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Abstract— Morphing is the process of combining two or more
subjects in an image in order to create a new identity which
contains features of both individuals. Morphed images can fool
Facial Recognition Systems (FRS) into falsely accepting multiple
people, leading to failures in national security. As morphed image
synthesis becomes easier, it is vital to expand the research
community's available data to help combat this dilemma. In this
paper, we explore combination of two methods for morphed image
generation, those of geometric transformation (warping and
blending to create morphed images) and photometric
perturbation. We leverage both methods to generate high-quality
adversarially perturbed morphs from the FERET, FRGC, and
FRLL datasets. The final images retain high similarity to both
input subjects while resulting in minimal artifacts in the visual
domain. Images are synthesized by fusing the wavelet sub-bands
from the two look-alike subjects, and then adversarially perturbed
to create highly convincing imagery to deceive both humans and
deep morph detectors.

1. INTRODUCTION

Facial Recognition Systems (FRS) have become
commonplace at border security crossings. With ever-
increasing accuracy and speed, FRS are considered the premier
method of obtaining biometrics. The International Civil
Aviation Commission (ICAO) designated facial recognition as
the required biometric in their electronic Machine-Readable
Travel Document (eMRTD) because of the face modality’s
cultural acceptance, unobtrusive nature, and easy enrollment
[11, [2]. If required, face data can be verified by a human,
making it particularly attractive to border crossings where
access to advanced verification technology may be limited [3].
While FRS are becoming a security necessity, they are
vulnerable to attacks. The ICAO outlines the stages of a
biometric system as: enrollment, template creation,
identification, and verification. Bad actors can leverage
vulnerabilities in the enrollment stage of the pipeline by
submitting tampered identification images [4]. An enrollment
system contains two steps, a detector for detecting tampered
imagery, and a verifier which ensures that the image submitted
is of the intended individual. We focus on fooling both the steps
in the enrollment process.

Ferrara et al. [4] were the first to expose the dangers of
morphed images being submitted for enrollment in an FRS.
Morphed images are created by combining face images from
two or more individuals creating a new ambiguous face which
possess similarities between the bona fide identities. Using a
morphed image, a passport can be shared between two or more
individuals. If a bad actor is attempting to cross a border, they
can create a morphed image with an individual who is similar

looking in order to create a highly convincing morphed passport
photo. The synthesized image would allow the bad actor to
easily pass through the border using the passport of the look-
alike individual. Synthesized morphs between two or more
identities who naturally look alike create an ambiguous face,
causing high false acceptance rates in detectors [3].
Commercial off-the-shelf systems (COTS) as well as human
verifiers are vulnerable to these high-quality attacks [5]. As
morphing technology becomes more accessible, anyone can
create high-quality morphed images with little to no technical
background. With no way of detecting morphed images with a
high degree of confidence, national security is at risk.

We introduce a new method of morphing utilizing the
Discrete Wavelet Transform (DWT). The input images are
warped and then subsequently blended using their wavelet
decomposed sub-bands and then reconstructed into the final
morphed image. The authors in [6] have demonstrated that it is
possible to detect morphed images using the high-frequency
wavelet sub-bands. This work is the beginning stage of
leveraging the spatial-frequency wavelet domain to create high-
quality morphs. After morphing, a visually indistinguishable
amount of adversarial perturbation is applied to further increase
the difficulty of detecting the morphed images in our passport-
system pipeline. A high-quality morph image will have no
obvious signs of tampering and will show similarity to all
individuals combined in the morphing process.

In this paper, we broadly classify malicious examples into
two categories: geometric and photometric. We describe a
geometric adversarial example as a transformation applied to a
face resulting in the change of facial landmarks, such as
warping. On the other hand, photometric adversarial examples
are those described by Goodfellow ef al. [7] [8] which include
adding structurally significant noise to an image, disrupting a
classifier’s ability to discriminate a class for an image. At the
time of this publication, we believe that no large-scale dataset
has been generated using both face morphs and adversarial
perturbation.

