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Abstract—An efficient feature selection method can signifi-
cantly boost results in classification problems. Despite ongoing
improvement, hand-designed methods often fail to extract fea-
tures capturing high- and mid-level representations at effective
levels. In machine learning (Deep Learning), recent developments
have improved upon these hand-designed methods by utiliz-
ing automatic extraction of features. Specifically, Convolutional
Neural Networks (CNNs) are a highly successful technique for
image classification which can automatically extract features,
with ongoing learning and classification of these features. The
purpose of this study is to detect hydraulic structures (i.e., bridges
and culverts) that are important to overland flow modeling and
environmental applications. The dataset used in this work is a
relatively small dataset derived from 1-m LiDAR-derived Digital
Elevation Models (DEMs) and National Agriculture Imagery
Program (NAIP) aerial imagery. The classes for our experiment
consist of two groups: the ones with a bridge/culvert being
present are considered “True”, and those without a bridge/culvert
are considered “False”. In this paper, we use advanced CNN
techniques, including Siamese Neural Networks (SNNs), Cap-
sule Networks (CapsNets), and Graph Convolutional Networks
(GCNs), to classify samples with similar topographic and spec-
tral characteristics, an objective which is challenging utilizing
traditional machine learning techniques, such as Support Vector
Machine (SVM), Gaussian Classifier (GC), and Gaussian Mixture
Model (GMM). The advanced CNN-based approaches combined
with data pre-processing techniques (e.g., data augmenting)
produced superior results. These approaches provide efficient,
cost-effective, and innovative solutions to the identification of
hydraulic structures.

I. INTRODUCTION

Digital Elevation Models (DEMs) utilizing grid data have
been developed to facilitate terrain modeling and analysis
using computers. Such gridded DEMs automatically derive
thematic maps for calculating terrain attributes, including
concavity, convexity, aspect, and slope. This efficient and
expansive functioning of DEMs has engendered interest in
exciting applications. For example, DEMs have proved useful
in maintaining geographical databases, assessing damage from
natural disasters like floods and earthquakes, and supporting
crucial military training and other [15]. The uses of DEMs,
however, present unique challenges in some applications. For
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example, DEMs, especially those high-resolution DEMs, are
only available as Digital Surface Models (DSMs), which often
represent the land surface elevation without the consideration
of potential underground structures. This is especially the
case in hydrological modeling in which drainage flowlines
may falsely terminate at the hydraulic structures (i.e., road
culverts and bridges) near interactions of roads and streams
[15]. Presently, the dataset of hydraulic structures is either
largely missing or available in variable quality, which affects
proper use of high-resolution DEMs for many hydrological
applications [10]. In many cases, laborious on-screen digitiza-
tion using aerial photos has been used to identify hydraulic
structures or improve their locational accuracy. Thus, it is
imperative to develop an efficient approach for identifying
hydraulic structures.

Traditional machine learning classification tasks can be time
consuming and burdensome [19]. First, a feature must be
selected from the imagery(using hand-picked or analytical
methods), and then a classifier must be used to detect different
group types in the image. Analyzing DEM samples with
such a method to extract good features/attributes can, then,
be a formidable task. The use of CNNs [19] obviates the
necessity of prior feature selection by assimilating useful
features through extraction and classification automatically,
into a single framework. Feature selection is automatically
assigned to the network which, for a given classification task,
optimally selects the most relevant features. CNN is also
flexible and works quite well on images’ datasets. However,
CNNs rely on data to perform well [23]. Before investing
the time and money needed to collect data and move it into
a system, stakeholders (particularly in a business context)
want to see and understand how such a deep learning system
will work. This necessitates alternative methods. This paper
investigated the potential of different advanced deep CNN
models, such as SNNs [23], CapsNets [5], [1], and GCN [11],
towards classifying images with or without a culvert/bridge
as “True” or “False” in a given DEM sample. These CNN
models build more accurate prediction of culvert existence,
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Fig. 1: Five bands of the two samples in our dataset,
where (up) is the True sample group where the culvert
exists, and (down) is the False sample group where the
culvert does not exist. The red circles in the truth sample
in (up) point to the position of the culvert/bridge in each
band of the image. [20]
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Fig. 2: The site of the study area is color-coded to
indicate elevation information, the location of anthro-
pogenic drainage structures (ADS), stream crossings, and

roads. The green, orange and blue circles show the three
zoomed-in locations of the ADS at stream crossings.
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TABLE I: List of datasets with details and sources

