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ABSTRACT There has been increasing interest in face recognition in the thermal infrared spectrum.
A critical step in this process is face landmark detection. However, landmark detection in the thermal
spectrum presents a unique set of challenges compared to in the visible spectrum: inherently lower spatial
resolution due to longer wavelength, differences in phenomenology, and limited availability of labeled
thermal face imagery for algorithm development and training. Thermal infrared imaging does have the
advantage of being able to passively acquire facial heat signatures without the need for active or ambient
illumination in low light and nighttime environments. In such scenarios, thermal imaging must operate by
itself without corresponding/paired visible imagery.Mindful of this constraint, we propose visible-to-thermal
parameter transfer learning using a coupled convolutional network architecture as a means to leverage visible
face data when training a model for thermal-only face landmark detection. This differentiates our approach
from models trained either solely on thermal images or models which require a fusion of visible and thermal
images at test time. In this work, we implement and analyze four types of parameter transfer learningmethods
in the context of thermal face landmark detection: Siamese (shared) layers, Linear Layer Regularization
(LLR), Linear Kernel Regularization (LKR), and Residual Parameter Transformations (RPT). These transfer
learning approaches are compared against a baseline version of the network and an Active Appearance
Model (AAM), both of which are trained only on thermal data. We achieve a 6.5% - 9.5% improvement
on the DEVCOM ARL Multi-modal Thermal Face Dataset and a 4% improvement on the RWTH Aachen
University Thermal Face Dataset over the baseline model. We show that LLR, LKR, and RPT all result in
improved thermal face landmark detection performance compared to the baseline and AAM, demonstrating
that transfer learning leveraging visible spectrum data improves thermal face landmarking.

INDEX TERMS Biometrics, face recognition, infrared imaging, landmark detection, thermal sensors.

I. INTRODUCTION
Landmark detection is a critical component for facial analysis
applications, including face recognition, 3D modeling, and
expression classification. Precise and accurate detection of
facial landmarks enable faces to be registered (or aligned) to
a common frame of reference, often referred to as canoni-
cal coordinates. Face registration may be performed using a
variety of approaches such as similarity transformations [1],
affine transformations [2], projective transformations [3],
or frontalization methods [4].

The associate editor coordinating the review of this manuscript and

approving it for publication was Vincenzo Conti .

A significant amount of landmark detection research has
been performed on visible spectrum imagery under a wide
array of conditions, such as variable pose, illumination,
expression, and occlusion, driven by applications in the com-
mercial and government sectors. There has been substan-
tially less landmark detection research for thermal infrared
imagery. The primary advantage of thermal imagery is it
can be captured by a passive system requiring no illumi-
nation. It has been shown that the fusion of thermal and
visible face images can lead to increased facial recogni-
tion performance [5], [6]. However, for surveillance in low-
light/nighttime settings without active illumination, thermal
imaging is oftentimes used alone. Yet, landmark-annotated
face datasets in the thermal spectrum contain substantially
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fewer subjects than those in the visible spectrum. For exam-
ple, the UMDFaces [7] and the CelebA+ [8], [9] visible
face datasets contain over 8,000 subjects, whereas some
larger, commonly used thermal face datasets [10]–[13] con-
tain between 94 to 238 subjects. Therefore, it would be desir-
able if the vast amount of visible face data available could
be leveraged to help train a thermal face landmark detection
system.

The key assumption of this work is that visible domain
data is only available during training. At deployment/test
time, the model must operate only on thermal data. As such,
we do not investigate multi-modal fusion techniques because
they require both visible and thermal data at test time to per-
form inference. Using transfer learning, we leverage visible
domain data in conjunction with thermal data during training.
Although visible data is used during training, the result-
ing thermal face landmark detection model is intended for
deployment on thermal domain data (i.e. in low-light or night-
time scenarios).

