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Abstract

Face recognition systems are extremely vulnerable to
morphing attacks, in which a morphed facial reference im-
age can be successfully verified as two or more distinct
identities. In this paper, we propose a morph attack detec-
tion algorithm that leverages an undecimated 2D Discrete
Wavelet Transform (DWT) for identifying morphed face im-
ages. The core of our framework is that artifacts resulting
from the morphing process that are not discernible in the
image domain can be more easily identified in the spatial
frequency domain. A discriminative wavelet sub-band can
accentuate the disparity between a real and a morphed im-
age. To this end, multi-level DWT is applied to all images,
yielding 48 mid and high-frequency sub-bands each. The
entropy distributions for each sub-band are calculated sep-
arately for both bona fide and morph images. For some of
the sub-bands, there is a marked difference between the en-
tropy of the sub-band in a bona fide image and the identical
sub-band’s entropy in a morphed image. Consequently, we
employ Kullback-Liebler Divergence (KLD) to exploit these
differences and isolate the sub-bands that are the most dis-
criminative. We measure how discriminative a sub-band
is by its KLD value and the 22 sub-bands with the high-
est KLD values are chosen for network training. Then, we
train a deep Siamese neural network using these 22 selected
sub-bands for differential morph attack detection. We ex-
amine the efficacy of discriminative wavelet sub-bands for
morph attack detection and show that a deep neural net-
work trained on these sub-bands can accurately identify
morph imagery.

1. Introduction

Face recognition systems are increasingly replacing hu-
man inspectors in border control and other security appli-
cations. Face capture is non-invasive, can be performed at
a distance, and benefits from a relatively high social accep-
tance. Furthermore, face recognition systems also have a
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natural safeguard: if the algorithm triggers a false alarm,
a human expert on site can easily perform the verification.
For these reasons, the International Civil Aviation Organi-
zation (ICAO) has mandated the inclusion of a facial ref-
erence image in all passports worldwide [16]. Still, all the
characteristics that make face recognition systems appeal-
ing also make them vulnerable. The mass adoption of au-
tomatic biometric systems for border control has exposed
the inability of these systems to reliably detect a falsified
image in a passport, particularly a morphed image, which
has been identified as a serious threat. A morph attack is
when a single morphed face image can be positively ver-
ified as two or more distinct identities [12]. This type of
attack requires no complex forgery of passport technology,
but rather a simple manipulation of the passport photo at
time of application. Many morphing applications are easily
and freely accessible and have no knowledge barrier [25]. It
follows that a criminal attacker, who otherwise cannot travel
freely, could obtain a legitimate travel document by morph-
ing his face with that of an accomplice with similar features,
resulting in existing face recognition systems verifying the
morph image as either of the two individuals.

Morphed images are not visually perceptible to the hu-
man eye, which makes them especially difficult to detect.
As characteristics of both subjects are taken into account
when morphing an image, face recognition systems are eas-
ily deceived and, as such, the false acceptance rate is very
high. In addition, these systems are designed to tolerate
a large intra-class variance to account for the significant
changes in facial appearance that occur in the 5 to 10-year
life cycle of a passport. Many commercial off-the-shelf
(COTS) systems have repeatedly failed to detect morphed
images [34]. Similarly, studies also show human recogniz-
ers are unable to correctly differentiate between a morphed
image and an authentic one [34] [30] [5]. Even after instruc-
tion on how to detect a morphed image, human recognizers
still perform worse than face recognition algorithms [24]
[18].

