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Abstract

The goal is to use Wasserstein metric to provide pseudo
labels for the unlabeled images to train a Convolutional Neu-
ral Networks (CNN) in a Semi-Supervised Learning (SSL)
manner for the classification task. The basic premise in our
method is that the discrepancy between two discrete empiri-
cal measures (e.g., clusters) which come from the same or
similar distribution is expected to be less than the case where
these measures come from completely two different distribu-
tions. In our proposed method, we first pre-train our CNN
using a self-supervised learning method to make a cluster
assumption on the unlabeled images. Next, inspired by the
Wasserstein metric which considers the geometry of the met-
ric space to provide a natural notion of similarity between
discrete empirical measures, we leverage it to cluster the
unlabeled images and then match the clusters to their similar
class of labeled images to provide a pseudo label for the data
within each cluster. We have evaluated and compared our
method with state-of-the-art SSL methods on the standard
datasets to demonstrate its effectiveness.

1. Introduction

CNN models have enabled breakthroughs in computer vi-
sion and machine learning. However, training a CNN model
relies on a large-scale annotated datasets which are usually
tedious and labor intensive to collect [38]. Considering the
vast amounts of unlabeled data available on the web, the idea
to use the unlabeled data without human effort to annotate
them has become very appealing [77, | 1]. In this work, we
tackle the challenge of deep SSL, the task of which is to use
the unlabeled data in conjunction with the labeled data to
train a better CNN classifier. Conventionally, we are given
a dataset D = D; U D,, where the data in D; are annotated
by labels while the data in D,, are not. The goal is to train
a CNN classifier on the known categories in D; using the
data in D. The test data involves only the classes that are
present in D;. The main challenge in SSL is to efficiently

leverage the unlabeled D,, to help learning on D;. To make
use of unlabeled data in the general setting of SSL challenge,
there are two fundamental assumptions that must be taken
into the consideration [11]: 1) We assume that labeled and
unlabeled data come from the same or similar underlying
distribution and there is no class distribution mismatch be-
tween the labeled and unlabeled sets. 2) We presume that the
underlying distribution of data has some structure. SSL algo-
rithms considers at least one of these structural assumptions:
consistency, manifold and cluster.

In consistency assumption [5, 8, 9, 60, 66], data samples
in a small neighbourhood have the same class label. In cluster
assumption [53, 12, 75, 62], data tends to construct discrete
clusters in some geometric sense, and data within the same
cluster are more probably to have the same class label. In
manifold assumption [49, 59, 70], data lie in the neighbour-
hood of a low-dimensional and well-defined manifold which
can be classified by meaningful distances on the manifold.
For all of these assumptions, it is important to consider the
geometry of the data when designing an SSL method. For
example, popular mean teacher [63] and 7m-model [39] lever-
age different data augmentations approaches, each of which
uses a different strategy to explore the local geometry of the
labeled data for generating new data.

Recently, the theory of Optimal Transport (OT) [57, 64] is
used as a tool in machine learning algorithms to consider the
geometry of the data. For example, the Wasserstein distance
in OT uses the geometry of the metric space to provide a
meaningful distance between two distributions even if the
supports of these distributions do not overlap. This property
of the Wasserstein distance has made it useful and practical
for many computer vision and machine learning applications

such as clustering [ 18, 37, 31, 46], generative models [4, 27],
loss function [22], semi-supervised learning [61, 23, 69, 43,
], and domain adaptation [16, 36, 58, 67, 19, 40].

In this work, we propose a new SSL method based on the
Wasserstein metric which follows the general assumptions
in SSL. Inspired by the effectiveness of Self-Supervised
learning in many tasks including SSL [72, 35, 32], we first
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pre-train our CNN using a self-supervised learning method,
MoCo v2 [28, 13, 14]. This process potentially enforces a
clustered structure in the feature space for the unlabeled data
which motivates us to perform a clustering on the feature of
unlabeled data and then infer a pseudo-label for them.

