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Summary statement
This article presents five mechanisms that eukaryotes can employ when experiencing stress to
accelerate the process of adaptation. These mechanisms are outlined with emphasis on examples

1n animals.

Abstract

Organisms mount the cellular stress response (CSR) whenever environmental parameters
exceed the range that is conducive to maintaining homeostasis. This response is critical for
survival in emergency situations because it protects macromolecular integrity and, therefore,
cell/organismal function. From an evolutionary perspective, the cellular stress response
counteracts severe stress by accelerating adaptation via a process called stress-induced evolution
(SIE). In this review, we summarize five key physiological mechanisms of stress-induced
evolution. Namely, these are stress-induced changes in 1) mutation rates, 2) histone post-
translational modifications, 3) DNA methylation, 4) chromoanagenesis, and 5) transposable
element activity. Through each of these mechanisms, organisms rapidly generate heritable
phenotypes that may be adaptive, maladaptive, or neutral in specific contexts. Regardless of their
consequences to individual fitness, these mechanisms produce phenotypic variation at the
population level. Because variation fuels natural selection, the physiological mechanisms of
stress-induced evolution increase the likelihood that populations can avoid extirpation and

instead adapt under the stress of new environmental conditions.

Introduction

All living organisms exist under the stress of their environment. Stress, in this sense,
refers to any environmental parameter exerting strain on biological systems (Kiiltz, 2020a).
When organisms are well-adapted to their environments, they harbor mechanisms that counteract
imposed strain and therefore maintain homeostasis. Whenever environmental parameters change,
organisms must adjust these mechanisms to uphold the balance between stress and the forces that
oppose it. If the change in stress is minor enough, only the cellular homeostasis response (CHR)
is needed for this adjustment. However, the capacity of the CHR may be exceeded depending on
the magnitude of stress and how rapidly it arises. This threshold for stress tolerance is termed the

“elastic limit,” and once it is surpassed, organisms must activate the cellular stress response
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(CSR) in order to survive (Kiiltz, 2020a; Call et al., 2017; Tian et al., 2012). Stress of this degree
is becoming increasingly relevant and concerning to life on Earth amid climate change. As the
atmosphere continues to collect greenhouse gases, numerous environmental factors, including
the temperature, salinity, and acidity of water, change globally and much more rapidly than
during previous geological periods (Cheng et al., 2020; Hoegh-Guldberg et al., 2007; Karger et
al., 2020). When populations are limited in their ability to migrate to more suitable
environments, they must somehow adapt in order to remain viable.

Under these circumstances, the CSR can employ physiological mechanisms of stress-
induced evolution (SIE). These are strategies by which individuals rapidly generate new
heritable phenotypes. At the population level, SIE produces widespread phenotypic variation and
therefore accelerates evolutionary processes. In one mechanism, stress triggers mutagenesis by
causing both increased DNA damage and decreased DNA repair fidelity (Chatterjee and Walker,
2017). In a more flexible response, stress induces the alteration of epigenetic marks, including
histone post-translational modifications (PTMs) and DNA methylation. These epigenetic marks
modify the expression patterns of DNA. Therefore, even if an individual’s sequence of DNA
remains unchanged, expression patterns (and corresponding phenotypes) can be passed through
generations. In a more radical response, stress can prompt the formation of structural genomic
variants through either chromoanagenesis or transposable element (TE) activity. These processes
can produce especially distinctive phenotypes by reorganizing gene regulatory networks, e.g., via
activation or inhibition of cis-regulatory elements (CREs), modifying gene products, and
creating and deleting genes (Lanciano and Mirouze, 2018; Mérot et al., 2020; Pellestor and
Gatinois, 2020; Ye et al., 2018).

In this review, we will summarize key physiological mechanisms of SIE in eukaryotes.
An emphasis will be placed on animals for supporting examples. Throughout the article, we will
demonstrate on a molecular level how life experience can alter the phenotype of an individual
and its progeny. Notably, these mechanisms may or may not increase an individual’s fitness;
oftentimes, they result in disease or sterility. Nonetheless, they facilitate the generation of
phenotypic variation within populations, where individuals may develop novel solutions to
compensate for stress. In doing so, these mechanisms increase the likelihood that populations

will adapt under stress.
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Stress triggers mutagenesis through increased DNA damage and decreased DNA repair
fidelity

DNA damage is an unavoidable part of life. Even under ideal environmental conditions,
DNA is continuously damaged by spontaneous alkylation, strand breaks, hydrolytic loss of
nitrogenous bases, and base conversion (Chakarov et al., 2014). In humans, it is estimated that 2
x 10" events of DNA damage take place every day in each cell (Barzilai and Yamamoto, 2004).
Damage, however, is not always detrimental, as the DNA damage response network has evolved
to either repair DNA damage or tolerate it (Pilzecker et al., 2019). Only a fraction of DNA
damage events lead to mutations that are retained and potentially inherited. In humans, despite
the high frequency of DNA damage, rates of retained mutation are about 2.8 x 10” per base pair
in somatic cells and 1.2 x 10™® per base pair in the germline (Milholland et al., 2017).

Stress increases the rate of DNA damage, and therefore the rate of mutation, beyond what
happens spontaneously. Diverse cellular stresses achieve this either directly or by secondarily
stimulating the production of reactive oxygen species (ROS) in cells (Chakarov et al., 2014;
Cheng et al., 2018; Kiiltz, 2005; Kiiltz, 2020b). ROS can damage DNA by causing strand breaks
or oxidizing nucleotides into a plethora of compounds, including thymine glycol and 8-oxo-
deoxyguanosine (Grollman and Moriya, 1993; Honda et al., 2001; Sallmyr et al., 2008). Through
alternative routes, stress can damage DNA by producing single-strand breaks (SSBs), double-
strand breaks (DSBs), apurinic (AP) sites, deaminated cytosine, cyclobutane pyrimidine dimers
(CPD), and pyrimidine-pyrimidone photoproducts (6-4PP). In Table 1, we outline specific
stresses that can produce these DNA lesions.