Dataset

Description

Source

Aerial orthophoto

1m aerial imagery from the National Agriculture Imagery Program (NAIP)

USDA’s Farm Service Agency [20]

Medium resolution DEM

10-m resolution DEM

U.S. Geological Survey [22]

High-resolution digital elevation model (HRDEM)

LiDAR-derived HRDEM with 1m spatial resolution

3D Elevation Program [21]

Road network

Polylines representing road centerlines

U.S. Census Bureau TIGER/Line [2]

a first step crucial in developing auto-detection algorithm on
large images. The key contributions in this work are two folds:
1) Data Augmentation: We explore Generative Adverse-
rial Networks based data augmentation technique, yield-
ing better results for classification of DEM samples
when compared with classical data augmentation tech-
niques.
Classification using Advanced Deep Neural Net-
work Architectures: We explore SNNs (CNN based),
CapsNet and GCN archictures for classifiying DEM
samples. To the best of our knowledge, no prior work
exists to classify DEM samples with aforementioned
architectures.

2)

The rest of the paper is organized as follows: section II
reviews related works and introduce the necessary background
about machine learning/deep learning models applied on hy-
draulic structures datasets, section III describes the study area
and dataset , section IV represents our proposed model, section
II details experimental design, the evaluation, and results, and
section VI concludes the paper with remarks on the achieved
results.

II. RELATED WORKS

Recently, many hydraulic-related applications have adopted
deep learning models. Jakovljevic et al. [7] developed the
Neural Network (NN) and deep learning-based method to
classify point cloud and ground point filtering. The model
succeeded to improve the process of ground classification of
LiDAR and Unmanned Aerial Vehicle (UAV) data, leading
to produce DEM with the desired accuracy for flood risk
mapping. This study’s LiDAR and UAV data are huge and
allowed the model to extract 6 million points from intensity
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data and local and global geometric features. Jiang et al. [8]
used a multi-scale CNN model to deal with the complicated
features of urban topography and to rebuild high-resolution
urban DEMs. In this work, the data, approximately 17 million
DEM samples, were collected from London, one of the biggest
cities in the world. Kabir et al. [9] proposed an effective
hydraulic model based on CNN architecture to predict rapidly
flood volume and inundation maps. It showed that a fast and
robust model for the real-time problem is crucial for estimating
the multidimensional social and economic effects and giving
credible predictions to improve societal resilience to flooding.
Further, the results showed that the model is quite accurate in
extracting flooded cells as pointed out by different quantitative
assessment matrices. Most of the deep learning hydraulic CNN
models proposed need a large dataset to achieve decent results.
In our work, we expose limitations of the standard deep CNN
model, such as the overfitting problem [19] when applied to
the classification task by using our small dataset. Further, since
CNNs poorly encode the different representations of pose and
orientation, traditional CNNs could only make predictions on
an image if the original image on which they were trained and
the test image were almost perfectly aligned. This problem
in CNN is what Professor Hinton called the Invariance vs.
Equivariance problem [5]. We investigate using advanced deep
CNN-based models, such as SNNs CapsNets, and GCNs as an
alternative to standard CNNs.

I11.

In this paper, the datasets used include the LiDAR-
derived topographic DEMs, Farm Service Agency (FSA) 4-
band digital orthophotos, and other supplemental geospatial
datasets (e.g., administrative boundaries, National Hydrogra-

STUDY AREAS AND DATASET
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Fig. 3: (a) An example showing how Softmax NLLLoss works to identify the label of the DEM sample. (b) An example
showing how ContrastiveLoss works to distinguish the dissimilarity between the pair of the embedded images belonging to
the different classes. (¢) An example showing how TripletLoss works to pull the embedded images of the same label closer
together, and push the embedded images of the different labels further apart.

