

Physiological Mechanisms of Stress-Induced Evolution

Elizabeth A. Mojica¹ and Dietmar Kültz^{1,*}

¹ Department of Animal Science, University of California - Davis, One Shields Ave., Meyer Hall, Davis, CA, 95616, USA

* Corresponding author contact info:

email: dkueltz@ucdavis.edu

phone: 530-752-2991

fax: 530-752-0175

Running title:

Stress-induced evolution

Keywords:

Stress, Evolution, DNA damage, Epigenetics, Chromoanagenesis, Transposable elements

31 **Summary statement**

32 This article presents five mechanisms that eukaryotes can employ when experiencing stress to
33 accelerate the process of adaptation. These mechanisms are outlined with emphasis on examples
34 in animals.

35

36 **Abstract**

37 Organisms mount the cellular stress response (CSR) whenever environmental parameters
38 exceed the range that is conducive to maintaining homeostasis. This response is critical for
39 survival in emergency situations because it protects macromolecular integrity and, therefore,
40 cell/organismal function. From an evolutionary perspective, the cellular stress response
41 counteracts severe stress by accelerating adaptation via a process called stress-induced evolution
42 (SIE). In this review, we summarize five key physiological mechanisms of stress-induced
43 evolution. Namely, these are stress-induced changes in 1) mutation rates, 2) histone post-
44 translational modifications, 3) DNA methylation, 4) chromoanagenesis, and 5) transposable
45 element activity. Through each of these mechanisms, organisms rapidly generate heritable
46 phenotypes that may be adaptive, maladaptive, or neutral in specific contexts. Regardless of their
47 consequences to individual fitness, these mechanisms produce phenotypic variation at the
48 population level. Because variation fuels natural selection, the physiological mechanisms of
49 stress-induced evolution increase the likelihood that populations can avoid extirpation and
50 instead adapt under the stress of new environmental conditions.

51

52 **Introduction**

53 All living organisms exist under the stress of their environment. Stress, in this sense,
54 refers to any environmental parameter exerting strain on biological systems (Kültz, 2020a).
55 When organisms are well-adapted to their environments, they harbor mechanisms that counteract
56 imposed strain and therefore maintain homeostasis. Whenever environmental parameters change,
57 organisms must adjust these mechanisms to uphold the balance between stress and the forces that
58 oppose it. If the change in stress is minor enough, only the cellular homeostasis response (CHR)
59 is needed for this adjustment. However, the capacity of the CHR may be exceeded depending on
60 the magnitude of stress and how rapidly it arises. This threshold for stress tolerance is termed the
61 “elastic limit,” and once it is surpassed, organisms must activate the cellular stress response

62 (CSR) in order to survive (Kültz, 2020a; Call et al., 2017; Tian et al., 2012). Stress of this degree
63 is becoming increasingly relevant and concerning to life on Earth amid climate change. As the
64 atmosphere continues to collect greenhouse gases, numerous environmental factors, including
65 the temperature, salinity, and acidity of water, change globally and much more rapidly than
66 during previous geological periods (Cheng et al., 2020; Hoegh-Guldberg et al., 2007; Karger et
67 al., 2020). When populations are limited in their ability to migrate to more suitable
68 environments, they must somehow adapt in order to remain viable.

69 Under these circumstances, the CSR can employ physiological mechanisms of stress-
70 induced evolution (SIE). These are strategies by which individuals rapidly generate new
71 heritable phenotypes. At the population level, SIE produces widespread phenotypic variation and
72 therefore accelerates evolutionary processes. In one mechanism, stress triggers mutagenesis by
73 causing both increased DNA damage and decreased DNA repair fidelity (Chatterjee and Walker,
74 2017). In a more flexible response, stress induces the alteration of epigenetic marks, including
75 histone post-translational modifications (PTMs) and DNA methylation. These epigenetic marks
76 modify the expression patterns of DNA. Therefore, even if an individual's sequence of DNA
77 remains unchanged, expression patterns (and corresponding phenotypes) can be passed through
78 generations. In a more radical response, stress can prompt the formation of structural genomic
79 variants through either chromoanagenesis or transposable element (TE) activity. These processes
80 can produce especially distinctive phenotypes by reorganizing gene regulatory networks, e.g., via
81 activation or inhibition of *cis*-regulatory elements (CREs), modifying gene products, and
82 creating and deleting genes (Lanciano and Mirouze, 2018; Mérot et al., 2020; Pellestor and
83 Gatinois, 2020; Ye et al., 2018).

84 In this review, we will summarize key physiological mechanisms of SIE in eukaryotes.
85 An emphasis will be placed on animals for supporting examples. Throughout the article, we will
86 demonstrate on a molecular level how life experience can alter the phenotype of an individual
87 and its progeny. Notably, these mechanisms may or may not increase an individual's fitness;
88 oftentimes, they result in disease or sterility. Nonetheless, they facilitate the generation of
89 phenotypic variation within populations, where individuals may develop novel solutions to
90 compensate for stress. In doing so, these mechanisms increase the likelihood that populations
91 will adapt under stress.

93 **Stress triggers mutagenesis through increased DNA damage and decreased DNA repair
94 fidelity**

95 DNA damage is an unavoidable part of life. Even under ideal environmental conditions,
96 DNA is continuously damaged by spontaneous alkylation, strand breaks, hydrolytic loss of
97 nitrogenous bases, and base conversion (Chakarov et al., 2014). In humans, it is estimated that 2
98 $\times 10^4$ events of DNA damage take place every day in each cell (Barzilai and Yamamoto, 2004).
99 Damage, however, is not always detrimental, as the DNA damage response network has evolved
100 to either repair DNA damage or tolerate it (Pilzecker et al., 2019). Only a fraction of DNA
101 damage events lead to mutations that are retained and potentially inherited. In humans, despite
102 the high frequency of DNA damage, rates of retained mutation are about 2.8×10^{-7} per base pair
103 in somatic cells and 1.2×10^{-8} per base pair in the germline (Milholland et al., 2017).

104 Stress increases the rate of DNA damage, and therefore the rate of mutation, beyond what
105 happens spontaneously. Diverse cellular stresses achieve this either directly or by secondarily
106 stimulating the production of reactive oxygen species (ROS) in cells (Chakarov et al., 2014;
107 Cheng et al., 2018; Kültz, 2005; Kültz, 2020b). ROS can damage DNA by causing strand breaks
108 or oxidizing nucleotides into a plethora of compounds, including thymine glycol and 8-oxo-
109 deoxyguanosine (Grollman and Moriya, 1993; Honda et al., 2001; Sallmyr et al., 2008). Through
110 alternative routes, stress can damage DNA by producing single-strand breaks (SSBs), double-
111 strand breaks (DSBs), apurinic (AP) sites, deaminated cytosine, cyclobutane pyrimidine dimers
112 (CPD), and pyrimidine-pyrimidone photoproducts (6-4PP). In Table 1, we outline specific
113 **stresses that can produce these DNA lesions.**

114 Cells attempt to repair all types of stress-induced DNA lesions. The strategy to repair
115 DNA strand breaks depends on whether they are SSBs or DSBs. DSBs are especially mutagenic.
116 When cells attempt to repair them, they can use the high-fidelity process of homologous
117 recombination (HR), but most often they use the error-prone process of non-homologous end
118 joining (NHEJ) (Chang et al., 2017). To address oxidized nucleotides, cells initiate base excision
119 repair (BER) (Chatterjee and Walker, 2017). Nonetheless, approximately 2-5% of these lesions
120 escape repair, and when they do, they often cause mutations from G:C to A:T (Chatterjee and
121 Walker, 2017; Grollman and Moriya, 1993; Moriya, 1993). The remaining stress-induced lesions
122 are often repaired through a combination of BER and nucleotide excision repair (NER).
123 However, if the cell cycle progresses into S phase before the lesions can be repaired, DNA

124 damage tolerance pathways are activated instead (Chatterjee and Walker, 2017; Duncan and
125 Miller, 1980; Pilzecker and Jacobs, 2019). Translesion DNA synthesis (TLS) is a prominent
126 mechanism of the DNA damage tolerance pathway, and it functions to ensure that DNA
127 replication can proceed even when DNA lesions are present. TLS promotes mutagenesis by
128 using low-fidelity DNA polymerases that lack corrective exonuclease activity (Gerlach et al.,
129 1999; Masuda et al., 2016).

130 While DNA repair is naturally fallible, stress can further reduce its fidelity and thereby
131 increase the retention of mutations. Heat stress, for example, can inhibit both the BER and NER
132 systems (Kantidze et al., 2016). This inhibition compromises the repair of DNA damage inflicted
133 by stress. Similarly, proteins required for mismatch repair are downregulated under the stresses
134 of both hypoxia and toxins (Chatterjee and Walker, 2017; Mihaylova et al., 2003). The
135 mechanism of DSB repair can also be altered by stress, ensuring that low-fidelity NHEJ is used
136 for repair, e.g., during hypoxia and heat stresses (Galhardo et al., 2007; Kantidze et al., 2016).

137 Through these and many other mechanisms, stress increases the incidence and retention
138 of mutations. Stress-induced mutagenesis is likely an adaptive strategy as it provides an avenue
139 for a maladapted population to accumulate genetic diversity in response to environmental
140 change. Selection can act on the resulting genetic variation, enabling the population to become
141 better suited for stressful environments. These mutations are not entirely random. Stress-induced
142 mutations accumulate at different rates in transcriptionally active versus silent genes since the
143 susceptibility to DNA damage differs between corresponding eu- and hetero-chromatin (Makova
144 and Hardison, 2015). This effect can accelerate evolution in genes that are actively involved in
145 defining the phenotype of a specific cell type in a specific context. Altered cellular phenotypes,
146 in turn, influence phenotypes at higher levels of organization, including the whole organism
147 level.

148

149 **Stress causes heritable (epigenetic) changes in histone post-translational modifications**

150 In the nucleus of eukaryotic organisms, DNA wraps around an octamer of the four core
151 histones: H2A, H2B, H3, and H4 (Luger et al., 1997). These proteins are subject to a wide
152 variety of post-translational modifications (PTMs) (Zhao and Garcia, 2015). Histone PTMs are
153 epigenetic marks that can modify the state of chromatin and influence gene expression. They can
154 do this by altering the manner in which DNA is packaged, thus changing the accessibility of the

155 DNA for proteins involved in transcription and repair (Norton et al., 1989). Histone PTMs also
156 modulate the recruitment of histone reader proteins to specific genetic loci to carry out
157 physiological functions, such as DNA repair, replication, transcription, and chromosome
158 condensation (Kouzarides, 2007).

159 Stress can alter the histone PTM landscape, which is the relative abundance and genomic
160 distribution of all histone PTMs in a cell (Table 2). Histone PTMs are “written” and “erased” by
161 histone modifying enzymes, but the catalytic activity of these enzymes can be modified under
162 stress, e.g., through chemical inhibition or alteration of cosubstrate availability (Fan et al., 2015).
163 Both of these strategies apply to the histone demethylase enzyme JmjC. Oxidative stress causes
164 the iron in its catalytic center to be oxidized from Fe(II) to Fe(III), which inhibits its function and
165 leads to histone hypermethylation (García-Giménez et al., 2021). Interestingly, hypoxia also
166 represses the activity of this demethylase because JmjC requires oxygen as a cosubstrate (Hsu et
167 al., 2021). At the same time, however, hypoxia-inducible factors transcriptionally upregulate
168 JmjC to fine-tune the overall histone demethylation activity (Hsu et al., 2021). This example
169 illustrates that the effects of stress on the regulation of histone PTMs are pervasive and highly
170 complex.

171 By modifying the histone PTM landscape, stress can facilitate an appropriate
172 physiological response, e.g., during temperature and salinity stresses. Heat stress increases the
173 relative abundance of H3K27me3 in the adrenal gland of chickens (*Gallus gallus domesticus*)
174 (Zheng et al., 2021). This epigenetic response is associated with increased glucocorticoid
175 production, which assists in heat dissipation (Zheng et al., 2021). During cold stress, the relative
176 abundance of H3K27me3 decreases in thale cress (*Arabidopsis thaliana*), and it does so
177 specifically at the loci of two cold stress genes, leading to their activation (Yuan et al., 2013). On
178 the contrary, stress-induced histone PTMs can be associated with maladaptive phenotypes. For
179 example, people working in steel plants breathe in toxic particulate matter. As their time of
180 employment increases, their levels of H3K4me2 and H3K9ac also increase. In this case, the
181 histone PTM landscape is associated with an increased risk for lung cancer (Cantone et al.,
182 2011).

183 Even once the stress has subsided, induced histone PTMs can be retained within
184 individuals, via “intragenerational” inheritance by mitosis (Alabert and Groth, 2012). When
185 stress causes changes to histone PTMs in the germline, the epigenetic marks can be retained

186 across generations (Figure 1). This retention can occur through different processes. In one
187 process sometimes called “intergenerational” inheritance, stress directly induces histone PTMs in
188 the gametes of exposed parents. Upon fertilization, gametes that carry the directly induced
189 epigenetic marks become the next generation. In a second process often called
190 “transgenerational” inheritance, induced histone PTMs travel across multiple generations without
191 the need for individuals inheriting them to be directly exposed to stress (Bošković and Rando,
192 2018; Mørkve Knudsen et al., 2018; Perez and Lehner, 2019; Woodhouse and Ashe, 2020).
193 Transgenerational inheritance is especially relevant for stress-induced evolution as it extends the
194 time that natural selection can act on epigenetically mediated phenotypic variation. Heat stress,
195 for example, was shown to increase the global acetylation levels of histones H3 and H4 in the
196 brine shrimp (*Artemia spec.*). After heat stress subsided, the induced histone PTM landscape
197 could be transmitted through three subsequent generations, and it was associated with enhanced
198 tolerance to severe heat stress in the progeny (Norouzitallab et al., 2014).