Cells attempt to repair all types of stress-induced DNA lesions. The strategy to repair
DNA strand breaks depends on whether they are SSBs or DSBs. DSBs are especially mutagenic.
When cells attempt to repair them, they can use the high-fidelity process of homologous
recombination (HR), but most often they use the error-prone process of non-homologous end
joining (NHEJ) (Chang et al., 2017). To address oxidized nucleotides, cells initiate base excision
repair (BER) (Chatterjee and Walker, 2017). Nonetheless, approximately 2-5% of these lesions
escape repair, and when they do, they often cause mutations from G:C to A:T (Chatterjee and
Walker, 2017; Grollman and Moriya, 1993; Moriya, 1993). The remaining stress-induced lesions
are often repaired through a combination of BER and nucleotide excision repair (NER).

However, if the cell cycle progresses into S phase before the lesions can be repaired, DNA
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damage tolerance pathways are activated instead (Chatterjee and Walker, 2017; Duncan and
Miller, 1980; Pilzecker and Jacobs, 2019). Translesion DNA synthesis (TLS) is a prominent
mechanism of the DNA damage tolerance pathway, and it functions to ensure that DNA
replication can proceed even when DNA lesions are present. TLS promotes mutagenesis by
using low-fidelity DNA polymerases that lack corrective exonuclease activity (Gerlach et al.,
1999; Masuda et al., 2016).

While DNA repair is naturally fallible, stress can further reduce its fidelity and thereby
increase the retention of mutations. Heat stress, for example, can inhibit both the BER and NER
systems (Kantidze et al., 2016). This inhibition compromises the repair of DNA damage inflicted
by stress. Similarly, proteins required for mismatch repair are downregulated under the stresses
of both hypoxia and toxins (Chatterjee and Walker, 2017; Mihaylova et al., 2003). The
mechanism of DSB repair can also be altered by stress, ensuring that low-fidelity NHEJ is used
for repair, e.g., during hypoxia and heat stresses (Galhardo et al., 2007; Kantidze et al., 2016).

Through these and many other mechanisms, stress increases the incidence and retention
of mutations. Stress-induced mutagenesis is likely an adaptive strategy as it provides an avenue
for a maladapted population to accumulate genetic diversity in response to environmental
change. Selection can act on the resulting genetic variation, enabling the population to become
better suited for stressful environments. These mutations are not entirely random. Stress-induced
mutations accumulate at different rates in transcriptionally active versus silent genes since the
susceptibility to DNA damage differs between corresponding eu- and hetero-chromatin (Makova
and Hardison, 2015). This effect can accelerate evolution in genes that are actively involved in
defining the phenotype of a specific cell type in a specific context. Altered cellular phenotypes,
in turn, influence phenotypes at higher levels of organization, including the whole organism

level.

Stress causes heritable (epigenetic) changes in histone post-translational modifications

In the nucleus of eukaryotic organisms, DNA wraps around an octamer of the four core
histones: H2A, H2B, H3, and H4 (Luger et al., 1997). These proteins are subject to a wide
variety of post-translational modifications (PTMs) (Zhao and Garcia, 2015). Histone PTMs are
epigenetic marks that can modify the state of chromatin and influence gene expression. They can

do this by altering the manner in which DNA 1is packaged, thus changing the accessibility of the
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DNA for proteins involved in transcription and repair (Norton et al., 1989). Histone PTMs also
modulate the recruitment of histone reader proteins to specific genetic loci to carry out
physiological functions, such as DNA repair, replication, transcription, and chromosome
condensation (Kouzarides, 2007).

Stress can alter the histone PTM landscape, which is the relative abundance and genomic
distribution of all histone PTMs in a cell (Table 2). Histone PTMs are “written” and “erased” by
histone modifying enzymes, but the catalytic activity of these enzymes can be modified under
stress, e.g., through chemical inhibition or alteration of cosubstrate availability (Fan et al., 2015).
Both of these strategies apply to the histone demethylase enzyme JmjC. Oxidative stress causes
the iron in its catalytic center to be oxidized from Fe(II) to Fe(III), which inhibits its function and
leads to histone hypermethylation (Garcia-Giménez et al., 2021). Interestingly, hypoxia also
represses the activity of this demethylase because JmjC requires oxygen as a cosubstrate (Hsu et
al., 2021). At the same time, however, hypoxia-inducible factors transcriptionally upregulate
JmjC to fine-tune the overall histone demethylation activity (Hsu et al., 2021). This example
illustrates that the effects of stress on the regulation of histone PTMs are pervasive and highly
complex.

By modifying the histone PTM landscape, stress can facilitate an appropriate
physiological response, e.g., during temperature and salinity stresses. Heat stress increases the
relative abundance of H3K27me3 in the adrenal gland of chickens (Gallus gallus domesticus)
(Zheng et al., 2021). This epigenetic response 1s associated with increased glucocorticoid
production, which assists in heat dissipation (Zheng et al., 2021). During cold stress, the relative
abundance of H3K27me3 decreases in thale cress (Arabidopsis thaliana), and it does so
specifically at the loci of two cold stress genes, leading to their activation (Yuan et al., 2013). On
the contrary, stress-induced histone PTMs can be associated with maladaptive phenotypes. For
example, people working in steel plants breathe in toxic particulate matter. As their time of
employment increases, their levels of H3K4me2 and H3K9ac also increase. In this case, the
histone PTM landscape is associated with an increased risk for lung cancer (Cantone et al.,
2011).