phy Dataset) located in northeastern Nebraska, USA, with a
dimension of 100 x 100 pixels (see Fig. 1). The datasets along
with its description are displayed in Table I. The watershed
contains four HUC-12 subwatersheds, namely South Sand
Creek Branch, Lower Sand Creek, Middle Sand Creek, and
Upper Sand Creek, with a total surface area of approximately
552 km?. The dataset contains 1968 images containing at
least one culvert (True) and 1968 that contain no culverts
(False). To develop and test the efficacy of methods in broader
geographic contexts, we selected the Sand Creek watershed
in the northeast Nebraska of the United States to conduct
our experiments Fig. 2. The landscape is characterized by
intensive agriculture, relatively level topography, and a dense
network of roads. The embankments of these roads complicate
flow patterns and significantly fragment the agro-hydrologic
landscape, making these areas representative of regions in
which human structures have led to broadly segmented agro-
hydrologic systems. In these areas, then, development of
hydrologic drainage networks that are accurate and fully
connected is critical. In all experiments, to evaluate the models
(the traditional machine learning and advanced CNNs’ mod-
els), we used K -Fold Cross-Validation , where we divided the
data into 10 folds, each being (10%) of the full dataset. To
update iterative network weights based on training data, in
all the advanced CNNs’ models Adam optimizer was utilized
through an inceptive learning rate of 1073,

IV. PROPOSED METHOD

Most traditional machine learning models are unsuccessful
to extract useful features from images with complex data struc-
tures. In binary classification, classifiers like SVM [4], GC
[17], and GMM [14] are task-specific algorithms utilizing the
location of hyperplanes or decision boundaries to determine
if a data point is to be positively or negatively labeled. On
the other hand, CNN model is based on learning patterns
and representations found in the given data (understanding
the data patterns). It extracts the relevant features from the
input using the convolution operation, and then selects the
essential features that improve the performance for various
image classification problems. Recently, some rather exciting

139

advancements in CNNs have been reported, such as using ben-
eficial types of optimizers, activation functions, loss functions,
and regularizers [19]. Furthermore, a notable improvement
has been achieved in representing CNNs’ architectures by
exploiting spatial and channel information, controlling in depth
and width of architecture, and processing multi-path infor-
mation, which in turn led to the emergence of sophisticated
CNNs. This section will discuss the effectiveness of the
three significant CNN architectures to solve our classification
problem.

A. Siamese Learning Pair/Triplet Mining

In the modern Deep learning era, traditional CNNs are
sufficient for most classification problems. Unfortunately, in
real-world datasets, CNNs need a large dataset to perform
well. Recently, SNNs have become increasingly popular in
deep learning research and applications because of their ability
to learn from relatively small data. For this reason, we explore
using SNNs to deal with the lack of our training set. The
main advantages of using SNNs are [23]: (1.) they make
training with a small dataset possible by using a one-shot
learning strategy. (2.) they do classification based on semantic
similarity by creating embeddings for inputs derived from the
deeper layers in CNN, where the similar embeddings belong
to the same class. (3.) they perform better than ensemble
classifiers (e.g. Gradient Boosting Machine (GBM) and Ran-
dom Forest (RF) classifier), where using two or more parallel
CNN networks can do much more efficiently than simple
average over many traditional classifiers. SNN can be used
as a classification model. SNNs generate images’ embeddings
that have a meaningful Euclidean relationship using CNNs,
where images of the same class will be eventually embedded
close together, or at least closer than images from another
class. SNN is comprised of a similar chain of the layers of
CNN, but in this case the output layer lacks a Softmax function
(see Fig. 3). In addition, since the training of SNNs involve
pairwise or triplet learning, cross-entropy loss [27] interpreted
as a negative log-likelihood (NLLLoss) cannot be used in this
case.

In our experiment, we use two types of learning to train
SNNs: (1.) learning with offline pair/triplet mining [3], and
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Fig. 4: The Proposed DEM-CAPS Architecture. Convolutional layers are used to form the capsules, and the decision is
made based on the agreement among these capsules. The *True’ capsule in the DEM-CAPs is represented by the ‘deep blue’
indication. Based on the integration of three layers, this can efficiently predict the input.

