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Abstract—This work investigates the well-known problem of
morphing attacks, which has drawn considerable attention in
the biometrics community. Morphed images have exposed face
recognition systems’ susceptibility to false acceptance, resulting
in dire consequences, especially for national security applications.
To detect morphing attacks, we propose a method which is based
on a discriminative 2D Discrete Wavelet Transform (2D-DWT).
A discriminative wavelet sub-band can highlight inconsistencies
between a real and a morphed image. We observe that there
is a salient discrepancy between the entropy of a given sub-
band in a bona fide image, and the same sub-band’s entropy
in a morphed sample. Considering this dissimilarity between
these two entropy values, we find the Kullback-Leibler divergence
between the two distributions, namely the entropy of the bona fide
and the corresponding morphed images. The most discriminative
wavelet sub-bands are those with the highest corresponding KL-
divergence values. Accordingly, 22 sub-bands are selected as
the most discriminative ones in terms of morph detection. We
show that a Deep Neural Network (DNN) trained on the 22
discriminative sub-bands can detect morphed samples precisely.
Most importantly, the effectiveness of our algorithm is validated
through experiments on three datasets: VISAPP17, LMA, and
MorGAN. We also performed an ablation study on the sub-band
selection.

Index Terms—Morph detection, 2D discrete wavelet transform,
information entropy, feature selection

I. INTRODUCTION

Morphing attack detection is of great significance in high-
throughput border control applications. According to the CIA
triad model, consisting of three main components, confiden-
tiality, integrity, and availability of secure systems, morphed
images violate the integrity of verification systems. A morphed
image is generated using genuine face images from two differ-
ent individuals. Because the resulting morphed image inherits
characteristics of both subjects, it can be verified against both
real subjects. Morphed images are generated using two ap-
proaches. In the first approach [1]–[3], two real face images are
alpha blended in order to create a morphed image. To eliminate
the ghosting effects in the morphed image, the average of the
landmarks in both real images is used as the resulting landmark
of the morphed image. In the second approach introduced
in [4], a generative model, that is a Generative Adversarial
Network (GAN), is trained to synthesize morphed images.
Morph detection algorithms can be grouped into two main
categories: single and differential morph detection. In the first
category, an image under investigation is labeled as morphed
or bona fide image, which is known as single image morph
detection. In differential morph detection, a subject’s image is

Fig. 1. A bona fide and a morphed image along with the four corresponding
wavelet sub-bands. Using all the bona fide and morphed images in the
dataset, 48 pairs of entropy distributions are found for bona fide and morphed
images. Given a sub-band, dissimilarity between the two entropy distributions
represents how discriminative that sub-band is with respect to morph detection.
In the figure, sub-bands 16 and 40 are more discriminative than 6 and 32. A
deep classifier is trained using the selected informative sub-bands.

compared with a live capture of the subject, and information
from both images is used to detect morphed counterfeits.

To detect morphed images, some of the previous research
efforts employ hand-crafted features such as Binarized Sta-
tistical Image Features (BSIF) [5], Scale Invariant Feature
Transform (SIFT) [6], Speeded Up Robust Features (SURF)
[7], (Local Binary Patterns Histogram) LBPH [8], Fused Local
Binary Pattern (FLBP), and Histogram of Gradianets (HOG).
Recently, Deep Neural Networks (DNNs) have proved to be
promising in detecting morphed images [9], [10]. Thus far, no
wavelet-based morph detection algorithm has been proposed.
In this work, we propose a single image morph detector
which can distinguish between a bona fide and a morphed
face image. To do so, we train a deep neural network with a
small number of selected discriminative wavelet sub-bands that
are chosen according to the following criterion: the relative
entropy between the entropy distribution of real faces and
morphed faces is found for each of the wavelet sub-bands.
The higher the value of the relative entropy for a given sub-
band, the more discriminative that sub-band is for the task of
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classification. Fig. 1 depicts our morph detection mechanism.
Please note that only four wavelet sub-bands of a bona fide
and its corresponding morphed image are selected in the figure
for representation purpose. However, we consider all images
in a given dataset to find the histogram of entropy for each
sub-band. Experiments on three datasets, i.e., VISAPP17 [1],
MorGAN [4], and LMA [4] verifies the performance of our
morph detector. Standard quantitative measures, set forth by
ISO/IEC 30107-3 [11], are used to evaluate the effectiveness of
our proposed method. The first measure is Attack Presentation
Classification Error Rate (APCER), which is the percentage
of morphed images that are classified as bona fide. The
second measure is Bona Fide Presentation Classification Error
Rate (BPCER), which represents the percentage of bona fide
samples that are classified as morphed. If we label the morphed
class as positive and the bona fide class as negative , APCER,
and BPCER are equivalent to false negative rate and false
positive rate, respectively. The contributions of this paper are
as follows: the most discriminative wavelet sub-bands are
selected based on the KL-divergence between the two entropy
distributions of both real and morphed images for the wavelet
sub-bands. A DNN is trained using the selected informative
wavelet sub-bands to detect morphed images. Finally, an abla-
tion study is performed to show the effectiveness of our sub-
band selection scheme for tackling detecting morph attacks.