In this paper, we propose a differential morph attack
detection algorithm using an undecimated 2D Discrete
Wavelet Transform (DWT). By decomposing an image to
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Figure 1. Network architecture. Image pairs are decomposed into wavelet sub-bands, only selecting the discriminative wavelet sub-bands
for network training. The selected sub-bands are then sent to the Inception ResNET v1, where contrastive loss is applied during training.
From the feature embedding representation, verification is performed by computing the L2 distance between the feature vectors and a
decision score is produced.

wavelet sub-bands, we can identify the morph artifacts that
are hidden in the image domain more clearly in the spa-
tial frequency domain. Our analysis of wavelet sub-bands
demonstrates that specific high-frequency components are
more discriminative for morph attack detection. To this
end, multi-level DWT is applied to the images, yielding
48 mid- and high-frequency sub-bands each and discard-
ing the low-frequency bands altogether. To isolate the most
informative sub-bands, we employ Kullback-Liebler Diver-
gence (KLD) [19] on the sub-band entropy distributions.
The higher the KLD value, the more discriminative the sub-
band is for morph detection. We then use the selected infor-
mative sub-bands to train a deep Siamese network for the
differential morph attack detection scenario. The Siamese
network takes bona fide and morph pairs as input and yields
a confidence score on the likelihood of the pairs being from
the same person as shown in Figure 1. Siamese networks are
ideal for this scheme as they are primarily employed in tasks
that require finding similarities between two inputs. We
examine the usefulness of wavelet sub-bands for differen-
tial morph attack detection and show a deep neural network
trained on these sub-bands can accurately identify morph
imagery. The experiments are conducted on three different
morph image datasets: VISAPP [23], MorGAN [8] [9], and
LMA [8]. Additionally, cross-dataset performance is evalu-
ated on AMSL [27].

The paper is organized as follows: we briefly summarize
the related works in Section 2, explain the methodology in
the Section 3, and discuss our experiments and subsequent
results in Section 4. Finally, conclusions are presented in
Section 5.

2. Related Work

The vulnerability of face recognition systems to morph
attacks was first introduced by [12]. Many morph detection
algorithms have been proposed since then for both single
(no reference) and differential morph attack detection sce-
narios. Single (no reference) morph attack detection algo-
rithms rely only on the potential morphed image to make
their classification. Conversely, differential morph attack
detection algorithms compare the potential morphed image
with an additional trusted image, typically a live capture at
border security. As such, differential morph attack detec-
tion algorithms have more information at their disposal to
make their classification and, therefore, generally perform
better than single morph detection algorithms [37].

With respect to single morph attack detection, many clas-
sical hand-crafted feature extraction techniques have been
explored. The most well-performing of these general image
descriptors is Binarized Statistical Image Features (BSIF)
[17], in which extracted BSIF features were classified us-
ing a Support Vector Machine (SVM) [31]. However, deep
learning methods consistently perform better than these
general feature extraction techniques [40] [48] [32]. In
[32], complementary features from pre-trained VGG-19 and
AlexNet models are concatenated and then used to train a
Probabilistic Collaborative Representation-based Classifier
(ProCRC). The authors of [36] employ a multi-algorithm
fusion approach by extracting feature vectors using BSIF,
LBP [20], SIFT [22], SURF [4] and HOG with additional
deep feature embeddings from OpenFace DNN [3] used as
the last feature vector. These feature vectors are then used
to train separate SVMs, applying score-level fusion at the



end to obtain the final decision score. Photo Response Non-
Uniformity (PRNU) spectral analysis has also been pro-
posed to analyze the alterations caused by morphing fea-
tures [35]. In [26], the authors design a face morphing de-
tector by combining spatial and frequency feature descrip-
tors from an image. Fuzzy LBP in color channels of HSV
and YCbCR color spaces are investigated in [33]. Addition-
ally, studying the residual noise computed on color chan-
nels using deep CNN-based denoising has also been pre-
sented for reliable face morphing detection [45] [46]. This
paper aggregates several denoised instances of an image in
the wavelet domain.