(2.) learning with online pair/triplet mining [28]. An offline
pair mining model takes a pair of images and produces
their embeddings using the two parallel identical CNNs. The
Contrastive loss function (Contrastivel.oss) is used to learn
the offline pair mining model as follows:

Lao,m1,9) = 5ull 7o) — F)l3+ 51— )

maz(0,m — || f(zo) = f(w1)]2,

where f(xo) and f(x;) are the representation of an em-
bedding’s pair for the images zo and xi, y is a binary flag
equal to 0 for a negative sample pair (from the same class)
and to 1 for a positive sample pair (from different classes),
m is a margin that often equals 0.2, and the distance ||.||2
is the Euclidean distance. While the traditional loss aims to
predict class labels, the contrastive loss aims to intuit within
intervals of inputs Euclidean distances when those inputs are
projected onto a hyperspace. An offline triplet mining model
takes three inputs which we call a triplet. These include an
anchor z,, a positive x, demonstrating an equivalent class
as anchor, and a negative x,, demonstrating a different class
than the anchor. At training time, each input of this triplet
will be fed to its own CNN branch to be embedded. These
embeddings f(.) are passed to what is referred to as triplet loss
[3]. This triplet loss aims to learn the embeddings in order to
produce a mariginal value by which the anchor is rendered
more similar to the positive example than to the negative.
Triplet loss (TripletLoss) is given as follow:

6]

ﬁ(xavxwwn) =max(0,m + || f(za) — f(wp)H%
= (@a) = Fza)I3)-

The big plus of the offline pair/triplet strategy is that it is
easy to understand, it is supervised, and it is relatively straight-
forward to implement. However, the SCNN’s performance is
highly dependent on the creation of these pairs/triplets; if
pairs/triplets are too easy, there is nothing to learn, and if
they are too difficult the embedding might collapse into a
single point. Therefore, The target here is to create as many
semi-hard pairs/triplets as possible. Moreover, each image

(@)
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that is provided to the network is applied only once for the
computation of contrastive/triplet loss for pairs/triplets. This
computation, then, is somewhat wasted; once the embedding
is generated, it should be reused for many pairs/triplets. In the
offline mining technique, the whole dataset is converted into
pairs/triplets before training. On the contrary, in online mining,
during a training phase impromptu pairs/triplets are generated
from data which is processed in the mini-batch of fed data . In
this case, if we feed our classification network with K images
per P classes, we can process up to (K P—1)x* (K P)/2 pairs
and P* K * (K —1)/2% ((P — 1) * K) triplets, compared to
K P/2 pairs and K P/3 triplets in offline implementation. This
technique gives more pairs/triplets for a single batch of inputs.
It is, therefore, much more efficient. Additionally, the selected
pairs/triplets can be considered moderate sample (semi-hard),
since they are the hardest within a small subset (mini-batch)
of the data, which is exactly what is best for learning with the
contrastive/triple loss model. As a general rule, online mining
ought to be performed wherever possible, since it allows for
much faster training.

B. Capsule Networks (CapsNets)

Despite CNNs’ architectures success in many classification
problems, they have various conceptual drawbacks: (1.) the
average-pooling and max-pooling layer in CNNs waste away
the position information about some entity that the network
seeks to recognize, (2.) they require much data to learn
efficiently, and (3.) they do not take into consideration spatial
hierarchical relation between simple and complex objects in
the image. CapsNet, with CNN capabilities and without its
shortcomings, was conceptualized by Geoffrey Hinton [5].
It processes visual information in much the same way as
the brain, which means it can maintain hierarchical spatial
relationships; theoretically, this architecture may learn faster
and use fewer samples per class. Recently, Sabour et al.
[16] introduced the applicable implementation of CapsNet by
extended it with an iterative routing-by-agreement algorithm
to classify and segment multiple digits within an image. What
makes CapsNet different from a CNN is this routing-by-
agreement, which further gives it the ability to identify the
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spatial relations. In a CapsNet, convolution layers extract low-
level features from the image and forward them to capsule
layers containing vectors of equal dimension, where the first
capsule layer shape must fit the output from the previous
convolution layer. The orientation of the input vector s; is
kept, while length is changed within 0 and 1 using the non-
linear activation function “squashing”, with length of this
vector representing the probability of the presence of an entity.
As the equation, (3) shows that the capsule j represents the
squashing function for the input vector s; (before squashing),
and the output vector v;. For a specific entity, the attributes in
the vector v; generate varying aspects, for example the length,
texture, position, and scale of that entity.