199 While the mechanism of transgenerational epigenetic inheritance is not yet fully
200 elucidated, individuals can directly receive modified histones from the gametes that form them.
201 This process is relatively straightforward regarding maternal transfer, but epigenetic
202 reprogramming represents a hurdle to paternal transfer. During spermatogenesis, histone proteins
203 are replaced with protamines for an even tighter packaging of DNA (Bao and Bedford, 2016).
204 Some species such as mice only retain 1-2% of histones in sperm; however, this value is widely
205 variable between species (Champrox et al., 2018). For example, the percentage of retained
206 histones is approximately 5-10% in humans (Champrox et al., 2018), 37% in nematode worms
207 (Samson et al., 2014), 45% in marsupials (Soon et al., 1997), and 100% in lampreys and hagfish
208 (Saperas et al., 1997). In this way, it is possible that some species have a much higher propensity
209 for the transgenerational inheritance of histone PTMs.

210 Histone PTMs offer individuals a mechanism to rapidly modify gene expression patterns
211 and their phenotypes to better tolerate their environment. Such altered phenotypes (and the
212 underlying genotypes of corresponding individuals) are acted upon by natural selection and,
213 therefore, represent targets of stress-induced adaptation. Selection on these targets may be
214 prolonged over multiple generations since individuals exposed to stress can transmit histone
215 PTMs, gene expression patterns, and the resulting phenotypes they acquire to their progeny. The
216 adaptive value of retaining phenotypes that confer tolerance to short periods of stress in the

217 absence of persistent stress may seem questionable (Nilsson et al., 2018). However, what natural
218 selection favors under such conditions are individuals with the ability to tolerate transient periods
219 of stress best while also performing best during intermittent periods of low stress. For this
220 reason, histone PTMs and corresponding gene expression patterns and phenotypes are reversible,
221 and their persistence within a lineage can depend on the intensity and duration of stress
222 experienced by their ancestors. In this way, epigenetic mechanisms can facilitate trial runs of
223 new phenotypes and integrate stochasticity and periodicity in environmental conditions into the
224 process of natural selection (Burggren, 2016; Walker and Burggren, 2020). Through this
225 mechanism (and epigenetic inheritance of DNA methylation), natural selection assesses the
226 adaptive value of corresponding phenotype variants in a particular lineage under variable
227 environmental conditions over longer periods of time.

228

229 **Stress alters heritable (epigenetic) DNA methylation patterns**

230 DNA methylation is a heritable epigenetic mark characterized as a methyl group attached
231 to the fifth carbon of cytosine. When DNA methylation occurs in a promoter, it typically silences
232 the gene by preventing the binding of transcription factors and prompting the formation of
233 heterochromatin. Conversely, when methylation occurs in an open reading frame, it typically
234 activates the gene (Greenberg and Bourc'his, 2019; Jones, 2012; Moore et al., 2013). De novo
235 DNA methylation is facilitated by the DNA methyltransferase enzymes DNMT3a and DNMT3b,
236 which can be targeted to specific genes through the guidance of piwi-interacting RNA (Flores et
237 al., 2013; Okano et al., 1999). Stress is well documented to induce de novo DNA methylation,
238 leading to differentially methylated regions (DMRs). Due to their influence on gene expression,
239 DMRs can impact morphology, physiology, behavior, and development (Angers et al., 2010).

240 Stress-induced DMRs have been reported across taxa, from plants to insects to humans
241 (Ou et al., 2012; Shi et al., 2011; Martin and Fry, 2018). Through this epigenetic mechanism, the
242 environment generates new phenotypes in individuals that, for better or worse, affect their fitness
243 (Table 3). Many putatively adaptive responses have been observed. For example, the spiny
244 chromis damselfish (*Acanthochromis polyacanthus*) was recently shown to accumulate 193
245 DMRs after exposure to increased temperature (Ryu et al., 2018). Those DMRs correlated with
246 increased aerobic scope, which enhanced tolerance to heat stress (Ryu et al., 2018). Similarly,
247 purple sea urchins (*Strongylocentrotus purpuratus*) that experienced upwelling conditions during

248 gametogenesis induced DMRs in their progeny that were associated with increased body size
249 (Strader et al., 2019; Wong et al., 2019). However, stress can sometimes also lead to
250 transgenerational transmission of traits that reduce fitness. Ionizing radiation in zebrafish (*Danio*
251 *rerio*), for example, was shown to induce 5658 DMRs; 19 of these were passed through one
252 generation, and 5 were passed through two generations (Kamstra et al., 2018). In this case, the
253 DMRs were localized to genes involved in cancer and apoptosis, which could help explain the
254 developmental defects observed in the progeny inheriting these epigenetic marks (Kamstra et al.,
255 2018).

256 Whether adaptive or maladaptive, phenotypes generated through stress-induced DMRs
257 can be inherited within individuals and across generations. Within individuals, patterns of DNA
258 methylation are often stably maintained through mitosis by the DNMT1 enzyme (Smith and
259 Meissner, 2013). DNMT1 itself, however, has a relatively high error rate of about 5% (Bird,
260 2002). As a result, additional variation in DNA methylation patterns can emerge through time
261 within an individual's cell population, which affects organismal phenotype. The mechanism of
262 transgenerational inheritance of DNA methylation is not yet fully understood. A natural
263 limitation to this process is that widespread reprogramming of DNA methylation takes place
264 during gametogenesis and shortly after fertilization, but some genetic loci are protected during
265 these events (Angers et al., 2010; Engmann and Mansuy, 2020). Even so, it has been observed on
266 many occasions that stress-induced DMRs can be transferred through multiple generations,
267 including in the examples mentioned above.

268 As an epigenetic mark, DNA methylation rapidly elicits phenotypic variation that can
269 equip some individuals and their progeny to better cope with stress they experience. Importantly,
270 DNA methylation functions beyond an epigenetic mark as well, in a much more permanent
271 manner. Namely, it increases rates of mutation by frequently causing cytosine to thymine
272 transitions (Zhou et al., 2020; Yang et al., 2021; Holliday and Grigg, 1993). This pattern is so
273 apparent that species with widespread DNA methylation exhibit global depletion of CpG
274 dinucleotides, because this is where DNA methylation most often occurs (Gruenbaum et al.,
275 1982). In humans, 60-80% of all CpG sites are methylated (Smith and Meissner, 2013). With
276 such extensive DNA methylation, the human genome only has 20% of the expected amount of
277 CpG dinucleotides, presumably because many cytosines in these sequences have been mutated
278 into thymines (Bird, 1980). In contrast, fruit flies (*Drosophila melanogaster*), which display a

279 **very low** level of DNA methylation, still have >90% of the expected amount of CpG sites
280 ([Capuano et al., 2014](#); Lyko, 2001; Bird, 1980). Because DNA methylation is targeted, C→T
281 mutation can be targeted as well. Therefore, when stress induces DMRs, resulting phenotypic
282 advantages can potentially be fixed in a lineage by nonrandom mutation to specific genetic loci
283 ([Angers et al., 2010](#)).

284

285 **Stress impacts genome structure through chromoanagenesis**

286 Of all the physiological mechanisms of stress-induced evolution, changes to genome
287 structure are the most dramatic. In a process called chromoanagenesis (also known as genome
288 chaos), severe stress causes cells to rapidly shatter the genome and rearrange its contents ([Heng](#)
289 [and Heng, 2020](#)). Structural genomic variants are the outcome of this process, and they can
290 include any combination of copy number variants, chromosomal fusions, fissions, translocations,
291 inversions, and reshuffling ([Mérot et al., 2020](#); [Heng, 2009](#)). These structural changes strongly
292 affect organismal fitness by changing gene regulatory networks, altering gene dosage,
293 functionally deleting genes, or even creating new genes from previously non-coding DNA
294 ([Mérot et al., 2020](#); [Pellestor and Gatinois, 2020](#); [Ye et al., 2018](#)). Most often, the effects of
295 chromoanagenesis are deleterious. On the rare occasion, however, the generated phenotypic
296 diversity is lifesaving (Figure 2).

297 Stress-induced changes in genome structure are well studied in the context of human
298 disease. It has been discovered within the past 20 years that structural genomic variants are a
299 universal feature of cancer, and they are frequently associated with additional diseases such as
300 Alzheimer's ([Heng, 2009](#); [Horne et al., 2014](#)). Using disease study systems, three categories of
301 chromoanagenesis have been identified: chromothripsis, chromoanasynthesis, and chromoplexy
302 ([Koltsova et al., 2019](#)). Chromothripsis refers to a single event where one chromosome is
303 shattered and randomly stitched back together. The process is triggered by a high load of DNA
304 double-strand breaks, which result under the pressure of numerous environmental stresses
305 ([Koltsova et al., 2019](#)). Additional forces including telomere attrition, abortive apoptosis, and
306 mitotic errors also prompt chromothripsis ([Pellestor and Gatinois, 2020](#)). Chromoanasynthesis is
307 a process that specifically leads to the generation of copy number variants, and it is triggered by
308 DNA replication and repair errors ([Koltsova et al., 2019](#)). Finally, chromoplexy describes the

309 reshuffling of several chromosomes over the course of multiple events, and it is often caused by
310 replication stress, mitotic errors, and premature chromosome compaction (Shen, 2013).

311 Beyond causing disease states of somatic cells, chromoanagenesis proceeds within the
312 germline and within embryos during early development (Pellestor and Gatinois, 2020). In this
313 context, chromoanagenesis can be adaptive and lead to rapid speciation in asexually reproducing
314 organisms and even in heterogametic species, as long as both parents experience compatible
315 genome changes for sexual reproduction (Heng, 2009). Every type of structural genomic variant
316 has been implicated in driving speciation (Campbell et al., 2018; Feulner and De-Kayne, 2017).

317 Accordingly, both the morphology and number of chromosomes vary widely across taxa
318 (Ferguson-Smith and Trifonov, 2007). For example, the number of chromosome pairs in
319 eukaryotes ranges from one to 720 (Schubert and Vu, 2016; Khandelwal, 1990). In light of
320 evolutionary history, chromoanagenesis could be a large contributor to this structural genomic
321 variation because periods of major evolutionary change tend to occur during periods of severe
322 stress. For example, the “Big Five” mass extinctions and their subsequent events of adaptive
323 radiation corresponded to large changes in temperature, sea-level, volcanic and tectonic activity,
324 and meteor impacts (Condamine et al., 2013). During such periods, eurytopic species are favored
325 over stenotopic species while the opposite is the case during long, stable geological periods
326 (Kültz, 2003). Corresponding patterns of evolutionary history have been interpreted by the
327 theory of punctuated equilibrium (Gould, 1982).

328 Structural genomic variants can be adaptive under various contexts (Table 4). When
329 challenged by the widely used herbicide glyphosate, palmer amaranth (*Amaranthus palmeri*)
330 developed a copy number variant that enabled resistance to the herbicide (Gaines et al., 2010).
331 Similarly, the codling moth (*Cydia pomonella*) developed a sex-linked resistance to insecticides
332 through a chromosome fusion (Nguyen et al., 2013). Chromosome inversions have been adaptive
333 in the context of behavior, mating strategies, and morphology (Wellenreuther and Bernatchez,
334 2018). For example, inversions produced cryptic color phenotypes in stick insects (*Timema*
335 *cristinae*) and facilitated appropriate migratory behaviors in rainbow trout (*Oncorhynchus*
336 *mykiss*) (Lindtke et al., 2017; Wellenreuther and Bernatchez, 2018).

337 Whether the process occurs in somatic cells or gametes, chromoanagenesis elicits major
338 phenotypic changes by altering genome structure in individuals facing severe stress. Most of the
339 time, the outcomes are deleterious – either a disease emerges, or individuals generate gametes

340 that are incompatible with potential mates, rendering the individuals sterile. On the lucky
341 occasion, structural genomic variants enable successful survival and reproduction, and they do so
342 within one generation.

343

344 **Stress affects the activity of transposable elements**

345 Transposable elements (TEs) have long been considered an engine of evolutionary
346 change fueled by stress (McClintock, 1984), and they make up a large portion of eukaryotic
347 genomes. In mammals, about 40% of the genome is comprised of TEs, and in plants, that value
348 can be as high as 85% (Chénais et al., 2012). TEs are sequences of DNA, sometimes called
349 “jumping genes,” that can readily move throughout the genome. The process of their
350 transposition can proceed through “copy and paste” or “cut and paste” strategies. In the copy and
351 paste strategy, class I TEs are transcribed into an RNA intermediate then reverse transcribed
352 back into DNA at a new location. In the cut and paste strategy, many class II TEs have their
353 DNA sequence broken out of its position, then relocated (Wicker et al., 2007). Oftentimes, all the
354 information needed for transposition is encoded within the TE. If this is the case, then they are
355 called autonomous TEs, and depending on their family, they encode enzymes such as reverse
356 transcriptase, proteinase, RNase, integrase, and transposase. Nonautonomous TEs have also
357 evolved, and they lack some of the necessary components for transposition. As a result, they rely
358 on autonomous TEs for their mobilization (Wicker et al., 2007).