There are a few papers that also address differential
morph attack detection. Face demorphing has provided
some encouraging results [13] [14]. In simplistic terms, the
demorphing algorithm subtracts the potential morph image
from the trusted image. The difference image is then com-
pared to the trusted image and a low similarity score sig-
nifies a morphed image. Face demorphing has also been
approached using a GAN framework to restore an accom-
plice’s image [29]. Classical feature extraction methods
have also been applied to the differential scenario by tak-
ing the difference of the feature vectors of the images being
compared. This difference vector along with the original
feature vector for the potential morph is then used to train
a difference SVM and a feature SVM, respectively. This
method is explored in [37], using LBP, BSIF, SIFT, SURF,
and HOG descriptors. Scherhag et al. [38] uses deep face
representations from feature embeddings extracted from Ar-
cFace [10] to detect a morph attack. The authors also em-
phasized the need for high variance and trained their net-
work on a morph database constructed using multiple dif-
ferent morph generation techniques. Disentanglement of
appearance and landmarks is another method recently pro-
posed for differential morph detection [42]. The use of
Siamese networks for differential morph image detection
has also been explored [43], but only in the image domain.

Because of the lack of large, publicly available morph
database, many morph detection algorithms train on small
morph datasets, usually created in house. However, re-
searchers can submit their morph detection algorithms to
the NIST FRVT morph detection test [28] for objective
evaluation. Most of the algorithms submitted to NIST ex-
hibit less than ideal performance on almost all tested morph
datasets, which vary in quality and method. The deep learn-
ing method in [38] outperforms the other models in the
NIST test, most likely due to the training protocol employ-
ing cross-database training.

3. Method
Our morph attack detection framework centers around

applying undecimated 2D wavelet decomposition and train-
ing a Siamese deep neural network to classify morphs based

Figure 2. Discriminative wavelet sub-band selection algorithm.
Bona fide (left) and morphed (right) images are decomposed into
48 wavelet sub-bands each. The entropy distributions and corre-
sponding KL divergence values are found. For a given sub-band,
the dissimilarity between the bona fide and morph entropy distri-
bution represents how informative the sub-band is for morph de-
tection. KL divergence is applied to isolate the discriminative sub-
bands. A Siamese network is trained with the selected informative
sub-bands.

on the most discriminative wavelet sub-bands. Because the
mrophing process can involuntarily introduce artifacts in
the final morph image, the proposed method aims to isolate
these artifacts in the wavelet domain and effectively utilize
them for morph detection. A close study of the wavelet
sub-bands shows that most morphing artifacts reside in the
high frequency spectrum. As such, we do not consider the
Low Low (LL) sub-band for decomposition and drop the LL
sub-band completely after the first level of wavelet decom-
position. Instead, we decompose only the Low High (LH),
High Low (HL) and High High (HH) sub-bands down to
the third level. After three levels of uniform decomposition,
48 sub-bands are obtained per image. We determine the
most optimal sub-bands for network training using Shan-
non entropy [41] and KL divergence [19]. After instituting
a threshold over the KLD values of the 48 sub-bands, we
obtain 22 sub-bands with the highest KLD values. Figure 3
displays the sub-bands that are selected for network training
and their location in the wavelet decomposition. A final set
of 22 informative sub-bands is then used to train a Siamese
deep neural network, consisting of the Inception ResNET



Figure 3. Selected sub-bands. The selected sub-bands are shown
with regards to their location in wavelet decomposition. Most of
the informative sub-bands chosen by KL divergence are those that
have been filtered with the HH filter.

v1 architecture as the base network.

3.1. 2D Discrete Wavelet Transform

A 2D Wavelet transform decomposes an image in the fre-
quency domain, essentially capturing different frequencies
at different resolutions. This means that wavelet transform
allows us to separately examine the approximation and de-
tail data in an image. Particularly for morph detection, we
can pinpoint the sub-bands where the morph artifacts ap-
pear and discard the sub-bands that are not informative for
our problem.

