsule i along with capsules in the previous layer

j, coupling coefficients are computed by the Softmax of bij
pointing out the probability that capsule i should be coupled

to capsule j,as follows:

bij = bij + ûj|i.vj , (7)

1) The Proposed DME-CAPS : Fig. 4 displays the architec-

ture of the DEM-CAPS here proposed. DEM-CAPS consists

of three stages; (1.) feature extraction (2.) classification and

(3.) reconstruction. DEM-CAPS was composed 4 convolu-

tional layers, 3 capsule layers, along with three layers fully

connected. DEM-CAPS is fed a DEM sample, as input. 4
convolution layers extract (low-level) image features. After

that, these features will pass to the capsule layers to extract

the high-level features performing the routing process, while

the last capsule layer represents the instantiation parameters

for the “True” class and the “False” class.

Finally, we calculated the length (L2 Norm ) of each class

(True and False) capsule to predict the class. As mentioned

above, since the length of the capsule implements the prob-

ability of the entity which exists, if the label of the image

is True, DME-CAPS’s goal is to make True’s capsule vector

longer and make False’s capsule vector shorter. Consequently,

the combined losses of the two-class capsules dictates classi-

fication loss, defined as follows [13]:

(8)
Lclassification =

∑

k

(Tkmax(0,m+ − ‖vk‖)2 +

λ(1− Tk)max(0, ‖vk‖ −m−)2)

where Tk is 1 whenever the class k is existent and 0
otherwise. Terms m+,m−, and λ are the hyper parameters

of the model.

We use the decoding network in the reconstruction stage. It

has 3 layers which are fully connected, the first two-layer with

PReLU activation function and the last with Sigmoid. Most

essentially, to make sure there is no equivariance of mapping

between an original image and its high-level capsule features,

DME-CAPS, through value of Mean Squared Error (MSE)

between a reconstructed image and the original, corresponds

features of the class to which the last capsule layer belongs,

using the decoding network to reconstruct the image from this

last capsule layer by corresponding the features of the class to

which it belongs. The reconstruction loss is given as follows

[13]:

Lreconstruction = μMSE(I, FCdecoding(vk)) (9)
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The less the value of the reconstruction loss, the more

the reconstructed image FCdecoding(vk) that is the output of

fully connected layers is similar to I , and the better decoding

network is able to conserve information required to rebuild an

image within DEM-CAPS.

2) Data Augmentation: To avoid overfitting, classification

problems often need large quantities of data, so there is the

additional issue of inhibition of performance due to a shortage

of training data. To offset this, substantial work has gone into

maximum extraction of information by utilizing as much data

collected through different data augmentation techniques as

possible. Unless training data contains sufficient examples at

different rotations, classical data augmentation techniques such

as rotation, scaling, cropping, reflection, and translation, of

training images, are not easily learnable by CNNs. In addition,

these techniques produce only limited quantities of surrogate

data. Recognizing the possibility of producing a wider set

of accessions, we use a generative model to produce data

augmentation, which organically moves beyond the bounds

of classical techniques. A robust and efficient collection of

networks, GANs [18], produce generate novel, credible images

from originals both labeled and unlabeled, and thereby provide

a germane solution to deep learning problems. To expand

training datasets, various methods of GAN application have

recently been proposed to generate new training images for

classification problems. In part designed according to image

Auxiliary Classifier Generative Adversarial Networks (AC-

GAN) [25], this model develops the ability to generalize data

items and produce additional data within that class by first

deriving data from a particular source domain. We built out our

AC-GAN, which is called DEM-AC-GAN (see Figure 5). The

discriminator here is a CNN architecture fed DEM samples

(the real image from the dataset, and the fake one created

by the generator). The discriminator has two output layers;

the first one predicts the label of class and the second output

dictates whether an image is real or fake. The generator is fed

by a latent vector and class label as input. It has deconvolution

layers that reverse the operations of the convolutional layers

of the discriminator to create an output image (fake image)

passed to the discriminator.

C. Graph Convolutional Networks (GCNs)

Traditional CNN architectures can only work convolution

ordered square image regions with fixed size and weights, so

they cannot globally adjust to the distinguished local regions

with different geometric appearances and object distributions.