Even once the stress has subsided, induced histone PTMs can be retained within
individuals, via “intragenerational” inheritance by mitosis (Alabert and Groth, 2012). When

stress causes changes to histone PTMs in the germline, the epigenetic marks can be retained



186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216

across generations (Figure 1). This retention can occur through different processes. In one
process sometimes called “intergenerational” inheritance, stress directly induces histone PTMs in
the gametes of exposed parents. Upon fertilization, gametes that carry the directly induced
epigenetic marks become the next generation. In a second process often called
“transgenerational” inheritance, induced histone PTMs travel across multiple generations without
the need for individuals inheriting them to be directly exposed to stress (Boskovi¢ and Rando,
2018; Merkve Knudsen et al., 2018; Perez and Lehner, 2019; Woodhouse and Ashe, 2020).
Transgenerational inheritance is especially relevant for stress-induced evolution as it extends the
time that natural selection can act on epigenetically mediated phenotypic variation. Heat stress,
for example, was shown to increase the global acetylation levels of histones H3 and H4 in the
brine shrimp (4Artemia spec.). After heat stress subsided, the induced histone PTM landscape
could be transmitted through three subsequent generations, and it was associated with enhanced
tolerance to severe heat stress in the progeny (Norouzitallab et al., 2014).

While the mechanism of transgenerational epigenetic inheritance is not yet fully
elucidated, individuals can directly receive modified histones from the gametes that form them.
This process is relatively straightforward regarding maternal transfer, but epigenetic
reprogramming represents a hurdle to paternal transfer. During spermatogenesis, histone proteins
are replaced with protamines for an even tighter packaging of DNA (Bao and Bedford, 2016).
Some species such as mice only retain 1-2% of histones in sperm; however, this value is widely
variable between species (Champroux et al., 2018). For example, the percentage of retained
histones is approximately 5-10% in humans (Champroux et al., 2018), 37% in nematode worms
(Samson et al., 2014), 45% in marsupials (Soon et al., 1997), and 100% in lampreys and hagfish
(Saperas et al., 1997). In this way, it is possible that some species have a much higher propensity
for the transgenerational inheritance of histone PTMs.

Histone PTMs offer individuals a mechanism to rapidly modify gene expression patterns
and their phenotypes to better tolerate their environment. Such altered phenotypes (and the
underlying genotypes of corresponding individuals) are acted upon by natural selection and,
therefore, represent targets of stress-induced adaptation. Selection on these targets may be
prolonged over multiple generations since individuals exposed to stress can transmit histone
PTMs, gene expression patterns, and the resulting phenotypes they acquire to their progeny. The

adaptive value of retaining phenotypes that confer tolerance to short periods of stress in the
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absence of persistent stress may seem questionable (Nilsson et al., 2018). However, what natural
selection favors under such conditions are individuals with the ability to tolerate transient periods
of stress best while also performing best during intermittent periods of low stress. For this
reason, histone PTMs and corresponding gene expression patterns and phenotypes are reversible,
and their persistence within a lineage can depend on the intensity and duration of stress
experienced by their ancestors. In this way, epigenetic mechanisms can facilitate trial runs of
new phenotypes and integrate stochasticity and periodicity in environmental conditions into the
process of natural selection (Burggren, 2016; Walker and Burggren, 2020). Through this
mechanism (and epigenetic inheritance of DNA methylation), natural selection assesses the
adaptive value of corresponding phenotype variants in a particular lineage under variable

environmental conditions over longer periods of time.

Stress alters heritable (epigenetic) DNA methylation patterns

DNA methylation is a heritable epigenetic mark characterized as a methyl group attached
to the fifth carbon of cytosine. When DNA methylation occurs in a promoter, it typically silences
the gene by preventing the binding of transcription factors and prompting the formation of
heterochromatin. Conversely, when methylation occurs in an open reading frame, it typically
activates the gene (Greenberg and Bourc’his, 2019; Jones, 2012; Moore et al., 2013). De novo
DNA methylation is facilitated by the DNA methyltransferase enzymes DNMT3a and DNMT3b,
which can be targeted to specific genes through the guidance of piwi-interacting RNA (Flores et
al., 2013; Okano et al., 1999). Stress is well documented to induce de novo DNA methylation,
leading to differentially methylated regions (DMRs). Due to their influence on gene expression,
DMRs can impact morphology, physiology, behavior, and development (Angers et al., 2010).

Stress-induced DMRs have been reported across taxa, from plants to insects to humans
(Ou et al., 2012; Shi et al., 2011; Martin and Fry, 2018). Through this epigenetic mechanism, the
environment generates new phenotypes in individuals that, for better or worse, affect their fitness
(Table 3). Many putatively adaptive responses have been observed. For example, the spiny
chromis damselfish (Acanthochromis polyacanthus) was recently shown to accumulate 193
DMRs after exposure to increased temperature (Ryu et al., 2018). Those DMRs correlated with
increased aerobic scope, which enhanced tolerance to heat stress (Ryu et al., 2018). Similarly,

purple sea urchins (Strongylocentrotus purpuratus) that experienced upwelling conditions during



248  gametogenesis induced DMRs in their progeny that were associated with increased body size
249  (Strader et al., 2019; Wong et al., 2019). However, stress can sometimes also lead to

250  transgenerational transmission of traits that reduce fitness. Ionizing radiation in zebrafish (Danio
251  rerio), for example, was shown to induce 5658 DMRs; 19 of these were passed through one

252 generation, and 5 were passed through two generations (Kamstra et al., 2018). In this case, the
253  DMRs were localized to genes involved in cancer and apoptosis, which could help explain the
254  developmental defects observed in the progeny inheriting these epigenetic marks (Kamstra et al.,
255  2018).