Specifically, using the self-supervised pre-training on the
CNN, we make a cluster assumption about the unlabeled data
in which clusters are identified by the Wasserstein barycen-
ter of the unlabeled data. Then, we leverage the Wasserstein
metric to match the clusters of unlabeled data to their most
similar classes of labeled data to provide pseudo-labels for
the unlabeled data. Here, the Wasserstein distance is a mea-
sure of similarity between two sets of data points where one
of them contains labeled data while the other one consists
of unlabeled data. This matching is based on the assumption
that the labeled and unlabeled data within the same class
have the same or similar distribution. Therefore, we would
expect that the similarity between two sets of data which
come from the same or similar distribution is more than the
case where these sets of data come from completely two
different distributions. Finally, depending on the matching,
we infer a pseudo label for the unlabeled data within each
cluster, which are used along with the initially labeled data
to train our CNN classifier.

2. Related Work
2.1. Semi Supervised Learning for Deep Models

There are many SSL algorithms in the literature [78, 11,
]. However, we briefly review the methods based on the
pseudo labeling and consistency regularization which have
been incorporated with deep learning models.
Pseudo-Labeling was initially proposed in [41]. In SSL
models based on the pseudo-labeling, the model usually
relies on its own prior belief about the label of unlabeled
data to obtain supplementary information over the course of
training [41, 55, 21, 42, 34]. The main drawback of these
methods is susceptibility to confirmation bias such that the
model is confident about its incorrect prediction, and then
overfits to incorrect pseudo-labels during the training [3].
Therefore, in these models, the incorrect pseudo-labels not
only can not provide useful information during the training
but also error of the model’s prediction is accumulated in
the model and results in overfitting. This downside even gets
worse in cases where the discrepancy between the domain
of the unlabeled data is significant from that of labeled data.
Consistency-based SSL models perform based on the
assumption that the model should be generally consis-
tent with its predictions between a given data and its
meaningfully-distorted versions [7]. This simple criterion
on the models output has provided promising results in the
SSL literature such as stochastic perturbations models [56],
m-model [39], mean teacher [63], and virtual adversarial

training (VAT) [47], Mixmatch [9], Remixmatch [8], and
Fixmatch [60]. The primary idea in stochastic perturbations
and m-model was initially proposed in [6] and is known
as pseudo-ensembles. The pseudo-ensemble regularization
techniques usually perform in such a way that under real-
istic perturbations of input z: (z ~ z’), the prediction of
the model g(x, #) should not vary drastically. This objec-
tive is achieved by considering a weighted loss term such
as d(g(z,0),g(«’,0)) during the training of model, where
d(.,.) denotes MSE or KL divergence which calculates a
distance or divergence between outputs of the prediction
function. The main problem in pseudo-ensemble approaches,
including m-model is that they highly depend on a likely
unstable prediction, which can instantly deviate significantly
over the course of training.

To solve this issue, two approaches including temporal
ensembling [39] and mean teacher [63], were introduced
to achieve a more stable target output ¢’ (x, 6). In temporal
ensembling, the model uses an exponentially accumulated
average of outputs, g(x, 6), to produce a smooth and consis-
tent target output while in mean teacher, the model uses a
prediction function parametrized by an accumulated average
of the model parameters 6 during the training. Contrary to
the stochastic perturbation methods mentioned earlier, VAT
initially estimates a small perturbation r to add it to = which
drastically changes the model prediction, g(z, ). Then, a
consistency regularization term, d(g(z,0), g(z 4+ r,0)) is
considered as a loss term during the training.

Following the advance in consistency regularization, and
pseudo-labeling for SSL, MixMatch integrates data augmen-
tation, consistency regularization [56], entropy minimization
[26], and mixup [73]. ReMixMatch enhanced on MixMatch
by including augmentation anchors and distribution align-
ment. Augmentation anchors are performs similar to pseudo-
labeling. FixMatch which is the sate-of-the art and the most
recent approach in this line of research combines consis-
tency regularization, and pseudo-labeling with a threshold
of confidence on the output of the model.

2.2. Self-Supervised Learning

The idea behind self-supervised learning (Self-SL) is to
take large amount of readily and available unlabeled data
and use it to understand itself [13, 14, 28, 50, 65]. Gener-
ally, the purpose of Self-SL for images is to create image
representations that are semantically meaningful via pretext
tasks that do not need human-annotations for a large training
dataset. Pretext tasks usually guide the model towards learn-
ing meaningful representations that are covariant with image
transformations such as rotations [25], and jigsaw transfor-
mations [50], and affine transformations [51, 74]. Recently,
it has been shown that Self-SL approaches can be simply
used to leverage all unlabeled data for learning and can be
incorporated by SSL models [72, 35, 32]. For example, the

12263

Authorized licensed use limited to: West Virginia University. Downloaded on May 28,2022 at 14:57:15 UTC from IEEE Xplore. Restrictions apply.



work in [72] demonstrated that integrating simple Self-SL
losses such as rotation is useful for a SSL approach.

