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Abstract

In this paper, we present a novel differential morph de-
tection framework, utilizing landmark and appearance dis-
entanglement. In our framework, the face image is rep-
resented in the embedding domain using two disentangled
but complementary representations. The network is trained
by triplets of face images, in which the intermediate im-
age inherits the landmarks from one image and the appear-
ance from the other image. This initially trained network
is further trained for each dataset using contrastive rep-
resentations. We demonstrate that, by employing appear-
ance and landmark disentanglement, the proposed frame-
work can provide state-of-the-art differential morph detec-
tion performance. This functionality is achieved by the us-
ing distances in landmark, appearance, and ID domains.
The performance of the proposed framework is evaluated
using three morph datasets generated with different method-
ologies.

1. Introduction

The main goal of biometric systems is automated recog-
nition of individuals based on their unique biological and
behavioral characteristics [36]. The human face is widely
accepted as a means of biometric authentication. Although,
the uniqueness of face images and user convenience of face
recognition systems have resulted in their popularity, mor-
phed face images have shown to pose a severe threat to
them. This is because the main objective of morph attacks
is to purposefully alter or obfuscate the unique correspon-
dence between probe and gallery images [40]. The result
of a morph attack is a face image which matches the probe
images corresponding to two different face images. There-
fore, the detection of morph images plays a major role in
providing reliable face recognition.

The majority of morph generation frameworks focus on
altering the position of the facial landmarks. These frame-
works mainly utilize three steps: correspondence, warping,
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Figure 1. Trusted probe image, =;, and image in question, z;,
are disentangled into landmark and appearance representations,
using the disentanglement network trained on triplet of face im-
ages. In these triplets, the constructed intermediate face image
inherits landmarks and the appearance from two different face im-
ages. Landmark, appearance, and ID representations are utilized
to make the decision about the image in question.

and blending. The first step aims to detect the correspond-
ing landmarks of both the images. These sets of landmarks
are then utilized to warp the images toward each other, e.g.,
considering the landmarks of the morph image as the pair-
wise average of two face images. Finally, textures from
the two images are combined either over the entire face im-
age [41] or face patches [29]. Another trend of morph gen-
eration considers Generative Adversarial Networks (GANSs)
to construct images that can be matched with the two source
images, such as AliGAN [12, 10] and StyleGAN [23, 50].
The face morphing algorithms can affect the face image
in two broad aspects. First, they alter the position of the
landmarks. On the other hand, they modify the appear-



ance of the face image by either blending two source im-
ages or generating samples using generative models. Al-
though appearance corresponds to the soft biometrics of a
subject which are not necessarily unique, such as ethnic-
ity, hair color, and gender, it can still be interpreted to dis-
tinguish between face images with similar soft biometrics
such as differences in the texture of the face images. How-
ever, deep differential morph detection frameworks focus
on distinguishing the samples based on the ID information.
Our proposed differential morph detection framework in-
vestigates both the locations of the landmarks and the ap-
pearance of the face image. Therefore, this approach re-
stricts the attacker’s morphing capability by studying both
the changes resulted from altering the landmarks as well as
modification in soft biometrics and texture information.

As presented in Figure 1, our proposed framework learns
the disentangled representations for the landmarks and the
appearance of a face image. While these representations are
practically shown to be sufficient for face recognition [8],
the proposed training setup ensures that the mutual infor-
mation between representations of the real images from
a subject is maximized. In this paper, we make the fol-
lowing contributions: i) we construct triplets of images in
which an intermediate image inherits the landmarks from
one image and the appearance from the other image, ii)
these triplets are considered to train a disentangling network
which provides disentangled representations for landmarks
and face appearance, and iii) we train specific networks for
each morph dataset by learning contrastive representations
through maximizing the mutual information between real
images from each subject.

2. Related Works
2.1. Facial Morphing

Facial morphing studies the possibility of creating arti-
ficial biometric samples which resemble the biometric in-
formation of two or more individuals [40]. Morph im-
ages can be generated with little technical experience using
tools available on the internet and mobile platforms [40].
The overall purpose of face morphing is to generate a
face image that will be verified against samples of two
or more subjects in automated face recognition systems.
One of the first efforts to study the generation of a morph
image from two source images [13] has concluded that
geometric alterations and digital beautification can cause
an increase in the possibility of fooling recognition sys-
tems. Morph generation techniques can roughly be cat-
egorized into landmark-based [29, 43, 44] and generative
models [10, 45]. Landmark-based frameworks focus on de-
tecting the landmarks in both the images, translating these
points toward each other, and blending the two face im-
ages. On the other hand, inspired by a learned inference

model [12], Morgan [10] presents a face morphing attack
based on automatic image generation using a GAN frame-
work.