II. RELATED WORK

Morphed images can be described in two different
categories, landmark and GAN-based. The landmark-based
morph image generation typically consists of a three-step
pipeline: landmark detection, warping, and blending. Landmark
morphs utilize critical points on a subject’s face to warp the
image. The landmark points of the two input subjects are
averaged together to create common landmarks. The images are
then warped towards these common landmarks and blended to
create the final image. For more information, see Section IIL.A.
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Fig. 1. Wavelet-based morphing pipeline. The input subjects are warped, and then wavelet decomposed into their respective 64 uniform sub-bands. The low-
frequency basebands averaged together, and the remaining 63 sub-bands are max’ed together. The resulting sub-bands are then used to reconstruct the morph image,

cropped, and placed on the input subject.

A. Face Morphing

In this work, we will focus on landmark-based morph
generation. Ferrara et al. [4] morphed their images by hand
using the open-source image editor GIMP. While the resulting
images showed little artifacts, the pipeline was tedious and
inconvenient to be scaled up for generation of large datasets.
Since then, many open-source repositories have emerged,
making it simple to generate large-scale datasets with ease.
Sarkar et al. [9] generate three morphed datasets utilizing four
popular morphing repositories: Facemorpher [10], OpenCV
[11], WebMorph [12], and StyleGAN2 [13]. Facemorpher,
WebMorph, and OpenCV are typical landmark-based
repositories that rely on a combination of warping and splicing
to generate images. The images are guaranteed to have visual
similarity between both input individuals because features of
the individuals are combined by averaging the input images
together. While landmark-based morphing techniques are fast
and effective, they tend to lead to artifacts in the final image,
especially around the eye and background regions. StyleGAN2
is a Generative Adversarial Network (GAN) approach to face
morphing where latent vectors of images are linearly combined,
resulting in minimal artifacts and producing high-quality
morphs [9], [13]. However, GAN-based approaches have issues
retaining identity information after morphing, causing morphs
to be more heavily weighted toward one subject than another,
resulting in ineffective morphs [9].

B. Adversarial Perturbation

Adversarial perturbation is added to the morph images with
the intention of fooling a morph detector into labeling the input
as a bona fide class. Typically, the pixel values are constrained
to an L, value which help to preserve the quality of the
perturbed image. Adversarial perturbation should not be
perceptually visible in the final image. Goodfellow et al. [7]
introduce the fast gradient sign method (FGSM), which
perturbs the input of the model based on the sign of the gradient
for a target class. Liao et al. [14] utilized FGSM with a masking
technique to perturb areas deemed as high importance using
spatial information derived from multiple convolutional layers
in a model. Hussain et al. [15] leverage adversarial perturbation
for their work on adversarial deepfakes by perturbing frames of

a video labeled as fake by a detector with the intention of all
output frames being labeled as real.

III. WAVELET-BASED MORPH GENERATION

A. Landmark-based Wavelet Morphing

We utilize a modified version of Facemorpher to morph our
images [10]. Two identities are used for morphing: I and J.
Input identities I and J are assumed to naturally look alike. I
and J’s respective images i and j should be aligned. For our
morphing pipeline, we utilize a landmark-based approach. 68-
landmark points are found on input images, creating the 68-
element long pixel-coordinates T, J. Delaunay Triangles are
utilized to create a mesh across the image, with the vertices of
the mesh at T, J°. The T and j are averaged together to create
common landmarks, k. An affine transform is used to map
landmarked points from T, J to the k, synthesizing T warped>
J warpea- Bilinear interpolation is performed on the warped
images to correct color values. At the end of the warping stage,
the two images share common landmarks k. After warping,
Uwarpeds J warpea are decomposed into 64 sub-bands using a
three-level wavelet decomposition. A vertical and a horizonal
filter are applied to the warped images, creating the Low-Low,
Low-High, High-Low, and High-High sub-bands. As presented
in Figure 1, the low frequency baseband after three-level
wavelet decomposition of the Tygarped> and  Jwarpea are
averaged together. This sub-band is selected because it
represents most of the shared information from the original
subjects. The remaining 63 sub-bands are combined using the
maximum-coefficient at every location in the sub-bands to
capture the most significant information from each subject.
Once the two input images are wavelet morphed, the convex
hull of the morphed image is spliced onto the background of the
source and destination images.