Wavelet decomposition occurs by applying the low-pass
and high-pass filters both vertically and horizontally simul-
taneously on a given image. After one level of decompo-
sition, the LL, LH, HL, and HH sub-bands are obtained.
We can continue decomposing the image further by filter-
ing each sub-band separately. In our framework, we adopt
undecimated wavelet decomposition, which maintains the
resolution of the image with each decomposition, and de-
compose the LH, HL, and HH sub-bands specifically down
to the third level. Our chosen naming convention for the
sub-bands is such that each sub-band is labeled LH HL HH,
where LH is the sub-band after the first decomposition, HL
is the sub-band after the second decomposition, and HH is
the sub-band after the third level of decomposition. As mor-
phed images are, in essence, approximations of the original,
our research indicates that the LL sub-band is unhelpful for

morph detection.

3.2. Sub-band Selection using KL Divergence

Training on all 48 sub-bands does not isolate which sub-
bands truly contribute to the classification result. Conse-
quently, we employ Shannon entropy and Kullback-Liebler
divergence to identify the optimal sub-bands for morph at-
tack detection. Shannon entropy, in particular, is used to
measure the embedded information in each sub-band. Fig-
ure 2 illustrates the wavelet sub-band selection algorithm.
For each of the three datasets, Shannon entropy and the en-
tropy distributions are computed for all 48 sub-bands. Since
we are interested in the comparison of bona fide and mor-
phed images, we calculate the entropy distributions for all
bona fide and morphed images in a dataset separately. Then,
KL divergence (relative entropy) is calculated between the
bona fide entropy distribution and the morph entropy distri-
bution for each sub-band.

The method for finding the KLD values is as follows: af-
ter the entropy distributions of each sub-band are found, we
find the histograms of entropy of all 48 sub-bands for both
morphed and bona fide images. Accordingly, 96 normal
distributions (48 bona fide and 48 morphed) are estimated
using these histograms. f̂bi represents the estimated bona
fide normal distribution for the ith sub-band, and similarly,
f̂mi

represents the estimated morph normal distribution for
the ith sub-band. Dissimilarity of the two probability dis-
tribution functions, namely (f̂bi , f̂mi) is calculated for all
48 sub-bands and the KL divergence is computed for each
relative entropy distribution.

The KLD values vary by dataset as each dataset is cre-
ated using a different morphing technique. Therefore, we
focus on selecting the sub-bands that are discriminative
across different morphing techniques. As such, the KL di-
vergence values of each dataset are normalized by remov-
ing the mean. Then, the normalized values are averaged
over the KLD values of each sub-band for each of the three
datasets. Figure 4 presents the distribution of the normal-
ized KL divergence values for the three morphed datasets
and their average values. The higher the normalized KLD
value for a single sub-band, the more informative the sub-
band is for morph classification. After sorting the nor-
malized KLD values from highest to lowest, we institute
a threshold for selecting the sub-bands for training. Ac-
cording to the method described in [2], the optimal number
of sub-bands is found to be 22. Thus, our final network
is trained with 22 input channels, consisting of the top-22
most discriminative sub-bands for morph detection.

3.3. Siamese Network

A Siamese neural network [6] is the architecture used
to train with the wavelet sub-bands. A Siamese network
consists of two identical sub-networks which share weights.



Figure 4. Normalized KL divergence values in the sub-bands 0 to 48 for all three morphing techniques: LMA (orange), MorGAN (blue),
and VISAPP (green). The averaged KL divergence value is represented in red.