2.2. Morph Detection

Morph detection can be categorized into two main ap-
proaches [41]: single image morph detection and differen-
tial morph detection. Single image morph detection studies
the possibility of detecting the morph image in the absence
of a reference image. On the other hand, differential morph
detection leverages the information extracted from a real
image corresponding to the subject. Texture descriptors are
the main feature extraction models for single image morph
detection [51, 47, 38, 37, 34]. Recently, deep learning mod-
els have also been considered for this purpose [44, 43, 33].
The models mentioned can also be employed for differential
morph detection when the extracted feature from the two
images are compared [35, 39, 9]. Another trend of work for
differential morph detection considers that subtracting the
trusted image from the image in question should increase
the classification score of the resulting image for one of the
probe subjects [14, 15, 32].

2.3. Representation Disentanglement

The geometry of landmarks and visual appearance are
the two main characteristics of the face that can be utilized
for face recognition. Initially, the geometry of hand-crafted
face landmarks were basis for face recognition [17]. Neu-
ral network approaches have provided state-of-the-art face
recognition performance, with several deep models using
the location of landmarks for varying face recognition pur-
poses [21, 7]. On the other hand, the effect of appearance
in face recognition is widely studied, including soft biomet-
rics such as gender, age, ethnicity, and hair color [18, 16].
Recently, an unsupervised approach using a coupled au-
toencoder model for disentangling the appearance and ge-
ometry of face images was developed [46]. In this frame-
work, each autoencoder learns the geometry or appearance
representation of the face, while the reconstruction loss is
considered as the supervision for disentangling. Another
similar work [55] has incorporated variational autoencoders
to improve the disentangling. Another recent generative
model [24] presents an unsupervised algorithm for training
GAN:Ss that learns the disentangled style and content repre-
sentations of the data.

2.4. Mutual Information and Deep Learning

Among the first works that studied the application of mu-
tual information in deep learning, [31] showed that GAN
training loss can be recovered by minimizing the estimated
divergence between the generated and true data distribu-
tions. The authors in [3] expanded the mutual information
maximization techniques to estimate the mutual informa-



tion between two random variables via a neural network.
The authors in [5] and [6] used mutual information to quan-
tify the separation of distributions of positive and negative
pairings in learning binary hash codes. The authors in [25]
introduced RankMI algorithm,an information-theoretic loss
function and a training algorithm for deep representation
learning for image retrieval. The authors in contrastive
representation distillation [48] proposed a contrastive-based
objective function for transferring knowledge between deep
networks. The authors in [2] propose an approach to self-
supervised representation learning based on maximizing
mutual information between features extracted from mul-
tiple views of a shared context.

3. Proposed Framework

Our proposed differential morph detection framework
resonates with the morph generation frameworks in which
the the landmarks of the real image are translated to land-
marks of the target face image [29] or image generation by
generative adversarial networks [10]. Disentangling appear-
ance and landmark information has shown to be a power-
ful tool for face recognition [8]. These two domains pro-
vide the majority of the information content for differen-
tial morph detection as well. We aim to study the possibil-
ity of detecting the morph image based on its differences
with the trusted image in both landmark and appearance
domains. Therefore, to train our framework, we construct
samples that inherit the appearance and landmarks from dif-
ferent samples. Then, we train a network that can disentan-
gle these two types of information [8]. This framework is
then trained for differential morph detection by maximizing
the mutual information between representations of genuine
pairs.

3.1. Landmark and Appearance Triplets

The first step in our proposed training consists of gen-
erating face images that inherit appearance from one image
and landmarks from the other image. Then, these triplets
of face images are used to train two deep networks. The
first network aims to represent the appearance of the face
image and the second network extracts the landmark infor-
mation. The supervision for disentangling appearance and
landmarks of faces is provided by constructing triplets of
face images. Each triplet consists of two real face images
from two different IDs. For convenience we denote these
images as appearance image, x;, landmark image, x;, and
an intermediate face image generated using the appearance
of the first face image and the landmarks of the second face
image, ;. To construct this intermediate face image, we
translate the landmarks of the appearance image to the land-
mark image.