3. Wasserstein Distance

For any subset § C R?, assume that P(6) represents the
space of Borel probability measures on f. The Wasserstein
space of order k € [1,00) of probability measures on 6 is
defined as follows: P (0) = {F € P(0) : [ ||z||*dF(z) <
oo}, where |[.|| is the Euclidean distance in RY. Let x ~
PePd),y~QeP(f) and J(P,Q) denote all the joint
distributions J for (z,y) on 6 x 6 that have marginals [P and
Q for z and y, respectively, and also assume that §(z, y) is a
distance measure between two instances x and y. Then, the
Wasserstein distance is defined as follows:

/ 6<x,y)’“dJ<x,y)>1/k7 (1

where £ > 1. In case k = 1, this is also called the Earth
Mover distance. The term J(z,y) can be considered as a
plan that transports a unit of mass from location x to another
location y such that the marginal constraints are satisfied.
The minimizer J* in Eq. (1) is called the optimal transport
plan. In the case where transporting cost of a unit of mass
from z ~ P to y ~ Q is equal to §(x, y)*, then Wy (P, Q) is
the minimum expected transportation cost. The Kantorovich-
Rubinstein dual theorem [64] indicates that in the special
case where k = 1, the Wasserstein distance has a closed
form of an integral probability metric as follows:

Wi(P,Q) = Hfs‘l‘lpqup[f (#)] = Eznglf(2)], (2

Wi (P, Q) = < inf

JeJ (P,Q)

where the supremum is over all 1-Lipschitz functions f :
X — R, and Lipschitz semi-norm is defined as follows:

Al = sup|f(z) = f(y)l/0(x,y).
4. Wasserstein Barycenter

Wasserstein Barycenter was initially introduced by [1],
and provided an efficient role in clustering methods based on
OT [18, 37, 31, 46]. Let 0 denote a Polish space, and P(6)
represent the space of probability measures on this space.
Moreover, let’s assume that we are given M > 1 proba-
bility measures Py, Pa, ..., Pyr € P(0) with finite second
moments, then the Wasserstein barycenter of these measures
is defined as follows:

1M
~ ) 9~
B(P) ﬁér;’f(g)M ;WQ (P, Py), 3)

it has been demonstrated by [2] that the problem of explor-
ing Wasserstein barycenter on the space of P(6) in Eq. (3)
boils down to search only on a reduced space O,.(6) where

r= Zf\il e; — M +1 and e; is the number of elements in P;

Clusters of unlabeled data

-
L . LT 5

Classes of labeled data

Figure 1. An illustration of mapping clusters to classes.

for all 1 < ¢ < M. Moreover, several practical and effective
algorithms have been recently proposed in [, 18, 68] that
provide proper local solutions for the Wasserstein barycenter
problem over the space of O,.(¢). These algorithms such
as the one in [ 18] have been a building block for many in-
teresting clustering algorithms based on OT such as [31].

5. Proposed Method

Here, we describe the outline of our SSL method. Our
SSL model contains three steps as follows: in step (1), we
initially pre-train our CNN using a self-SL method on the
unlabeled data and then fine-tune it using the initially labeled
data. This operation potentially encourages the CNN model
to construct cluster structure when representing the data. For
example, in Self-SL based on contrastive learning paradigm
[28, 13, 14], the goal is to learn similarities/dissimilarities
such that the model is able to understand that the similar data
should be closer to each other while dissimilar data should
be far away from each other in terms of their representations.
Therefore, pre-training the CNN motivates us to make a
cluster assumption on the unlabeled data and then annotate
each cluster with a unique pseudo-label.

In step (2), we use Wasserstein distance as a metric of sim-
ilarity between two discrete probability measures to match
each cluster of the unlabeled data to the most similar class
of the labeled data for pseudo-labeling (see Fig. 1). This
pseudo-labeling is based on the SSL assumption in which
the labeled and unlabeled data within the same class should
come from the same or similar distribution. Thus, we would
expect that the similarity between two clouds of data which
come from the same or similar distribution is more than the
case where these clouds come from completely two different
distributions.