256 Whether adaptive or maladaptive, phenotypes generated through stress-induced DMRs
257  can be inherited within individuals and across generations. Within individuals, patterns of DNA
258  methylation are often stably maintained through mitosis by the DNMT1 enzyme (Smith and

259  Meissner, 2013). DNMT1 itself, however, has a relatively high error rate of about 5% (Bird,

260  2002). As a result, additional variation in DNA methylation patterns can emerge through time
261  within an individual’s cell population, which affects organismal phenotype. The mechanism of
262  transgenerational inheritance of DNA methylation is not yet fully understood. A natural

263  limitation to this process is that widespread reprogramming of DNA methylation takes place

264  during gametogenesis and shortly after fertilization, but some genetic loci are protected during
265  these events (Angers et al., 2010; Engmann and Mansuy, 2020). Even so, it has been observed on
266  many occasions that stress-induced DMRs can be transferred through multiple generations,

267  including in the examples mentioned above.

268 As an epigenetic mark, DNA methylation rapidly elicits phenotypic variation that can
269  equip some individuals and their progeny to better cope with stress they experience. Importantly,
270  DNA methylation functions beyond an epigenetic mark as well, in a much more permanent

271  manner. Namely, it increases rates of mutation by frequently causing cytosine to thymine

272 transitions (Zhou et al., 2020; Yang et al., 2021; Holliday and Grigg, 1993). This pattern is so
273 apparent that species with widespread DNA methylation exhibit global depletion of CpG

274  dinucleotides, because this is where DNA methylation most often occurs (Gruenbaum et al.,

275  1982). In humans, 60-80% of all CpG sites are methylated (Smith and Meissner, 2013). With
276  such extensive DNA methylation, the human genome only has 20% of the expected amount of
277  CpG dinucleotides, presumably because many cytosines in these sequences have been mutated

278  into thymines (Bird, 1980). In contrast, fruit flies (Drosophila melanogaster), which display a
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very low level of DNA methylation, still have >90% of the expected amount of CpG sites
(Capuano et al., 2014; Lyko, 2001; Bird, 1980). Because DNA methylation is targeted, C>T
mutation can be targeted as well. Therefore, when stress induces DMRs, resulting phenotypic
advantages can potentially be fixed in a lineage by nonrandom mutation to specific genetic loci

(Angers et al., 2010).

Stress impacts genome structure through chromoanagenesis

Of all the physiological mechanisms of stress-induced evolution, changes to genome
structure are the most dramatic. In a process called chromoanagenesis (also known as genome
chaos), severe stress causes cells to rapidly shatter the genome and rearrange its contents (Heng
and Heng, 2020). Structural genomic variants are the outcome of this process, and they can
include any combination of copy number variants, chromosomal fusions, fissions, translocations,
inversions, and reshuffling (Mérot et al., 2020; Heng, 2009). These structural changes strongly
affect organismal fitness by changing gene regulatory networks, altering gene dosage,
functionally deleting genes, or even creating new genes from previously non-coding DNA
(Mérot et al., 2020; Pellestor and Gatinois, 2020; Ye et al., 2018). Most often, the effects of
chromoanagenesis are deleterious. On the rare occasion, however, the generated phenotypic
diversity is lifesaving (Figure 2).

Stress-induced changes in genome structure are well studied in the context of human
disease. It has been discovered within the past 20 years that structural genomic variants are a
universal feature of cancer, and they are frequently associated with additional diseases such as
Alzheimer’s (Heng, 2009; Horne et al., 2014). Using disease study systems, three categories of
chromoanagenesis have been identified: chromothripsis, chromoanasynthesis, and chromoplexy
(Koltsova et al., 2019). Chromothripsis refers to a single event where one chromosome is
shattered and randomly stitched back together. The process is triggered by a high load of DNA
double-strand breaks, which result under the pressure of numerous environmental stresses
(Koltsova et al., 2019). Additional forces including telomere attrition, abortive apoptosis, and
mitotic errors also prompt chromothripsis (Pellestor and Gatinois, 2020). Chromoanasynthesis is
a process that specifically leads to the generation of copy number variants, and it is triggered by

DNA replication and repair errors (Koltsova et al., 2019). Finally, chromoplexy describes the
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reshuffling of several chromosomes over the course of multiple events, and it is often caused by
replication stress, mitotic errors, and premature chromosome compaction (Shen, 2013).

Beyond causing disease states of somatic cells, chromoanagenesis proceeds within the
germline and within embryos during early development (Pellestor and Gatinois, 2020). In this
context, chromoanagenesis can be adaptive and lead to rapid speciation in asexually reproducing
organisms and even in heterogametic species, as long as both parents experience compatible
genome changes for sexual reproduction (Heng, 2009). Every type of structural genomic variant
has been implicated in driving speciation (Campbell et al., 2018; Feulner and De-Kayne, 2017).
Accordingly, both the morphology and number of chromosomes vary widely across taxa
(Ferguson-Smith and Trifonov, 2007). For example, the number of chromosome pairs in
eukaryotes ranges from one to 720 (Schubert and Vu, 2016; Khandelwal, 1990). In light of
evolutionary history, chromoanagenesis could be a large contributor to this structural genomic
variation because periods of major evolutionary change tend to occur during periods of severe
stress. For example, the “Big Five” mass extinctions and their subsequent events of adaptive
radiation corresponded to large changes in temperature, sea-level, volcanic and tectonic activity,
and meteor impacts (Condamine et al., 2013). During such periods, eurytopic species are favored
over stenotopic species while the opposite is the case during long, stable geological periods
(Kiiltz, 2003). Corresponding patterns of evolutionary history have been interpreted by the
theory of punctuated equilibrium (Gould, 1982).

Structural genomic variants can be adaptive under various contexts (Table 4). When
challenged by the widely used herbicide glyphosate, palmer amaranth (Amaranthus palmeri)
developed a copy number variant that enabled resistance to the herbicide (Gaines et al., 2010).
Similarly, the codling moth (Cydia pomonella) developed a sex-linked resistance to insecticides
through a chromosome fusion (Nguyen et al., 2013). Chromosome inversions have been adaptive
in the context of behavior, mating strategies, and morphology (Wellenreuther and Bernatchez,
2018). For example, inversions produced cryptic color phenotypes in stick insects (7imema
cristinae) and facilitated appropriate migratory behaviors in rainbow trout (Oncorhynchus
mykiss) (Lindtke et al., 2017; Wellenreuther and Bernatchez, 2018).