Given that faces captured in either domain represent the
same physical entity and share the same underlying geometric
structure, it is reasonable to assume there is knowledge to
be leveraged from the visible domain which can bolster the
performance of a thermal-only model. The human ability
to identify facial landmarks in thermal imagery, even for
individuals with little prior experience with thermal imagery,
is an inspiration for seeking a means of cross-domain
knowledge transference in automated facial landmark
detection.

Transfer learning aims to translate the knowledge embed-
ded in a model trained on a source domain to a target
domain model that typically has less available labelled data.
For example, Siamese networks [14] learn domain-invariant
features through weight sharing and have been shown to be
effective for heterogeneous face recognition in the case of
matching target domain probes to a gallery of source domain
images [15]. An alternative to weight sharing is to establish
linear or non-linear relationships between the weights of the
two networks [16], [17]. This strategy learns to translate the
feature detectors from one domain to another, as opposed
to aligning the data distributions of the domains through the
extraction of domain-invariant features.

The objective of this work is to assess the potential
of visible-to-thermal transfer learning for the purpose of
enhancing thermal face landmark detection. Specifically,
the contributions of this paper are:
• The first investigation into the use of parameter transfer
learning for enhancing thermal face landmark detection
by leveraging visible face data during training.

• The implementation and comparative analysis of four
parameter transfer learning techniques (Siamese net-
works [14], Linear Layer Regularization (LLR) [16],
our proposed Linear Kernel Regularization (LKR), and
Residual Parameter Transformation (RPT) [17]) ver-
sus a baseline network and an Active Appearance
Model (AAM).

• A series of ablation studies informing how to gener-
ate thermal-visible image pairs by assessing the impact
of image alignment, data augmentation, and dataset
sub-sampling on transfer learning.

• A thorough evaluation of the models on the DEVCOM
ARL Multimodal and RWTH Aachen University Ther-
mal Face Datasets, as well as a comparison to human
level performance.

The remainder of the paper is organized as follows.
Section II reviews related thermal face landmark detection
and transfer learning methods. Section III describes the base-
line and transfer learning models in greater detail. Section IV
presents and discusses the experimental results. Section V
concludes this paper with a summary of contributions and
results as well as brief thoughts on future work.

II. RELATED WORK
A. THERMAL LANDMARK DETECTION
Much of the prior research in thermal landmark detec-
tion has focused on certain facial sub-regions, in particular
the eyes and nose, as these landmarks are often integral
components of a larger task. Bourlai and Jafri [18] uti-
lized the pronounced appearance of hair in medium wave
infrared (MWIR) to detect eyebrows from horizontal inte-
gral projections and thereby limit the search space of a
template-based matcher. Working with long wave infrared
(LWIR), Wang et al. [19] also used integral projections to
detect eyeglasses and estimate pupil locations. If eyeglasses
are not detected, then a Support Vector Machine classified
eye regions from Haar-like feature. Hussien et al. [20] found
Histogram of Gradients (HoG) to outperform Local Binary
Patterns and Haar features when training a cascade classifier
to detect eye regions. Tzeng et al. [21] localized nose regions
in video frames based on the temperature fluctuations caused
by breathing.

More recent efforts are geared towards detecting a
holistic face shape comprised of 5 to 68 landmarks.
Kopaczka et al. [22] used Active Appearance Mod-
els (AAM) trained on HoG and Scale-Invariant Feature
Transform (SIFT) features to perform landmark tracking
in thermal videos. Avoiding landmark detection altogether,
Sun and Zheng [23] aligned visible and thermal image
pairs by iterative point-to-point matching with Canny edge
maps. Poster et al. [24] compared the performance of
three deep-learning based landmark detection methods on
thermal face data, including the Multi-Task Convolutional
Neural Network (MTCNN) [25] and Deep Alignment
Network (DAN) [26] architectures, achieving the best per-
formance with DAN. Kopaczka et al. [12] found DAN to
outperform AAMs in both landmark detection precision and
speed.