S
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Similar to a traditional CNN, the input s; is a weighted sum
through all multiplications between the coupling coefficients
c;; computed by the iterative “Routing by Agreement” process
and prediction vectors 4;|;, where each prediction vector is
created through multiplication of the output u; from a specific
capsule in the previous layer by a trainable weight matrix W,
as follows [13]:

Uy, = Wiju,, 4)
exp(b;;)

i = 5

€ij > exp(bik) ©)

5= Z%‘ftﬂm (6)

i

From capsule ¢ along with capsules in the previous layer
J, coupling coefficients are computed by the Softmax of b;;
pointing out the probability that capsule ¢ should be coupled
to capsule j,as follows:

)

bij = bij =+ Uj|;-Vy,
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1) The Proposed DME-CAPS : Fig. 4 displays the architec-
ture of the DEM-CAPS here proposed. DEM-CAPS consists
of three stages; (1.) feature extraction (2.) classification and
(3.) reconstruction. DEM-CAPS was composed 4 convolu-
tional layers, 3 capsule layers, along with three layers fully
connected. DEM-CAPS is fed a DEM sample, as input. 4
convolution layers extract (low-level) image features. After
that, these features will pass to the capsule layers to extract
the high-level features performing the routing process, while
the last capsule layer represents the instantiation parameters
for the “True” class and the “False” class.

Finally, we calculated the length (L2 Norm ) of each class
(True and False) capsule to predict the class. As mentioned
above, since the length of the capsule implements the prob-
ability of the entity which exists, if the label of the image
is True, DME-CAPS’s goal is to make True’s capsule vector
longer and make False’s capsule vector shorter. Consequently,
the combined losses of the two-class capsules dictates classi-
fication loss, defined as follows [13]:

£classification = Z(Tkmal(07m+ - ||Uk||)2 + (8)
k

A1 = Tp)maz(0, |vg|| — m™)?)

where T} is 1 whenever the class k is existent and 0
otherwise. Terms m™,m~, and \ are the hyper parameters
of the model.

We use the decoding network in the reconstruction stage. It
has 3 layers which are fully connected, the first two-layer with
PReLU activation function and the last with Sigmoid. Most
essentially, to make sure there is no equivariance of mapping
between an original image and its high-level capsule features,
DME-CAPS, through value of Mean Squared Error (MSE)
between a reconstructed image and the original, corresponds
features of the class to which the last capsule layer belongs,
using the decoding network to reconstruct the image from this
last capsule layer by corresponding the features of the class to
which it belongs. The reconstruction loss is given as follows
[13]:

®

‘Creconstruction

MMSE(I, FCdecoding (Uk))
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The less the value of the reconstruction loss, the more
the reconstructed image F'Clecoding(vy) that is the output of
fully connected layers is similar to /, and the better decoding
network is able to conserve information required to rebuild an
image within DEM-CAPS.

2) Data Augmentation: To avoid overfitting, classification
problems often need large quantities of data, so there is the
additional issue of inhibition of performance due to a shortage
of training data. To offset this, substantial work has gone into
maximum extraction of information by utilizing as much data
collected through different data augmentation techniques as
possible. Unless training data contains sufficient examples at
different rotations, classical data augmentation techniques such
as rotation, scaling, cropping, reflection, and translation, of
training images, are not easily learnable by CNNs. In addition,
these techniques produce only limited quantities of surrogate
data. Recognizing the possibility of producing a wider set
of accessions, we use a generative model to produce data
augmentation, which organically moves beyond the bounds
of classical techniques. A robust and efficient collection of
networks, GANSs [18], produce generate novel, credible images
from originals both labeled and unlabeled, and thereby provide
a germane solution to deep learning problems. To expand
training datasets, various methods of GAN application have
recently been proposed to generate new training images for
classification problems. In part designed according to image
Auxiliary Classifier Generative Adversarial Networks (AC-
GAN) [25], this model develops the ability to generalize data
items and produce additional data within that class by first
deriving data from a particular source domain. We built out our
AC-GAN, which is called DEM-AC-GAN (see Figure 5). The
discriminator here is a CNN architecture fed DEM samples
(the real image from the dataset, and the fake one created
by the generator). The discriminator has two output layers;
the first one predicts the label of class and the second output
dictates whether an image is real or fake. The generator is fed
by a latent vector and class label as input. It has deconvolution
layers that reverse the operations of the convolutional layers
of the discriminator to create an output image (fake image)
passed to the discriminator.