Whether the process occurs in somatic cells or gametes, chromoanagenesis elicits major
phenotypic changes by altering genome structure in individuals facing severe stress. Most of the

time, the outcomes are deleterious — either a disease emerges, or individuals generate gametes
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that are incompatible with potential mates, rendering the individuals sterile. On the lucky
occasion, structural genomic variants enable successful survival and reproduction, and they do so

within one generation.

Stress affects the activity of transposable elements

Transposable elements (TEs) have long been considered an engine of evolutionary
change fueled by stress (McClintock, 1984), and they make up a large portion of eukaryotic
genomes. In mammals, about 40% of the genome is comprised of TEs, and in plants, that value
can be as high as 85% (Chénais et al., 2012). TEs are sequences of DNA, sometimes called
“jumping genes,” that can readily move throughout the genome. The process of their
transposition can proceed through “copy and paste” or “cut and paste” strategies. In the copy and
paste strategy, class [ TEs are transcribed into an RNA intermediate then reverse transcribed
back into DNA at a new location. In the cut and paste strategy, many class II TEs have their
DNA sequence broken out of its position, then relocated (Wicker et al., 2007). Oftentimes, all the
information needed for transposition is encoded within the TE. If this is the case, then they are
called autonomous TEs, and depending on their family, they encode enzymes such as reverse
transcriptase, proteinase, RNase, integrase, and transposase. Nonautonomous TEs have also
evolved, and they lack some of the necessary components for transposition. As a result, they rely
on autonomous TEs for their mobilization (Wicker et al., 2007).

When activated, TEs can quickly produce distinctive phenotypes by impacting gene
expression, gene products, and genome structure. The expression of genes can be affected when
newly incorporated TEs provide cis-regulatory elements (CREs), change the context of existing
CREs, or alter the local epigenetic landscape (Chénais et al., 2012; Lanciano and Mirouze,
2018). Similarly, transposition can alter gene products when inserted TEs cause alternative
transcription start sites, alternative splicing, or premature termination. New exons and introns
can even be created in the process (Lanciano and Mirouze, 2018). For transposition to occur,
DNA double-strand breaks (DSBs) are needed to cut out and insert TEs. This form of DNA
damage increases rates of mutation, specifically at the sites of deletion and insertion (Biémont
and Vieira, 2006). Furthermore, transposition-induced DSBs can produce structural genomic
variants by feeding into the chromothripsis pathway, which leads to chromosome inversions and

chromosome reshuffling (Figure 2) (Pellestor and Gatinois, 2020). TEs generate additional



371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400

structural genomic variants as a consequence of the high sequence similarity between TEs of the
same family, in particular at their flanking sequences such as inverted terminal repeats (ITRs).
This similarity enables non-allelic homologous recombination, which can cause chromosome
inversions, duplications, translocations, and deletions (Kent et al., 2017).

Numerous stresses can alter TE activity, including cold and heat stresses, UV irradiation,
salinity stress, and pollution (Miousse et al., 2015; Rey et al., 2016). However, the pattern of
alteration is context dependent. In response to stress, TEs may be activated, repressed, activated
then repressed, or repressed then activated (Horvath et al., 2017). Furthermore, when TEs are
activated, it can be at the transcriptional level, the transpositional level, or both (Horvath et al.,
2017). Epigenetic regulation is one major force that mediates this change (Biémont and Vieira,
2006). TEs are repressed under the control of DNA methylation and histone PTMs (Zemach et
al., 2010). When stress alters these epigenetic marks, TEs can be released from repression and
freed to transcribe their contents and/or mobilize to other parts of the genome (Pappalardo et al.,
2021). Another stress-sensitive mechanism of TE activation involves the heat shock protein 90
family (HSP90). While HSP9O0 silences TEs under optimal environmental conditions, moderate
stress can limit this function when HSP9O is instead needed to protect protein conformation
(Ryan et al., 2016). Notably, the limitation of available HSP90 also increases phenotypic
diversity by releasing cryptic genetic variation (CGV) from suppression (Paaby and Rockman,
2014). Therefore, HSP90 has been considered a key evolutionary capacitor (Rutherford and
Lindquist, 1998).

Stress-induced changes in TEs have been observed across eukaryotic taxa (Table 5), and
on many occasions, they have proven to be adaptive. For example, insecticide exposure has
altered TE activity in insects. In the fruit fly (Drosophila melanogaster), this led to the
overexpression of an insecticide detoxifying gene (Chung et al., 2007). In the common house
mosquito (Culex pipiens), this led to the alternative splicing of a toxin receptor gene (Darboux et
al., 2007). In both instances, the TEs induced by insecticides resulted in insecticide resistance.
Similarly, climate has been shown to induce potentially adaptive TEs in the Asian tiger mosquito
(Aedes albopictus). The frequency of TE insertions varies between a native population in a
tropical environment and an invasive population in a temperate environment. In the invasive

population, TEs of multiple families are inserted at higher frequencies, and they are positioned
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within the proximity of genes that likely facilitate overwintering (Goubert et al., 2017). Altered
regulation of these genes could increase the fitness of mosquitoes living in colder climates.
Through the alteration of TE activity, stress generates rapid phenotypic variation. The
variation can be significant because TE activation has the power to affect gene expression, gene
products, and genome structure. When these changes happen in the germline, they can be passed
from parent to offspring indefinitely. This standard form of transmission is referred to as
“vertical transfer.” However, “horizontal transfer” of TEs can happen as well, where TEs jump
between species. In the evolutionary history of vertebrates, for example, at least 975 events of

horizontal transfer of TEs have occurred (Zhang et al., 2020).