For this purpose, let x; be a face image noted as an ap-
pearance image belonging to the class y; and the set I; de-

scribe the locations of its K landmarks. We find another
face image ) from a different class corresponding to the
closest set of landmarks I/ as the landmark set. The distance
between the sets of landmarks is calculated in terms of L,
to assure that x; and 2} have similar structures in order to
minimize the distortion caused by the spatial transformation
in the next step.

We use the thin plate spline (TPS) algorithm [4] to trans-
fer the landmarks of the appearance face image to the land-
marks of  as:

7y = TPS(z, 1,1 + &), (1)

where TPS and Z; represent the spatial transformation and
the deformed image noted as the intermediate face image.
This face image has the appearance of x; and the landmarks
of z}. The set ¢; accounts for small perturbations in the lo-
calizing the landmarks in the morph generation framework.

3.2. Revisiting Landmarks and Appearance Disen-
tanglement

As presented in Figure 2, in our proposed framework,
two networks are defined as appearance network, a, and
landmark network, g. These networks map the input face
image to the appearance and landmark representations as:
a(.) : Rwxhx3 5 Rda and g(.) : RW*">3 5 Rds, It
is worth mentioning that landmarks can be defined as the
salient points in the face image. Although the landmark rep-
resentation aims to represent the landmarks in the face im-
age, it is trained through a classification setup to preserve
the information required to distinguish between the input
images regarding their geometrical differences. We define a
third network, f(.), that maps these two representations to a
face ID representation as: f(.) : R% x R — R%, where
d,, dg4, and d¢ are the dimension of appearance, landmark,
and face ID representations, respectively. This representa-
tions enables us to train the framework as a classification
setup.

To provide enough information to distinguish between
real and morph images, these three representations should
satisfy three conditions: i) The appearance representation
of the appearance and intermediate images should be sim-
ilar: a(x;) =~ a(z;), ii) the landmark representation of
the landmark and intermediate images should be similar:
g(z}) ~ g(z;), and iii) for both the non-manipulated im-
ages, z; and m;, the face representations resulted from net-
work f should preserve sufficient classification informa-
tion. We address these three conditions in our initial train-
ing setup. The appearance-preserving loss function aims to
enforce the first condition:

L) =~ 3 @a(wi)al@), @
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Figure 2. Face image T; is constructed by considering the appear-
ance of x; and the landmarks of x}. L, enforces the appearance
representations of x; and Z; to be similar. Similarly, L, ensures
that g(%;) and g(x) are close to each other. A fully-connected
layer of size 512 fed with the concatenation of g and a provides
the ID representation for the input image.

where ® (v, v3) represents the cosine similarity between v

and vy as in [52, 28]: ®(vy,v2) = W and N is the
number of samples. Similarly, the landmark-preserving loss
is defined as:
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tance of landmark locations, and [; is the mean of landmark
locations along two axes. «y is a scaling coefficient, scaling
to form an angular loss which aims to maximize the cosine
similarity of g(z;) and g(&;) and dissimilarity of g(z;) and
g(x5).

In addition to the discussed training loss functions, we
should assure that the appearance and landmark representa-
tions provide sufficient information for the identification of
the real images, x; and x/:

where ¢, = is the normalized measure of the dis-

es(cos(mi0y, i+ma)—m3)

Llld(mz) - Zlog es(cos(m 7] mo)—m i)’
N (cos( yi, it 2) 3)+ZJ y@ s(05,4)
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where f(z;) = T(a(z;),g(z;)) is the ID representa-
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tion [11] for face image, cos(f;,) = HWJHzIIf(a:L)Ilz and

W; is the weight vector assigned to the i* h class. In this
angular loss function, m, mo, and mg are the hyperparam-
eters controlling the angular margin, and s is the magnitude
of angular representations. The training loss function is de-

fined as:
L% = Zle xz 2)+)“11]L517(x;,7@)7
)

where \! and )\51] are hyper-parameters scaling the appear-
ance and landmark preserving loss functions.