Lately, various advanced types of Graph Neural Networks

(GNNs) have been created, with Graph Convolutional Net-

works (GCNs) being an important example [12]. Similar

to CNN, GCNs extract features through exploration of lo-

cal graph neighboring nodes. Sometimes considered a more

generalized kind of CNN, GCNs essential different because

while CNNs are designed to work on (Euclidean) structured

data, GCNs are designed to work on irregular (non-Euclidean)

structured data, in which connections in graph nodes differ and

the nodes are un-ordered. To solve our classification problem,

we implemented DEM’s classification on embedded graphs

by first utilizing Simple Linear Iterative Clustering (SLIC)

[26] or the Quickshift algorithm [24]to segment the image

into superpixels, converting this representation into a graph

and inputting this to our GCN (DEM-GCN). The convolutions

conducted on these graphs simultaneously aggregate features

while gradually refining the input graphs. The superpixels that

have the same label will be perfectly clustered together in the

embedding space. Eventually, the classification output will be

created by the well-trained network.

1) The Proposed DEM-GCN: The proposed DEM-GCN

consists of graph convolutional layers and Eigen Pooling [12]

used to extract features of the input graph and then create

a vector representation for the classification process. Fig. 6

shows a binary graph classification for which the proposed

model DEM-GCN was designed. The illustration shows the

graph finally becoming a single supernode, after being 3 times

coarsened. Node features make up the input. To the graph

signal, there is then applied two convolutional layers through

which the input is passed. As defined in the coarsened graph,

the resulting node features are pooled to fewer nodes. Twice

more this procedure (two convolution layers followed by the

pooling layer) is repeated, until the pooling of the graph results

in a signal node. Based on the value of this node, the prediction

will be made through use of the cross-entropy loss in the last

layer. Several convolutional layers stacked in the DEM-GCN

can be written as follows :

F i+1 = PReLU(D̃

−1

2 ÃD̃

−1

2 F iW i). (10)

The output of the i–th convolutional layer is F i+1 ∈
R

N×di+1 , where i > 0. F 0 = I indicates to the input node

features created by the superboxel model (SLIC or Quickshift).

All convolutional layers C are gathered to the final node

impersonations which the DEM-GCN model has learned, and
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the output is implemented as the matrix FC . We used the

spectral pooling (averaging or maximizing) operator based on

graph Fourier transform through utilization of the Eigenvectors

of the Laplacian matrix of each subgraph [12] to aggregate

into higher-level grapsh impersonations the node information,

eventually aggregating it further into the single supernode. The

pooling operator with l–th pooling operator Θl depended on

graph Fourier transform is given as follow:

Xl = ΘT
l X (11)

where Θl is the pooling operator consisting of all the l–
th eigenvectors from all the K subgraphs

[
ū1

(1) , ..., ūl
(K)

]
.

Each ūl
(k) is up–sampled version of the eigenvector ul

(k) in

the Laplacian matrix L(k) of the subgraph G(k) is given as

follow [12]:

ūl
(k) = C(k)u

(k)
l , l = 1 , ..., Nk. (12)

where C(k) is the up–sampling operator used to up–sample

the eigenvectors into the entire graph. For more information

regarding to Eigenvector-based pooling strategy, we refer

readers to [12].

V. RESULTS AND DISCUSSION

Traditional learning techniques such as SVM, GC and

GMM are have several advantages but are not as performant

(see Table II) as the deep learning models such as SNNs,

CapsNets, and GCNs we proposed to solve our classification

problem. These models have initiated a surge in deep learning

due to their ability to function with small datasets. SNNs suc-

cessfully solve over-fitting problems which hinder the perfor-

mance of deep learning approaches to the train small dataset.

To extract the most important features, SNNs’ algorithms uti-

lize parallel functioning of two or more CNNs working simul-

taneously, which vastly improved the classification accuracy.

SNNs can be trained using either online or offline pair/triplet

mining. Before beginning online mining, we studied how

extreme distances effect performance, as well offline effects

of neighbored patches training.We then analyzed, for online

versus offline mining, extreme cases of embedding distance,

examining the impact of batch semi-hard pair/triplet mining,

easy positive, and neighborhood component analysis loss. Fig.