In these prior works, only thermal face images were used
to train the models. The recent success of deep learning based
face landmark detection methods on visible spectrum data is
due in part to the increased availability of annotated visible
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face datasets. In this paper, we focus on assessing the ben-
efit of using transfer learning to draw upon the information
provided by visible face data.

B. TRANSFER LEARNING
A key objective of transfer learning is to improve perfor-
mance on a target domain by leveraging data from a source
domain. Typically, the source domain contains ample training
data as compared to the target domain.We use the term source
model or target model to refer to models based on the domain
from which they receive their input.

While it seems intuitive that there is useful and relatable
information to be shared between the visible and thermal
domains, it is less clear exactly what or how knowledge
should be shared. To the best of our knowledge, the only
research on transfer learning for the purpose of landmark
detection on thermal imagery was conducted by Wu and
Ji [27], who proposed a constrained Deep Boltzman Machine
for learning a common feature subspace between the ther-
mal and visible domains, framing the problem of landmark
detection as a classification task. However, existing DBM
architectures are limited in terms of their scalability and
training time compared to Multi-layer Perceptrons (MLP) or
Convolutional Neural Networks (CNNs), which have seen
more widespread success [28].

Instance, feature, parameter, and relational knowledge are
four different categories of transfer learning techniques [29],
with feature and parameter transfer learning being the most
relevant to landmark detection. A common form of feature
transfer involves learning a shared representational subspace
wherein extracted image features from two distinct domains
exhibit the same distribution. The Maximum Mean Discrep-
ancy (MMD) [30] and the Kullback-Leibler Divergence [31]
are two commonly used measures for minimizing the differ-
ence between the global statistics of the feature representa-
tions. However, these measures are typically used when the
feature representations are optimized for classification tasks.

Alternatively, parameter transfer learning seeks to learn a
beneficial relationship between the parameters of a model
ingesting data from a source domain and the parameters of a
model operating on a target domain. Parameter transference
binds the models together by their feature extraction and
transformation processes instead of by the literal features the
models produce. For example, in the case of convolutional
layers, parameter transfer learning models the relationship
between theweights of the convolutional kernels of the source
and target networks, whereas feature transfer learning models
the relationship between the output feature maps. As MMD
and KL-Divergence are computed from the global statistics
of the feature maps, we instead focus on parameter transfer
learning techniques which can more easily take into account
the spatial information of the convolutional kernels.

A straight-forward method of parameter transfer learning
is a Siamese network [14], [32] wherein two networks share
the same weights. Rather than sharing the model parame-
ters, Rosantsev et al. [16] penalized weights in the target

network for which a linear transformation of the correspond-
ing weights in the source network could not be learned,
in addition to minimizing the MMD between the feature
representations output by the source and target networks.
Our work omits the MMD loss term because of its ambigu-
ous applicability in regressing landmark locations from the
feature representations, as opposed to classifying images.
Further relaxing the constraints on the model parameters,
Rosantsev et al. [17] learned a residual transformation from
the weights in the source network to the corresponding
weights in the target network, again for the goal of image
classification. Instead of MMD, they employ an auxiliary
discriminator network to classify the domains of input sam-
ples, which is trained in an alternating fashion with the main
network. This auxiliary domain classifier is also omitted from
our version of the model in order to examine the parameter
transfer approach in isolation.

III. VISIBLE-TO-THERMAL TRANSFER LEARNING
In this section, we formalize the problem of face landmark
detection within a single domain, namely thermal imagery,
using a baseline CNN architecture.We show how the baseline
architecture is then extended into the proposed coupled net-
work framework to facilitate transfer learning. Four different
methods for performing visible-to-thermal parameter transfer
learning are presented in detail.