II. RELATED WORK

Some morph detection techniques use hand-crafted features
for training a classifier to identify morphed samples [4], [12],
[13]. In addition, deep embedding features extracted using off-
the-shelf DNNs can be utilized for training a morph detector
[4], [13], [14]. Damer et al. [4] employ GANs for generating
morphed face images. An SVM is trained for the task of
morph detection using the crafted LBPH, as well as the
extracted deep embedding feature vectors. One of the research
efforts [15] adopts Photo Response Non-Uniformity (PRNU)
to distinguish between real and morphed images. FLBP in
color channels of HSV and YCbCr color spaces are studied
in [16] as a method for detecting morphed images. One of the
most important aspects of the morphing attacks is carefully
selecting two bona fide subjects’s face images such that the
morphing attack looks highly photo realistic. In [17], the
morph detection is investigated when the morphed images
are generated using three different pairing protocols: (1) two
similar images for morphing, (2) two random images, and
(3) two dissimilar images. As a holistic approach for morph
detection, fusion of the above-mentioned algorithms can be
considered. In [13], two SVMs are trained using two different
textures descriptors: LBPH, and BSIF. Another SVM is trained
with the HOG, and deep embedding features are used to train
another SVM. To integrate all approaches, the resulting scores
from all the detectors are fused. Another work [10] employs a
denoised version of an image to find the residual noise of the
image which can be utilized for identifying morphed samples.
The paper aggregates several denoised versions of an image

in the wavelet domain. Disentanglement of appearance and
landmark is another method proposed for differential morph
detection [18]. Interestingly, reflection inconsistencies are also
employed to detect morphing attacks [19].

III. OUR FRAMEWORK

We employ undecimated 2D wavelet decomposition to
address morphing attacks. Shannon entropy and Kullback-
Liebler divergence [20] are utilized to identify the optimal
discriminative sub-bands. In particular, the Shannon entropy
[21] is used to measure embedded information in each sub-
band of the wavelet decomposition. Since most of the mor-
phing pipeline artifacts lie in the high frequency spectrum,
we do not consider the Low-Low (LL) sub-band of the first
level of decomposition to be decomposed further. Instead, the
Low-High (LH), High-Low (HL), and High-High (HH) sub-
bands are decomposed . After 3-level uniform decomposition,
48 sub-bands are obtained, for all of which the Shannon
entropy is computed, and the distribution of the entropy is
obtained for both real and morphed images for the three
training datasets. The Kullback-Leibler divergence (relative
entropy) is calculated between the entropy distribution of real
and morphed sub-bands for each of the 48 sub-bands, and
these 48 relative entropy values are sorted from highest to
lowest. A final subset composed of 22 optimal discriminative
sub-bands are selected that are used to train a DNN to detect
morphed samples. As for the DNN, we employ a pre-trained
Inception Resnet v1 architecture as our binary classifier.

A. Sub-band Selection Based on KL Divergence of Entropy
Distributions

The pivotal point here is to distinguish morphed samples
by leveraging the most discriminative sub-bands. To do so,
we find the histograms of entropy of all 48 sub-bands for
both bona fide and morphed images in the three datasets.
Accordingly, 96 distributions are estimated using the his-
tograms from the 48 sub-bands of both the bona fide and
morphed presentations. The term f̂bi represents the estimated
distribution for the ith sub-band pertinent to the bona fide
images, and similarly, f̂mi

represents the estimated distribution
for the ith sub-band pertinent to the morphed images. The
dissimilarity of the two probability distribution functions,
namely (f̂bi , f̂mi) are calculated for all 48 sub-bands. The KL-
divergence is the metric we employ to assess the dissimilarity
between the distributions.