Siamese networks are ideal for morph attack detection as
they are primarily designed to find similarities between two
inputs. Contrastive loss [15] is the loss function utilized for
training the Siamese network. Contrastive loss is a distance-
based loss function which attempts to bring similar images
closer together in a common latent space. At the same time,
the loss function distances the dissimilar ones even more.
Essentially, contrastive loss seeks to emphasize the similar-
ity between samples of the same class and exaggerate the
differences between images of different classes. The dis-
tance is found from the feature embeddings of the input pair
produced by the Siamese network. The margin is the dis-
tance threshold that regulates the extent to which pairs are
separated. The equation for calculating contrastive loss is
as follows:

Lc = (1−yg)D(I1, I2)
2+yg max(0,m−D(I1, I2))

2, (1)

where I1 and I2 are the input face images, m is the margin
or distance threshold to control the separation and yg is the
ground truth label for a given pair of training images and
D(I1, I2) is the L2 distance between the feature vectors:

D(I1, I2) = ||φ(I1)− φ(I2)||2. (2)

Here, φ(.) represents a non-linear deep network mapping
image into a vector representation in the embedding space.
According to the loss function defined above, yg is 0 for
genuine image pairs and yg is 1 for imposter (morph) pairs.

To streamline training, a Siamese Inception ResNET v1
architecture [44] is adopted, using weights pre-trained on
the VGGFace2 dataset [7]. The network is then re-trained
with the morphing datasets for the differential Siamese im-
plementation. The model is optimized by enforcing con-
trastive loss on the embedding space representations of
the genuine and imposter morph samples. The pre-trained
Siamese network is then additionally fine-tuned using the
training portion of each morph database. The feature em-
beddings are taken from the last fully connected layer and

the L2 distance between the two embeddings is calculated
for verification.

4. Experiments
4.1. Datasets

We train our network on three different morph datasets
that apply three different morphing techniques: splicing,
GAN generation, and landmark manipulation to investi-
gate how our model generalizes. The two morph image
databases used in this experiment are VISAPP [23] and
MorGAN [8] [9]. VISAPP is a collection of complete
and splicing morphs generated using the Utrecht FCVP
database [1]. The images are 900 × 1200 in size. This
dataset is generated by warping and alpha-blending two face
images together [49] and then splicing the resulting face
into one of the faces of the original contributing images.
This preserves the background and hairline of one of the
contributing faces, which helps avoid blurry artifacts and
ghosting that typically occurs in these regions and makes
morphs easier to spot [23]. For our network, we only use
a subset of 183 high quality splicing morphs that is con-
structed by selecting the morph images that have no recog-
nizable artifacts (VISAPP-Splicing-Selected dataset) along
with 131 genuine neutral and smiling images for a total of
314 images.

The MorGAN database is generated from a selection of
full frontal face images manually chosen from the CelebA
dataset [21]. It consists of a custom morph image gener-
ation pipeline (MorGAN) [8], created by the authors that
uses a GAN, inspired by the learned inference model [11],
to generate morphs. The encoder in the GAN transforms
the images into a latent space and when two latent spaces
related to two different subjects are combined, a morphed
image is synthesized. The database consists of 1,500 bona
fide reference images, 1,500 bona fide probe images and
1,000 MorGAN morphs of size 64 × 64 pixels. To com-
pare their GAN morphs, the authors also generate 1,000
LMA (landmark manipulation) morphs [25]. The VISAPP



Table 1. Performance of the proposed framework and baselines. With the exception of RGB-66 testing on MorGAN, BW-22 exhibits
superior performance.

Testing Method APCER@BPCER BPCER@APCER D-EER
5% 10% 5% 10% %

MorGAN

BW images 7.88 6.17 13.1 3.1 5.57
RGB images 4.5 3.3 3.22 1.74 4.17

LL-removed BW images 5.5 3.14 4.5 3.28 5.53
LL-removed RGB images 3.66 2.98 1.58 0.79 3.55

BW-22 wavelets 3.71 1.85 3.06 0.26 3.89
RGB-66 wavelets 0.86 0.0 0.37 0.37 1.62

LMA

BW images 22.7 14.3 36.5 15.1 11.6
RGB images 11.1 6.68 12.2 5.62 8.8

LL-removed BW images 25.9 14.4 19.0 11.5 11.5
LL-removed RGB images 15.75 7.4 12 6.48 8.06

