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Abstract— Morphing is the process of combining two or more 
subjects in an image in order to create a new identity which 
contains features of both individuals. Morphed images can fool 
Facial Recognition Systems (FRS) into falsely accepting multiple 
people, leading to failures in national security. As morphed image 
synthesis becomes easier, it is vital to expand the research 
community's available data to help combat this dilemma. In this 
paper, we explore combination of two methods for morphed image 
generation, those of geometric transformation (warping and 
blending to create morphed images) and photometric 
perturbation. We leverage both methods to generate high-quality 
adversarially perturbed morphs from the FERET, FRGC, and 
FRLL datasets. The final images retain high similarity to both 
input subjects while resulting in minimal artifacts in the visual 
domain. Images are synthesized by fusing the wavelet sub-bands 
from the two look-alike subjects, and then adversarially perturbed 
to create highly convincing imagery to deceive both humans and 
deep morph detectors. 

I. INTRODUCTION  
  Facial Recognition Systems (FRS) have become 
commonplace at border security crossings. With ever-
increasing accuracy and speed, FRS are considered the premier 
method of obtaining biometrics. The International Civil 
Aviation Commission (ICAO) designated facial recognition as 
the required biometric in their electronic Machine-Readable 
Travel Document (eMRTD) because of the face modality’s 
cultural acceptance, unobtrusive nature, and easy enrollment 
[1], [2].  If required, face data can be verified by a human, 
making it particularly attractive to border crossings where 
access to advanced verification technology may be limited [3]. 
While FRS are becoming a security necessity, they are 
vulnerable to attacks. The ICAO outlines the stages of a 
biometric system as: enrollment, template creation, 
identification, and verification. Bad actors can leverage 
vulnerabilities in the enrollment stage of the pipeline by 
submitting tampered identification images [4]. An enrollment 
system contains two steps, a detector for detecting tampered 
imagery, and a verifier which ensures that the image submitted 
is of the intended individual. We focus on fooling both the steps 
in the enrollment process.  

 Ferrara et al. [4] were the first to expose the dangers of 
morphed images being submitted for enrollment in an FRS. 
Morphed images are created by combining face images from 
two or more individuals creating a new ambiguous face which 
possess similarities between the bona fide identities. Using a 
morphed image, a passport can be shared between two or more 
individuals. If a bad actor is attempting to cross a border, they 
can create a morphed image with an individual who is similar 

looking in order to create a highly convincing morphed passport 
photo. The synthesized image would allow the bad actor to 
easily pass through the border using the passport of the look-
alike individual. Synthesized morphs between two or more 
identities who naturally look alike create an ambiguous face, 
causing high false acceptance rates in detectors [3].   
Commercial off-the-shelf systems (COTS) as well as human 
verifiers are vulnerable to these high-quality attacks [5]. As 
morphing technology becomes more accessible, anyone can 
create high-quality morphed images with little to no technical 
background. With no way of detecting morphed images with a 
high degree of confidence, national security is at risk.  

We introduce a new method of morphing utilizing the 
Discrete Wavelet Transform (DWT). The input images are 
warped and then subsequently blended using their wavelet 
decomposed sub-bands and then reconstructed into the final 
morphed image. The authors in [6] have demonstrated that it is 
possible to detect morphed images using the high-frequency 
wavelet sub-bands. This work is the beginning stage of 
leveraging the spatial-frequency wavelet domain to create high-
quality morphs. After morphing, a visually indistinguishable 
amount of adversarial perturbation is applied to further increase 
the difficulty of detecting the morphed images in our passport-
system pipeline. A high-quality morph image will have no 
obvious signs of tampering and will show similarity to all 
individuals combined in the morphing process. 

 In this paper, we broadly classify malicious examples into 
two categories: geometric and photometric. We describe a 
geometric adversarial example as a transformation applied to a 
face resulting in the change of facial landmarks, such as 
warping. On the other hand, photometric adversarial examples 
are those described by Goodfellow et al. [7] [8] which include 
adding structurally significant noise to an image, disrupting a 
classifier’s ability to discriminate a class for an image. At the 
time of this publication, we believe that no large-scale dataset 
has been generated using both face morphs and adversarial 
perturbation. 