Lig(w})+ g L (i,

3.3. Contrastive Morph Detection

Our proposed differential morph detection framework
builds upon recent information-theoretic approaches to
deep representation learning [25, 48]. We aim to maximize
the mutual information between the real images from the
same subject and minimize the mutual information between
samples in an imposter pair during the training and make the
decision during the test considering the distance between
the representations of the pair of images in the embed-
ding. To this aim, as presented in Figures 3, the joint train-
ing of the disentanglement and auxiliary networks provides
embedding representations distinguishable enough to de-
tect morphed face images in a differential morph detection
setup. Our framework benefits from transferring knowledge
from that recognition task on a large face dataset to the dis-
entanglement network, which provides a faster training of
both disentanglement and auxiliary networks.

To maximize the mutual information between real sam-
ples from the same subject in the embedding space, we fol-
low the notation proposed in [25, 3]. Let z; be an input face
image and z{ and z{ be its corresponding appearance and
landmark representations as:

z = a(zi), 2] = g(w;). (©6)

We aim to train a(x) and g(z) such that real images from
the same subject are mapped closely in the embedding
space. To this aim, we maximize the mutual information
between the real images from the same subject in each em-
bedding space using the functions 7%(.) and 79(.). To con-
struct our training samples we define a genuine set as:

P = {(zs,x))|c; = ¢j,rs = 75 = 1}, @)

where ¢; and c; represents the classes for the subjects and
= 1 represents the real images. On the other hand we
define the imposter set as:

N = {(xi,xj)|ci 7é Cj Orr; = 0 or r; = 0}, ®)

where r; = 0 represents morphed images. It is worth men-
tioning that we define the above imposter set during the
training. During the test phase, the imposer set consists of
pairs in which both the samples belong to the same subject,
while one of them is a real face image and the other is a
morphed face image. In addition, for the genuine set, we
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Figure 3. A pair of one trusted probe image, z;, and an image in question, z;, are fed into the disentanglement network. This network which
is trained in combination with the auxiliary networks, 7(.,.) and T9(., .), provides embedding representations that present high mutual
information for genuine pairs and results in close representations for the samples in genuine pair and distant representations for samples
in imposter pairs. Here, the morph image (red) is constructed displacing the landmarks of a real image (green) toward the landmarks of a
visually similar image (black). The genuine pair consists of two real images from the same subject (orange and green), while the imposter
pair in constructed using a real image and its corresponding morph image (green and red).

can define the joint distribution of x; and x; as:

P(%’,%‘) = Zp(xiaxjvc = kafri =Tr; = 1) (9)
keC

Assuming the high entropy of p(c¢)p(r) for the imposter set,
we can approximate the joint distribution of the samples as
the product of their marginals:

p(z:)p(z;) =
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where r = {0,1} represents morphed and real images.
Considering the genuine and imposter pairs defined in equa-
tions 7 and 8, the appearance differential loss is defined to
maximize the mutual appearance information between sam-
ples in a genuine pair as [3, 25]:

1 a(,a a
(i,25)€EP 1
; (an

—log ——— =D,
[1V]] (migw

A similar loss is defied over the genuine and imposter pairs
to calculate LY as the differential landmark information
loss. Then, the differential loss is defined as:

L =M2L2+ ML) + Lig, (12)

where L}, provides the training for network 7" and subse-
quently f(z;).

4. Experiments

We study the performance of the proposed framework
on three morph datasets. In our experiments we follow
frameworks described in [41, 49]. Evaluation metrics for
the differential morph detection are defined as: Attack Pre-
sentation Classification Error Rate (APCER) as the propor-
tion of morph attack samples incorrectly classified as bona
fide (non-morph), presentation and Bona Fide Presentation
Classification Error Rate (BPCER) is the proportion of bona
fide (nonmorph) samples incorrectly classified as morphed
samples.

4.1. Training Setup

For all the datasets, DLib [26] is considered to detect and
align faces, as well as extracting 68 landmarks. We train the
model on the CASIA-WebFace [56] dataset. In the train-
ing set, for each image, the image from a different ID that
provides closest landmarks to its landmarks in terms of Lo
norm is selected. Neighbor face is transformed spatially us-
ing Equation 1. This image is aligned again to compensate
for the displacements caused by the spatial transformation.



All images are resized to 112 x 112 and pixel values are
scaled to [—1, 1].