7 show results of two-dimensional embeddings taken from the

penultimate layer of networks trained online and offline for

our embeddings’ network (Embedding-net). Figure 3 depicts

the SNN architectures used together with their embeddings.

In our experiments, we found that using the Embedding-net

network that contains a batch normalization layer following

each convolution layer improves the performance of all SNNs.

Though enhancing the model’s depth increases performance,

it is challenging to train the neural network model with many

layers due to the sensitivity of spontaneous conceptual weights

and learning algorithm configuration. For each respective mini-

batch, using batch normalization layers helps the deep neural

network model standardize inputs to a specific layer, which not

only changes the learning process but also significantly lessens

the required intervals needed to adequately train the model.

The classification results obtained by the SNNs’ models were

evaluated using the loss function for each type of SNNs and

accuracy. To compute the accuracy in the SNNs’ models, we

extended the resulting embedding with a Sigmoid output layer

for categorical predictions. The loss and accuracy plots of the

four SNNs’ models are illustrated in Fig. 8. These results

suggest the online mining models perform the best compared

to other SNN models.

The other advanced CNN model used is CapsNet. By

utilizing inherent spatial relationships, such capsule networks

more accurately summarize what we perceive by simulating

the task of understanding changes in an image. To function

with the small number of DEM samples available to us, we

proposed the use of DEM-CAPS. While CNNs must be trained

and deployed on large datasets, DEM-CAPS generalizes well

with small datasets, making it conducive to our classification

problem. Though it is possible through the use of the data

augmentation technique to compensate for possible loss of

performance resulting from lack of data, if our model is limited

to train and test on the scant available domain data, there will

be a noticeable difference in terms of performance.

It is difficult using traditional data augmentation methods

alone (such as scaling, cropping, flipping, padding, etc.) to

obtain a suitable number of appropriate images. We used a data

augmentation method within GAN (DEM-AC-GAN). DEM-

AC-GAN generated 1000 images of True labels and 1200 im-

ages of False labels. Figure 9 shows the example of generated

samples by DEM-AC-GAN based on the ground truth images

for both classes. The results show the ability of DEM-GAN

to generate high-quality images, which we can now consider

as the new samples in our dataset. The training and testing

loss which is the classification loss and the reconstruction loss

for the training and testing dataset, classification accuracy,

and confusion matrix graphs for our classification problem

obtained without/ with data augmentation are depicted in

Fig. 11. The DEM-CAPS without augmentation techniques

accurately identified 370 images from 396 testing images,

while identifying 378 after applying the data augmentation

technique. Fig. 10 shows an example of reconstructed images

from the test dataset in both cases without/ with augmentation.

Although the DEM-CAPS model performs creditably well

on our small dataset, when we increased the number of the

training images using the data augmentation technique, the

DEM-CAPS became better able to reveal compelling features

that can distinguish the two different labels of the DEM

samples.

Finally, we used GCN with superpixel segmentation. For

graphs, convolution was defined utilizing the graph Fourier

transform, which in turn was defined as projection on the

eigenvalues of the Laplacian. Fig. 12 shows the classification

losses, classification accuracies, and confusion matrixes for the

DEM-GCN model with the two types of superpixel segmen-

tation models (SLIC and Quickshift). Based on the results,

the performance of DEM-GCN achieved is poor relative to

the other two advanced convolutional models, which indicates
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 7: Analysis of the performance of SNNs with Embedding-net in offline and online pair/triplet mining for the DEM dataset,

where (up) is the training dataset, and (down) is the test datset. The graph results are structured as follows; (a)/(f): slandered

CNN with Softmax layer, (b)/(g): SNN with offline pair mining, (c)/(h): SNN with offline triplet mining, (d)/(i): SNN with

online pair mining, and (e)/(f): SNN with online triplet mining.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 8: The performance of the loss and accuracy of the SNNs for the best dimension of Embedding-net in each model , where

(up) is the SNNs’ losses, and (down) is the SNNs’ accuracies. The graph results are structured as follows; (a)/(f): slandered

CNN with Softmax layer, (b)/(g): SNN with offline pair mining, (c)/(h): SNN with offline triplet mining, (d)/(i): SNN with

online pair mining, and (e)/(f): SNN with online triplet mining.