A. BASELINE ARCHITECTURE
The baseline face landmark detection architecture utilized
for this study is a single stage version of the Deep Align-
ment Network (DAN) [26]. The DAN is a VGG-like [33]
CNN, composed primarily of eight convolutional layers and
two fully-connected layers, that regresses a set of fiducial
landmark coordinates from an input face image. The DAN
was originally designed to detect landmarks in visible face
imagery. However, [12] and [24] have demonstrated success-
ful landmark detection to a certain degree when trained using
only thermal imagery. A more detailed breakdown of the
layers of the baseline network is given in Table 1. This archi-
tecture serves as the basis for the coupled network framework
depicted in Figure 1.

More specifically, the network regresses a set of offset
values that, when summed together with a mean face shape
computed from the training data, yields the final predicted
landmark locations. Let X = {xi}Ni=1 and Y = {yi}Ni=1 be the
sets of input images and ground truth landmark coordinates
respectively, and let 2 = {θh}�h=1 be the parameters of each
network layer. Given L landmarks, let y ∈ RL×2 be the
mean face shape computed from the training data. In practice,
we use L = 5 corresponding to the centers of the eyes,
the base of the nose, and the corners of the mouth.

The output of the network is an update 1yi ∈ RL×2,
which is then added to the mean shape such that the predicted
landmarks ŷi ∈ RL×2 are given by

ŷi(xi|2, y) = y+1yi(xi|2). (1)
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FIGURE 1. The proposed coupled network architecture (left) with Transfer Learning Modules (TLM) between the pairs of convolutional and
fully-connected layers. A TLM may be a Siamese Layer, Linear Layer Regularizer, Linear Kernel Regularizer, or Residual Parameter Transformer. After the
coupled network has been trained, the thermal domain sub-network is de-coupled for evaluation on the test data (right). The thermal sub-network is
architecturally identical to the baseline network but has learned a different set of weights via the transfer learning process. Best viewed in color.

TABLE 1. DAN-based architecture. Kernels are described as height ×
width × depth, stride.

To train the network, the following objective function is
minimized via gradient descent:

L(2|X,Y, y) = λdLd (2|X,Y, y)+ λwLw(2), (2)

Ld (2|X,Y, y) =
1
N

N∑
i=1

e(2|xi, yi, y), (3)

Lw(2) =
�∑
h=1

‖θh‖
2
2 , (4)

where Ld (·) is the mean landmark detection loss and Lw(·)
is a L2 weight decay term. λd and λw are coefficients modu-
lating the influence of the two aforementioned loss terms.

The landmark detection loss Ld is measured using the
Normalized Root Mean Square Error (NME), calculated as

e(2|xi, yi, y) =

∥∥ŷi(2|xi, y)− yi
∥∥
2

di
, (5)

where di ∈ R is the inter-pupil distance (IPD). Specifically,
the IPD is the Euclidean distance between the left and right
eye center landmarks.

Ultimately, the input image xi ∈ R112×112×1 is mapped to
a 7× 7× 512 tensor via four max pooling layers. The 3× 3
kernels in the final convolutional layer have a receptive field
of 68× 68 pixels.

B. COUPLED ARCHITECTURE
Parameter transfer learning relates the weights of a source
network to the weights of a target network. By modeling this
relationship, knowledge can be transferred from one domain
to the other, allowing a target network to effectively learn
from data in the source domain via the parameters in the
source network. Typically, this relationship is learned by
applying a constraint or penalty term to the weights of the net-
works during training. For the purposes of this work, we con-
sider the source domain to be visible spectrum imagery and
the target domain to be thermal infrared imagery.

The goal is to utilize visible domain data during training
in order to improve the performance of the thermal face
landmark detection network beyond what it could achieve if it
were only trained on thermal data. In order to conduct visible-
to-thermal transfer learning, we specify a dual network archi-
tecture with one network trained to perform face landmark
detection on visible domain data, while the other is trained on
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thermal data. These two networks have the same architecture
as the baseline network.