Finally, in step (3), we use the unlabeled data annotated
with the pseudo labels obtained from step (2) in conjunction
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with the initially labeled data to train our CNN classifier.

5.1. Self-Supervised Learning and Clustering via
Wasserstein Barycenter

As discussed earlier, in step (1), we initially pre-train our
CNN model using a Self-SL paradigm on the unlabeled data
to make a cluster assumption for them. Here, we use MoCo
v2 Self-SL [14] as it is a strong and efficient Self-SL method.
Specifically, we use SImCLR [13] style data augmentation
for the unlabeled images in the contrastive loss, and follow
the implementation details in MoCo v2 where we use a two-
layers MLP on the top of the last feature layer to map image
features to a 128 dimensions, and then use a momentum
updated model to calculate the key features in the memory
bank.

After pre-training, we use the Wasserstein metric to per-
form a clustering on the unlabeled features extracted from
the network. Following the previous clustering method based
on OT [18, 37, 31, 46], here we relate the clustering algo-
rithm to the problem of exploring Wasserstein barycenter of
the unlabeled data to find the clusters underlying them. The
K-means objective is an optimization problem that has come
up in the quantization problem [54].

Given n unlabeled data {z1, ..., z,,} € RY, suppose that
these data are grouped into k clusters where £ > 1. The
K-means algorithm aims to find a set C' which contains k
elements {c1, ..., ¢ } that minimizes the following objective:

— 1 - 2
_nclf;;D (x4, C), 4)

let P, = 13" | §,, be a probability measure where 4,
is the Dirac function on z;. Then, problem (4) is equal to
exploring a probability measure Q with & finite atoms that
minimizes the following objective:

B(Q)= inf
Qe0y 9)

Z W3(Q,Py), )
this optimization problem can also be thought as a Wasser-
stein barycenter problem when M = 1 in Eq. (3). From
this prospective, as introduced by [18], the algorithm for
exploring the Wasserstein barycenter is an alternative for the
well-known Loyd’s algorithm to obtain local minimum for
the K-means. In this work, we use [ 18] to find the Wasser-
stein barycenter of the unlabeled data for clustering.

5.2. Matching Clusters to Classes via WGAN

After clustering the unlabeled data, in step (2), we follow
the cluster assumption in SSL where data within the same
cluster more likely should have the same class label. More-
over, in the general setting of SSL, data within the same
class in both labeled and unlabeled sets have the same or

similar distribution. Therefore, by considering the Wasser-
stein distance as a metric of similarity between two discrete
probability measures, label of each cluster can be predicted
based on the closest Wasserstein distance that the cluster
has with a class of labeled data in the labeled set. This is
because we would expect that the similarity between two
sets of data coming from the same or similar distribution is
more than the case where they come from completely two
different distributions. Since we usually deal with large scale
datasets, and CNN model is usually trained by stochastic
gradient descent, we follow the standard training procedure,
and use an approach based on gradient descent [4, 58, 24] to
compute the Wasserstein distance.

Suppose that P; = n% 22:1 dx,; denotes a labeled dis-
crete measure which is constructed by labeled data x;; be-

longing to the i-th class; and Q; = - Z] 10z ! _denotes
an unlabeled discrete measure Wthh is constructed by un-
labeled data x}; ,; belonging to the i-th cluster. In step (2) of
our algorithm, we aim to match each of Qj, ..., Qf to one of
the labeled measures P4, ..., P., so that we can infer a label
for each cluster. Therefore, we use the empirical Wasserstein
distance as a measure of similarity between each pair (Q;,
'P;) to match the pairs. For example, if the labeled measure
P, is the closest measure to the unlabeled measure Q;, we
annotate the data within the ¢-th cluster with label m.