BW-22 wavelets 4.95 2.67 4.38 1.46 4.52
RGB-66 wavelets 10.53 5.39 9.44 4.72 7.36

VISAPP

BW images 5.97 0.0 0.0 0.0 3.17
RGB images 1.32 0.08 0.0 0.0 0.0

LL-removed BW images 1.57 0.08 5.63 4.22 0.0
LL-removed RGB images 2.98 0.8 0.0 0.0 3.25

BW-22 wavelets 0.0 0.0 0.0 0.0 0.0
RGB-66 wavelets 0.0 0.0 0.0 0.0 0.0

UNIVERSAL

BW images 15.0 8.95 14.4 7.5 8.53
RGB images 6.65 4.01 5.22 2.5 5.63

LL-removed BW images 19.1 6.74 10.872 7.78 8.45
LL-removed RGB images 10.9 3.53 5.52 4.56 5.52

BW-22 wavelets 3.25 1.69 3.01 0.65 3.93
RGB-66 wavelets 6.4 2.67 5.15 2.57 5.15

and MorGAN images differ significantly in terms of qual-
ity and resolution. However, varying quality and resolution
during training can result in a network that is more robust
and performs better on different morphing techniques, par-
ticularly when the bona fide images are of equal resolution
to the morphed images. An additional publicly available
dataset, the Advanced Multimedia Security Lab (AMSL)
Face Morph Image dataset [27], is used as an “unseen”’
dataset to measure cross database performance. This dataset
consists of approximately 102 bona fide images and 2,175
morph images, created using the Combined Morph tool, as
described in [27]. This dataset is used for testing purposes
only.

All images are preprocessed according to the FaceNet ar-
chitecture [39]: face detection and alignment is performed
via MTCNN [50]. All images are resized to 160× 160 pix-
els before uniform wavelet decomposition is applied. Ac-
cording to the KLD sub-band selection algorithm, the top
22 wavelet sub-bands are selected for each image to pre-
pare for network training. As the Siamese network expects
pairs of input, the morph wavelet bands are paired off into
genuine face pairs and imposter face pairs, where a genuine
pair consists of two trusted 22 selected wavelet sub-bands
and an imposter pair consists of a trusted image’s wavelet
sub-bands and a corresponding morph image’s wavelet sub-
bands. 50% of the subjects are considered for training while
the other 50% are used to evaluate the performance of the
network. In addition, 15% of the test set is selected dur-
ing model optimization as the validation set. The training

data is further augmented with horizontal flips to increase
the training set and improve generalization. By design, the
train-test split is disjoint, with no overlapping morphs or
contributing bona fides to morphs. This enables us to attain
an accurate representation of performance. Batch size of 64
pairs of 22 selected wavelet sub-bands of size 22×160×160
is used for training the model. The batch generator also
compensates for class imbalance, ensuring that the network
sees an equal number of morph pairs and genuine pairs ev-
ery iteration.

4.2. Network Setup and Metrics

We fine-tune an Inception ResNET v1, already pre-
trained on VGGFace2, on the 22 selected sub-bands. We
train the network using the training portions of all three
datasets, calling it the “universal” dataset. The margin m
of contrastive loss is set to 1. Adam is the chosen optimizer
and the initial learning rate is 0.0001. The performance is
monitored by the validation loss and whenever the valida-
tion loss achieves a new low, the best weights are saved.
Every time the validation loss plateaus, the best weights are
re-loaded, the learning rate is divided by 10, and training
continues from there down to 1e-07. After that, early stop-
ping is implemented if the loss still does not improve after
35 epochs. The network is implemented using PyTorch and
training is accelerated with the use of three 12 GB Titan
X (Pascal) GPUs. We train the network on the universal
dataset for 150 epochs. All experimental results in the pa-
per are reported for the final iteration.



Figure 5. DET curves for all protocols, tested on the universal test
set. The universal test set consists of the testing portions of all
three datasets and serves as an indicator for overall network per-
formance.