II. RELATED WORK 
Morphed images can be described in two different 

categories, landmark and GAN-based. The landmark-based 
morph image generation typically consists of a three-step 
pipeline: landmark detection, warping, and blending. Landmark 
morphs utilize critical points on a subject’s face to warp the 
image. The landmark points of the two input subjects are 
averaged together to create common landmarks. The images are 
then warped towards these common landmarks and blended to 
create the final image. For more information, see Section III.A. 
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A. Face Morphing 
 In this work, we will focus on landmark-based morph 
generation. Ferrara et al. [4] morphed their images by hand 
using the open-source image editor GIMP. While the resulting 
images showed little artifacts, the pipeline was tedious and 
inconvenient to be scaled up for generation of large datasets. 
Since then, many open-source repositories have emerged, 
making it simple to generate large-scale datasets with ease. 
Sarkar et al. [9] generate three morphed datasets utilizing four 
popular morphing repositories: Facemorpher [10], OpenCV 
[11], WebMorph [12], and StyleGAN2 [13]. Facemorpher, 
WebMorph, and OpenCV are typical landmark-based 
repositories that rely on a combination of warping and splicing 
to generate images. The images are guaranteed to have visual 
similarity between both input individuals because features of 
the individuals are combined by averaging the input images 
together. While landmark-based morphing techniques are fast 
and effective, they tend to lead to artifacts in the final image, 
especially around the eye and background regions. StyleGAN2 
is a Generative Adversarial Network (GAN) approach to face 
morphing where latent vectors of images are linearly combined, 
resulting in minimal artifacts and producing high-quality 
morphs [9], [13]. However, GAN-based approaches have issues 
retaining identity information after morphing, causing morphs 
to be more heavily weighted toward one subject than another, 
resulting in ineffective morphs [9]. 

B. Adversarial Perturbation 
Adversarial perturbation is added to the morph images with 

the intention of fooling a morph detector into labeling the input 
as a bona fide class. Typically, the pixel values are constrained 
to an 𝐿∞ value which help to preserve the quality of the 
perturbed image. Adversarial perturbation should not be 
perceptually visible in the final image. Goodfellow et al. [7] 
introduce the fast gradient sign method (FGSM), which 
perturbs the input of the model based on the sign of the gradient 
for a target class. Liao et al. [14] utilized FGSM with a masking 
technique to perturb areas deemed as high importance using 
spatial information derived from multiple convolutional layers 
in a model. Hussain et al. [15] leverage adversarial perturbation 
for their work on adversarial deepfakes by perturbing frames of 

a video labeled as fake by a detector with the intention of all 
output frames being labeled as real.  

III. WAVELET-BASED MORPH GENERATION 

A. Landmark-based Wavelet Morphing 
 We utilize a modified version of Facemorpher to morph our 
images [10]. Two identities are used for morphing: I and J. 
Input identities I and J are assumed to naturally look alike. I 
and J’s respective images i and j should be aligned. For our 
morphing pipeline, we utilize a landmark-based approach. 68-
landmark points are found on input images, creating the 68-
element long pixel-coordinates 𝒊 ̂, 𝒋 ̂.  Delaunay Triangles are 
utilized to create a mesh across the image, with the vertices of 
the mesh at 𝒊 ̂, 𝒋 ̂. The 𝒊 ̂ and 𝒋 ̂ are averaged together to create 
common landmarks, 𝒌̂. An affine transform is used to map 
landmarked points from 𝒊 ̂, 𝒋 ̂ to the 𝒌̂, synthesizing 𝒊 ̂𝒘𝒂𝒓𝒑𝒆𝒅, 
𝒋 ̂𝒘𝒂𝒓𝒑𝒆𝒅. Bilinear interpolation is performed on the warped 
images to correct color values. At the end of the warping stage, 
the two images share common landmarks 𝒌̂. After warping, 
𝒊 ̂𝒘𝒂𝒓𝒑𝒆𝒅, 𝒋 ̂𝒘𝒂𝒓𝒑𝒆𝒅 are decomposed into 64 sub-bands using a 
three-level wavelet decomposition. A vertical and a horizonal 
filter are applied to the warped images, creating the Low-Low, 
Low-High, High-Low, and High-High sub-bands. As presented 
in Figure 1, the low frequency baseband after three-level 
wavelet decomposition of the 𝒊 ̂𝒘𝒂𝒓𝒑𝒆𝒅, and  𝒋 ̂𝒘𝒂𝒓𝒑𝒆𝒅 are 
averaged together. This sub-band is selected because it 
represents most of the shared information from the original 
subjects. The remaining 63 sub-bands are combined using the 
maximum-coefficient at every location in the sub-bands to 
capture the most significant information from each subject. 
Once the two input images are wavelet morphed, the convex 
hull of the morphed image is spliced onto the background of the 
source and destination images. 

B. Adversarial Perturbation for Morphed Image Generation 
 While the wavelet-based and standard morphs may be able 
to fool a person, a trained deep-learning based morph-detector 
is still able to detect morphed images in the enrollment stage. 
Therefore, we fine-tune an Inception-ResNET v1 model [16] 
pretrained on VGGFace2 [17] to detect morphed images based 
on the work from the authors of [18]. 