Coupling the pairs of layers in the visible and thermal
networks are Transfer Learning Modules (TLM). TLMs are
generic, abstract architectural components which facilitate
the parameter transfer learning process. In other words,
a TLM represents an implementation of a parameter transfer
learning method on a pair of visible and thermal network
layers. Figure 1 depicts the proposed coupled architecture.
We consider four methods of parameter transfer learning:

Siamese (shared) Layers [14], Linear Layer Regularization
(LLR) [16], Residual Parameter Transformation (RPT) [17],
and our customized version of LLR entitled Linear Kernel
Regularization (LKR). The methods differ by the manner in
which the parameters of the source and target networks are
related.

Ultimately, four different versions of the coupled archi-
tecture are compared - one for each of the transfer learning
methods examined. Important to note is that the Siamese
TLM is employed for all fully-connected layers as we found
this configuration to yield better performance. For exam-
ple, the Siamese model uses the Siamese TLM for all of
its coupled layers. However, the RPT model uses the RPT
TLM for all its convolutional layers, but the Siamese TLM
for its fully-connected layers. The remainder of this section
discusses the details of each of the transfer learning methods.

C. SIAMESE LAYER
A Siamese network [14], [32] encourages the learning of
parameters capable of meaningfully processing input from
both source and target domains. This is also sometimes
referred to as weight sharing. A Siamese Transfer Learning
Module imposes the constraint that the weights of the paired
visible and thermal layers be equal. Structurally, the Siamese
and baseline networks are identical. The input and output
signature of the Siamese network is the same as that of the
baseline network. Given an input image xi ∈ R112×112×1

from either the visible or thermal domain, the network outputs
a shape update 1yi ∈ RL×2.
Let Xv

= {xvi }
N v

i=1 and Xt
= {xti }

N t

i=1 be the sets of visible
and thermal training images, respectively. Similarly, let yv

and yt be the mean shapes of the visible and thermal training
data. The predicted landmarks are given by

ŷvi (x
v
i |2, y

v) = yv +1yi(xvi |2), (6)

and

ŷti (x
t
i |2, y

t) = yt +1yi(xti |2), (7)

yielded by the same set of network parameters 2.
The Siamese network is trained on batches of images from

both visible and thermal domains but is otherwise optimized
in a similar fashion to the baseline network. LetYv

= {yvi }
N v

i=1
and Yt

= {yti }
N t

i=1 be the sets of visible and thermal ground
truth landmark coordinates. The objective function for the

Siamese network is

L = λvLv + λtLt + λwLw, (8)

Lv(2|Xv,Yv, yv) =
1
N v

N v∑
i=1

e(2|xvi , y
v
i , y

v), (9)

Lt (2|Xt ,Yt , yt) =
1
N t

N t∑
i=1

e(2|xti , y
t
i , y

t), (10)

where Lv and Lt are the landmark detection loss terms for
the visible and thermal streams, while λv and λt are their
respective coefficients.

This strategy does not add additional network parame-
ters. However, if the two domains are sufficiently dissimilar,
a Siamese network may be too limited in its capacity to
sufficiently exploit the common information.

D. LINEAR LAYER REGULARIZATION
Given two separate but structurally identical networks, Linear
Layer Regularization (LLR) [16] encourages a linear relation-
ship to form between the corresponding sets of weights of the
two networks. Let 2v

= {θvh}
�
h=1 and 2t

= {θ th}
�
h=1 be the

parameters of the visible and thermal networks, respectively,
where � is the number of layers in the baseline network.
Given j ⊆ � sets of paired layers, let a ∈ Rj and b ∈ Rj

be the scalar and bias terms learned by minimizing the LLR
constraint

LLLR =
∑
j⊆�

∥∥∥ajθvj + bj − θ tj ∥∥∥22 . (11)

This constraint applies a penalty to the loss when the
network fails to learn a linear transformation of the visible
weights to the thermal weights. The full objective function
being minimized is

L = λvLv + λtLt + λwLw
+λLLRLLLR(2v

|Xv,2t
|Xt , a,b), (12)

with the coefficient λLLR regulating the influence of the
LLLR loss. Like the Siamese network, training requires input
batches composed of visible and thermal data.