Life experience and physiology shape evolution

Contrary to the principles of the Modern Synthesis of evolutionary theory, stress that an
individual encounters throughout its lifetime is now known to induce heritable phenotypic
variation (Burggren, 2014; Jablonka and Lamb, 2020; Noble, 2013; Skinner, 2015). This concept
of stress-induced evolution (SIE) has been accepted for decades in regard to prokaryotes
(Radman, 1975; Bjedov et al., 2003; Foster, 2007; Rosenberg et al., 2012). In prokaryotes, stress
significantly increases rates of mutation, largely through the activation of the SOS system and
RpoS stress response (Radman, 1975; Foster, 2007). Although these systems do not exist in
eukaryotes, more recent studies have demonstrated that eukaryotes employ several powerful
mechanisms to increase phenotypic variation in response to stress. Beyond the increased rates of
mutation via DNA damage and lowered DNA repair fidelity that occur outside of the prokaryotic
SOS and RpoS systems, variation is achieved through histone PTMs, DNA methylation,
chromoanagenesis, and transposable element activity.

In multicellular eukaryotes, the mechanisms of SIE can proceed in both the soma and the
germline. Somatic cell evolution has been studied intensively in the context of disease (Anway et
al., 2006; Heng, 2009; Rajesh Kumar et al., 2002), proving that the outcome of these
mechanisms can be maladaptive. Considering that many multicellular organisms consist of
millions, billions, or even trillions of cells, e.g., 37 trillion cells in humans (Bianconi et al.,
2013), the large population of cells provides a sufficient pool of beneficial alterations that
selection can act on. A classic example of adaptive somatic cell evolution is the production of

antibodies in vertebrates. After organisms are exposed to new antigens, the variable regions of
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immunoglobulin genes in B cells become hypermutated (Diaz and Flajnik, 1998; Wysocki et al.,
1986). This mechanism ultimately increases the affinity of antibodies to circulating antigens,
thereby strengthening the immune system. While these changes to somatic cells easily impact the
fitness of individuals by affecting their ability to survive and reproduce, stress arguably has the
strongest influence over organismal evolution when alterations happen within the germline. Each
of the physiological mechanisms of SIE can proceed within the germline, although this happens
less frequently than in somatic cells because germ cell chromatin is transcriptionally silent and
better protected from damage (Bao and Yan, 2012; Engmann and Mansuy, 2020; Heng, 2009;
Milholland et al., 2017). Nonetheless, critical windows of development exist where stress is
more likely to induce stably transmitted epigenetic marks in the germline (Skinner, 2011).
Embryonic gonadal sex determination is the first critical window, and gametogenesis is the
second (Hanson and Skinner, 2016).

Despite the popularity of the idea that the soma and the germline are completely isolated,
i.e., the Weismann Barrier (Weismann, 1890), this barrier can be bypassed through
microvesicles. Microvesicles, in the form of either shedding vesicles or exosomes, are released
from all cell types (Camussi et al., 2010; Doyle and Wang, 2019). Once released, they can
remain in the extracellular matrix within the proximity of the cell of origin, or they can travel
through biological fluids to reach distant target cells (Camussi et al., 2010). These microvesicles
contain components of the origin cell, including RNA and proteins. By delivering both of these
components, microvesicles have the power to epigenetically reprogram target cells (Engmann
and Mansuy, 2020; Sharma, 2014). This important transfer of information can take place
between two somatic cells, or between somatic and germ cells. A recent study clearly
demonstrated this phenomenon in mice xenografted with human tumor cells. RNA from the
xenografted cells traveled through the bloodstream in exosomes until being finally received by
spermatozoa (Cossetti et al., 2014). Therefore, germ cells do not necessarily need to be directly
altered by stress; it is possible for information from affected somatic cells to reach and modify
the germline. Impressively, Charles Darwin essentially predicted the existence of microvesicles.
He described them as “gemmules” in 1868, before they could have possibly been detected
(Noble, 2021).

Through all the physiological mechanisms discussed in this brief essay, eukaryotic

organisms can establish heritable phenotypic variation in response to stress. Notably, DNA base
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mutation is not the only driver of this variation. Rapid phenotypic diversity can be achieved by
histone PTMs, DNA methylation, chromoanagenesis, and transposable element activity. The

induced variation can be adaptive, maladaptive, or neutral in specific contexts. In any case, it is
produced at a time when homeostasis cannot be maintained, and the system is forced to explore

novelty.

Conclusions and future perspectives

This essay summarizes five physiological mechanisms of stress-induced evolution (SIE),
which serve to generate novelty in populations experiencing altered environmental conditions.
Due to their widespread presence across the phylogenetic web of life, these mechanisms have
likely been favored during evolution by conferring significant selective advantages that outweigh
potential disadvantages, such as the increased susceptibility to pathologies. A better
understanding of the profound implications of these mechanisms for cells, organisms, and
populations represents an exciting frontier in biology. Many open questions that should be of
great interest to comparative physiologists remain, including the following. Is there a correlation
between the prevalence of SIE mechanisms, incidence of proliferative disease, and average
lifespan across different species? How does the magnitude of stress impact the proportion of
favorable to unfavorable phenotypes produced through SIE mechanisms in a population? To
what extent has SIE driven punctuated equilibrium throughout evolutionary history? How does
SIE impact ecosystem succession during geological periods of rapid environmental change? SIE
represents an exciting new paradigm in comparative evolutionary physiology that challenges
long-standing dogmas and stimulates the creative intellect of current and future physiologists. In
this brief essay, we share our enthusiasm for this fascinating area of biology to inspire future

research on SIE by a broader scientific community.
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Figure Legends:

Figure 1. The modes of epigenetic inheritance of histone PTMs. Stress induces changes in the
relative abundance of histone PTMs in somatic cells (represented by white stars) and/or germ

cells (represented by black stars). When an epigenetic mark persists through time within the F

individual, it is intragenerationally inherited. If the mark is passed through one generation due to
direct gamete exposure, it is intergenerationally inherited. In the case of transgenerational
inheritance, the mark can be passed through multiple generations, and progeny inheriting the

mark never need to experience the stress.