Fig. 1. Wavelet-based morphing pipeline. The input subjects are warped, and then wavelet decomposed into their respective 64 uniform sub-bands. The low-
frequency basebands averaged together, and the remaining 63 sub-bands are max’ed together. The resulting sub-bands are then used to reconstruct the morph image, 
cropped, and placed on the input subject. 
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The model was trained on 4,000 morphed images. The 
morph detector was able to detect morphs with near perfect 
accuracy. To further make the morphs harder to detect, 
adversarial perturbation is applied to the wavelet-based 
morphed images. Using our morph detector, images are 
perturbed using the Basic Iterative Method (BIM) [8]. FGSM 
perturbs an image based on the gradient with every iteration of 
backpropagation. An 𝐿∞is used as a maximum allowed pixel 
difference constraint. BIM is a derivation of FGSM, where a 
constant step-size is utilized for every applied perturbation. 
BIM is formulated as: 

𝑿𝑁+1
𝑎𝑑𝑣 = 𝐶𝑙𝑖𝑝𝑋,𝜖{𝑿𝑁

𝑎𝑑𝑣 + 𝛽sign(𝛻𝑋 𝐿𝑎𝑑𝑣)},               (1) 

where 𝑿0
𝑎𝑑𝑣 = 𝑿 is the original morphed image and  𝐿𝑎𝑑𝑣 

consists of cross-entropy loss as well as the Total Variation 
(TV) smoothing loss:   

𝐿𝑎𝑑𝑣 = 𝐽(𝑿𝑁
𝑎𝑑𝑣 , 𝑦𝑡𝑟𝑢𝑒) − 𝜆 𝑇𝑉(𝑿𝑁

𝑎𝑑𝑣),                         (2) 

where J is the cross-entropy cost function between the 
adversarial image and the target class, 𝛽 is the perturbation step 
size and ϵ is the 𝐿∞ constraint on the pixel values [8]. 𝐶𝑙𝑖𝑝𝑋,𝜖 
confirms that the pixel values are within ϵ 𝐿∞-norm distance 
from the original sample. We also clip the adversarial example 

at each iteration to make sure that all pixel values reside within 
the valid input range.  

In addition, 𝜆 = 0.1 is the regularization parameter. To further 
help the visual quality of the image, TV smoothing was applied 
to the added perturbation to remove any visible artifacts in the 
adversarial image [19]: 

𝑇𝑉(𝑿𝑁
𝑎𝑑𝑣) =  ∑ ((𝒓𝑁[𝑖, 𝑗] − 𝒓𝑁[𝑖 + 1, 𝑗])2 − (𝒓𝑁[𝑖, 𝑗]

𝑖,𝑗

− 𝒓𝑁[𝑖, 𝑗 + 1])2)
1
2 ,                                   (3) 

where 𝒓𝑁[𝑖, 𝑗]  is a pixel in the perturbation image 𝒓𝑁 = 𝑿𝑁
𝑎𝑑𝑣 −

𝑿 [20]. After perturbation, the images are expected to maintain 
their perceptual quality.  

IV. RESULTS 
We utilize the FERET, FRLL, and FRGC datasets for our 

morphs [21] [22] [23]. The datasets contain image sizes of 
413×531 for FRLL, 1704×2272 for FRGC, and 512×768 for 
FERET. Each dataset depicts passport style images with a 
neutral face looking into the camera under ideal lighting 
conditions. In total, FERET contains 1,199 different identities, 
FRLL contains 102 identities, and we used a subset of FRGC 
which contains 765 identities. Our morphing methodology 
follows that of Facemorpher [10]. We use morphed images 
from [9] for comparison to our work and we refer to these image 
as standard morphs for the rest of this paper because they use a 
typical morphing pipeline consisting of an alpha-blending step 
used to combine warped images. For pairing our morphs, we 
use the protocols originally created by Neubert et al. ‘s AMSL 
dataset for FRLL [24] and Scherhag et al.’s protocol for FERET 
and FRGC [25]. In addition, landmarked-based wavelet 
morphing images described in Section III.A are referred to as 

Fig. 2. FaceNet as a verifier: ROC curves for the (left) FRLL, (middle) FERET, and (right) FRGC datasets.  

Fig. 3. Wavelet morphs with respective perturbed images from the FRGC 
dataset. The Difference column represents the min-max normalized absolute 
difference between the wavelet morph and their respective perturbed wavelet 
morph. The SSIM Map column represents the areas of high similarity between 
the input images. In the difference and SSIM images, white and black represent 
smaller and higher values, respectively. 