We adopt ResNet-64 [19] as the base network architec-
ture. To reduce the size of the model, the convolutional net-
works for extracting the landmark representation, g(x), and
the appearance representation, a(x), are combined. This
network produces feature maps of spatial size 7 x 7 and the
depth of 512 channels. These feature maps are divided in
depth into two sets, dedicated to the appearance and land-
mark representations, respectively. Each set of feature maps
is reshaped to form a vector of size 12,544 and passed to
dedicated fully-connected layers. These layers of size 256
generate the final representations, a(z) and g(x). The ID
representation is constructed by concatenation of these two
representations fed to a fully-connected layer of size 512.
The model is trained using Stochastic Gradient Descent
(SGD) with the mini-batch size of 128 on two NVIDIA
TITAN X GPUs. In Equation 4, following ArcFace [11]
framework, my, ms, and ms are set to 0.9, 0.4, and 0.15,
respectively. In Equation 1, d; is sampled from N (0, 3).

The initial value for the learning rate is set to 0.1 and
multiplied by 0.9 in intervals of five epochs until its value
is less than or equal to 107%. The model is trained for
600K iterations. We select oy = 9.4, )\(11 = 1.3, and
)\; = 0.75. For training the network using Equation 11,
each fully-connected layer of size 256 is fed to a fully-
connected of size 64, and then to a single unit. Here, con-
sidering A2 = A2 = 1, the network is trained using the
learning rate of 10~2 and is dropped similar to the rate men-
tioned above.

4.2. Results

MorGAN is constructed using the generative framework
described in [10]. In this dataset, 500 bonafide images
are considered. For each bona fide image two morph im-
ages are generated using two most similar identities to the
bona fide image, resulting in 1,000 morph images. In to-
tal this dataset consists of 1,500 references, 1, 500 probes,
and 1, 000 MorGAN morphing attacks. The database is ran-
domly split into disjoint and equal train and test sets. All the
images are of size 64 x 64.

VISAPP17-Splicing-Selected' is a subset of VISAPP17-
Splicing dataset [30] containing genuine neutral and smil-
ing face images as well as morphed face images. This
dataset is generated by warping and alpha-blending [53].
To construct this dataset, facial landmarks are localized, the
face image is tranquilized based on these landmarks, trian-
gles are warped to some average position, and the resulting
images are alpha-blended, where alpha is set to 0.5 mak-
ing alpha-blending equal to average. Splicing morphs are
designed to avoid ghosting artefacts usually present in the

IFor simplicity, we refer to this dataset as VISAPP17.

Figure 4. Samples from (a) MorGAN, (b) VISAPP17-Splicing-
Selected, and (¢) AMSL Face Morph Image Datasets. For each
dataset, the first and second faces are the gallery and probe bona
fide images and the third face is the morph image construed from
the first and forth face images. The original sizes for face images
in these datasets are 64 x 64, 1500 x 1200, and 531 x 413, re-
spectively.

hair region, done by warping and blending of only face re-
gions and inserting the blended face into one of the orig-
inal face images. The background, hair and torso regions
remain untouched. VISAPP17-Splicing-Selected dataset,
which consists of 132 bona fide and 184 morph images of
size 1500 x 1200, is constructed by selecting morph images
without any recognizable artifacts.

The AMSL Face Morph Image Dataset is created using
the Face Research Lab London Set [1] and includes genuine
neutral and smiling face images and morphed face images.
The morphed face images are generated from pairs of gen-
uine face images [30]. For all the morph images the propor-
tions of both faces in the morphed face are the same. While
generating morphed faces male, female, white, and Asian
people are only morphed with their corresponding category.
All images are down-scaled to 531 x 413 pixels and JPEG
compression is applied to them to compress the images to
15kb [54]. This dataset includes 102 neutral or 102 smiling
genuine face images and 2,175 morph images.