Outside of the training process, however, the networks can
be effectively ‘‘de-coupled,’’ as indicated by their respective,
mutually-independent predictive functions,

ŷvi (x
v
i |2

v, yv) = yv +1yi(xvi |2
v), (13)

ŷti (x
t
i |2

t , yt) = yt +1yi(xti |2
t ). (14)

Therefore, while this method more than doubles the number
of learnable parameters as compared to the baseline network
during training, the resultant thermal network is the same size
as the baseline network when evaluating on thermal test data
(e.g. the deployment phase).

E. LINEAR KERNEL REGULARIZATION
The application of a single scalar and bias term to all the
kernels of a layer may be too constrained to relate knowledge
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between the visible and thermal domains. As an alternative
approach, individual linear transformations may be learned
for each kernel, thereby expanding the network’s flexibility
in a semantic, piecemeal fashion.

Given the visible parameters θvj ∈ RCj×Kj and thermal
parameters θ tj ∈ RCj×Kj , let (Aj)T = [aj . . . aj] ∈ RKj×Cj and
(Bj)T = [bj . . . bj] ∈ RKj×Cj , where aj ∈ RKj and bj ∈ RKj

are sets of learnable regularization parameters replicated Cj
times. Cj and Kj are the sizes of the inputs and outputs to the
j-th layer, respectively. In the case of a convolutional layer,
Cj can be considered to be the height × width × depth of
the kernel and Kj the number of kernels. The kernels can be
independently regularized using a loss term of the form

LLKR =
∑
j⊆�

∥∥∥Aj � θ
v
j + Bj − θ tj

∥∥∥2
2
. (15)

where � is the Hadamard product function. This loss term
replaces the LLLR loss term in the objective function

L = λvLv + λtLt + λwLw + λLKRLLKR. (16)

F. RESIDUAL PARAMETER TRANSFORMATION
Depending on how drastic the difference in appearance
between the two domains is, a linear transformation of the
weights may be too restrictive to translate the underlying
phenomenological similarities. Residual Parameter Transfor-
mation (RPT) allows greater flexibility in modeling the sim-
ilarities and differences of the respective domains at the cost
of more learnable parameters.

Unlike LLR and LKR, when using RPT, the thermal
network parameters are not learnable parameters in and of
themselves. Instead, they are the output of two-layer residual
networks, as illustrated in Fig. 2. Given encoding matrices
Ae
j ∈ RPj×Cj and Bej ∈ RKj×Qj , decoding matrices Ad

j ∈

RCj×Pj and Bdj ∈ RQj×Kj , and bias matrix Uj ∈ RPj×Qj ,
the visible parameters θvj ∈ RCj×Kj are transformed into the
thermal parameters θ tj ∈ RCj×Kj according to the equations

θ tj (θ
v
j ,A

e
j ,B

e
j ,Uj,Ad

j ,B
d
j ) = θ

v
j +1θ

v
j , (17)

1θvj = Ad
j σ (A

e
j θ
v
jB

e
j + Uj)Bdj , (18)

where σ is the ReLU activation function, Cj and Kj are the
input and output dimensions of the j-th layer parameters, Pj is
the size to which the input dimension is reduced, andQj is the
size to which the output dimension is reduced. See Table 2 for
the actual sizes of the RPT subnets used in the experiments.

The network is tasked with learning an update 1θvj to
be combined with the input visible weights θvj . To this end,
an additional loss term is added to the objective function of
the form

LRPT = Lr − ln(Lr ), (19)

Lr =
∑
j⊆�

∥∥∥1θvj ∥∥∥2Fro . (20)

The loss term LRPT is smallest when Lr = 1. The natural log
barrier function prevents learning the trivial transformation

FIGURE 2. Residual transformation of the visible network layer
parameters θv

j into thermal parameters θ t
j via a learnable

encoder-decoder sub-network with parameters Ae
j , Be

j , Ad
j , and Bd

j (bias
term Uj not shown).