The standard quantitative measures for morph attacks
are used to measure performance: APCER and BPCER.
Attack Presentation Classification Error Rate (APCER) is
the percentage of morphed samples incorrectly classified as
bona fide. Conversely, the Bona-fide Presentation Classifi-
cation Error Rate (BPCER) is the percentage of bona fide
images classified as morphs. D-EER stands for Detection
Equal Error Rate at which APCER equals BPCER. The
APCER5 is the APCER rate when BPCER = 5% and sim-
ilarly APCER10 is the APCER rate when BPCER is 10%.
In real world applications, the BPCER rate is the measure
by which individuals are inconvenienced with a false alarm.
We plot these rates in a Detection Error Tradeoff (DET)
graph.

4.3. Results

We assess the performance of our morph detector using
the test data of each individual dataset as well as the univer-
sal test set (which consists of all three individual test sets).
The universal test set performs essentially as an “average”
of how the universally trained network performs on each of
the individual databases. We feel it is important to capture
how the network learns each morphing technique separately
and generally. As is standard for wavelet transform, the im-
ages are converted to grayscale before wavelet decompo-
sition is applied. The 22 most discriminative sub-bands are
selected for training according to the procedure described in
Section 3.2. These grayscale 22 selected sub-bands, called
BW-22, are then used to train a Siamese network for morph
detection.

To determine how wavelets perform for RGB images, we
also apply wavelet decomposition separately to each chan-
nel of an RGB image following the methodology described

in Section 3, yielding 144 wavelet sub-bands (48 sub-bands
per channel). 22 sub-bands are chosen for each channel,
totaling 66 sub-bands each (RGB-66). The 22 sub-bands
selected from each channel are the same as BW-22 to fa-
cilitate comparison. The training protocol is identical for
both BW-22 and RGB-66, except for the batch size. Be-
cause RGB-66 consists of 66 channels of 160 × 160, the
batch size is halved to 32 in our configuration to conserve
memory.

Accordingly, we compare the performance of our
wavelet Siamese networks, BW-22 and RGB-66, with other
frameworks to validate the efficacy of our method. We ap-
ply each baseline to both color and grayscale images to
gauge how color information plays a role in morph de-
tection. The first baseline is RGB images (referred to as
RGB) to compare how the original images’ performance
varies from that in the wavelet domain. We also train a
Siamese network for the grayscale (referred to as BW) im-
ages to act as a baseline for BW-22 before wavelet decom-
position is applied. Additionally, as the LL sub-band has
shown to be unhelpful for morph detection, we have only
decomposed the mid- and high-frequency information for
our wavelet Siamese network. To mirror the removal of
the approximation data in the image domain, we decom-
pose the images into wavelet sub-bands. Then, we remove
the LL-band in the wavelet domain, and reconstruct the im-
age using Inverse Wavelet Transform. We do this for both
RGB images and grayscale images in our dataset, designat-
ing these baselines as LL-removed RGB and LL-removed
BW respectively. Theoretically, the LL-removed RGB and
LL-removed BW baselines should be approximately equiv-
alent to the original 144 sub-bands of RGB-66 and the 48
sub-bands of BW-22 before sub-band selection. We train a
separate Siamese network using the same training protocol
for each of the above scenarios: RGB, BW, LL-removed
RGB, LL-removed BW, RGB-66, and BW-22.