C. Graph Convolutional Networks (GCNs)

Traditional CNN architectures can only work convolution
ordered square image regions with fixed size and weights, so
they cannot globally adjust to the distinguished local regions
with different geometric appearances and object distributions.
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Lately, various advanced types of Graph Neural Networks
(GNNs) have been created, with Graph Convolutional Net-
works (GCNs) being an important example [12]. Similar
to CNN, GCNs extract features through exploration of lo-
cal graph neighboring nodes. Sometimes considered a more
generalized kind of CNN, GCNs essential different because
while CNNs are designed to work on (Euclidean) structured
data, GCNs are designed to work on irregular (non-Euclidean)
structured data, in which connections in graph nodes differ and
the nodes are un-ordered. To solve our classification problem,
we implemented DEM’s classification on embedded graphs
by first utilizing Simple Linear Iterative Clustering (SLIC)
[26] or the Quickshift algorithm [24]to segment the image
into superpixels, converting this representation into a graph
and inputting this to our GCN (DEM-GCN). The convolutions
conducted on these graphs simultaneously aggregate features
while gradually refining the input graphs. The superpixels that
have the same label will be perfectly clustered together in the
embedding space. Eventually, the classification output will be
created by the well-trained network.

1) The Proposed DEM-GCN: The proposed DEM-GCN
consists of graph convolutional layers and Eigen Pooling [12]
used to extract features of the input graph and then create
a vector representation for the classification process. Fig. 6
shows a binary graph classification for which the proposed
model DEM-GCN was designed. The illustration shows the
graph finally becoming a single supernode, after being 3 times
coarsened. Node features make up the input. To the graph
signal, there is then applied two convolutional layers through
which the input is passed. As defined in the coarsened graph,
the resulting node features are pooled to fewer nodes. Twice
more this procedure (two convolution layers followed by the
pooling layer) is repeated, until the pooling of the graph results
in a signal node. Based on the value of this node, the prediction
will be made through use of the cross-entropy loss in the last
layer. Several convolutional layers stacked in the DEM-GCN
can be written as follows :

-1 -1
F*Y = PReLU(D 2 AD 2 F'W?). (10
The output of the i-th convolutional layer is F'*t! ¢
RNV*dit1  where ¢ > 0. FO = T indicates to the input node
features created by the superboxel model (SLIC or Quickshift).
All convolutional layers C are gathered to the final node
impersonations which the DEM-GCN model has learned, and
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the output is implemented as the matrix F¢. We used the
spectral pooling (averaging or maximizing) operator based on
graph Fourier transform through utilization of the Eigenvectors
of the Laplacian matrix of each subgraph [12] to aggregate
into higher-level grapsh impersonations the node information,
eventually aggregating it further into the single supernode. The
pooling operator with [-th pooling operator ©; depended on
graph Fourier transform is given as follow:

(In

where O; is the pooling operator consisting of all the [—
th eigenvectors from all the K subgraphs [a Y, ..., @ (5)].
Each ;%) is up—sampled version of the eigenvector u;(*) in
the Laplacian matrix L(*) of the subgraph G(*) is given as
follow [12]:

X, =0/X

o™ =c®uy® 1=1 ., N (12)

where C'(¥) is the up—sampling operator used to up—sample
the eigenvectors into the entire graph. For more information
regarding to Eigenvector-based pooling strategy, we refer
readers to [12].