359 When activated, TEs can quickly produce distinctive phenotypes by impacting gene
360 expression, gene products, and genome structure. The expression of genes can be affected when
361 newly incorporated TEs provide *cis*-regulatory elements (CREs), change the context of existing
362 CREs, or alter the local epigenetic landscape (Chénais et al., 2012; Lanciano and Mirouze,
363 2018). Similarly, transposition can alter gene products when inserted TEs cause alternative
364 transcription start sites, alternative splicing, or premature termination. New exons and introns
365 can even be created in the process (Lanciano and Mirouze, 2018). For transposition to occur,
366 DNA double-strand breaks (DSBs) are needed to cut out and insert TEs. This form of DNA
367 damage increases rates of mutation, specifically at the sites of deletion and insertion (Biémont
368 and Vieira, 2006). Furthermore, transposition-induced DSBs can produce structural genomic
369 variants by feeding into the chromothripsis pathway, which leads to chromosome inversions and
370 chromosome reshuffling (Figure 2) (Pellestor and Gatinois, 2020). TEs generate additional

371 structural genomic variants as a consequence of the high sequence similarity between TEs of the
372 same family, in particular at their flanking sequences such as inverted terminal repeats (ITRs).
373 This similarity enables non-allelic homologous recombination, which can cause chromosome
374 inversions, duplications, translocations, and deletions (Kent et al., 2017).

375 Numerous stresses can alter TE activity, including cold and heat stresses, UV irradiation,
376 salinity stress, and pollution (Miousse et al., 2015; Rey et al., 2016). However, the pattern of
377 alteration is context dependent. In response to stress, TEs may be activated, repressed, activated
378 then repressed, or repressed then activated (Horváth et al., 2017). Furthermore, when TEs are
379 activated, it can be at the transcriptional level, the transpositional level, or both (Horváth et al.,
380 2017). Epigenetic regulation is one major force that mediates this change (Biémont and Vieira,
381 2006). TEs are repressed under the control of DNA methylation and histone PTMs (Zemach et
382 al., 2010). When stress alters these epigenetic marks, TEs can be released from repression and
383 freed to transcribe their contents and/or mobilize to other parts of the genome (Pappalardo et al.,
384 2021). Another stress-sensitive mechanism of TE activation involves the heat shock protein 90
385 family (HSP90). While HSP90 silences TEs under optimal environmental conditions, moderate
386 stress can limit this function when HSP90 is instead needed to protect protein conformation
387 (Ryan et al., 2016). Notably, the limitation of available HSP90 also increases phenotypic
388 diversity by releasing cryptic genetic variation (CGV) from suppression (Paaby and Rockman,
389 2014). Therefore, HSP90 has been considered a key evolutionary capacitor (Rutherford and
390 Lindquist, 1998).

391 Stress-induced changes in TEs have been observed across eukaryotic taxa (Table 5), and
392 on many occasions, they have proven to be adaptive. For example, insecticide exposure has
393 altered TE activity in insects. In the fruit fly (*Drosophila melanogaster*), this led to the
394 overexpression of an insecticide detoxifying gene (Chung et al., 2007). In the common house
395 mosquito (*Culex pipiens*), this led to the alternative splicing of a toxin receptor gene (Darboux et
396 al., 2007). In both instances, the TEs induced by insecticides resulted in insecticide resistance.
397 Similarly, climate has been shown to induce potentially adaptive TEs in the Asian tiger mosquito
398 (*Aedes albopictus*). The frequency of TE insertions varies between a native population in a
399 tropical environment and an invasive population in a temperate environment. In the invasive
400 population, TEs of multiple families are inserted at higher frequencies, and they are positioned

401 within the proximity of genes that likely facilitate overwintering (Goubert et al., 2017). Altered
402 regulation of these genes could increase the fitness of mosquitoes living in colder climates.

403 Through the alteration of TE activity, stress generates rapid phenotypic variation. The
404 variation can be significant because TE activation has the power to affect gene expression, gene
405 products, and genome structure. When these changes happen in the germline, they can be passed
406 from parent to offspring indefinitely. This standard form of transmission is referred to as
407 “vertical transfer.” However, “horizontal transfer” of TEs can happen as well, where TEs jump
408 between species. In the evolutionary history of vertebrates, for example, at least 975 events of
409 horizontal transfer of TEs have occurred (Zhang et al., 2020).

410

411 **Life experience and physiology shape evolution**

412 Contrary to the principles of the Modern Synthesis of evolutionary theory, stress that an
413 individual encounters throughout its lifetime is now known to induce heritable phenotypic
414 variation (Burggren, 2014; Jablonka and Lamb, 2020; Noble, 2013; Skinner, 2015). This concept
415 of stress-induced evolution (SIE) has been accepted for decades in regard to prokaryotes
416 (Radman, 1975; Bjedov et al., 2003; Foster, 2007; Rosenberg et al., 2012). In prokaryotes, stress
417 significantly increases rates of mutation, largely through the activation of the SOS system and
418 RpoS stress response (Radman, 1975; Foster, 2007). Although these systems do not exist in
419 eukaryotes, more recent studies have demonstrated that eukaryotes employ several powerful
420 mechanisms to increase phenotypic variation in response to stress. Beyond the increased rates of
421 mutation via DNA damage and lowered DNA repair fidelity that occur outside of the prokaryotic
422 SOS and RpoS systems, variation is achieved through histone PTMs, DNA methylation,
423 chromoanagenesis, and transposable element activity.

424 In multicellular eukaryotes, the mechanisms of SIE can proceed in both the soma and the
425 germline. Somatic cell evolution has been studied intensively in the context of disease (Anway et
426 al., 2006; Heng, 2009; Rajesh Kumar et al., 2002), proving that the outcome of these
427 mechanisms can be maladaptive. Considering that many multicellular organisms consist of
428 millions, billions, or even trillions of cells, e.g., 37 trillion cells in humans (Bianconi et al.,
429 2013), the large population of cells provides a sufficient pool of beneficial alterations that
430 selection can act on. A classic example of adaptive somatic cell evolution is the production of
431 antibodies in vertebrates. After organisms are exposed to new antigens, the variable regions of

432 immunoglobulin genes in B cells become hypermutated (Diaz and Flajnik, 1998; Wysocki et al.,
433 1986). This mechanism ultimately increases the affinity of antibodies to circulating antigens,
434 thereby strengthening the immune system. While these changes to somatic cells easily impact the
435 fitness of individuals by affecting their ability to survive and reproduce, stress arguably has the
436 strongest influence over organismal evolution when alterations happen within the germline. Each
437 of the physiological mechanisms of SIE can proceed within the germline, although this happens
438 less frequently than in somatic cells because germ cell chromatin is transcriptionally silent and
439 better protected from damage (Bao and Yan, 2012; Engmann and Mansuy, 2020; Heng, 2009;
440 Milholland et al., 2017). Nonetheless, critical windows of development exist where stress is
441 more likely to induce stably transmitted epigenetic marks in the germline (Skinner, 2011).
442 Embryonic gonadal sex determination is the first critical window, and gametogenesis is the
443 second (Hanson and Skinner, 2016).

444 Despite the popularity of the idea that the soma and the germline are completely isolated,
445 i.e., the Weismann Barrier (Weismann, 1890), this barrier can be bypassed through
446 microvesicles. Microvesicles, in the form of either shedding vesicles or exosomes, are released
447 from all cell types (Camussi et al., 2010; Doyle and Wang, 2019). Once released, they can
448 remain in the extracellular matrix within the proximity of the cell of origin, or they can travel
449 through biological fluids to reach distant target cells (Camussi et al., 2010). These microvesicles
450 contain components of the origin cell, including RNA and proteins. By delivering both of these
451 components, microvesicles have the power to epigenetically reprogram target cells (Engmann
452 and Mansuy, 2020; Sharma, 2014). This important transfer of information can take place
453 between two somatic cells, or between somatic and germ cells. A recent study clearly
454 demonstrated this phenomenon in mice xenografted with human tumor cells. RNA from the
455 xenografted cells traveled through the bloodstream in exosomes until being finally received by
456 spermatozoa (Cossetti et al., 2014). Therefore, germ cells do not necessarily need to be directly
457 altered by stress; it is possible for information from affected somatic cells to reach and modify
458 the germline. Impressively, Charles Darwin essentially predicted the existence of microvesicles.
459 He described them as “gemmules” in 1868, before they could have possibly been detected
460 (Noble, 2021).

461 Through all the physiological mechanisms discussed in this brief essay, eukaryotic
462 organisms can establish heritable phenotypic variation in response to stress. Notably, DNA base

463 mutation is not the only driver of this variation. Rapid phenotypic diversity can be achieved by
464 histone PTMs, DNA methylation, chromoanagenesis, and transposable element activity. The
465 induced variation can be adaptive, maladaptive, or neutral in specific contexts. In any case, it is
466 produced at a time when homeostasis cannot be maintained, and the system is forced to explore
467 novelty.

468

469 **Conclusions and future perspectives**

470 This essay summarizes five physiological mechanisms of stress-induced evolution (SIE),
471 which serve to generate novelty in populations experiencing altered environmental conditions.
472 Due to their widespread presence across the phylogenetic web of life, these mechanisms have
473 likely been favored during evolution by conferring significant selective advantages that outweigh
474 potential disadvantages, such as the increased susceptibility to pathologies. A better
475 understanding of the profound implications of these mechanisms for cells, organisms, and
476 populations represents an exciting frontier in biology. Many open questions that should be of
477 great interest to comparative physiologists remain, including the following. Is there a correlation
478 between the prevalence of SIE mechanisms, incidence of proliferative disease, and average
479 lifespan across different species? How does the magnitude of stress impact the proportion of
480 favorable to unfavorable phenotypes produced through SIE mechanisms in a population? To
481 what extent has SIE driven punctuated equilibrium throughout evolutionary history? How does
482 SIE impact ecosystem succession during geological periods of rapid environmental change? SIE
483 represents an exciting new paradigm in comparative evolutionary physiology that challenges
484 long-standing dogmas and stimulates the creative intellect of current and future physiologists. In
485 this brief essay, we share our enthusiasm for this fascinating area of biology to inspire future
486 research on SIE by a broader scientific community.

487

488 **Competing interests**

489 No competing interests declared

490

491 **Funding**

492 This work was supported by the National Science Foundation Grant MCB-2127516 to D.K.

493 **References**

494 Abe, Y., Fujiwara, Y., Takahashi, H., Matsumura, Y., Sawada, T., Jiang, S., Nakaki, R., Uchida, A., Nagao,
495 Naito, M., et al. (2018). Histone demethylase JMJD1A coordinates acute and chronic
496 adaptation to cold stress via thermogenic phospho-switch. *Nat. Commun.* 9, 1566.

497 Alabert, C. and Groth, A. (2012). Chromatin replication and epigenome maintenance. *Nat. Rev. Mol. Cell
498 Biol.* 13, 153–167.

499 Angers, B., Castonguay, E. and Massicotte, R. (2010). Environmentally induced phenotypes and DNA
500 methylation: how to deal with unpredictable conditions until the next generation and after. *Mol.
501 Ecol.* 19, 1283–1295.

502 Aniagu, S. O., Day, N., Chipman, J. K., Taylor, E. W., Butler, P. J. and Winter, M. J. (2006). Does exhaustive
503 exercise result in oxidative stress and associated DNA damage in the Chub (Leuciscus cephalus)?
504 *Environ. Mol. Mutagen.* 47, 616–623.

505 Anway, M. D., Cupp, A. S., Uzumcu, M. and Skinner, M. K. (2005). Epigenetic Transgenerational Actions
506 of Endocrine Disruptors and Male Fertility. *Science* 308, 1466–1469.

507 Anway, M. D., Leathers, C. and Skinner, M. K. (2006). Endocrine Disruptor Vinclozolin Induced Epigenetic
508 Transgenerational Adult-Onset Disease. *Endocrinology* 147, 5515–5523.

509 Bagdonas, E. and Zukas, K. (2004). Repair of UVC induced DNA lesions in erythrocytes from *Carassius*
510 *auratus gibelio*. *Sveik. Moksl.* 22–24.

511 Banerjee, G., Gupta, N., Tiwari, J. and Raman, G. (2005). Ultraviolet-induced transformation of
512 keratinocytes: possible involvement of long interspersed element-1 reverse transcriptase.
513 *Photodermatol. Photoimmunol. Photomed.* 21, 32–39.

514 Bao, J. and Bedford, M. T. (2016). Epigenetic regulation of the histone-to-protamine transition during
515 spermiogenesis. *Reprod. Camb. Engl.* 151, R55–R70.

516 Bao, J. and Yan, W. (2012). Male Germline Control of Transposable Elements. *Biol. Reprod.* 86,,

517 Barth, J. M. I., Berg, P. R., Jonsson, P. R., Bonanomi, S., Corell, H., Hemmer-Hansen, J., Jakobsen, K. S.,
518 Johannesson, K., Jorde, P. E., Knutsen, H., et al. (2017). Genome architecture enables local
519 adaptation of Atlantic cod despite high connectivity. *Mol. Ecol.* 26, 4452–4466.

520 Barzilai, A. and Yamamoto, K.-I. (2004). DNA damage responses to oxidative stress. *DNA Repair* 3, 1109–
521 1115.

522 Bianconi, E., Piovesan, A., Facchini, F., Beraudi, A., Casadei, R., Frabetti, F., Vitale, L., Pelleri, M. C.,
523 Tassani, S., Piva, F., et al. (2013). An estimation of the number of cells in the human body. *Ann.
524 Hum. Biol.* 40, 463–471.