TABLE 2. Parameter sizes of the RPT subnets. * indicates no
encoding/decoding performed on this dimension.

Lr = 0 and discourages Lr from being very large in mag-
nitude. However, it also has the side-effect of pressuring the
total magnitude of the12v updates to be 1, which is a highly
arbitrary constraint. The final objective function is

L = λvLv + λtLt + λwLw + λRPTLRPT . (21)

Even though the thermal network parameters2t are a func-
tion of 2v, once the networks have been trained, the param-
eters are frozen. Consequently, the thermal network can be
de-coupled from the visible network and residual transforma-
tion modules.

IV. EXPERIMENTS AND RESULTS
In this section, we present and discuss the experimental
results. To do so, we first describe the two datasets used
for evaluating the landmark detection models, as well as
the implementation details and preprocessing steps. Also,
we discuss our experimental results which studies the effects
of dataset sub-sampling and image and subject alignment
when constructing input image pairs. The algorithms are
also assessed in terms of their landmark detection accuracy
compared to human level performance as well as their gener-
alizability to a realistic, unobserved dataset.

As discussed in the previous sections, when evaluating the
models (the deployment phase), visible data is not expected
to be present. In cases where both a source and target network
are learned, such as with LLR and RPT, the source network
and the intermediary parameters bridging the two networks
are not needed during the evaluation of the target network.
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Therefore, all models, including those trained via transfer
learning, are architecturally identical to the baseline network
during evaluation on thermal domain test data and do not
require data from the visible domain once deployed.

A. DATASETS
1) DEVCOM ARL POLARIMETRIC THERMAL FACE DATASET
This study uses Volumes 1 and 2 of the DEVCOM ARL
Polarimetric Thermal Face Dataset released in [10] and
extended in [11]. Subjects have been captured using thermal
and visible light cameras. The dataset includes manually
annotated landmarks (left eye center, right eye center, base
of the nose, left mouth corner, and right mouth corner) for
both domains.

Data from Volume 1 [10] contains 60 subjects captured at
2.5, 5, and 7.5 meters. The subjects were recorded displaying
a baseline neutral facial expression and then were instructed
to count out loud from one to ten in order to record a series of
non-neutral expressions. The thermal imagery was recorded
using a LWIR camera at 60 frames per second with a 640 ×
480 pixel-sized Stirling-cooled mercury cadmium telluride
focal plane array. Each subject has 96 frames of baseline
thermal images and 288 frames of expression thermal images
per range. However, each frame is highly correlated to its
temporal neighbors. The average inter-pupil distance (IPD)
of the thermal imagery at each range is 93 pixels, 48 pixels,
and 33 pixels respectively. The visible spectrum imagery was
captured by an array of four Basler Scout series cameras
(two monochrome cameras and two color cameras), with
resolutions of 640×480 and 640×492 respectively and focal
lengths ranging from 4.5mm to 50mm. At the time of pub-
lishing, annotations for one monochrome and one color/RGB
camera were available. Each subject has 4 annotated images
per visible camera per range.

Volume 2 contains 51 subjects [11] captured at 2.5 meters
using the same LWIR and color camera employed in Volume
1. The average IPD of the thermal imagery is 84 pixels. There
is 1 neutral and 30 non-neutral expression visible images per
subject. There are eight times as many thermal image frames
recorded within the same period of time (although they are
highly correlated in the same way as Volume 1), yielding
8 neutral and 240 non-neutral expression thermal images per
subject.

The dataset is divided into Protocols 1 and 2 as described
in [11]. Protocol 1 contains images from Volume 1 with
subjects evenly split into training and testing sets. Protocol
2 is a composite of Volumes 1 and 2 with 85 subjects in the
training set and 26 subjects sequestered for testing. Due to
their highly correlated nature, we select a subset of thermal
images from each subject by sampling every other frame.
All results have been averaged over five random folds of
subject-disjoint training and testing sets as per [24].