V. RESULTS AND DISCUSSION

Traditional learning techniques such as SVM, GC and
GMM are have several advantages but are not as performant
(see Table II) as the deep learning models such as SNN,
CapsNets, and GCNs we proposed to solve our classification
problem. These models have initiated a surge in deep learning
due to their ability to function with small datasets. SNNs suc-
cessfully solve over-fitting problems which hinder the perfor-
mance of deep learning approaches to the train small dataset.
To extract the most important features, SNNs’ algorithms uti-
lize parallel functioning of two or more CNNs working simul-
taneously, which vastly improved the classification accuracy.
SNNs can be trained using either online or offline pair/triplet
mining. Before beginning online mining, we studied how
extreme distances effect performance, as well offline effects
of neighbored patches training.We then analyzed, for online
versus offline mining, extreme cases of embedding distance,
examining the impact of batch semi-hard pair/triplet mining,
easy positive, and neighborhood component analysis loss. Fig.
7 show results of two-dimensional embeddings taken from the
penultimate layer of networks trained online and offline for
our embeddings’ network (Embedding-net). Figure 3 depicts
the SNN architectures used together with their embeddings.
In our experiments, we found that using the Embedding-net
network that contains a batch normalization layer following
each convolution layer improves the performance of all SNNs.
Though enhancing the model’s depth increases performance,
it is challenging to train the neural network model with many
layers due to the sensitivity of spontaneous conceptual weights
and learning algorithm configuration. For each respective mini-
batch, using batch normalization layers helps the deep neural
network model standardize inputs to a specific layer, which not
only changes the learning process but also significantly lessens
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the required intervals needed to adequately train the model.
The classification results obtained by the SNNs’ models were
evaluated using the loss function for each type of SNNs and
accuracy. To compute the accuracy in the SNNs’ models, we
extended the resulting embedding with a Sigmoid output layer
for categorical predictions. The loss and accuracy plots of the
four SNNs’ models are illustrated in Fig. 8. These results
suggest the online mining models perform the best compared
to other SNN models.

The other advanced CNN model used is CapsNet. By
utilizing inherent spatial relationships, such capsule networks
more accurately summarize what we perceive by simulating
the task of understanding changes in an image. To function
with the small number of DEM samples available to us, we
proposed the use of DEM-CAPS. While CNNs must be trained
and deployed on large datasets, DEM-CAPS generalizes well
with small datasets, making it conducive to our classification
problem. Though it is possible through the use of the data
augmentation technique to compensate for possible loss of
performance resulting from lack of data, if our model is limited
to train and test on the scant available domain data, there will
be a noticeable difference in terms of performance.

It is difficult using traditional data augmentation methods
alone (such as scaling, cropping, flipping, padding, etc.) to
obtain a suitable number of appropriate images. We used a data
augmentation method within GAN (DEM-AC-GAN). DEM-
AC-GAN generated 1000 images of True labels and 1200 im-
ages of False labels. Figure 9 shows the example of generated
samples by DEM-AC-GAN based on the ground truth images
for both classes. The results show the ability of DEM-GAN
to generate high-quality images, which we can now consider
as the new samples in our dataset. The training and testing
loss which is the classification loss and the reconstruction loss
for the training and testing dataset, classification accuracy,
and confusion matrix graphs for our classification problem
obtained without/ with data augmentation are depicted in
Fig. 11. The DEM-CAPS without augmentation techniques
accurately identified 370 images from 396 testing images,
while identifying 378 after applying the data augmentation
technique. Fig. 10 shows an example of reconstructed images
from the test dataset in both cases without/ with augmentation.
Although the DEM-CAPS model performs creditably well
on our small dataset, when we increased the number of the
training images using the data augmentation technique, the
DEM-CAPS became better able to reveal compelling features
that can distinguish the two different labels of the DEM
samples.

Finally, we used GCN with superpixel segmentation. For
graphs, convolution was defined utilizing the graph Fourier
transform, which in turn was defined as projection on the
eigenvalues of the Laplacian. Fig. 12 shows the classification
losses, classification accuracies, and confusion matrixes for the
DEM-GCN model with the two types of superpixel segmen-
tation models (SLIC and Quickshift). Based on the results,
the performance of DEM-GCN achieved is poor relative to
the other two advanced convolutional models, which indicates
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Fig. 7: Analysis of the performance of SNNs with Embedding-net in offline and online pair/triplet mining for the DEM dataset,
where (up) is the training dataset, and (down) is the test datset. The graph results are structured as follows; (a)/(f): slandered
CNN with Softmax layer, (b)/(g): SNN with offline pair mining, (c)/(h): SNN with offline triplet mining, (d)/(i): SNN with
online pair mining, and (e)/(f): SNN with online triplet mining.