525 Biémont, C. and Vieira, C. (2006). Junk DNA as an evolutionary force. *Nature* 443, 521–524.

526 Bird, A. P. (1980). DNA methylation and the frequency of CpG in animal DNA. *Nucleic Acids Res.* 8, 1499–
527 1504.

528 Bird, A. (2002). DNA methylation patterns and epigenetic memory. *Genes Dev.* 16, 6–21.

529 Bjedov, I., Tenaillon, O., Gérard, B., Souza, V., Denamur, E., Radman, M., Taddei, F. and Matic, I. (2003).
530 Stress-Induced Mutagenesis in Bacteria. *Science* 300, 1404–1409.

531 Bošković, A. and Rando, O. J. (2018). Transgenerational Epigenetic Inheritance. *Annu. Rev. Genet.* 52,
532 21–41.

533 Boyko, A., Blevins, T., Yao, Y., Golubov, A., Bilichak, A., Ilnytskyy, Y., Hollander, J., Jr, F. M. and Kovalchuk,
534 I. (2010a). Transgenerational Adaptation of Arabidopsis to Stress Requires DNA Methylation and
535 the Function of Dicer-Like Proteins. *PLOS ONE* 5, e9514.

536 Boyko, A., Golubov, A., Bilichak, A. and Kovalchuk, I. (2010b). Chlorine Ions but not Sodium Ions Alter
537 Genome Stability of *Arabidopsis thaliana*. *Plant Cell Physiol.* 51, 1066–1078.

538 Brown, C. J., Todd, K. M. and Rosenzweig, R. F. (1998). Multiple duplications of yeast hexose transport
539 genes in response to selection in a glucose-limited environment. *Mol. Biol. Evol.* 15, 931–942.

540 Burggren, W. W. (2014). Epigenetics as a source of variation in comparative animal physiology - or -
541 Lamarck is lookin' pretty good these days. *J. Exp. Biol.* 217, 682–689.

542 Burggren, W. (2016). Epigenetic Inheritance and Its Role in Evolutionary Biology: Re-Evaluation and New
543 Perspectives. *Biology* 5, 24.

544 Call, E., Jones, R., DeMonja, K., Burton, J. N., Jellum, S., Bernkopf, A. and Oberg, C. (2017). “The elastic
545 limit”: Introducing a novel concept in communicating excessive shear and tissue deformation.
546 *World Counc. Enteros. Ther.* J. 37, 16–20.

547 Campbell, C. R., Poelstra, J. W. and Yoder, A. D. (2018). What is Speciation Genomics? The roles of
548 ecology, gene flow, and genomic architecture in the formation of species. *Biol. J. Linn. Soc.* 124,
549 561–583.

550 Camussi, G., Deregibus, M.-C., Bruno, S., Grange, C., Fonsato, V. and Tetta, C. (2010).
551 Exosome/microvesicle-mediated epigenetic reprogramming of cells. *Am. J. Cancer Res.* 1, 98–
552 110.

553 Cantone, L., Nordio, F., Hou, L., Apostoli, P., Bonzini, M., Tarantini, L., Angelici, L., Bollati, V., Zanobetti,
554 A., Schwartz, J., et al. (2011). Inhalable metal-rich air particles and histone H3K4 dimethylation
555 and H3K9 acetylation in a cross-sectional study of steel workers. *Environ. Health Perspect.* 119,
556 964–969.

557 Capuano, F., Mülleeder, M., Kok, R., Blom, H. J. and Ralser, M. (2014). Cytosine DNA Methylation Is Found
558 in *Drosophila melanogaster* but Absent in *Saccharomyces cerevisiae*, *Schizosaccharomyces*
559 *pombe*, and Other Yeast Species. *Anal. Chem.* 86, 3697–3702.

560 Cathcart, R., Schwiers, E., Saul, R. L. and Ames, B. N. (1984). Thymine glycol and thymidine glycol in
561 human and rat urine: a possible assay for oxidative DNA damage. *Proc. Natl. Acad. Sci.* 81, 5633–
562 5637.

563 Cavrak, V. V., Lettner, N., Jamge, S., Kosarewicz, A., Bayer, L. M. and Scheid, O. M. (2014). How a
564 Retrotransposon Exploits the Plant's Heat Stress Response for Its Activation. *PLOS Genet.* 10,
565 e1004115.

566 Chadha, S. and Sharma, M. (2014). Transposable Elements as Stress Adaptive Capacitors Induce
567 Genomic Instability in Fungal Pathogen *Magnaporthe oryzae*. *PLOS ONE* 9, e94415.

568 Chakarov, S., Petkova, R., Russev, G. C. and Zhelev, N. (2014). DNA damage and mutation. Types of DNA
569 damage. *BioDiscovery* 11, e8957.

570 Champroux, A., Cocquet, J., Henry-Berger, J., Drevet, J. R. and Kocer, A. (2018). A Decade of Exploring
571 the Mammalian Sperm Epigenome: Paternal Epigenetic and Transgenerational Inheritance.
572 *Front. Cell Dev. Biol.* 6, 50.

573 Chang, H. H. Y., Pannunzio, N. R., Adachi, N. and Lieber, M. R. (2017). Non-homologous DNA end joining
574 and alternative pathways to double-strand break repair. *Nat. Rev. Mol. Cell Biol.* 18, 495–506.

575 Chatterjee, N. and Walker, G. C. (2017). Mechanisms of DNA damage, repair, and mutagenesis. *Environ.*
576 *Mol. Mutagen.* 58, 235–263.

577 Chen, J. J., Mitchell, D. L. and Britt, A. B. (1994). A Light-Dependent Pathway for the Elimination of UV-
578 Induced Pyrimidine (6-4) Pyrimidinone Photoproducts in *Arabidopsis*. *Plant Cell* 6, 1311–1317.

579 Chen, L.-T., Luo, M., Wang, Y.-Y. and Wu, K. (2010). Involvement of *Arabidopsis* histone deacetylase
580 HDA6 in ABA and salt stress response. *J. Exp. Bot.* 61, 3345–3353.

581 Chénais, B., Caruso, A., Hiard, S. and Casse, N. (2012). The impact of transposable elements on
582 eukaryotic genomes: From genome size increase to genetic adaptation to stressful
583 environments. *Gene* 509, 7–15.

584 Cheng, C.-H., Guo, Z.-X., Luo, S.-W. and Wang, A.-L. (2018). Effects of high temperature on biochemical
585 parameters, oxidative stress, DNA damage and apoptosis of pufferfish (*Takifugu obscurus*).
586 *Ecotoxicol. Environ. Saf.* 150, 190–198.

587 Cheng, L., Trenberth, K. E., Gruber, N., Abraham, J. P., Fasullo, J. T., Li, G., Mann, M. E., Zhao, X. and Zhu,
588 J. (2020). Improved Estimates of Changes in Upper Ocean Salinity and the Hydrological Cycle. *J.*
589 *Clim.* 33, 10357–10381.

590 Choy, C. K. M., Benzie, I. F. F. and Cho, P. (2005). UV-Mediated DNA Strand Breaks in Corneal Epithelial
591 Cells Assessed Using the Comet Assay Procedure. *Photochem. Photobiol.* 81, 493–497.

592 Chung, H., Bogwitz, M. R., McCart, C., Andrianopoulos, A., ffrench-Constant, R. H., Batterham, P. and
593 Daborn, P. J. (2007). Cis-Regulatory Elements in the Accord Retrotransposon Result in Tissue-
594 Specific Expression of the *Drosophila melanogaster* Insecticide Resistance Gene *Cyp6g1*.
595 *Genetics* 175, 1071–1077.

596 Clingen, P. H., Arlett, C. F., Roza, L., Mori, T., Nikaido, O. and Green, M. H. L. (1995). Induction of
597 Cyclobutane Pyrimidine Dimers, Pyrimidine(6-4)pyrimidone Photoproducts, and Dewar Valence
598 Isomers by Natural Sunlight in Normal Human Mononuclear Cells. *Cancer Res.* 55, 2245–2248.

599 Condamine, F. L., Rolland, J. and Morlon, H. (2013). Macroevolutionary perspectives to environmental
600 change. *Ecol. Lett.* 16, 72–85.

601 Cook, D. E., Lee, T. G., Guo, X., Melito, S., Wang, K., Bayless, A. M., Wang, J., Hughes, T. J., Willis, D. K.,
602 Clemente, T. E., et al. (2012). Copy Number Variation of Multiple Genes at Rhg1 Mediates
603 Nematode Resistance in Soybean. *Science* 338, 1206–1209.

604 Cossetti, C., Lugini, L., Astrologo, L., Saggio, I., Fais, S. and Spadafora, C. (2014). Soma-to-Germline
605 Transmission of RNA in Mice Xenografted with Human Tumour Cells: Possible Transport by
606 Exosomes. *PLOS ONE* 9, e101629.

607 da Silva, F. A., Guimarães, E. M. C., Carvalho, N. D. M., Ferreira, A. M. V., Schneider, C. H., Carvalho-Zilse,
608 G. A., Feldberg, E. and Gross, M. C. (2020). Transposable DNA Elements in Amazonian Fish: From
609 Genome Enlargement to Genetic Adaptation to Stressful Environments. *Cytogenet. Genome Res.*
610 160, 148–155.

611 D'Alessandro, G., Frizzi, G. and Mariani, M. (1957). Effect of DDT selection pressure on the frequency of
612 chromosomal structures in *Anopheles atroparvus*. *Bull. World Health Organ.* 16, 859–864.

613 Darboux, I., Charles, J.-F., Pauchet, Y., Warot, S. and Pauron, D. (2007). Transposon-mediated resistance
614 to *Bacillus sphaericus* in a field-evolved population of *Culex pipiens* (Diptera: Culicidae). *Cell.*
615 *Microbiol.* 9, 2022–2029.

616 Diaz, M. and Flajnik, M. E. (1998). Evolution of somatic hypermutation and gene conversion in adaptive
617 immunity. *Immunol. Rev.* 162, 13–24.

618 Diaz-Mendez, I., Alhama, J., Pueyo, C. and Lopez-Barea, J. (1997). Fish 8-oxo-dG levels as biomarker of
619 oxidative damages by environmental pollutants. *Mutat. Res. Fundam. Mol. Mech. Mutagen.*
620 379, S168.

621 Doyle, L. M. and Wang, M. Z. (2019). Overview of Extracellular Vesicles, Their Origin, Composition,
622 Purpose, and Methods for Exosome Isolation and Analysis. *Cells* 8, 727.

623 Duncan, B. K. and Miller, J. H. (1980). Mutagenic deamination of cytosine residues in DNA. *Nature* 287,
624 560–561.

625 Engmann, O. and Mansuy, I. M. (2020). Chapter 18 - Stress and its effects across generations. In *Stress*
626 *Resilience* (ed. Chen, A.), pp. 269–290. Academic Press.

627 Fan, J., Krautkramer, K. A., Feldman, J. L. and Denu, J. M. (2015). Metabolic Regulation of Histone Post-
628 Translational Modifications. *ACS Chem. Biol.* 10, 95–108.

629 Feng, Q., Yang, C., Lin, X., Wang, J., Ou, X., Zhang, C., Chen, Y. and Liu, B. (2012). Salt and alkaline stress
630 induced transgenerational alteration in DNA methylation of rice ('*Oryza sativa*'). *Aust. J. Crop Sci.*
631 6, 877–883.

632 Ferguson-Smith, M. A. and Trifonov, V. (2007). Mammalian karyotype evolution. *Nat. Rev. Genet.* 8,
633 950–962.

634 Feulner, P. G. D. and De-Kayne, R. (2017). Genome evolution, structural rearrangements and speciation.
635 *J. Evol. Biol.* 30, 1488–1490.

636 Flores, K. B., Wolschin, F. and Amdam, G. V. (2013). The Role of Methylation of DNA in Environmental
637 Adaptation. *Integr. Comp. Biol.* 53, 359–372.

638 Foster, P. L. (2007). Stress-Induced Mutagenesis in Bacteria. *Crit. Rev. Biochem. Mol. Biol.* 42, 373–397.

639 Fryxell, K. J. and Zuckerkandl, E. (2000). Cytosine Deamination Plays a Primary Role in the Evolution of
640 Mammalian Isochores. *Mol. Biol. Evol.* 17, 1371–1383.

641 Gaines, T. A., Zhang, W., Wang, D., Bukun, B., Chisholm, S. T., Shaner, D. L., Nissen, S. J., Patzoldt, W. L.,
642 Tranel, P. J., Culpepper, A. S., et al. (2010). Gene amplification confers glyphosate resistance in
643 *Amaranthus palmeri*. *Proc. Natl. Acad. Sci.* 107, 1029–1034.

644 Galhardo, R. S., Hastings, P. J. and Rosenberg, S. M. (2007). Mutation as a Stress Response and the
645 Regulation of Evolvability. *Crit. Rev. Biochem. Mol. Biol.* 42, 399–435.

646 García-Giménez, J.-L., Garcés, C., Romá-Mateo, C. and Pallardó, F. V. (2021). Oxidative stress-mediated
647 alterations in histone post-translational modifications. *Free Radic. Biol. Med.* 170, 6–18.

648 Garinis, G. A., Mitchell, J. R., Moorhouse, M. J., Hanada, K., de Waard, H., Vandeputte, D., Jans, J., Brand,
649 K., Smid, M., van der Spek, P. J., et al. (2005). Transcriptome analysis reveals cyclobutane
650 pyrimidine dimers as a major source of UV-induced DNA breaks. *EMBO J.* 24, 3952–3962.