Differential Morph Detection: For the MorGAN dataset,
we follow the train and test split presented in [10]. For the
other two datasets, we consider a disjoint train and test split
in which 50% of the subjects are used for training. The



Dataset MorGAN VISAPP17 AMSL

D-EER 5% 10% | D-EER 5% 10% | D-EER 5% 10%
LM-Dlib [9, 26] 12.53 2071 10.17 | 17.88 26.64 2271 | 1445 20.67 18.55
BSIF+SVM [22] 10.17 1422 8.64 1642 2877 2537 | 1275 20.71 16.26
LBP+SVM [27] 15.51 2840 18.71 | 18775 23.88 20.65 | 1497 2147 16.21
FaceNet [42] 16.14  38.38 26.67 9.51 29.82 691 8.43 2574  5.68
ArcFace [11] 14.65 22776 16.23 7.14 17.51  5.69 6.14 1451 5.23
FaceNet+SVM 12.53 18.84 12.21 8.85 2646 6.28 8.42 18.46  5.28
ArcFace+SVM [41] | 10.82 1547 1243 5.38 745 478 3.87 6.12  3.28
Ours 8.75 12.58 8.51 4.69 574  2.59 3.11 535 2.4

Table 1. D-EER%, BPCER @ APCER=5%, and BPCER @ APCER=10% for the differential morph detection.

distance between face images x; and x; is defined as:

D :@(f(xl), f(l‘J)) + 6a¢(a($i)7 a(xj))

+B4®(g(x:), 9(2;)), (13)

where 3, and §, are the scaling parameters used for de-
cision making. We employ classical texture descriptors,
BSIF [22] and LBP [27], with an SVM classifier. The LBP
feature descriptors are extracted according to the original
LBP image patches of 3 x 3. The resulting feature vector
is then a normalized histogram of size 256, which encom-
passes all potential values of the LBP binary code. BSIF
feature vectors are conducted on a filter size of 3 x 3 and
8 bits. The filters utilized for BSIF are pre-learned Inde-
pendent Component Analysis (ICA) filters [20] that are uti-
lized by the original BSIF paper to construct normalized
histogram for each image. The feature vectors are then in-
putted to an SVM with an RBF kernel for classification. For
all classical baseline models the difference between the fea-
ture representation of the image in question and the feature
representation of the trusted image is fed to an SVM classi-
fier.

In addition, we employ LM-DIib [9, 26] as a model for
the landmark displacement measure. In this framework, the
distance between landmarks extracted by Dlib [26] are fed
to an SVM. For deep models, the distance between the rep-
resentations in the embedding domain is considered as the
decision criteria. For all the model, the default parame-
ters presented in the original papers are considered. It is
worth mentioning that in this experiments we do not con-
sider the prior knowledge on which of the images in the pair
fed to the recognition framework is the trusted image. On
the other hand, in Table 3, we assume that the differential
morph detection framework is provided with the informa-
tion regarding the trusted image.

For each the datasets, 10% of the training set is consid-
ered as the validation set. Then, the parameters to train
the framework are selected based on the experiments de-
scribed in Table 4 and Figure 5. Table 1 presents the perfor-
mance of the proposed framework in comparison with four

Train  Test Algorithm D-EER 5% 10%
= LM-DIib [9, 26] 2374 5142 38.67

& BSIF+SVM [22] 1921 5125 39.41

- S ArcFace+SVM [41]  11.67 2236 14.86
é S Ours 8.55 12.68 8.57
g LM-DIib [9, 26] 20.67 4428 32.15
= 7 BSIF+SVM [22] 1727 3854 2471
5 ArcFace+SVM [41] 1048 2249 14.90

Ours 795 11.26 8.81

- LM-DIib [9, 26] 16.82 3854 2438

g BSIF+SVM [22] 1352 153 1479

=~ %S ArcFace+SVM [41] 15.75 3258 22.36
B = Ours 1385 1232 874
s LM-DIib [9, 26] 18.83 38.86 24.78
= 7 BSIF+SVM [22] 1692 38.84 24.64
5 ArcFace+SVM [41]  8.27 9.63 528

Ours 5.38 347 238

- LM-DIib [9, 26] 1624 3094 19.28

g BSIF+SVM [22] 13.84 2535 14.82

% ArcFace+SVM [41] 1634  38.62 24.51

7 p= Ours 1421 2858 1851
§ = LM-DIib [9, 26] 2055 6221 3842
B BSIF+SVM [22] 2036 5128 3295

S ArcFace+SVM [41] 1065 14.36  9.81

S Ours 5.21 826 4.17

Table 2. Cross-dataset performance for differential
morph detection: D-EER%, BPCER@APCER=5%, and

BPCER@APCER=10%.

deep learning and three classical differential morph detec-
tion frameworks. In addition to outperforming the baseline
models on all the datasets, the proposed framework outper-
forms the baseline models by a wide margin on the Mor-
GAN dataset, which can be contributed to the disentangle-
ment of landmark and appearance representations.