Figure 2. Stress-induced effects on genome structure. First, stress causes strain on cellular
systems. These perturbations lead to chromoanagenesis in the form of chromothripsis,
chromoplexy, or chromoanasynthesis. Each subset of chromoanagenesis produces a set of
structural genomic variants. These structural genomic variants can be maladaptive or adaptive. It

should be noted that not all activators of chromoanagenesis are included in this diagram.
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1015  Table 1. Examples of stress-induced DNA damage.

Stress DNA Damage Species Reference
Oxidative Strand breaks Human (Homo sapiens) (Honda et al., 2001)
stress Mouse (Mus musculus) (Rajesh Kumar et al.,
2002)
Chub (Leuciscus cephalus) (Aniagu et al., 2006)
Thymine glycol Rat (Rattus norvegicus) (Cathcart et al., 1984)
Human (Homo sapiens) (Yoon et al., 2010)
8-oxo-deoxyguanosine Gilt-head bream (Sparus aurata) (Diaz-Mendez et al.,
1997
Mouse (Mus musculus) (Yan?anaka et al., 2001)
Human (Homo sapiens) (Matsui et al., 1999)
Hypoxia Single-strand breaks Rainbow trout (Oncorhynchus (Liepelt et al., 1995)
mykiss)
Human (Homo sapiens) (Meller et al., 2001)
Salinity stress | Double-strand breaks Mouse (Mus musculus) (Kiiltz and Chakravarty,
2001)

Thale cress (Arabidopsis thaliana)

(Boyko et al., 2010b)

Single-strand breaks

Strawberry (Fragaria x ananassa)

(Tanou et al., 2009)

Extreme pH Strand breaks Pacific white shrimp (Litopenaeus (Wang et al., 2009)
vannamei)
AP sites Human (Homo sapiens) (Chatterjee and Walker,
2017)
Heat stress Strand breaks Pufferfish (Takifugu obscurus) (Cheng et al., 2018)
AP sites Human (Homo sapiens) (Chatterjee and Walker,
2017)

Deaminated cytosine

Mammals (multiple species)

(Fryxell and Zuckerkandl,
2000)

uv
irradiation

Strand breaks Human (Homo sapiens) (Lankinen et al., 1996)

Pig (Sus sp.) (Choy et al., 2005)
Cyclobutane pyrimidine Human (Homo sapiens) (Clingen et al., 1995)
dimers

Mouse (Mus musculus)

(Garinis et al., 2005)

Rockeress (Arabidopsis sp.)

(Chen et al., 1994)

Pyrimidine-pyrimidone
photoproducts

Human (Homo sapiens)

(Mitchell et al., 1990)

Prussian carp (Carassius auratus
gibelio)

(Bagdonas and Zukas,
2004)

Rockeress (Arabidopsis sp.)

(Chen et al., 1994)
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Table 2. Examples of stress-induced change in histone PTMs.

Stress Change in Histone PTMs Species Associated Phenotype (if | Reference
reported)
Heat Increase in H3K27me3 Chicken (Gallus Increased glucocorticoid (Zheng et al.,
stress gallus domesticus) production 2021)
Increase in H3K4me2/3 Thale cress Transcriptional memory of | (Ldmke et al.,
(Arabidopsis heat stress 2016)
thaliana)
Decrease in H3K9me2/3** Fruit fly (Drosophila | Not reported (Seong et al.,
melanogaster) 2011)
Decrease in H3K9me3** Nematode worm Altered gene expression** | (Klosin et al.,
(Caenorhabditis 2017)
elegans)
Acetylation of histones H3 Brine shrimp Enhanced tolerance to (Norouzitallab et
and H4** (Artemia) lethal heat stress; al., 2014)
resistance to Vibrio
campbellii**
Cold Decrease in H3K9me?2 Mouse (Mus Long-term tolerance to (Abe et al.,
stress musculus) cold stress 2018)
Decrease in H3K27me3 Thale cress Activation of cold stress (Kwon et al.,
(Arabidopsis genes 2009)
thaliana)
Increase in H3K27ac and Rice (Oryza sativa) Not reported (Xue et al.,
H3K36ac 2018)
Salinity Decrease in H3K9me2/3** Fruit fly (Drosophila | Not reported (Seong et al.,
stress melanogaster) 2011)
Increase in H3K4me3 and Thale cress Activation of salinity- (Chen et al.,
H3K9K14ac; decrease in (Arabidopsis induced genes 2010)
H3K9me2 thaliana)
Drought Increase in H3K4me3 and Thale cress Activation of drought- (Kim et al.,
stress H3K9ac (Arabidopsis induced genes 2008)
thaliana)
Toxin Decrease in H3K4me2, Rat (Rattus Desensitization to toxin (Wimmer et al.,
exposure | H3K18ac, H3K27me2, and norvegicus) (cocaine)* 2019)

H3K20me2; increase in
H3K14ac*

Increase in H3K4me2 and
H3K9ac

Human (Homo
sapiens)

Increased risk of lung
cancer

(Cantone et al.,
2011)

*Effect observed in next generation
**Effect observed through multiple generations
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Table 3. Examples of stress-induced change in DNA methylation.