651 Geiser, C., Mandáková, T., Arrigo, N., Lysak, M. A. and Parisod, C. (2016). Repeated Whole-Genome
652 Duplication, Karyotype Reshuffling, and Biased Retention of Stress-Responding Genes in Buckler
653 Mustard. *Plant Cell* 28, 17–27.

654 Gerlach, V. L., Aravind, L., Gotway, G., Schultz, R. A., Koonin, E. V. and Friedberg, E. C. (1999). Human and
655 mouse homologs of *Escherichia coli* DinB (DNA polymerase IV), members of the UmuC/DinB
656 superfamily. *Proc. Natl. Acad. Sci. U. S. A.* 96, 11922–11927.

657 Goubert, C., Henri, H., Minard, G., Moro, C. V., Mavingui, P., Vieira, C. and Boulesteix, M. (2017). High-
658 throughput sequencing of transposable element insertions suggests adaptive evolution of the
659 invasive Asian tiger mosquito towards temperate environments. *Mol. Ecol.* 26, 3968–3981.

660 Gould, S. J. (1982). The meaning of punctuated equilibrium and its role in validating a hierarchical
661 approach to macroevolution. In *Perspectives in Evolution* (ed. Milkman, R.), pp. 83–104.
662 Sunderland, MA: Sinauer Associates Inc.

663 Greenberg, M. V. C. and Bourc'his, D. (2019). The diverse roles of DNA methylation in mammalian
664 development and disease. *Nat. Rev. Mol. Cell Biol.* 20, 590–607.

665 Grollman, A. P. and Moriya, M. (1993). Mutagenesis by 8-oxoguanine: an enemy within. *Trends Genet.* 9,
666 246–249.

667 Gruenbaum, Y., Cedar, H. and Razin, A. (1982). Substrate and sequence specificity of a eukaryotic DNA
668 methylase. *Nature* 295, 620–622.

669 Hanson, M. A. and Skinner, M. K. (2016). Developmental origins of epigenetic transgenerational
670 inheritance. *Environ. Epigenetics* 2, dvw002.

671 Hashida, S., Kitamura, K., Mikami, T. and Kishima, Y. (2003). Temperature Shift Coordinately Changes the
672 Activity and the Methylation State of Transposon Tam3 in *Antirrhinum majus*. *Plant Physiol.* 132,
673 1207–1216.

674 Heckwolf, M. J., Meyer, B. S., Häsler, R., Höppner, M. P., Eizaguirre, C. and Reusch, T. B. H. (2020). Two
675 different epigenetic information channels in wild three-spined sticklebacks are involved in
676 salinity adaptation. *Sci. Adv.* 6, eaaz1138.

677 Heng, H. H. Q. (2009). The genome-centric concept: resynthesis of evolutionary theory. *BioEssays* 31,
678 512–525.

679 Heng, J. and Heng, H. H. (2020). Genome chaos: Creating new genomic information essential for cancer
680 macroevolution. *Semin. Cancer Biol.*

681 Hoegh-Guldberg, O., Mumby, P. J., Hooten, A. J., Steneck, R. S., Greenfield, P., Gomez, E., Harvell, C. D.,
682 Sale, P. F., Edwards, A. J., Caldeira, K., et al. (2007). Coral Reefs Under Rapid Climate Change and
683 Ocean Acidification. *Science* 318, 1737–1742.

684 Holliday, R. and Grigg, G. W. (1993). DNA methylation and mutation. *Mutat. Res. Mol. Mech. Mutagen.*
685 285, 61–67.

686 Honda, S., Hjelmeland, L. M. and Handa, J. T. (2001). Oxidative Stress–Induced Single-Strand Breaks in
687 Chromosomal Telomeres of Human Retinal Pigment Epithelial Cells In Vitro. *Invest. Ophthalmol.*
688 *Vis. Sci.* 42, 2139–2144.

689 Horne, S. D., Chowdhury, S. K. and Heng, H. H. (2014). Stress, genomic adaptation, and the evolutionary
690 trade-off. *Front Genet* 5, 92.

691 Horváth, V., Merenciano, M. and González, J. (2017). Revisiting the Relationship between Transposable
692 Elements and the Eukaryotic Stress Response. *Trends Genet.* 33, 832–841.

693 Hsu, K.-F., Wilkins, S. E., Hopkinson, R. J., Sekirnik, R., Flashman, E., Kawamura, A., McCullagh, J. S. O.,
694 Walport, L. J. and Schofield, C. J. (2021). Hypoxia and hypoxia mimetics differentially modulate
695 histone post-translational modifications. *Epigenetics* 16, 14–27.

696 Hummel, B., Hansen, E. C., Yoveva, A., Aprile-Garcia, F., Hussong, R. and Sawarkar, R. (2017). The
697 evolutionary capacitor HSP90 buffers the regulatory effects of mammalian endogenous
698 retroviruses. *Nat. Struct. Mol. Biol.* 24, 234–242.

699 Jablonka, E. and Lamb, M. J. (2020). Inheritance Systems and the Extended Evolutionary Synthesis. *Elem.*
700 *Philos. Biol.*

701 Jeremias, G., Barbosa, J., Marques, S. M., De Schamphelaere, K. A. C., Van Nieuwerburgh, F., Deforce, D.,
702 Goncalves, F. J. M., Pereira, J. L. and Asselman, J. (2018). Transgenerational Inheritance of DNA
703 Hypomethylation in *Daphnia magna* in Response to Salinity Stress. *Environ. Sci. Technol.* 52,
704 10114–10123.

705 Jones, P. A. (2012). Functions of DNA methylation: islands, start sites, gene bodies and beyond. *Nat. Rev. Genet.* 13, 484–492.

706

707 Kamstra, J. H., Hurem, S., Martin, L. M., Lindeman, L. C., Legler, J., Oughton, D., Salbu, B., Brede, D. A.,
708 Lyche, J. L. and Aleström, P. (2018). Ionizing radiation induces transgenerational effects of DNA
709 methylation in zebrafish. *Sci. Rep.* 8, 15373.

710 Kantidze, O. L., Velichko, A. K., Luzhin, A. V. and Razin, S. V. (2016). Heat stress-induced DNA damage.
711 *Acta Naturae Англоязычная Версия* 8, 75–78.

712 Karger, D. N., Schmatz, D. R., Dettling, G. and Zimmermann, N. E. (2020). High-resolution monthly
713 precipitation and temperature time series from 2006 to 2100. *Sci. Data* 7, 248.

714 Kent, T. V., Uzunović, J. and Wright, S. I. (2017). Coevolution between transposable elements and
715 recombination. *Philos. Trans. R. Soc. B Biol. Sci.* 372, 20160458.

716 Khandelwal, S. (1990). Chromosome evolution in the genus *Ophioglossum* L. *Bot. J. Linn. Soc.* 102, 205–
717 217.

718 Kim, J.-M., To, T. K., Ishida, J., Morosawa, T., Kawashima, M., Matsui, A., Toyoda, T., Kimura, H.,
719 Shinozaki, K. and Seki, M. (2008). Alterations of Lysine Modifications on the Histone H3 N-Tail
720 under Drought Stress Conditions in *Arabidopsis thaliana*. *Plant Cell Physiol.* 49, 1580–1588.

721 Klosin, A., Casas, E., Hidalgo-Carcedo, C., Vavouri, T. and Lehner, B. (2017). Transgenerational
722 transmission of environmental information in *C. elegans*. *Science* 356, 320–323.

723 Koltsova, A. S., Pendina, A. A., Efimova, O. A., Chiryaeva, O. G., Kuznetzova, T. V. and Baranov, V. S.
724 (2019). On the Complexity of Mechanisms and Consequences of Chromothripsis: An Update.
725 *Front. Genet.* 10, 393.

726 Kouzarides, T. (2007). Chromatin Modifications and Their Function. *Cell* 128, 693–705.

727 Kültz, D. (2003). Evolution of the cellular stress proteome: from monophyletic origin to ubiquitous
728 function. *J Exp Biol* 206, 3119–24.

729 Kültz, D. (2005). Molecular and evolutionary basis of the cellular stress response. *Annu Rev Physiol* 67,
730 225–57.

731 Kültz, D. (2020a). Defining biological stress and stress responses based on principles of physics. *J. Exp.
732 Zool. Part Ecol. Integr. Physiol.* 333, 350–358.

733 Kültz, D. (2020b). Evolution of cellular stress response mechanisms. *J. Exp. Zool. Part Ecol. Integr.
734 Physiol.* 333, 359–378.

735 Kültz, D. and Chakravarty, D. (2001). Hyperosmolality in the form of elevated NaCl but not urea causes
736 DNA damage in murine kidney cells. *Proc. Natl. Acad. Sci.* 98, 1999–2004.

737 Kwon, C. S., Lee, D., Choi, G. and Chung, W.-I. (2009). Histone occupancy-dependent and -independent
738 removal of H3K27 trimethylation at cold-responsive genes in *Arabidopsis*. *Plant J.* 60, 112–121.

739 Lämke, J., Brzezinka, K., Altmann, S. and Bäurle, I. (2016). A hit-and-run heat shock factor governs
740 sustained histone methylation and transcriptional stress memory. *EMBO J.* 35, 162–175.

741 Lanciano, S. and Mirouze, M. (2018). Transposable elements: all mobile, all different, some stress
742 responsive, some adaptive? *Curr. Opin. Genet. Dev.* 49, 106–114.

743 Lankinen, M. H., Vilpo, L. M. and Vilpo, J. A. (1996). UV- and γ -irradiation-induced DNA single-strand
744 breaks and their repair in human blood granulocytes and lymphocytes. *Mutat. Res. Mol. Mech.*
745 *Mutagen.* 352, 31–38.

746 Lerman, D. N., Michalak, P., Helin, A. B., Bettencourt, B. R. and Feder, M. E. (2003). Modification of Heat-
747 Shock Gene Expression in *Drosophila melanogaster* Populations via Transposable Elements. *Mol.*
748 *Biol. Evol.* 20, 135–144.

749 Liepelt, A., Karbe, L. and Westendorf, J. (1995). Induction of DNA strand breaks in rainbow trout
750 *Oncorhynchus mykiss* under hypoxic and hyperoxic conditions. *Aquat. Toxicol.* 33, 177–181.

751 Lindtke, D., Lucek, K., Soria-Carrasco, V., Villoutreix, R., Farkas, T. E., Riesch, R., Dennis, S. R., Gompert, Z.
752 and Nosil, P. (2017). Long-term balancing selection on chromosomal variants associated with
753 crypsis in a stick insect. *Mol. Ecol.* 26, 6189–6205.

754 Liu, T., Li, Y., Duan, W., Huang, F. and Hou, X. (2017). Cold acclimation alters DNA methylation patterns
755 and confers tolerance to heat and increases growth rate in *Brassica rapa*. *J. Exp. Bot.* 68, 1213–
756 1224.

757 Luger, K., Mäder, A. W., Richmond, R. K., Sargent, D. F. and Richmond, T. J. (1997). Crystal structure of
758 the nucleosome core particle at 2.8 Å resolution. *Nature* 389, 251–260.

759 Lyko, F. (2001). DNA methylation learns to fly. *Trends Genet.* 17, 169–172.

760 Makova, K. D. and Hardison, R. C. (2015). The effects of chromatin organization on variation in mutation
761 rates in the genome. *Nat. Rev. Genet.* 16, 213–223.

762 Manikkam, M., Haque, M. M., Guerrero-Bosagna, C., Nilsson, E. E. and Skinner, M. K. (2014). Pesticide
763 Methoxychlor Promotes the Epigenetic Transgenerational Inheritance of Adult-Onset Disease
764 through the Female Germline. *PLOS ONE* 9, e102091.

765 Martin, E. M. and Fry, R. C. (2018). Environmental Influences on the Epigenome: Exposure- Associated
766 DNA Methylation in Human Populations. *Annu. Rev. Public Health* 39, 309–333.

767 Masuda, Y., Hanaoka, F. and Masutani, C. (2016). Translesion DNA Synthesis and Damage Tolerance
768 Pathways. In *DNA Replication, Recombination, and Repair: Molecular Mechanisms and*
769 *Pathology* (ed. Hanaoka, F.) and Sugasawa, K.), pp. 249–304. Tokyo: Springer Japan.

770 Matsui, M., Nishigori, C., Imamura, S., Miyachi, Y., Toyokuni, S., Takada, J., Akaboshi, M. and Ishikawa,
771 M. (1999). The Role of Oxidative DNA Damage in Human Arsenic Carcinogenesis: Detection of 8-
772 Hydroxy-2 β -Deoxyguanosine in Arsenic-Related Bowen's Disease. *J. Invest. Dermatol.* 113, 26–
773 31.

774 McClintock, B. (1984). The significance of responses of the genome to challenge. *Science* 226, 792–801.

775 Mérot, C., Oomen, R. A., Tigano, A. and Wellenreuther, M. (2020). A Roadmap for Understanding the
776 Evolutionary Significance of Structural Genomic Variation. *Trends Ecol. Evol.* 35, 561–572.

777 Metzger, D. C. H. and Schulte, P. M. (2017). Persistent and plastic effects of temperature on DNA
778 methylation across the genome of threespine stickleback (*Gasterosteus aculeatus*). *Proc. R. Soc.
779 B Biol. Sci.* 284, 20171667.

780 Mihaylova, V. T., Bindra, R. S., Yuan, J., Campisi, D., Narayanan, L., Jensen, R., Giordano, F., Johnson, R.
781 S., Rockwell, S. and Glazer, P. M. (2003). Decreased Expression of the DNA Mismatch Repair
782 Gene MLh1 under Hypoxic Stress in Mammalian Cells. *Mol. Cell. Biol.* 23, 3265–3273.