In order to select the most discriminative sub-bands, the
KL-divergence values of each dataset are first normalized
by removing the mean. The values are normalized to enable
comparison of the distributions across the three datasets. Then,
the zero-meaned values are averaged over the three datasets
for each sub-band. The higher the KL-divergence value for a
single sub-band, the more informative and discriminative that
sub-band is in terms of classification. By choosing the sub-
bands that are based on the highest average KL-divergence
values from all datasets instead of each dataset separately,
we can find the sub-bands that are discriminative across the



Fig. 2. Zero-meaned KL-divergence values in the top 22 most discriminative wavelet sub-bands for three datasets: VISAPP17, LMA, and MorGAN. The
zero-meaned average of the KL-divergence values in each sub-band, as related to the three datasets, is represented in green.

Algorithm 1: Our Sub-band Selection
Input : Bona fide and Morphed Images
Output: A Set of Indices for Informative Sub-bands
I = {} ; // index of sub-bands
for i = 1 to 48; // sub-bands
do

for j = 1 to 3; // datasets
do

f̂bij ← distribution(H(Sbij ))

f̂mij ← distribution(H(Smij ))

Kij ← DKL(f̂bij‖f̂mij )
end

end
for i = 1 to 48 do

K̄i ← avg
j

(Kij)

if K̄i > threshold then
I← i

end
end

datasets, not just for a specific morphing technique. Fig.
2 shows the distribution of the zero-meaned KL-divergence
values related to the 22 most discriminative wavelet sub-
bands for the three morphed datasets, and their average values.
Algorithm 1 illustrates our sub-band selection mechanism, in
which H(.) represents the entropy function.

It is worth mentioning that the threshold for selecting the
informative sub-bands is chosen using a data-driven method.
After sorting the KL-divergence values from highest to lowest,
different subsets of sub-bands are selected, e.g., top-5, top-
10, and so forth. Suppose that the top-5 values from the set
of informative sub-bands are selected. A DNN having input
channel size of five is trained on the three training datasets
combined, coined the universal dataset. The performance
of the corresponding DNN is reported through Area Under

the Curve (AUC) metric using the validation portion of our
universal dataset. Fig. 3 depicts the Area Under the Curve
(AUC) when different numbers of sub-bands are chosen, based
on which the optimal point for number of sub-bands is chosen
as 22. The performance of the VISAPP17 dataset is consistent,
irrelevant of the number of sub-bands used. This is primarily
due to the small size of the VISAPP17 dataset (only 314
images–183 morphed and 131 real), and our DNN easily fits
to VISAPP17 dataset regardless of the number of the selected
sub-bands.

IV. EXPERIMENTAL SETUP

A. Datasets

Datasets used in this work are the VISAPP17 [1], Mor-
GAN [4], and LMA [4]. The VISAPP17 dataset has been
created using a landmark-based morphing attack, following
by splicing, in which corresponding landmarks in two bona
fide subjects are detected and the mean of each pair of the
landmarks is calculated. Landmarks of each subject are then
warped into the averaged landmark position, and the morphed
image is generated using the blending of the two subjects’
samples using triangulation [22] and then spliced into one of
the contributing images. This technique aims to avoid artifacts
that commonly arise from landmark manipulation, such as
those that occur around the hairline. The MorGAN dataset is
generated using a GAN. The encoder in a GAN can transform
images to a latent space, and when two latent spaces related
to two different subjects are combined, a morphed subject
is synthesized. The LMA dataset is also generated using the
landmark manipulation in two subjects’ face images.

B. Training Setup

In this work, the Inception-ResNet-v1 architecture [23] is
adopted as our DNN, which integrates the residual skips



Fig. 3. Area under the curve versus number of sub-bands used in the training.
Results indicate that 22 is the optimal number of sub-bands. After selecting 22
sub-bands, the performance does not increase significantly enough to validate
using more sub-bands.

introduced in [24], and a revised version of Inception ar-
chitecture [25]. We fine-tune an Inception-ResNet-v1, already
pretrained on VGGFace2 [26]. The DNN is additionally fine-
tuned with the obtained 22 discriminative wavelet sub-bands
of the VISAPP17, MorGAN, and LMA datasets. An Adam
optimizer [27] is employed for updating parameters of our
network, and two 12 GB TITAN X (Pascal) GPUs accelerate
our training.