B. Adversarial Perturbation for Morphed Image Generation

While the wavelet-based and standard morphs may be able
to fool a person, a trained deep-learning based morph-detector
is still able to detect morphed images in the enrollment stage.
Therefore, we fine-tune an Inception-ResNET v1 model [16]
pretrained on VGGFace?2 [17] to detect morphed images based
on the work from the authors of [18].
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Fig. 2. FaceNet as a verifier: ROC curves for the (left) FRLL, (middle) FERET, and (right) FRGC datasets.
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Fig. 3. Wavelet morphs with respective perturbed images from the FRGC
dataset. The Difference column represents the min-max normalized absolute
difference between the wavelet morph and their respective perturbed wavelet
morph. The SSIM Map column represents the areas of high similarity between
the input images. In the difference and SSIM images, white and black represent
smaller and higher values, respectively.

The model was trained on 4,000 morphed images. The
morph detector was able to detect morphs with near perfect
accuracy. To further make the morphs harder to detect,
adversarial perturbation is applied to the wavelet-based
morphed images. Using our morph detector, images are
perturbed using the Basic Iterative Method (BIM) [8]. FGSM
perturbs an image based on the gradient with every iteration of
backpropagation. An L is used as a maximum allowed pixel
difference constraint. BIM is a derivation of FGSM, where a
constant step-size is utilized for every applied perturbation.
BIM is formulated as:

Xﬁ-iq-vl = ClipX,e{X%dv + Bsign(Vx Laav)}, 1)

where X3% = X is the original morphed image and L,g,
consists of cross-entropy loss as well as the Total Variation
(TV) smoothing loss:

Logy = ](Xl%dv' Ytrue) -2 TV(XI%dv ) (2)

where J is the cross-entropy cost function between the
adversarial image and the target class, f§ is the perturbation step
size and € is the L, constraint on the pixel values [8]. Clipy .
confirms that the pixel values are within € L,-norm distance
from the original sample. We also clip the adversarial example

Fig. 4. SSIM distributions between wavelet morphs and their respective
perturbed wavelet morphs for (left) FRLL, (middle) FERET, and (left) FRGC
datasets.

at each iteration to make sure that all pixel values reside within
the valid input range.

In addition, A = 0.1 is the regularization parameter. To further
help the visual quality of the image, TV smoothing was applied
to the added perturbation to remove any visible artifacts in the
adversarial image [19]:

VO = ) (i) =yl LD =l )

— rylij + 122, 3)

where Ty [i,j] is a pixel in the perturbation image ry = X4 —
X [20]. After perturbation, the images are expected to maintain
their perceptual quality.

IV. RESULTS

We utilize the FERET, FRLL, and FRGC datasets for our
morphs [21] [22] [23]. The datasets contain image sizes of
413x531 for FRLL, 1704x2272 for FRGC, and 512x768 for
FERET. Each dataset depicts passport style images with a
neutral face looking into the camera under ideal lighting
conditions. In total, FERET contains 1,199 different identities,
FRLL contains 102 identities, and we used a subset of FRGC
which contains 765 identities. Our morphing methodology
follows that of Facemorpher [10]. We use morphed images
from [9] for comparison to our work and we refer to these image
as standard morphs for the rest of this paper because they use a
typical morphing pipeline consisting of an alpha-blending step
used to combine warped images. For pairing our morphs, we
use the protocols originally created by Neubert ef al. ‘s AMSL
dataset for FRLL [24] and Scherhag e? al.’s protocol for FERET
and FRGC [25]. In addition, landmarked-based wavelet
morphing images described in Section III.A are referred to as
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Fig. 5. (left) FaceNet match score (L,) distribution and (right) SSIM score
comparison between input subjects and their respective morphs.

wavelet morphs. In total, 529 FERET-based, 1,222 FRLL-
based, and 924 FRGC-based wavelet morphs are generated.