783 Milholland, B., Dong, X., Zhang, L., Hao, X., Suh, Y. and Vijg, J. (2017). Differences between germline and
784 somatic mutation rates in humans and mice. *Nat. Commun.* 8, 15183.

785 Miousse, I. R., Chalbot, M.-C. G., Lumen, A., Ferguson, A., Kavouras, I. G. and Koturbash, I. (2015).
786 Response of transposable elements to environmental stressors. *Mutat. Res. Mutat. Res.* 765,
787 19–39.

788 Mitchell, D. L., Nguyen, T. D. and Cleaver, J. E. (1990). Nonrandom induction of pyrimidine-pyrimidone
789 (6-4) photoproducts in ultraviolet-irradiated human chromatin. *J. Biol. Chem.* 265, 5353–5356.

790 Møller, P., Loft, S., Lundby, C. and Olsen, N. V. (2001). Acute hypoxia and hypoxic exercise induce DNA
791 strand breaks and oxidative DNA damage in humans. *FASEB J.* 15, 1181–1186.

792 Moore, L. D., Le, T. and Fan, G. (2013). DNA Methylation and Its Basic Function.
793 *Neuropsychopharmacology* 38, 23–38.

794 Moriya, M. (1993). Single-stranded shuttle phagemid for mutagenesis studies in mammalian cells: 8-
795 oxoguanine in DNA induces targeted G.C-->T.A transversions in simian kidney cells. *Proc. Natl.
796 Acad. Sci.* 90, 1122–1126.

797 Mørkve Knudsen, T., Rezwan, F. I., Jiang, Y., Karmaus, W., Svanes, C. and Holloway, J. W. (2018).
798 Transgenerational and intergenerational epigenetic inheritance in allergic diseases. *J. Allergy
799 Clin. Immunol.* 142, 765–772.

800 Naito, K., Zhang, F., Tsukiyama, T., Saito, H., Hancock, C. N., Richardson, A. O., Okumoto, Y., Tanisaka, T.
801 and Wessler, S. R. (2009). Unexpected consequences of a sudden and massive transposon
802 amplification on rice gene expression. *Nature* 461, 1130–1134.

803 Nguyen, P., Sýkorová, M., Šíchová, J., Kůta, V., Dalíková, M., Čapková Frydrychová, R., Neven, L. G.,
804 Sahara, K. and Marec, F. (2013). Neo-sex chromosomes and adaptive potential in tortricid pests.
805 *Proc. Natl. Acad. Sci.* 110, 6931–6936.

806 Nilsson, E. E., Sadler-Riggleman, I. and Skinner, M. K. (2018). Environmentally induced epigenetic
807 transgenerational inheritance of disease. *Environ. Epigenetics* 4, dvy016.

808 Noble, D. (2013). Physiology is rocking the foundations of evolutionary biology. *Exp. Physiol.* 98, 1235–
809 1243.

810 Noble, D. (2021). The Illusions of the Modern Synthesis. *Biosemiotics* 14, 5–24.

811 Norouzitallab, P., Baruah, K., Vandegehuchte, M., Stappen, G. V., Catania, F., Bussche, J. V., Vanhaecke,
812 L., Sorgeloos, P. and Bossier, P. (2014). Environmental heat stress induces epigenetic
813 transgenerational inheritance of robustness in parthenogenetic Artemia model. *FASEB J.* 28,
814 3552–3563.

815 Norton, V. G., Imai, B. S., Yau, P. and Bradbury, E. M. (1989). Histone acetylation reduces nucleosome
816 core particle linking number change. *Cell* 57, 449–457.

817 Nowak, M. D., Birkeland, S., Mandáková, T., Choudhury, R. R., Guo, X., Gustafsson, A. L. S., Gizaw, A.,
818 Schrøder-Nielsen, A., Fracassetti, M., Brysting, A. K., et al. (2021). The genome of Draba nivalis
819 shows signatures of adaptation to the extreme environmental stresses of the Arctic. *Mol. Ecol.*
820 *Resour.* 21, 661–676.

821 Okano, M., Bell, D. W., Haber, D. A. and Li, E. (1999). DNA Methyltransferases Dnmt3a and Dnmt3b Are
822 Essential for De Novo Methylation and Mammalian Development. *Cell* 99, 247–257.

823 Ou, X., Zhang, Y., Xu, C., Lin, X., Zang, Q., Zhuang, T., Jiang, L., Wettstein, D. von and Liu, B. (2012).
824 Transgenerational Inheritance of Modified DNA Methylation Patterns and Enhanced Tolerance
825 Induced by Heavy Metal Stress in Rice (*Oryza sativa* L.). *PLOS ONE* 7, e41143.

826 Paaby, A. B. and Rockman, M. V. (2014). Cryptic genetic variation, evolution's hidden substrate. *Nat.*
827 *Rev. Genet.* 15, 247–258.

828 Pappalardo, A. M., Ferrito, V., Biscotti, M. A., Canapa, A. and Capriglione, T. (2021). Transposable
829 Elements and Stress in Vertebrates: An Overview. *Int. J. Mol. Sci.* 22, 1970.

830 Pellestor, F. and Gatinois, V. (2020). Chromoanagenesis: a piece of the macroevolution scenario. *Mol.*
831 *Cytogenet.* 13, 3.

832 Perez, M. F. and Lehner, B. (2019). Intergenerational and transgenerational epigenetic inheritance in
833 animals. *Nat. Cell Biol.* 21, 143–151.

834 Perry, G. H., Dominy, N. J., Claw, K. G., Lee, A. S., Fiegler, H., Redon, R., Werner, J., Villanea, F. A.,
835 Mountain, J. L., Misra, R., et al. (2007). Diet and the evolution of human amylase gene copy
836 number variation. *Nat. Genet.* 39, 1256–1260.

837 Pilzecker, B. and Jacobs, H. (2019). Mutating for Good: DNA Damage Responses During Somatic
838 Hypermutation. *Front. Immunol.* 10, 438.

839 Pilzecker, B., Buoninfante, O. A. and Jacobs, H. (2019). DNA damage tolerance in stem cells, ageing,
840 mutagenesis, disease and cancer therapy. *Nucleic Acids Res.* 47, 7163–7181.

841 Radman, M. (1975). SOS Repair Hypothesis: Phenomenology of an Inducible DNA Repair Which is
842 Accompanied by Mutagenesis. In *Molecular Mechanisms for Repair of DNA: Part A* (ed.
843 Hanawalt, P. C.) and Setlow, R. B.), pp. 355–367. Boston, MA: Springer US.

844 Rajesh Kumar, T., Doreswamy, K., Shrilatha, B., and Muralidhara (2002). Oxidative stress associated DNA
845 damage in testis of mice: induction of abnormal sperms and effects on fertility. *Mutat. Res.*
846 *Toxicol. Environ. Mutagen.* 513, 103–111.

847 Rego, C., Balanyà, J., Fragata, I., Matos, M., Rezende, E. L. and Santos, M. (2010). Clinal Patterns of
848 Chromosomal Inversion Polymorphisms in *Drosophila Subobscura* Are Partly Associated with
849 Thermal Preferences and Heat Stress Resistance. *Evolution* 64, 385–397.

850 Rey, O., Danchin, E., Mirouze, M., Loot, C. and Blanchet, S. (2016). Adaptation to Global Change: A
851 Transposable Element–Epigenetics Perspective. *Trends Ecol. Evol.* 31, 514–526.

852 Rocca, K. A., Gray, E. M., Costantini, C. and Besansky, N. J. (2009). 2La chromosomal inversion enhances
853 thermal tolerance of *Anopheles gambiae* larvae. *Malar. J.* 8, 147.

854 Rosenberg, S. M., Shee, C., Frisch, R. L. and Hastings, P. J. (2012). Stress-induced mutation via DNA
855 breaks in *Escherichia coli*: A molecular mechanism with implications for evolution and medicine.
856 *BioEssays* 34, 885–892.

857 Rutherford, S. L. and Lindquist, S. (1998). Hsp90 as a capacitor for morphological evolution. *Nature* 396,
858 336–342.

859 Ryan, C. P., Brownlie, J. C. and Whyard, S. (2016). Hsp90 and Physiological Stress Are Linked to
860 Autonomous Transposon Mobility and Heritable Genetic Change in Nematodes. *Genome Biol.*
861 *Evol.* 8, 3794–3805.

862 Ryu, T., Veilleux, H. D., Donelson, J. M., Munday, P. L. and Ravasi, T. (2018). The epigenetic landscape of
863 transgenerational acclimation to ocean warming. *Nat. Clim. Change* 8, 504–509.

864 Sallmyr, A., Fan, J. and Rassool, F. V. (2008). Genomic instability in myeloid malignancies: Increased
865 reactive oxygen species (ROS), DNA double strand breaks (DSBs) and error-prone repair. *Cancer*
866 *Lett.* 270, 1–9.

867 Samson, M., Jow, M. M., Wong, C. C. L., Fitzpatrick, C., Aslanian, A., Saucedo, I., Estrada, R., Ito, T., Park,
868 S. R., Iii, J. R. Y., et al. (2014). The Specification and Global Reprogramming of Histone Epigenetic
869 Marks during Gamete Formation and Early Embryo Development in *C. elegans*. *PLOS Genet.* 10,
870 e1004588.

871 Saperas, N., Chiva, M., Pfeiffer, D. C., Kasinsky, H. E. and Ausió, J. (1997). Sperm Nuclear Basic Proteins
872 (SNBPs) of Agnathans and Chondrichthyans: Variability and Evolution of Sperm Proteins in Fish.
873 *J. Mol. Evol.* 44, 422–431.

874 Schubert, I. and Vu, G. T. H. (2016). Genome Stability and Evolution: Attempting a Holistic View. *Trends*
875 *Plant Sci.* 21, 749–757.

876 Seong, K.-H., Li, D., Shimizu, H., Nakamura, R. and Ishii, S. (2011). Inheritance of Stress-Induced, ATF-2-
877 Dependent Epigenetic Change. *Cell* 145, 1049–1061.

878 Sharma, A. (2014). Bioinformatic analysis revealing association of exosomal mRNAs and proteins in
879 epigenetic inheritance. *J. Theor. Biol.* 357, 143–149.

880 Shen, M. M. (2013). Chromoplexy: A New Category of Complex Rearrangements in the Cancer Genome.
881 *Cancer Cell* 23, 567–569.

882 Shi, Y. Y., Huang, Z. Y., Zeng, Z. J., Wang, Z. L., Wu, X. B. and Yan, W. Y. (2011). Diet and Cell Size Both
883 Affect Queen-Worker Differentiation through DNA Methylation in Honey Bees (*Apis mellifera*,
884 Apidae). *PLOS ONE* 6, e18808.

885 Skinner, M. K. (2011). Environmental epigenetic transgenerational inheritance and somatic epigenetic
886 mitotic stability. *Epigenetics* 6, 838–842.

887 Skinner, M. K. (2015). Environmental Epigenetics and a Unified Theory of the Molecular Aspects of
888 Evolution: A Neo-Lamarckian Concept that Facilitates Neo-Darwinian Evolution. *Genome Biol.
889 Evol.* 7, 1296–1302.

890 Skinner, M. K., Manikkam, M., Tracey, R., Guerrero-Bosagna, C., Haque, M. and Nilsson, E. E. (2013).
891 Ancestral dichlorodiphenyltrichloroethane (DDT) exposure promotes epigenetic
892 transgenerational inheritance of obesity. *BMC Med.* 11, 228.

893 Smith, Z. D. and Meissner, A. (2013). DNA methylation: roles in mammalian development. *Nat. Rev.
894 Genet.* 14, 204–220.

895 Song, Y., Jia, Z., Hou, Y., Ma, X., Li, L., Jin, X. and An, L. (2020). Roles of DNA Methylation in Cold Priming
896 in Tartary Buckwheat. *Front. Plant Sci.* 11, 2022.

897 Soon, L. L. L., Ausio, J., Breed, W. G., Power, J. H. T. and Muller, S. (1997). Isolation of histones and
898 related chromatin structures from spermatozoa nuclei of a dasyurid marsupial, *Sminthopsis
899 crassicaudata*. *J. Exp. Zool.* 278, 322–332.

900 Strader, M. E., Wong, J. M., Kozal, L. C., Leach, T. S. and Hofmann, G. E. (2019). Parental environments
901 alter DNA methylation in offspring of the purple sea urchin, *Strongylocentrotus purpuratus*. *J.
902 Exp. Mar. Biol. Ecol.* 517, 54–64.

903 Sun, W., Dong, H., Becker, A. S., Dapito, D. H., Modica, S., Grandl, G., Opitz, L., Efthymiou, V., Straub, L.
904 G., Sarker, G., et al. (2018). Cold-induced epigenetic programming of the sperm enhances brown
905 adipose tissue activity in the offspring. *Nat. Med.* 24, 1372–1383.

906 Sutton, T., Baumann, U., Hayes, J., Collins, N. C., Shi, B.-J., Schnurbusch, T., Hay, A., Mayo, G., Pallotta,
907 M., Tester, M., et al. (2007). Boron-Toxicity Tolerance in Barley Arising from Efflux Transporter
908 Amplification. *Science* 318, 1446–1449.

909 Tanou, G., Molassiotis, A. and Diamantidis, G. (2009). Induction of reactive oxygen species and necrotic
910 death-like destruction in strawberry leaves by salinity. *Environ. Exp. Bot.* 65, 270–281.