All networks are trained using the combined portions of
the three datasets: VISAPP, LMA, and MorGAN to obtain
a robust network that generalizes to many different mor-
phing techniques. The performance of each network can
be observed in Table 1. From Table 1, it is clear VIS-
APP performs consistently, regardless of framework. This
is likely due to the small size of the VISAPP dataset that the
models easily learn VISAPP’s morphing technique. Gen-
erally speaking, the networks trained on RGB information
perform better. This implies that there is in fact informa-
tion in the color channels that is useful for morph detec-
tion. Notably, grayscale images exhibit poor performance
all around. Table 1 also shows how difficult LMA morphs
are to detect in comparison to MorGAN and VISAPP. This
is in line with research that GAN-generated morphs are eas-
ier to detect than landmark manipulation morphs [47]. BW-
22 performs significantly better on LMA morphs than the



Figure 6. DET curves for all protocols, tested on the MorGAN test
set. RGB-66 performs the best for this morphing technique.

other models. From Figure 6, it should be noted RGB-66
performs extremely well on the MorGAN dataset. This sug-
gests that the MorGAN morphing technique contains more
color information than LMA and VISAPP, which were cre-
ating using landmark-based techniques. MorGAN, on the
other hand, was created using a GAN architecture, meaning
it is essentially a synthesized image created using the two
contributing images. Still, while RGB-66 performs unusu-
ally well for the MorGAN test set, BW-22 performs better
on the LMA dataset (see Figure 7) as well as overall perfor-
mance as can be seen in Figure 5, which shows the perfor-
mance of the networks on the ’universal’ dataset. From the
results, we can derive that color information plays a smaller
role in the classification of morphs in the wavelet domain.
Figure 5 shows the DET curves for all tested networks. It
is clear from Figure 5 that the wavelet Siamese networks,
particularly BW-22, exhibit superior performance.

Additionally, in Table 2, we compare the performance of
our wavelet-based morph detector with other classical fea-
ture extraction techniques that have been used for morph de-
tection, namely BSIF [17], LBP [20], SIFT [22], and SURF
[4], each combined with an SVM. Each method is trained
using the universal dataset and evaluated on the test sets of
the individual datasets. We also measure the baseline per-
formance of FaceNet [39] on all the morph test sets. To
evaluate cross-database performance, AMSL dataset is used
for testing only.

5. Conclusion

In this paper, we introduced a framework to detect mor-
phed face images using undecimated DWT. The core of our
method was the ability to identify morph artifacts in the
wavelet domain and to leverage the most informative sub-
bands for differential morph detection. To select the optimal

Figure 7. DET curves for all protocols, tested on the LMA test set.

Table 2. Performance Comparison of Proposed Framework. All
algorithms trained with the Universal dataset.

Testing Method APCER@BPCER D-EER
5% 10% %

MorGAN

SURF 86.8 70.11 46.1
SIFT 57.6 47.7 27.3
LBP 90.13 82.2 41.6
BSIF 86.8 71.6 31.7

FaceNet 36.80 31.15 22.25
BW-22 wavelets 0.86 0.0 1.62

LMA

SURF 81.1 63.69 51.1
SIFT 63.2 55.8 36.7
LBP 91.1 83.4 40.5
BSIF 86.5 75.0 36.4

FaceNet 43.70 40.90 30.35
BW-22 wavelets 4.95 2.67 4.52

VISAPP

SURF 94.1 90.3 47.8
SIFT 91.1 84.7 52.2
LBP 31.1 19.5 16.0
BSIF 30.6 22.73 16.4

FaceNet 25.0 15.8 15.5
BW-22 wavelets 0.0 0.0 0.0

AMSL

SURF 96.7 91.3 53.0
SIFT 94.65 84.9 38.0
LBP 91.0 72.9 43.0
BSIF 91.0 82.0 41.3

FaceNet 38.6 31.35 19.86
BW-22 wavelets 33.78 23.61 16.4

sub-bands, a data driven approach based on KL divergence
is employed. The 22 selected sub-bands were then used
to train a deep Siamese network successfully. Our frame-
work achieves an EER of 3.93% on the universal test set,
significantly better than the other baselines. Furthermore,
the framework performs well on an unseen morph dataset,
AMSL, that uses a different morphing technique than our
training set, achieving an EER of 16.4%. This shows how
wavelet decomposition with selective sub-bands is useful in
the morph problem domain.
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