Fig. 4. SSIM distributions between wavelet morphs and their respective 
perturbed wavelet morphs for (left) FRLL, (middle) FERET, and (left) FRGC 
datasets. 
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wavelet morphs. In total, 529 FERET-based, 1,222 FRLL-
based, and 924 FRGC-based wavelet morphs are generated.   
A. Similarity Comparison 

Morphed images share features from both input subjects; 
therefore, a quantitative measure of perceived similarity is 
needed for comparison. We use two different metrics, a 
FaceNet match score [26] and the Structural Similarity metric 
(SSIM) [27]. Both metrics are selected because they represent 
a perceived similarity rather than a direct pixel-comparison to 
their input images. FaceNet is leveraged to quantify look-alikes 
from a deep learning verifier, while SSIM uses classical 
techniques to quantify perceptual similarity. To minimize 
extraneous information from the morphed images, the convex 
hull region of the morph is extracted for the comparison. 

FaceNet uses a deep convolutional network architecture to 
create a compact feature embedding of its input. FaceNet is 
trained using triplet loss, where the Euclidean distance (𝐿2) for 
embeddings of the same identity are positive examples and 
differing identities are considered negative examples [26]. 
Therefore, there is a correlation between the 𝐿2 distance of 
feature embeddings and perceived similarity. SSIM is a quality 
metric used to mimic similarity of two images as perceived by 
the human eye. SSIM is calculated using a combination of three 
independent comparisons: luminance, structure, and contrast 
[27]. Visible artifacts in an image decreases the SSIM.  

Figure 5 shows the distributions of the 𝐿2 distance between 
FaceNet embeddings and SSIM comparison from the standard 
morphing technique described in [4] and our wavelet morphing 
technique.  For both distributions, every morph has two separate 
comparison values, one comparison to subject I, and one to 
subject J. For our FaceNet comparison, a smaller  𝐿2 value 
represents a stronger look-alike. Inversely, a larger SSIM value 
represents a stronger look-alike. Both distributions show that 
our wavelet-based morphing technique is as effective at 
creating morphs that look like their input subjects as  [9], while 
retaining the image quality. The standard and wavelet-based 
morphs share the same mean of their SSIM distributions (SSIM 
of 0.61), resulting in no difference between visual quality of the 
standard and wavelet-based morphs. On the other hand, for the 
perturbed images, SSIM is found between the wavelet morphed 
image and the perturbed wavelet morphed images. If the images 
are too heavily perturbed, they exhibit signs of degradation. The 
SSIM score for all datasets show that every perturbed image has 
an SSIM of above 0.99, indicating that all images are perceived 

to be indistinguishable to the wavelet-based morph. Figure 4 
shows the distribution of SSIM values.  
B. White-box Detector and Verification 
    As presented in Figure 2, FaceNet can differentiate between 
morph and genuine images when compared to a reference photo 
for both our wavelet morph and Sarkar et al.  [9] .  The wavelet-
based perturbed and standard images are tested on the trained 
morph detector and the results are shown in Figure 6. In 
Equation (1), we use 𝛽 = 6 and ϵ = 2 for perturbation. Image 
perturbations take approximately 2 seconds per image. The 
AUC for FRGC is 67%, FERET is 24%, and FRLL is 2%. The 
results show that the perturbed images are being erroneously 
classified as bona fide images at an alarming rate. Our perturbed 
wavelet morphs would bypass a morph detector in the passport 
pipeline with a high degree of success. 

To determine the morph’s effectiveness on the verification 
stage, we utilize a pretrained FaceNet model as a verifier [26]. 
A reference image of a subject is compared to a second genuine 
image of the subject to create a positive comparison, and a 
negative comparison is made between the reference image and 
its respective morph. FaceNet ROC curves are plotted for each 
of the datasets as shown in Fig. 2. The true positive score 
signifies a morph correctly labeled as a morph. FaceNet 
discerns the wavelet morphs at a nearly identical rate as the 
standard morphs. The verification stage is the most likely point 
in the pipeline for the morph to be detected. Verification is a 
difficult problem for face morphing because the morph image 
must contain features from both input subjects, making it 
difficult for the resulting morph to appear more similar to a 
reference image than to a bona fide image. 

V. CONCLUSION 
     In this paper, we provided the prospect of morphing in the 
spatial frequency wavelet domain. We showed that our wavelet-
based morphs are as convincing as morphs generated in prior 
works, while introducing a new morphing methodology. By 
adding adversarial perturbation, the wavelet-based morphs are 
nearly impossible to detect by humans and deep learning-based 
detectors. In the future, more sophisticated methods of sub-
band selection can be used to generate morphs in the spatial-
frequency domain, creating morphs that are more difficult to 
detect.   

Fig. 5. (left) FaceNet match score (𝐿2) distribution and (right) SSIM score 
comparison between input subjects and their respective morphs. 

Fig. 6. ROC curves for trained morph detector. 
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