911 Tian, L., Cheng, Y.-Q., Shan, Z.-W., Li, J., Wang, C.-C., Han, X.-D., Sun, J. and Ma, E. (2012). Approaching
912 the ideal elastic limit of metallic glasses. *Nat. Commun.* 3, 609.

913 Van Meter, M., Kashyap, M., Rezazadeh, S., Geneva, A. J., Morello, T. D., Seluanov, A. and Gorbunova, V.
914 (2014). SIRT6 represses LINE1 retrotransposons by ribosylating KAP1 but this repression fails
915 with stress and age. *Nat. Commun.* 5, 5011.

916 Vandegehuchte, M. B., De Coninck, D., Vandenbrouck, T., De Coen, W. M. and Janssen, C. R. (2010).
917 Gene transcription profiles, global DNA methylation and potential transgenerational epigenetic
918 effects related to Zn exposure history in *Daphnia magna*. *Environ. Pollut.* 158, 3323–3329.

919 Walker, C. and Burggren, W. (2020). Remodeling the epigenome and (epi)cytoskeleton: a new paradigm
920 for co-regulation by methylation. *J. Exp. Biol.* 223, jeb220632.

921 Wang, W.-N., Zhou, J., Wang, P., Tian, T.-T., Zheng, Y., Liu, Y., Mai, W. and Wang, A.-L. (2009). Oxidative
922 stress, DNA damage and antioxidant enzyme gene expression in the Pacific white shrimp,
923 *Litopenaeus vannamei* when exposed to acute pH stress. *Comp. Biochem. Physiol. Part C Toxicol.*
924 *Pharmacol.* 150, 428–435.

925 Weismann, A. (1890). Prof. Weismann's Theory of Heredity. *Nature* 41, 317–323.

926 Wellenreuther, M. and Bernatchez, L. (2018). Eco-Evolutionary Genomics of Chromosomal Inversions.
927 *Trends Ecol. Evol.* 33, 427–440.

928 Wicker, T., Sabot, F., Hua-Van, A., Bennetzen, J. L., Caby, P., Chalhoub, B., Flavell, A., Leroy, P., Morgante,
929 M., Panaud, O., et al. (2007). A unified classification system for eukaryotic transposable
930 elements. *Nat. Rev. Genet.* 8, 973–982.

931 Wimmer, M. E., Vassoler, F. M., White, S. L., Schmidt, H. D., Sidoli, S., Han, Y., Garcia, B. A. and Pierce, R.
932 C. (2019). Impaired cocaine-induced behavioral plasticity in the male offspring of cocaine-
933 experienced sires. *Eur. J. Neurosci.* 49, 1115–1126.

934 Wong, J. M., Kozal, L. C., Leach, T. S., Hoshijima, U. and Hofmann, G. E. (2019). Transgenerational effects
935 in an ecological context: Conditioning of adult sea urchins to upwelling conditions alters
936 maternal provisioning and progeny phenotype. *J. Exp. Mar. Biol. Ecol.* 517, 65–77.

937 Woodhouse, R. M. and Ashe, A. (2020). How do histone modifications contribute to transgenerational
938 epigenetic inheritance in *C. elegans*? *Biochem. Soc. Trans.* 48, 1019–1034.

939 Wysocki, L., Manser, T. and Gefter, M. L. (1986). Somatic evolution of variable region structures during
940 an immune response. *Proc. Natl. Acad. Sci.* 83, 1847–1851.

941 Xue, C., Liu, S., Chen, C., Zhu, J., Yang, X., Zhou, Y., Guo, R., Liu, X. and Gong, Z. (2018). Global Proteome
942 Analysis Links Lysine Acetylation to Diverse Functions in *Oryza Sativa*. *Proteomics* 18, 1700036.

943 Yamanaka, K., Takabayashi, F., Mizoi, M., An, Y., Hasegawa, A. and Okada, S. (2001). Oral Exposure of
944 Dimethylarsinic Acid, a Main Metabolite of Inorganic Arsenics, in Mice Leads to an Increase in 8-
945 Oxo-2'-deoxyguanosine Level, Specifically in the Target Organs for Arsenic Carcinogenesis.
946 *Biochem. Biophys. Res. Commun.* 287, 66–70.

947 Yang, J., Horton, J. R., Akdemir, K. C., Li, J., Huang, Y., Kumar, J., Blumenthal, R. M., Zhang, X. and Cheng,
948 X. (2021). Preferential CEBP binding to T:G mismatches and increased C-to-T human somatic
949 mutations. *Nucleic Acids Res.* 49, 5084–5094.

950 Yasuda, K., Ito, M., Sugita, T., Tsukiyama, T., Saito, H., Naito, K., Teraishi, M., Tanisaka, T. and Okumoto,
951 Y. (2013). Utilization of transposable element mPing as a novel genetic tool for modification of
952 the stress response in rice. *Mol. Breed.* 32, 505–516.

953 Ye, C. J., Liu, G. and Heng, H. H. (2018). Experimental Induction of Genome Chaos. In *Chromothripsis: Methods and Protocols* (ed. Pellestor, F.), pp. 337–352. Totowa: Humana Press Inc.

955 Yoon, J.-H., Bhatia, G., Prakash, S. and Prakash, L. (2010). Error-free replicative bypass of thymine glycol
956 by the combined action of DNA polymerases κ and ζ in human cells. *Proc. Natl. Acad. Sci.* 107,
957 14116–14121.

958 Yuan, L., Liu, X., Luo, M., Yang, S. and Wu, K. (2013). Involvement of Histone Modifications in Plant
959 Abiotic Stress Responses. *J. Integr. Plant Biol.* 55, 892–901.

960 Zemach, A., McDaniel, I. E., Silva, P. and Zilberman, D. (2010). Genome-Wide Evolutionary Analysis of
961 Eukaryotic DNA Methylation. *Science* 328, 916–919.

962 Zhang, H.-H., Peccoud, J., Xu, M.-R.-X., Zhang, X.-G. and Gilbert, C. (2020). Horizontal transfer and
963 evolution of transposable elements in vertebrates. *Nat. Commun.* 11, 1362.

964 Zhao, Y. and Garcia, B. A. (2015). Comprehensive Catalog of Currently Documented Histone
965 Modifications. *Cold Spring Harb. Perspect. Biol.* 7, a025064.

966 Zheng, X., Chen, L., Li, M., Lou, Q., Xia, H., Wang, P., Li, T., Liu, H. and Luo, L. (2013). Transgenerational
967 Variations in DNA Methylation Induced by Drought Stress in Two Rice Varieties with
968 Distinguished Difference to Drought Resistance. *PLOS ONE* 8, e80253.

969 Zheng, H.-T., Zhuang, Z.-X., Chen, C.-J., Liao, H.-Y., Chen, H.-L., Hsueh, H.-C., Chen, C.-F., Chen, S.-E. and
970 Huang, S.-Y. (2021). Effects of acute heat stress on protein expression and histone modification
971 in the adrenal gland of male layer-type country chickens. *Sci. Rep.* 11, 6499.

972 Zhou, Y., He, F., Pu, W., Gu, X., Wang, J. and Su, Z. (2020). The Impact of DNA Methylation Dynamics on
973 the Mutation Rate During Human Germline Development. *G3 GenesGenomesGenetics* 10, 3337–
974 3346.

975

976

977

978

979

980

981

982 **Figure Legends:**

983 **Figure 1. The modes of epigenetic inheritance of histone PTMs.** Stress induces changes in the
984 relative abundance of histone PTMs in somatic cells (represented by white stars) and/or germ
985 cells (represented by black stars). When an epigenetic mark persists through time within the F_0
986 individual, it is intragenerationally inherited. If the mark is passed through one generation due to
987 direct gamete exposure, it is intergenerationally inherited. In the case of transgenerational
988 inheritance, the mark **can be** passed through multiple generations, and progeny inheriting the
989 mark never need to experience the stress.

990

991 **Figure 2. Stress-induced effects on genome structure.** First, stress causes strain on cellular
992 systems. These perturbations lead to chromoanagenesis in the form of chromothripsis,
993 chromoplexy, or chromoanasythesis. Each subset of chromoanagenesis produces a set of
994 structural genomic variants. These structural genomic variants can be maladaptive or adaptive. It
995 should be noted that not all activators of chromoanagenesis are included in this diagram.

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013 **Tables**

1014

1015 **Table 1. Examples of stress-induced DNA damage.**

Stress	DNA Damage	Species	Reference
Oxidative stress	Strand breaks	Human (<i>Homo sapiens</i>)	(Honda et al., 2001)
		Mouse (<i>Mus musculus</i>)	(Rajesh Kumar et al., 2002)
		Chub (<i>Leuciscus cephalus</i>)	(Aniagu et al., 2006)
	Thymine glycol	Rat (<i>Rattus norvegicus</i>)	(Cathcart et al., 1984)
		Human (<i>Homo sapiens</i>)	(Yoon et al., 2010)
	8-oxo-deoxyguanosine	Gilt-head bream (<i>Sparus aurata</i>)	(Diaz-Mendez et al., 1997)
		Mouse (<i>Mus musculus</i>)	(Yamanaka et al., 2001)
		Human (<i>Homo sapiens</i>)	(Matsui et al., 1999)
Hypoxia	Single-strand breaks	Rainbow trout (<i>Oncorhynchus mykiss</i>)	(Liepelt et al., 1995)
		Human (<i>Homo sapiens</i>)	(Møller et al., 2001)
Salinity stress	Double-strand breaks	Mouse (<i>Mus musculus</i>)	(Kültz and Chakravarty, 2001)
		Thale cress (<i>Arabidopsis thaliana</i>)	(Boyko et al., 2010b)
	Single-strand breaks	Strawberry (<i>Fragaria x ananassa</i>)	(Tanou et al., 2009)
Extreme pH	Strand breaks	Pacific white shrimp (<i>Litopenaeus vannamei</i>)	(Wang et al., 2009)
	AP sites	Human (<i>Homo sapiens</i>)	(Chatterjee and Walker, 2017)
Heat stress	Strand breaks	Pufferfish (<i>Takifugu obscurus</i>)	(Cheng et al., 2018)
	AP sites	Human (<i>Homo sapiens</i>)	(Chatterjee and Walker, 2017)
	Deaminated cytosine	Mammals (multiple species)	(Fryxell and Zuckerkandl, 2000)
UV irradiation	Strand breaks	Human (<i>Homo sapiens</i>)	(Lankinen et al., 1996)
		Pig (<i>Sus sp.</i>)	(Choy et al., 2005)
	Cyclobutane pyrimidine dimers	Human (<i>Homo sapiens</i>)	(Clingen et al., 1995)
		Mouse (<i>Mus musculus</i>)	(Garinis et al., 2005)
		Rockcress (<i>Arabidopsis sp.</i>)	(Chen et al., 1994)
	Pyrimidine-pyrimidone photoproducts	Human (<i>Homo sapiens</i>)	(Mitchell et al., 1990)
		Prussian carp (<i>Carassius auratus gibelio</i>)	(Bagdonas and Zukas, 2004)
		Rockcress (<i>Arabidopsis sp.</i>)	(Chen et al., 1994)

1016

1017
1018
1019
1020

Table 2. Examples of stress-induced change in histone PTMs.

Stress	Change in Histone PTMs	Species	Associated Phenotype (if reported)	Reference
Heat stress	Increase in H3K27me3	Chicken (<i>Gallus gallus domesticus</i>)	Increased glucocorticoid production	(Zheng et al., 2021)
	Increase in H3K4me2/3	Thale cress (<i>Arabidopsis thaliana</i>)	Transcriptional memory of heat stress	(Lämke et al., 2016)
	Decrease in H3K9me2/3**	Fruit fly (<i>Drosophila melanogaster</i>)	Not reported	(Seong et al., 2011)
	Decrease in H3K9me3**	Nematode worm (<i>Caenorhabditis elegans</i>)	Altered gene expression**	(Klosin et al., 2017)
	Acetylation of histones H3 and H4**	Brine shrimp (<i>Artemia</i>)	Enhanced tolerance to lethal heat stress; resistance to <i>Vibrio campbellii</i> **	(Norouzitallab et al., 2014)
Cold stress	Decrease in H3K9me2	Mouse (<i>Mus musculus</i>)	Long-term tolerance to cold stress	(Abe et al., 2018)
	Decrease in H3K27me3	Thale cress (<i>Arabidopsis thaliana</i>)	Activation of cold stress genes	(Kwon et al., 2009)
	Increase in H3K27ac and H3K36ac	Rice (<i>Oryza sativa</i>)	Not reported	(Xue et al., 2018)
Salinity stress	Decrease in H3K9me2/3**	Fruit fly (<i>Drosophila melanogaster</i>)	Not reported	(Seong et al., 2011)
	Increase in H3K4me3 and H3K9K14ac; decrease in H3K9me2	Thale cress (<i>Arabidopsis thaliana</i>)	Activation of salinity-induced genes	(Chen et al., 2010)
Drought stress	Increase in H3K4me3 and H3K9ac	Thale cress (<i>Arabidopsis thaliana</i>)	Activation of drought-induced genes	(Kim et al., 2008)
Toxin exposure	Decrease in H3K4me2, H3K18ac, H3K27me2, and H3K20me2; increase in H3K14ac*	Rat (<i>Rattus norvegicus</i>)	Desensitization to toxin (cocaine)*	(Wimmer et al., 2019)
	Increase in H3K4me2 and H3K9ac	Human (<i>Homo sapiens</i>)	Increased risk of lung cancer	(Cantone et al., 2011)