Stress

Species

Associated Phenotype (if
reported)

Reference

Heat stress

Spiny chromis damselfish
(Acanthochromis polyacanthus)

Increased aerobic scope*

(Ryu et al,, 2018)

Brine shrimp (Artemia)

Enhanced tolerance to lethal heat
stress; resistance to Vibrio
campbellii**

(Norouzitallab et al.,
2014)

Cold stress

Mouse (Mus musculus)

Increased tolerance to cold stress;
reduced risk of obesity*

(Sun et al., 2018)

Tartary buckwheat (Fagopyrum
tataricum)

Altered expression of genes
involved in cold memory

(Song et al., 2020)

Turnip (Brassica rapa)

Increased growth rate and heat
tolerance

(Liu et al., 2017)

Three-spined stickleback Not reported (Metzger and Schulte,
(Gasterosteus aculeatus) 2017)
Salinity Rice (Oryza sativa) Tolerance to salinity stress* (Feng et al., 2012)
stress Thale cress (Arabidopsis Tolerance to salinity stress* (Boyko et al., 2010a)
thaliana)
Water flea (Daphnia magna) Altered expression of genes (Jeremias et al., 2018)
involved in the cellular stress
response**
Three-spined stickleback Not reported (Heckwolf et al., 2020)
(Gasterosteus aculeatus)
Upwelling Purple sea urchin Increased body size* (Strader et al., 2019;
(Strongylocentrotus purpuratus) Wong et al., 2019)
Drought Rice (Oryza sativa) Altered gene expression™* (Zheng et al., 2013)
stress
Pesticides Rat (Rattus norvegicus) Risk of obesity** (Skinner et al., 2013)
Reduced male fertility** (Anway et al., 2005)
Adult-onset disease™* (Anway et al., 2006)
(Manikkam et al., 2014)
lonizing Zebrafish (Danio rerio) Developmental defects** (Kamstra et al., 2018)
radiation
Toxin Water flea (Daphnia magna) Altered gene expression* (Vandegehuchte et al.,
exposure 2010)

*Effect observed in next generation
**Effect observed through multiple generations
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Table 4. Examples of stress-induced change in genome structure.

Stress Change in Genome | Species Associated Reference
Structure Phenotype
Altered climate Chromosome Mosquito Increased (Rocca et al., 2009)
inversion (Anopheles thermotolerance in
gambiae) larvae
Fruit fly Altered optimal (Rego et al., 2010)
(Drosophila temperature
subobscura)
Chromosome Buckler mustard Heightened (Geiser et al., 2016)
reshuffling (Biscutella tolerance to abiotic
laevigata) stresses
Yellow arctic Increased tolerance | (Nowak et al., 2021)
whitlow grass to cold, drought,
(Draba nivalis) and oxidative
stresses
Altered nutrient Copy number Human (Homo Increased (Perry et al., 2007)
availability variant sapiens) abundance of
salivary amylase
protein
Baker’s yeast Increased efficiency | (Brown et al., 1998)
(Saccharomyces of glucose
cerevisiae) metabolism
Hyposaline stress Chromosome Atlantic cod (Gadus | Reduced (Barth et al., 2017)
inversion morhua) recombination in
genes necessary to
tolerate low salinity
Pathogens Copy number Soybean (Glycine Pathogen resistance | (Cook et al., 2012)
variant max)
Toxin exposure Chromosome Mosquito DDT resistance (D’Alessandro et
inversion (Anopheles al., 1957)
atroparvus)
Copy number Barley (Hordeum Boron-toxicity (Sutton et al., 2007)
variant vulgare) tolerance
Palmer amaranth Herbicide resistance | (Gaines et al., 2010)
(Amaranthus
palmeri)
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Table 5. Examples of stress-induced change in transposable elements.

Stress Species Change in Transposable | Associated Phenotype Reference
Elements (if reported)
Heat stress | Thale cress (Arabidopsis | Activation of ONSEN Not reported (Cavrak et al.,
thaliana) retrotransposon 2014)
Fruit fly (Drosophila P element transposition Altered thermotolerance | (Lerman et al.,
melanogaster) disrupting heat shock 2003)
protein gene Asp70Ba
Rice blast fungus Activation of Pyret, Genomic instability (Chadha and
(Magnaporthe oryzae) MAGGY, Pot2, MINE, Sharma, 2014)

Mg-SINE, Grasshopper,
and MGLR3

Nematode worms Activation of CemaTl and | Genomic instability (Ryan et al.,

(Caenorhabditis elegans Tcl 2016)

and Caenorhabditis

briggsae)

Mouse (Mus musculus) Activation of MERV-L Altered gene expression | (Hummel et
and /APEz al., 2017)

Cold stress

Asian tiger mosquito
(Aedes albopictus)

Altered insertion
frequency of Lianl, RTE4,
RTES, L2B, and IL]

Localization of TEs to
genes potentially
involved in
overwintering

(Goubert et al.,
2017)

Rice (Oryza sativa) Activation of mPing Altered gene expression (Naito et al.,
2009)

Common snapdragon Activation of Tam3 Not reported (Hashida et al.,

(Antirrhinum majus) 2003)

uv Human (Homo sapiens) Activation of L/ Malignant transformation | (Banerjee et
irradiation of keratinocytes al., 2005)
Pollution Amazon cichlid Differential insertion Not reported (da Silva et al.,
(Cichlasoma patterns of Rex 1, Rex 3, 2020)
amazonarum) and Rex 6
Oxidative | Mouse (Mus musculus) Activation of L/ Not reported (Van Meter et
stress al., 2014)
Nematode worms Activation of CemaTl and | Genomic instability (Ryan et al.,
(Caenorhabditis elegans Tcl 2016)
and Caenorhabditis
briggsae)
Pesticides | Fruit fly (Drosophila Activation of Accord Insecticide resistance via | (Chung et al.,
melanogaster) retrotransposon overexpression of 2007)
insecticide detoxifying
gene
Common house mosquito | Insertion of TE-like DNA | Insecticide resistance via | (Darboux et
(Culex pipiens) into coding region of alternative splicing of al., 2007)
cmpl toxin receptor
Salinity Rice (Oryza sativa) Activation of mPing Higher salinity stress (Naito et al.,

stress

tolerance via

2009; Yasuda
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* = Change in the relative abundance of histone PTMs in somatic cells
* = Change in the relative abundance of histone PTMs in germ cells

[] =Pre-stress phenotype
[C] = Post-stress phenotype
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