In our SSL method, we use the CNN pre-trained via Self-
SL to extract the feature for a given sample. Given an image
x € R™*" the CNN as a function f,, : R™*" — R? with
parameters 6,, maps sample x to a d-dimensional represen-
tation. Inspired by the Wasserstein Generative Adversarial
Network (WGAN) [4], we use a critic layer to compute the
Wasserstein distance between each pair (Q;, P;). Given a
feature z = f,,(z) obtained by the CNN, the critic layer in
our model learns a function f, : R* — R with parameters 6,.
that maps a feature to a real number. Therefore, the Wasser-
stein distance between two discrete measures P; and Qj,
where z = f,,(z), 2’ = f,(2'),z € P;and 2’ € Q; can be
calculated by using Eq. (2) as follows:

Wi (Pi, Qj) = “féhlp<lEPi [fe(2)] — Eg, [fe(2")]
= (A0~ Eo (o)) ©

By considering the parameterized class of critic functions
fc are all 1-Lipschitz, we can then calculate the empirical
Wasserstein distance by maximizing the critic loss £,, with
respect to parameters 0. as follows:

|7>| > felfala |Q]

zEP;

'CU) (Pl7 Q]

> felfula

z'€Q;

(N
Now, we need to force the Lipschitz constraint. In WGAN
[4], it is suggested to clip the weights of critic layer in a com-
pact interval [—c, ¢] after each gradient update. However,
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weight clipping causes some issues including capacity un-
deruse, and exploding problems or gradient vanishing [27].
Therefore, we use the technique used [27] to force a gradient
penalty L,qq for critic parameters 6. as follows:

Lgraa(2) = (V2 fe(2)]l2 = 1)%, )

where the features Z on which to penalize the gradients are
the features of the labeled and unlabeled data, and also the
random points along the line between labeled and unlabeled
pairs. Therefore, we can approximate the Wasserstein dis-
tance by optimizing the following objective:

Wy (Pm QJ) = ngax(ﬁw - O@Cgrad)a &)

where « is a coefficient that balances between £, and Lg,q4.

5.3. Total Loss for Training the CNN

In step (3), we remove two-layers MLP from top of the
last feature layer which we used for Self-SL, and then place
a softmax layer for the classification task. In this step, we
aim to use the unlabeled data annotated by the pseudo labels
in conjunction with the supervision signals of the initially
labeled data to train our CNN classifier. Therefore, we use
the regular cross entropy loss to train the parameters of
our CNN as follows: Let &; be all of the labeled training
data annotated by true labels ), and X, be the unlabeled
training data annotated by pseudo labels ), then the total
loss function £(.), for training the CNN in SSL fashion is:

£(9n7 Xla Xua ya yl) = Ec(gna Xla y) + )\L:P(ana Xu, y/)a

(10)
where L.(.) denotes cross entropy loss function, and X is a
hyperparameter that balances between two losses obtained
from the labeled and unlabeled data. Our algorithm to train
a CNN in the SSL fashion is described in Algorithm 1:

6. Experiments

We carry out empirical analysis to show the effectiveness
and benefit of our SSL algorithm over other state-of-the-art
methods [55, 41, 66, 63, 9, 8, 60]. Here, we perform fol-
lowing studies: 1) We report results for supervised-baseline
where the CNN is only trained by initially labeled data,
this is because the goal of SSL is to greatly improve the
supervised-baseline. 2) We change number of the labeled
and unlabeled data and report the results as an efficient SSL
method should still perform well even by using a small num-
ber of labeled data and extra amount of unlabeled data. 3)
We replace our OT-base clustering method with the popular
k-means and report the results to demonstrate the importance
of the Wasserstein metric in our SSL algorithm. 4) We con-
duct an analysis on the clustering resolution (i.e., k in Alg 1)
to see its importance in our model.

Algorithm 1 Self-Supervised Wasserstein Pseudo-Labeling
input: A}, X, o, A, 1, B2, b, k,m

1: initialize: critic layer 6. with A/(0,0.001).

2: pretrain ,, using MoCo v2 Self-SL.

3: repeat
Zy =A{z}r,, Zy, = {2} where z; = fp,(x;).
5 {91, ..., Qr} + cluster Z, to k groups.
6:  {P1,..., P} + cluster Z, to c classes.
7. for each Q; and P; do
8
9

AN

fori=1,...,sdo
: choose a batch: {z;}?_; C P;, {z}b_, C Qi
10: 2h < fo(xh), zi < fulxy),
11: Z « {z, z;, Z}: take sample Z randomly on lines
between z] and z; pairs,

12: 9c <~ ec + ﬂlv& [‘Cw(z/a Z) + aﬁgrad(é)L
13: end for
14: S(l,j) — Kw(’PZ', Qj), by Eq (7)