1021 *Effect observed in next generation

1022 **Effect observed through multiple generations

1023
1024
1025
1026

1027

1028

1029

1030 **Table 3. Examples of stress-induced change in DNA methylation.**

Stress	Species	Associated Phenotype (if reported)	Reference
Heat stress	Spiny chromis damselfish (<i>Acanthochromis polyacanthus</i>)	Increased aerobic scope*	(Ryu et al., 2018)
	Brine shrimp (<i>Artemia</i>)	Enhanced tolerance to lethal heat stress; resistance to <i>Vibrio campbellii</i> **	(Norouzitallab et al., 2014)
Cold stress	Mouse (<i>Mus musculus</i>)	Increased tolerance to cold stress; reduced risk of obesity*	(Sun et al., 2018)
	Tartary buckwheat (<i>Fagopyrum tataricum</i>)	Altered expression of genes involved in cold memory	(Song et al., 2020)
	Turnip (<i>Brassica rapa</i>)	Increased growth rate and heat tolerance	(Liu et al., 2017)
	Three-spined stickleback (<i>Gasterosteus aculeatus</i>)	Not reported	(Metzger and Schulte, 2017)
Salinity stress	Rice (<i>Oryza sativa</i>)	Tolerance to salinity stress*	(Feng et al., 2012)
	Thale cress (<i>Arabidopsis thaliana</i>)	Tolerance to salinity stress*	(Boyko et al., 2010a)
	Water flea (<i>Daphnia magna</i>)	Altered expression of genes involved in the cellular stress response**	(Jeremias et al., 2018)
	Three-spined stickleback (<i>Gasterosteus aculeatus</i>)	Not reported	(Heckwolf et al., 2020)
Upwelling	Purple sea urchin (<i>Strongylocentrotus purpuratus</i>)	Increased body size*	(Strader et al., 2019; Wong et al., 2019)
Drought stress	Rice (<i>Oryza sativa</i>)	Altered gene expression**	(Zheng et al., 2013)
Pesticides	Rat (<i>Rattus norvegicus</i>)	Risk of obesity**	(Skinner et al., 2013)
		Reduced male fertility**	(Anway et al., 2005)
		Adult-onset disease**	(Anway et al., 2006) (Manikkam et al., 2014)
Ionizing radiation	Zebrafish (<i>Danio rerio</i>)	Developmental defects**	(Kamstra et al., 2018)
Toxin exposure	Water flea (<i>Daphnia magna</i>)	Altered gene expression*	(Vandegehuchte et al., 2010)

1031 *Effect observed in next generation

1032 **Effect observed through multiple generations

1033

1034

1035

1036

1037

1038

1039 **Table 4. Examples of stress-induced change in genome structure.**

Stress	Change in Genome Structure	Species	Associated Phenotype	Reference
Altered climate	Chromosome inversion	Mosquito (<i>Anopheles gambiae</i>)	Increased thermotolerance in larvae	(Rocca et al., 2009)
		Fruit fly (<i>Drosophila subobscura</i>)	Altered optimal temperature	(Rego et al., 2010)
	Chromosome reshuffling	Buckler mustard (<i>Biscutella laevigata</i>)	Heightened tolerance to abiotic stresses	(Geiser et al., 2016)
		Yellow arctic whitlow grass (<i>Draba nivalis</i>)	Increased tolerance to cold, drought, and oxidative stresses	(Nowak et al., 2021)
Altered nutrient availability	Copy number variant	Human (<i>Homo sapiens</i>)	Increased abundance of salivary amylase protein	(Perry et al., 2007)
		Baker's yeast (<i>Saccharomyces cerevisiae</i>)	Increased efficiency of glucose metabolism	(Brown et al., 1998)
Hypsoline stress	Chromosome inversion	Atlantic cod (<i>Gadus morhua</i>)	Reduced recombination in genes necessary to tolerate low salinity	(Barth et al., 2017)
Pathogens	Copy number variant	Soybean (<i>Glycine max</i>)	Pathogen resistance	(Cook et al., 2012)
Toxin exposure	Chromosome inversion	Mosquito (<i>Anopheles atroparvus</i>)	DDT resistance	(D'Alessandro et al., 1957)
	Copy number variant	Barley (<i>Hordeum vulgare</i>)	Boron-toxicity tolerance	(Sutton et al., 2007)
		Palmer amaranth (<i>Amaranthus palmeri</i>)	Herbicide resistance	(Gaines et al., 2010)

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

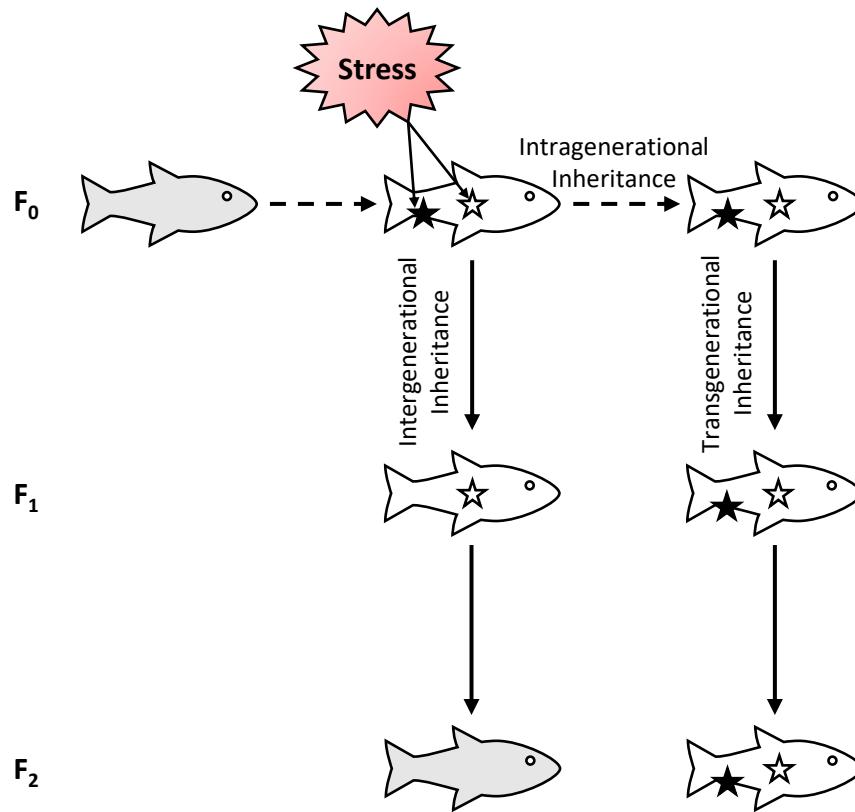
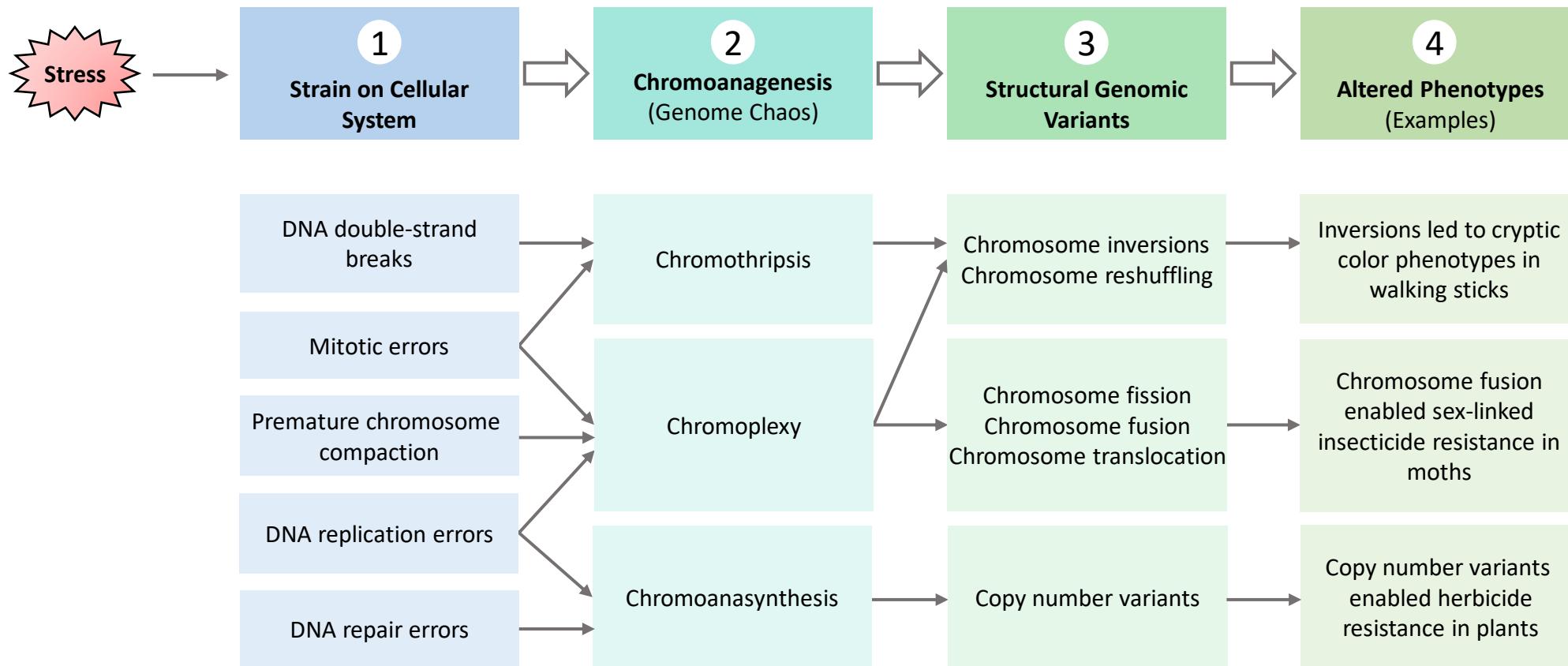

1050

Table 5. Examples of stress-induced change in transposable elements.

Stress	Species	Change in Transposable Elements	Associated Phenotype (if reported)	Reference
Heat stress	Thale cress (<i>Arabidopsis thaliana</i>)	Activation of <i>ONSEN</i> retrotransposon	Not reported	(Cavrak et al., 2014)
	Fruit fly (<i>Drosophila melanogaster</i>)	<i>P</i> element transposition disrupting heat shock protein gene <i>hsp70Ba</i>	Altered thermotolerance	(Lerman et al., 2003)
	Rice blast fungus (<i>Magnaporthe oryzae</i>)	Activation of <i>Pyret</i> , <i>MAGGY</i> , <i>Pot2</i> , <i>MINE</i> , <i>Mg-SINE</i> , <i>Grasshopper</i> , and <i>MGLR3</i>	Genomic instability	(Chadha and Sharma, 2014)
	Nematode worms (<i>Caenorhabditis elegans</i> and <i>Caenorhabditis briggsae</i>)	Activation of <i>CemaT1</i> and <i>Tc1</i>	Genomic instability	(Ryan et al., 2016)
	Mouse (<i>Mus musculus</i>)	Activation of <i>MERV-L</i> and <i>IAPEz</i>	Altered gene expression	(Hummel et al., 2017)
Cold stress	Asian tiger mosquito (<i>Aedes albopictus</i>)	Altered insertion frequency of <i>Lian1</i> , <i>RTE4</i> , <i>RTE5</i> , <i>L2B</i> , and <i>IL1</i>	Localization of TEs to genes potentially involved in overwintering	(Goubert et al., 2017)
	Rice (<i>Oryza sativa</i>)	Activation of <i>mPing</i>	Altered gene expression	(Naito et al., 2009)
	Common snapdragon (<i>Antirrhinum majus</i>)	Activation of <i>Tam3</i>	Not reported	(Hashida et al., 2003)
UV irradiation	Human (<i>Homo sapiens</i>)	Activation of <i>L1</i>	Malignant transformation of keratinocytes	(Banerjee et al., 2005)
Pollution	Amazon cichlid (<i>Cichlasoma amazonarum</i>)	Differential insertion patterns of <i>Rex 1</i> , <i>Rex 3</i> , and <i>Rex 6</i>	Not reported	(da Silva et al., 2020)
Oxidative stress	Mouse (<i>Mus musculus</i>)	Activation of <i>L1</i>	Not reported	(Van Meter et al., 2014)
	Nematode worms (<i>Caenorhabditis elegans</i> and <i>Caenorhabditis briggsae</i>)	Activation of <i>CemaT1</i> and <i>Tc1</i>	Genomic instability	(Ryan et al., 2016)
Pesticides	Fruit fly (<i>Drosophila melanogaster</i>)	Activation of <i>Accord</i> retrotransposon	Insecticide resistance via overexpression of insecticide detoxifying gene	(Chung et al., 2007)
	Common house mosquito (<i>Culex pipiens</i>)	Insertion of TE-like DNA into coding region of <i>cmp1</i>	Insecticide resistance via alternative splicing of toxin receptor	(Darboux et al., 2007)
Salinity stress	Rice (<i>Oryza sativa</i>)	Activation of <i>mPing</i>	Higher salinity stress tolerance via	(Naito et al., 2009; Yasuda

			overexpression of ZFP252	et al., 2013)
--	--	--	-----------------------------	---------------

1051



\star = Change in the relative abundance of histone PTMs in somatic cells

\star = Change in the relative abundance of histone PTMs in germ cells

\square = Pre-stress phenotype

\square = Post-stress phenotype