C. Training/Testing Using Selected Sub-bands

In order to find the optimal number of sub-bands, we
combine the three morph image datasets into a universal
dataset. From this universal dataset, the training set consists
of 1631 bona fide, and 1183 morphed samples. The validation
set consists of 462 bona fide, and 167 morphed subjects.
Moreover, the test set includes 1631 bona fide, and 1183
morphed images. We train several Inception-ResNet-v1 net-
works using the training portion of the universal dataset for
a different number of chosen wavelet sub-bands. We assess
the performance of the trained networks using the validation
portion of the universal dataset. In other words, we do a search
over the number of wavelet sub-bands, which is the input
channel size of our convolutional neural network. Please note
that the wavelet sub-bands are already sorted based on the
corresponding KL-divergence values from highest to lowest.
According to the sub-band selection scheme mentioned in
section 3.B. and Fig. 3, which shows the performance of the
trained classifier using different number of wavelet sub-bands,
the optimal number of informative sub-bands is 22; thus, our
final DNN has 22 input channels consisting of the top 22 most
discriminative sub-bands.

The performance of our morph detector, and the baseline
methods for comparison are summarized in the Table 1. Please
note that we have considered all the possible training/testing
scenarios using the three datasets, i.e., the VISAPP17, LMA,
and MorGAN. The corresponding Detection Error Trade-off

Train Test Algorithm D-EER 5% 10%

V
IS

A
PP

17

V
IS

A
PP

17

BSIF+SVM [5] 16.51 35.61 26.79
SIFT+SVM [6] 38.59 82.40 75.60
LBP+SVM [8] 38.00 77.10 67.90

SURF+SVM [7] 30.45 84.70 69.40
Ours 0.00 0.00 0.00

L
M

A

BSIF+SVM [5] 54.00 93.31 88.95
SIFT+SVM [6] 37.00 79.00 70.00
LBP+SVM [8] 33.00 71.80 59.90

SURF+SVM [7] 39.30 86.10 75.70
Ours 31.86 83.80 71.21

M
or

G
A

N

BSIF+SVM [5] 54.80 92.32 88.87
SIFT+SVM [6] 58.00 96.10 89.90
LBP+SVM [8] 40.00 76.90 67.40

SURF+SVM [7] 40.30 83.00 74.00
Ours 41.00 93.60 85.00

L
M

A

V
IS

A
PP

17

BSIF+SVM [5] 51.19 83.65 75.00
SIFT+SVM [6] 38.00 90.80 86.30
LBP+SVM [8] 36.60 77.80 71.80

SURF+SVM [7] 30.80 70.00 65.60
Ours 68.80 100.00 98.90

L
M

A

BSIF+SVM [5] 33.05 78.34 62.86
SIFT+SVM [6] 33.30 83.40 72.00
LBP+SVM [8] 28.00 58.60 51.40

SURF+SVM [7] 37.40 79.50 70.00
Ours 8.80 14.90 7.91

M
or

G
A

N

BSIF+SVM [5] 42.01 89.77 79.19
SIFT+SVM [6] 50.70 95.00 89.80
LBP+SVM [8] 35.00 72.60 61.30

SURF+SVM [7] 41.27 84.60 78.00
Ours 32.22 76.22 62.50

M
or

G
A

N

V
IS

A
PP

17
BSIF+SVM [5] 63.00 100.00 100.00
SIFT+SVM [6] 42.00 92.40 84.00
LBP+SVM [8] 42.32 84.70 79.30

SURF+SVM [7] 31.40 74.00 55.70
Ours 2.20 0.59 0.00

L
M

A

BSIF+SVM [5] 53.00 95.25 92.46
SIFT+SVM [6] 40.20 90.70 80.00
LBP+SVM [8] 39.18 75.90 67.7

SURF+SVM [7] 39.40 81.00 71.60
Ours 39.11 89.55 80.25

M
or

G
A

N

BSIF+SVM [5] 1.57 1.42 1.30
SIFT+SVM [6] 43.50 93.20 84.20
LBP+SVM [8] 20.10 52.70 32.30

SURF+SVM [7] 39.95 80.00 72.60
Ours 0.00 0.00 0.00

TABLE I
PERFORMANCE OF SINGLE MORPH DETECTION: D-EER%,

BPCER@APCER=5%, AND BPCER@APCER=10%.

(DET) curves are displayed in Fig. 4. In addition, we have
trained the morph classifier using the training portion of the
universal dataset, and the performance of that network is also
evaluated using the testing portion of each individual dataset,
as well as the universal dataset. The results of the training
using the universal dataset, and the corresponding baseline
methods are provided in the Table 2. Moreover, the related
DET curves are shown in Fig. 5.

D-EER represents Detection Equal Error Rate, where
APCER equals BPCER. BPCER5 designates BPCER rate
for APCER=5%, and BPCER10 designates BPCER rate for



Fig. 4. DET curves when our morph detector is trained and tested on the
selected 22-sub-band datasets. The legend represents train-test datasets.