(a)

(b)

Fig. 9: (up): Generated images by DEM-AC-GAN (True label), (down): Generated images by DEM-AC-GAN (False label) .
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(a) (b) (c)

Fig. 10: Reconstructed DEM samples. (a): original DEM samples, (b): Reconstructed DEM samples without augmentation,

and (c) Reconstructed DEM samples with augmentation.

(a) (b) (c) (d) (e) (f)

Fig. 11: (a)/(d): Training and Testing loss graphs for a fold (without data augmentation/with data augmentation), (b)/(e):

Training and Testing Accuracy graphs for a fold (without data augmentation/with data augmentation), and (c)/(f): Confusion

matrix of our binary classification results for testing dataset (without data augmentation/with data augmentation).

(a) (b) (c) (d) (e) (f)

Fig. 12: (a)/(d): Training and testing loss graphs for a fold in case using SLIC/ Quickshift segmentation, (b)/(e): Training

and testing accuracy graphs for a fold in case using SLIC/ Quickshift segmentation, and (c): Confusion matrix of our binary

classification results for testing dataset in case using SLIC/ Quickshift segmentation.

the GCN is not suitable to extract optimal features to classify

the DEM samples. We invariably obtained unstable GCNs’

training, despite using different methods to tune the parame-

ters. Graph-structured data introduces complex noise, despite–

compared with other formats of data, increased conservation

of relational data. GCN also uses max-pooling, or simple

average pooling, with loss of each node’s characteristics as

well as the topology between nodes. This further confirms

the effectiveness of CapsNets, which do not include pooling

layers in their architecture. Another way of interpreting the

low performance of GCN in this context is that GCNs lose

a large amount of information in the early stage during the

graph convolution step, and only the final aggregation output

is used for predicting the label. Various comparisons were

also made between DEM-CAPS and the other traditional

classifiers: all results showed that the DEM-CAPS is the best

classification model for our dataset. Furthermore, the training

and testing stability of DEM-CAPS is better compared to the

other models. Table.II shows the summarized of all the models

applied to solve our classification problem.

VI. CONCLUSION AND FUTURE DIRECTION

Our binary classification problem was addressed by finding

the optimal method to detect the label type of the DEM

samples, where those with bridge/culvert points are considered

“True”, and those without bridge/culvert points are considered

“False”. One of the key issues for classification problems

is the overfitting that frequently occurs with small datasets.

Both deep learning and machine learning techniques have

been implemented in this paper to deal with this problem and

improve classification accuracy. We found that the proposed

DME-CAPS with data augmentation achieved better accuracy
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TABLE II: The accuracy results of traditional machine learning models vs advanced CNNs’ architectures. In the traditional

machine learning models, we used the Radial Basis Function (RBF) kernel SVM with(C and γ) parameters, GC with α that

represents the smoothing parameter, and GMM with (α and K), where K is the number of Gaussian distributions’ components

used.

Traditional Machine Learning Models Advanced CNNs’ Architectures
Model Accuracy DEM-SNN DEM-Caps

SVM(γ = 0.001, C=10, without PCA) 70% Model Accuracy Model Accuracy
SVM(γ = 0.0001, C=10, without PCA) 87% Standard CNN with Softmax layer 82% DME-CAPS without augmentation 93.4%

SVM(γ = 0.0001, C=10, PCA=14) 85% Standard CNN with Sigmoid layer 90% DME-CAPS with augmentation 95.3%
GC/unsmoothed (α = 1, PCA=14) 85% SNN with offline pair mining 91% DEM-GCN
GC/smoothed (α = 0.9, PCA=12) 83% SNN with offline triplet mining 92% Model Accuracy
GMM (α = 0.9, PCA=29, K=1) 82% SNN with online pair mining 94.3% DEM-GCN with SLIC 80%
GMM (α = 0.9, PCA=29,K=2) 89% SNN with online triplet mining 94.5% DEM-GCN with Quickshift 83%

compared to the other models. In the future, we aim to study

the effect of self-attention mechanism [6], which integrates the

concept of relevance by focusing only on the relevant aspect

(detect the culvert/bridge area in our case) of the given input,

on our proposed models and its efficacy on DEM.
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