A. Similarity Comparison

Morphed images share features from both input subjects;
therefore, a quantitative measure of perceived similarity is
needed for comparison. We use two different metrics, a
FaceNet match score [26] and the Structural Similarity metric
(SSIM) [27]. Both metrics are selected because they represent
a perceived similarity rather than a direct pixel-comparison to
their input images. FaceNet is leveraged to quantify look-alikes
from a deep learning verifier, while SSIM uses classical
techniques to quantify perceptual similarity. To minimize
extraneous information from the morphed images, the convex
hull region of the morph is extracted for the comparison.

FaceNet uses a deep convolutional network architecture to
create a compact feature embedding of its input. FaceNet is
trained using triplet loss, where the Euclidean distance (L,) for
embeddings of the same identity are positive examples and
differing identities are considered negative examples [26].
Therefore, there is a correlation between the L, distance of
feature embeddings and perceived similarity. SSIM is a quality
metric used to mimic similarity of two images as perceived by
the human eye. SSIM is calculated using a combination of three
independent comparisons: luminance, structure, and contrast
[27]. Visible artifacts in an image decreases the SSIM.

Figure 5 shows the distributions of the L, distance between
FaceNet embeddings and SSIM comparison from the standard
morphing technique described in [4] and our wavelet morphing
technique. For both distributions, every morph has two separate
comparison values, one comparison to subject I, and one to
subject J. For our FaceNet comparison, a smaller L, value
represents a stronger look-alike. Inversely, a larger SSIM value
represents a stronger look-alike. Both distributions show that
our wavelet-based morphing technique is as effective at
creating morphs that look like their input subjects as [9], while
retaining the image quality. The standard and wavelet-based
morphs share the same mean of their SSIM distributions (SSIM
of 0.61), resulting in no difference between visual quality of the
standard and wavelet-based morphs. On the other hand, for the
perturbed images, SSIM is found between the wavelet morphed
image and the perturbed wavelet morphed images. If the images
are too heavily perturbed, they exhibit signs of degradation. The
SSIM score for all datasets show that every perturbed image has
an SSIM of above 0.99, indicating that all images are perceived
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Fig. 6. ROC curves for trained morph detector.

to be indistinguishable to the wavelet-based morph. Figure 4
shows the distribution of SSIM values.

B. White-box Detector and Verification

As presented in Figure 2, FaceNet can differentiate between
morph and genuine images when compared to a reference photo
for both our wavelet morph and Sarkar ef al. [9]. The wavelet-
based perturbed and standard images are tested on the trained
morph detector and the results are shown in Figure 6. In
Equation (1), we use § = 6 and ¢ = 2 for perturbation. Image
perturbations take approximately 2 seconds per image. The
AUC for FRGC is 67%, FERET is 24%, and FRLL is 2%. The
results show that the perturbed images are being erroneously
classified as bona fide images at an alarming rate. Our perturbed
wavelet morphs would bypass a morph detector in the passport
pipeline with a high degree of success.

To determine the morph’s effectiveness on the verification
stage, we utilize a pretrained FaceNet model as a verifier [26].
A reference image of a subject is compared to a second genuine
image of the subject to create a positive comparison, and a
negative comparison is made between the reference image and
its respective morph. FaceNet ROC curves are plotted for each
of the datasets as shown in Fig. 2. The true positive score
signifies a morph correctly labeled as a morph. FaceNet
discerns the wavelet morphs at a nearly identical rate as the
standard morphs. The verification stage is the most likely point
in the pipeline for the morph to be detected. Verification is a
difficult problem for face morphing because the morph image
must contain features from both input subjects, making it
difficult for the resulting morph to appear more similar to a
reference image than to a bona fide image.

V. CONCLUSION

In this paper, we provided the prospect of morphing in the
spatial frequency wavelet domain. We showed that our wavelet-
based morphs are as convincing as morphs generated in prior
works, while introducing a new morphing methodology. By
adding adversarial perturbation, the wavelet-based morphs are
nearly impossible to detect by humans and deep learning-based
detectors. In the future, more sophisticated methods of sub-
band selection can be used to generate morphs in the spatial-
frequency domain, creating morphs that are more difficult to
detect.
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