1\
N o \riiji::f:j \\~\,vamwv4 MGoAl A o st b
(@) (b) (©) (d)
e ” Pfﬁmmhmk _ — p— /u ((((((((((
w \H /‘J Vv, 7
I (l/ /“.v“ j‘d
® (€ (h) O} )

Fig. 8: The performance of the loss and accuracy of the SNNs for the best dimension of Embedding-net in each model , where
(up) is the SNNs’ losses, and (down) is the SNNs’ accuracies. The graph results are structured as follows; (a)/(f): slandered
CNN with Softmax layer, (b)/(g): SNN with offline pair mining, (c)/(h): SNN with offline triplet mining, (d)/(i): SNN with
online pair mining, and (e)/(f): SNN with online triplet mining.
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Fig. 9: (up): Generated images by DEM-AC-GAN (True label), (down): Generated images by DEM-AC-GAN (False label) .
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Fig. 10: Reconstructed DEM samples. (a): original DEM samples, (b): Reconstructed DEM samples without augmentation,

and (c) Reconstructed DEM samples with augmentation.
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Fig. 11: (a)/(d): Training and Testing loss graphs for a fold (without data augmentation/with data augmentation), (b)/(e):
Training and Testing Accuracy graphs for a fold (without data augmentation/with data augmentation), and (c)/(f): Confusion
matrix of our binary classification results for testing dataset (without data augmentation/with data augmentation).
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Fig. 12: (a)/(d): Training and testing loss graphs for a fold in case using SLIC/ Quickshift segmentation, (b)/(e): Training
and testing accuracy graphs for a fold in case using SLIC/ Quickshift segmentation, and (c): Confusion matrix of our binary
classification results for testing dataset in case using SLIC/ Quickshift segmentation.

the GCN is not suitable to extract optimal features to classify
the DEM samples. We invariably obtained unstable GCNs’
training, despite using different methods to tune the parame-
ters. Graph-structured data introduces complex noise, despite—
compared with other formats of data, increased conservation
of relational data. GCN also uses max-pooling, or simple
average pooling, with loss of each node’s characteristics as
well as the topology between nodes. This further confirms
the effectiveness of CapsNets, which do not include pooling
layers in their architecture. Another way of interpreting the
low performance of GCN in this context is that GCNs lose
a large amount of information in the early stage during the
graph convolution step, and only the final aggregation output
is used for predicting the label. Various comparisons were
also made between DEM-CAPS and the other traditional
classifiers: all results showed that the DEM-CAPS is the best
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classification model for our dataset. Furthermore, the training
and testing stability of DEM-CAPS is better compared to the
other models. Table.II shows the summarized of all the models
applied to solve our classification problem.

VI. CONCLUSION AND FUTURE DIRECTION

Our binary classification problem was addressed by finding
the optimal method to detect the label type of the DEM
samples, where those with bridge/culvert points are considered
“True”, and those without bridge/culvert points are considered
“False”. One of the key issues for classification problems
is the overfitting that frequently occurs with small datasets.
Both deep learning and machine learning techniques have
been implemented in this paper to deal with this problem and
improve classification accuracy. We found that the proposed
DME-CAPS with data augmentation achieved better accuracy

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on May 28,2022 at 05:07:55 UTC from IEEE Xplore. Restrictions apply.



TABLE II: The accuracy results of traditional machine learning models vs advanced CNNs’ architectures. In the traditional
machine learning models, we used the Radial Basis Function (RBF) kernel SVM with(C and ~) parameters, GC with « that
represents the smoothing parameter, and GMM with (« and K), where K is the number of Gaussian distributions’ components

used.
Traditional Machine Learning Models Advanced CNNs™ Architectures
Model Accuracy DEM-SNN DEM-Caps
SVM(y = 0.001, C=10, without PCA) 70% Model Accuracy Model Accuracy
SVM(y = 0.0001, C=10, without PCA) 87% Standard CNN with Softmax layer 82% DME-CAPS without ion 93.4%
SVM(y = 0.0001, C=10, PCA=14) 85% Standard CNN with Sigmoid layer 90% DME-CAPS with i 95.3%
GC/unsmoothed (a = 1, PCA=14) 85% SNN with offline pair mining 91% DEM-GCN
GC/smoothed (o = 0.9, PCA=12) 83% SNN with offline triplet mining 92% Model Accuracy
GMM (a = 0.9, PCA=29, K=1) 82% SNN with online pair mining 94.3% DEM-GCN with SLIC 80%
GMM (a = 0.9, PCA=29,K=2) 89% SNN with online triplet mining 94.5% DEM-GCN with Quickshift 83%

compared to the other models. In the future, we aim to study
the effect of self-attention mechanism [6], which integrates the
concept of relevance by focusing only on the relevant aspect
(detect the culvert/bridge area in our case) of the given input,
on our proposed models and its efficacy on DEM.
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