15:  end for

16:  {y,}m, < pseudo label data within each cluster Q,
with the most similar class (i.e., argmin S(:, ),

17:  repeat

18: choose a batch:{z;}’_, C X, U &),

19: O, < 0y, — B2V, [L(On, z, 2, y,y)], by Eq. (10)

20:  until for an epoch

21: until §,, converge

Following the compared methods, we have been con-
sistent in CNN network and used the "WRN-28-2" [71],
including leaky ReLU nonlinearities [45] and batch normal-
ization [33]. We performed our experiments on the widely
used CIFAR-10/100 [38], SVHN [48], and ImageNet [20]
datasets. We note that in all of our experiments, we consider
the general SSL setting where the labeled and unlabeled
data coming the same or similar distribution, and a given
unlabeled data belongs to one of the classes in the labeled
set and there is no class distribution mismatch. Furthermore,
for each of aforementioned datasets, we split the training
set into two different sets of labeled and unlabeled data. We
make sure that all classes are balanced such that each class
should have the same number of labeled data.

For training, we set hyperparameter A to 0.7 in all of
our experiments. We use the regular SGD optimizer with
momentum 0.9, and weight decay 10~%. We set the learning
rate 35 in Alg 1 to 3 x 1072 in all of our experiment. The
batch size in the experiments (b in Alg 1) is set to 128. We
note that our batch size for training the CNN (b) is different
from the batch size that we map the unlabeled data to the
labeled data (m in Alg 1). The batch size for mapping the
unlabeled data to the labeled data is the size of initially
labeled data (]A;]). In other words, each time, we select | X}
unlabeled data to cluster them. Then, we use WGAN to map
these clusters to the groups of data formed by A;.
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Datasets CIFAR-10 CIFAR-100 SVHN
Labels 250 [ 4000 2500 [ 10000 250 [ 1000
Supervised 56.85+1.34 | 19.74+0.23 | 59.47 4+ 0.56 40.97+0.22 | 24.95+0.49 | 12.91 £0.26
m model [55] 54.26 +3.97 | 14.01 £0.38 | 57.254+0.48 37.88+£0.11 | 1896+1.92 | 7.54£0.36
Pseudo-Labeling [41] | 49.78 £0.43 | 16.09 £0.28 | 57.38 £0.46 36.21 +£0.19 | 20.21+£1.09 | 9.94£0.61
UDA [66] 8.82 £1.08 4.88 £0.18 33.13 +£0.22 24.50 £0.25 5.69£2.76 | 2.46 +£0.245
MT [63] 32.32+£2.30 | 9.19+£0.19 53.91 £ 0.57 35.83 £0.24 3.57£0.11 3.42 £0.07
MixMatch [9] 11.05£0.86 | 6.42+0.10 39.94 +0.37 28.31 £0.33 3.98+£0.23 3.50 £ 0.28
ReMixMatch [8] 5.44 £ 0.05 4.72+0.13 27.43 +0.31 23.03 £ 0.56 2.92+0.48 2.65 £ 0.08
FixMatch [60] 5.07 £ 0.33 4.31£0.15 28.64 +0.24 23.18+£0.11 | 2.64+0.64 | 2.36 £0.19
SSWPL (k-means) 9.62 £0.47 7.74+£0.73 30.19 £0.35 25.75 £ 0.60 6.16 = 0.18 4.59 +0.34
SSWPL 4.11+0.15 | 3.18 £0.09 | 26.52+0.45 | 20.88£0.85 | 2.71+0.25 | 2.27£0.07
Table 1. Comparing test error between SSWPL and different baselines and SSL methods.
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Figure 2. Number of accurate predicted labels by SSWPL in case (1) and (2).

The parameters of the network (6,, in Alg 1) are initial-
ized by pre-training via MoCo v2 Self-SL [14]. Here, we
follow the implementation details from MoCo-v2 but we use
a memory bank of size 16384. We initialized the parameters
of the critic layer (6, in Alg 1) by sampling randomly from
N(0,0.001). The critic layer parameters usually requires
around 10 epochs (s in Alg 1) to converge in our experi-
ments but we set it to 20 epochs for a sufficient optimization
guarantee for the parameters of the critic layer. For training
the critic layer, the learning rate is also set to 5; = 3 X 1073,
Note that during the training of the critic layer, we penal-
ize the gradients not only at CNN outputs for the unlabeled
and labeled data points but also at random points along the
line between pairs of labeled and unlabeled data points. The
coefficient «v is set to 10 as is suggested in [27].