Train Test Algorithm D-EER 5% 10%

U
ni

ve
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al
(V
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PP
17

+L
M

A
+M

or
G

A
N

)

V
IS

A
PP

17

BSIF+SVM [5] 35.00 67.20 59.00
SIFT+SVM [6] 27.00 83.20 70.90
LBP+SVM [8] 37.67 72.50 59.50

SURF+SVM [7] 31.00 79.40 70.10
Ours 0.00 0.00 0.00

L
M

A

BSIF+SVM [5] 30.00 70.42 57.60
SIFT+SVM [6] 28.31 67.70 50.00
LBP+SVM [8] 29.00 61.50 51.20

SURF+SVM [7] 33.40 74.50 62.70
Ours 8.61 12.93 7.05

M
or

G
A

N

BSIF+SVM [5] 28.80 62.42 45.70
SIFT+SVM [6] 47.60 92.30 88.60
LBP+SVM [8] 31.20 62.00 55.60

SURF+SVM [7] 38.67 76.00 70.00
Ours 3.10 2.04 3.89

U
ni

ve
rs

al

BSIF+SVM [5] 23.74 51.42 38.67
SIFT+SVM [6] 37.21 87.45 76.71
LBP+SVM [8] 38.80 91.36 83.40

SURF+SVM [7] 36.00 75.50 65.76
Ours 5.45 5.70 3.19

TABLE II
PERFORMANCE OF SINGLE MORPH DETECTION: D-EER%,

BPCER@APCER=5%, AND BPCER@APCER=10%.

APCER=10%. A close scrutiny of the DET curves in Fig. 4
reveals that our morph detector can accurately detect morphed
samples in both the VISAPP17, and MorGAN datasets when
both training and testing data originate from the same dataset.
Fig 5. also shows that our morph detector is able to detect
most of the morphed samples in the VISAPP17, and MorGAN
datasets when the classifier is trained on the training portion
of the universal dataset.

D. Class Activation Maps

Class activation maps, set forth in [28], show the extent
to which different regions in a given image contribute to
the final classification decision for every class in an already
trained DNN. After training an Inception-ResNet-v1 morph
detector, class activation maps were constructed using the

Fig. 5. DET curves when our morph detector is trained on the selected 22-
sub-band universal datasets.

Fig. 6. Class activation maps. Left: bona fide subject 1, middle: morphed
subject, right: bona fide subject 2.

feature embeddings from the last layer before fully connected
and softmax layers. The results are interestingly indicative of
the likelihood that an image will be classified as morphed
or bona fide. For example, in Fig. 6, the middle image,
representing a morphed one, has many more affected areas
than the other two bona fide images. This is an indicator that
the middle image is the most likely image among the three
images to be classified as morphed. Given that, our trained
DNN using 22 discriminative wavelet sub-bands is effectively
distinguishing morphed images from the non-morphed images.

V. ABLATION STUDY

In this section, the effect of sub-band selection is examined.
To prove the effectiveness of band selection, a visualization
method, namely t-SNE [29], is adopted. A total of 200
morphed, and 200 bona fide images are selected from the test
set of MorGAN dataset. Fig. 7 shows the t-SNE visualizations
for three scenarios using the MorGAN dataset, the first of
which visualizes the original images, which is shown in the
leftmost column. In the middle column, the 48 selected sub-
band data is plotted. Finally, the 22 selected sub-band data is
shown in the rightmost column. It is evident in Fig. 7 that
sub-band selection contributes considerably to concentrating
the morphed and bona fide data into separable clusters, which
is highly desirable in terms of detecting morphed imagery.



Fig. 7. T-SNE visualization for the original images (left), 48 sub-band data
(middle), and 22 sub-band data (right). The 22 sub-bands evidently separate
the morph and bona fide classes into very distinct clusters.

VI. CONCLUSION

In this paper, we proposed a framework to detect morphed
face images using undecimated 2D-DWT. To select the optimal
and informative bands, we found the distribution of the entropy
for all the 48 wavelet sub-bands considering both the bona fide,
and morphed images. The KL-divergence between the given
distributions, integrated in a data-driven approach, led us to
select the 22 most discriminative sub-bands. Furthermore, a
close look at the presented results in Tables 1 & 2 highlights
the fact that our morph classifier can identify morphed samples
with a high accuracy in both the VISAPP17, and MorGAN
datasets. Moreover, the ablation study on the sub-band selec-
tion substantiates the effectiveness of our method and shows
that our trained DNN can map data samples to a new space
where two bona fide and morphed classes are aggregated into
two well-separated clusters.
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