In Table 2, we study the performance of the networks
trained on the training portion of one morph dataset and
tested on the other datasets. As presented in this ta-
ble, while outperforming the other models, the proposed
framework provides high cross-dataset performance be-



Dataset MorGAN VISAPP17 AMSL

D-EER 5% 10% | D-EER 5% 10% | D-EER 5% 10%
LM-DIib [9, 26] 8.14 10.67 7.83 | 15.67 2287 2032 | 11.67 1698 14.63
BSIF+SVM [22] 6.07 9.15 4.63 | 13.87 2353 20.12 | 1053 16.53 13.86
LBP+SVM [27] 7.47 923 4.1 15.21 20.64 18.74 | 1221 17.11 1281
FaceNet [42] 8.11 14.52  7.59 7.32 2454 521 7.46 22,12 5.17
ArcFace [11] 7.58 9.64 4.08 6.45 1478  5.02 5.36 1046  4.87
FaceNet+SVM 7.23 12.46 522 6.37 2646 6.28 8.42 18.46  5.28
ArcFace+SVM [41] 5.35 6.71  3.50 4.52 598  4.05 3.27 556  2.69
Ours 4.71 532 385 3.74 491 217 2.82 497 282
Ours* 4.06 5.04 342 345 425 1.85 2.36 416 147

Table 3. The differential morph detection performance on three datasets, when the trusted image is known to the detection framework:

D-EER%, BPCER @ APCER=5%, and BPCER @ APCER=10%.

tween VISAPP17 and AMSL. In addition, the proposed
framework provides D-EER of 8.55% and 7.95% for cross-
dataset performance on the network trained on MorGAN
and tested on VISAPP17 and AMSL datasets, respectively.
On the other hand, BSIF+SVM outperforms the other al-
gorithms when testing the network trained on other two
datasets and tested on MorGAN, which illustrates the same
trend as the results provided in [10].

Table 3 studies the effect of the trusted images being
known to the detection framework. For the baseline mod-
els, rather than comparing the representations of the trusted
images and the image in question, the representation of the
image in question is subtracted from the representation of
the trusted image before feeding the difference to the SVM.
For the proposed framework, we consider an additional al-
gorithm, denoted as "Ours*”, in which two dedicated in-
stances of the framework are constructed for trusted images
and images in question. In this algorithm, which outper-
forms the algorithm for which only one instance of the net-
work is considered, we only train the network dedicated to
the images in question. Table 4 provides the performance
for the proposed framework on the validation sets when the
scaling parameters in making the decision vary in Equa-
tion 13. As presented in this table, morph images con-
structed using landmark displacement are better detected
for higher weights given to g(z), while the MorGAN sam-
ples are best detected when g(x) and a(z) are given similar
weights. In addition, Figure 5 provides the performance for
three datasets when variance of the normal distribution to
generate 9; samples in Equation 1 varies from O to 6.

5. Conclusions

In this paper, we presented a novel differential morph de-
tection framework which benefits from disentangling land-
mark representation and appearance representation in an
embedding space. These two representations which are dis-
entangled but complementary, are constructed using a dis-

12

D-EER%

" [S—MorGAN
—e—VISAPP17
#— AMSL

0 1 2 3 4 5 6

Figure 5. D-EER% for different variances of §; values in Equa-
tion 1.

MorGAN  VISAPP17 AMSL
@n | 1091 6.97 472
G| 964 6.57 4.12
22) | 875 5.84 3.83
(1,3) | 1032 4.69 3.11
(14) | 1089 5.12 3.54

Table 4. The D-EER% for differential morph detection perfor-
mance considering different scaling values (3, and 3,) in Equa-
tion 13.

entanglement network trained using triplets of face images.
Each triplet consists of two real images and an intermedi-
ate image which inherits the landmarks from one image and
the appearance from the other image. We demonstrated that
appearance and landmark disentanglement can be boosted
using contrastive representations for each disentangled rep-
resentation. This property provides the possibility of accu-
rate differential morph detection, using distances in land-
mark, appearance, and ID domains. The performance of the
proposed framework is studied using three morph datasets
constructed with different methodologies.
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