In our experiments, we use the regular data augmentation
and standard data normalization techniques. Specifically,
for SVHN, we converted and normalized pixel intensity
values of the images to floating point values in the range of
[-1, 1]. For the data augmentation, we only applied random
translation by up to 2 pixels. For CIFAR-10/100, we used
global contrast normalization. The data augmentation on
CIFAR-10/100 are random translation by up to 2 pixels,
random horizontal flipping, and Gaussian input noise with
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standard deviation 0.15.

6.1. Comparison

The goal in SSL is essentially to obtain a better perfor-
mance when we use the unlabeled data compared to the case
where we use the labeled data alone. Thus, we report the
error rate of our "'WRN-28-2’ for cases where we only use a
limited amount of labeled data (i.e., Supervised in Table. 1),
and the case where we leverage the unlabeled data using our
SSL method called Self-Supervised Wasserstein Pseudo La-
beling (SSWPL) in Table. 1. Furthermore, we report the per-
formance of the other SSL methods including 7 model [55],
Pseudo-Labeling [41], UDA [66], MT [63], MixMatch [9],
ReMixMatch [8], and FixMatch [60] in Table. 1. For compar-
ison, we chose 250, and 4000 labeled images for CIFAR-10,
2500, and 10000 labeled images for CIFAR-100, 250, and
1000 labeled images for SVHN. Here, the remaining images
of the training set are used as the unlabeled images to train
the network . We ran our SSL methods over 5 times with
different random splits of labeled and unlabeled sets for each
dataset, and we reported the mean and standard deviation of
the test error rate in Table. 1. The results on CIFAR-10/100
and SVHN datasets in Table. | demonstrate the potential of
SSWPL for using the unlabeled data in comparison to other
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state-of-the-art SSL algorithms.
6.2. Self-SL. Contribution on Clustering

As discussed in step (1), we pre-train our CNN model
using Self-SL method and then form the clusters on the unla-
beled data. Here, we evaluate the importance of the Self-SL
on the clustering performance in our model. This is because
one may assume that pre-training of the CNN on the initially
labeled data can also enforce a clustered structure in the fea-
ture space for the unlabeled data, so it is important to know
the benefit of using Self-SL on the clustering performance
which plays an essential role in our model. Therefore, we
conducted experiments to compare two different cases where
in case (1), we fine-tune the network using initially labeled
data without considering the Self-SL while in case (2) we
consider the Self-SL for clustering. To compare these two
cases and indicate the positive influence of the Self-SL on
clustering, we changed the number of initially labeled data
in the training set and reported the number of accurately pre-
dicted pseudo labels using our SSL method in case (1) and
(2) on the remaining unlabeled training data. The significant
gap between case (1) and case (2) which are respectively
indicated by SSWPL and w/o Self-SL in Fig. 2 show that
for CIFAR-10/100 and SVHN datasets, the labels predicted
by our SSL method on the unlabeled training data are more
accurate in case (1) than case (2), which means that the entire
CNN network can benefit from Self-SL.

6.3. Analysis in Limited Label Regime

Here, we investigate that how changing the amount of
initially labeled data increase the accuracy of our SSL algo-
rithm in the very limited label scenario, and also at which
point our SSL algorithm can recover the performance of
training when using all of the labeled data in the dataset. To
conduct this evaluation, we moderately increase the number
of labeled samples during the training and report the per-
formance of our SSL algorithm on the testing set. In this
study, we ran our SSL algorithm over 5 times with different
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random splits of labeled and unlabeled sets for each dataset,
and reported the mean and standard deviation of the error
rate in Fig. 3. The results indicate that the performance of
our SSL method on CIFAR-10/100 and SVHN inclines to
converge as the number of initially labeled data increases.

6.4. Varying Number of the Clusters

We evaluate the role of the clustering resolution on the
error rate of SSWPL. In this study, we use 500, 1000, and
4000 labeled images from the training sets of SVHN, CIFAR-
10, and CIFAR-100 datasets, respectively. We change the
number of the clusters in our model, and evaluate error of
the model on the validation set. The results on SVHN and
CIFAR-10/100 datasets in Fig. 4 demonstrate that as we
increase the number of the clusters in our model, the model
can benefit from it but performance of the model inclines to
degrade as we largely perform over-clustering. The reason
can be interpreted by SSL models based on consistency
regularization [76, 44, 5]. In other words, if we significantly
perform over-clustering, we basically disregard the local
geometry or structure of the data when mapping clusters to
the label classes using the Wasserstein metric which is not
useful in SSL as we neglect the local consistency.

Furthermore, in our other studies, instead of using the
Wasserstein metric in the K-means objective for clustering
the unlabeled data, we used the generic K-means in SS-
WPL and reported the test error rate in Table. 1. We call
this baseline as SSWPL (K-means). The compared results
between SSWPL and SSWPL (K-means) on SVHN, and
CIFAR-10/100 datasets in Table. 1 demonstrate advantage of
leveraging the Wasserstein-metric in the K-means objective
for our SSL model.

6.5. Results on ImageNet

We also conducted an experiment on the large-scale Ima-
geNet dataset to evaluate the performance of our model when
using unlabeled unlabeled data in a very limited label regime.
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Following the prior work [60, 66], we also used a ResNet-
50 architecture and RandAugment [17] data augmentation
technique to conduct our experiments. Here, we set the num-
ber of the clusters in our method to the number of classes
(i.e., 1000). We used 10% of the training set as our initially
labeled data and the remaining as the unlabeled data. We
ran our model 3 times and reported the mean and standard
deviation of top-1 (top-5) error rate. The supervised-baseline
top-1 (top-5) error rate using 10% of the training data is
45.644+0.83% (24.67 £ 0.32) while for our SSL model (i.e.,
SSWPL), FixMatch[60], and UDA [66] are 26.46 & 0.44%
(9.1440.26%), 28.54+0.52% (10.87+0.28%), and 31.22%
(11.2%), respectively. These results indicate the efficiency
and potential of our SSL method compared to other effective
SSL approaches for the large-scale datasets.

6.6. Limitation, discussion and Future Work

As mentioned earlier, in this study we consider the gen-
eral setting of SSL in the literature [78, ] where there
is no class distribution mismatch and the main assumption is
that the labeled and unlabeled data coming from the same
or similar distribution. Specifically, every given unlabeled
data should belong to one of the classes which present in
the labeled set. However, the work [52] in Sec. 4.4 showed
that using unlabeled data from the mismatched classes es-
sentially has a negative impact on the performance of the
studied SSL approaches compared to the case where these
approaches do not use any unlabeled data at all. Likewise,
our method would also hurt the performance when using the
unlabeled data from the mismatched classes. This is because
our method will provide a pseudo-label for the unlabeled
data whether they belong to the mismatched classes or not.
Thus in such a case, our model predicts high confident but
incorrect labels for the unlabeled data within the mismatched
classes and then use them for training which causes a confir-
mation bias problem [3]. However, pre-training the network
using the Self-SL approach on the unlabeled data as we used
in our method potentially can cluster the unlabeled data from

)
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mismatched classes as good as the unlabeled data which are
not from mismatched classes. Therefore, in such a case, we
can perform the clustering approach on the entire data and
then disregards the clusters which contain the unlabeled data
from mismatched classes during the training. There are many
methods in the literature [ 10, ] that are proposed
to detect out of distribution samples which we can poten-
tially use them to detect out of distribution clusters. We will
consider this study as our future work.

) b}

7. Conclusion

We proposed a new SSL algorithm that uses the Wasser-
stein distance and Self-SL technique to provide pseudo labels
for the unlabeled data to train a CNN classifier in an SSL
fashion. In this work, after pre-training the CNN model using
a Self-SL method, we made a cluster assumption about the
unlabeled data and then used their Wasserstein barycenter
to explore the clusters underlying them. In the next step, we
used the Wasserstein GAN to match each of the clusters to
the most similar class of labeled data so we can provide a
unique label for the data within each cluster. Finally, we used
all the unlabeled data annotated by pseudo labels in conjunc-
tion with the initially labeled data to train our CNN model. In
this study, we conducted empirical analysis to demonstrate
the potential and efficiency of our SSL algorithm for lever-
aging the unlabeled data when labels are limited over the
course of training.
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