2) RWTH AACHEN UNIVERSITY THERMAL FACE DATASET
We also evaluate on the RWTH Aachen University Thermal
Face Dataset [12] containing 2,935 images from 90 subjects.

Subjects were filmed in four different sequences related to a
variety of poses and expressions. The four sequences captured
subjects performing: 1) an s-shaped head movement pattern,
2) seven fundamental facial movements, referred to as action
units (AUs) [34], 3) neutral, happy, sad, and surprised emo-
tions, 4) arbitrary head movements and expressions.

The images were recorded with an Infratec HD820 thermal
infrared camera at 30 frames per second with a 1024 × 768
pixel-sized uncooled microbolometer focal plane array and a
thermal resolution of 0.03 K at 30 ◦ C and equipped with a
30-mm f/1.0 prime lens. The subjects were seated 0.9 meters
from the camera. The resulting spatial resolution of the face
was approximately 0.5 mm per pixel. The average IPD is
147 pixels.

A subset of the frames were manually annotated with a
68-point landmark scheme Since we train and evaluate using
a 5-point landmark scheme, we calculate the eye center land-
marks as the mean of the landmarks around each eye. The
landmarks for the base of the nose and corners of the mouth
are directly taken from the 68-point set.

B. IMPLEMENTATION DETAILS
As mentioned in Section III-B, all of the transfer learning
models utilize the Siamese TLM for the fully-connected lay-
ers (e.g. the weights of the fully-connected layers are always
shared).

The models were implemented using Python 3.6 and Ten-
sorflow 1.14. Training and evaluation was done on machines
equipped with dual RTX 2080TI GPUs. The code for the
AAM was provided by the authors [12], using HoG features
and the Wiberg Inverse-Compositional optimization algo-
rithm.

The hyperparameter and training settings for the CNN
models are given in Table 3. The optimizer, learning rate,
cost coefficients, and number of training steps were experi-
mentally tuned to report the highest possible performance for
each model. For all models, the moving average momentum
of batch normalization is set to 0.8 and the dropout rate to
50%. A decay of 0.9 and momentum of 0.0 is used for the
RMSProp optimizer. For models using the Adam optimizer,
the beta1 and beta2 parameters are 0.9 and 0.999 respectively.

The two GPUs were utilized in a data-distributed fashion
such that each device received half of the batch size. We used
a batch size of 128 thermal images for the baseline model
and 128 thermal-visible image pairs for the transfer learning
models. The baseline, Siamese, LLR, and LKR models were
trained for 10,000 steps (approximately 74 epochs of Protocol
1 data and 40 epochs of Protocol 2 data). The RPT network
is trained for 25,000 steps (about 185 epochs) due to its
increased number of network parameters and lower learning
rate.

C. PREPROCESSING
The input images are face crops obtained by extending the
bounds of the ground truth face shape by 70%. Each image
is independently normalized by subtracting its mean value
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TABLE 3. Hyperparameter settings for CNN models. λt , λv , and λw are
the cost coefficients for the thermal domain NME, visible domain NME,
and L2 weight regularization respectively. α is the learning rate and Steps
refers to the number of training steps.

TABLE 4. Due to more thermal images per subject than visible in the ARL
dataset, image pairs are created by cycling through the available visible
data.

divided by the standard deviation. All images are converted
to grayscale and resized to 112×112. In every training batch,
each thermal image has a 50% chance of being horizontally
flipped. For the transfer learning models, the thermal images
in the ARL datasets are paired with the visible images of the
same subject captured at the same range. Random horizontal
flipping is coordinated such that if a thermal image is flipped,
so too is the visible image.

D. CONSTRUCTING IMAGE PAIRS
The ARL dataset contains more thermal than visible images.
For each subject, we sub-sample every other frame of thermal
data. An equal number of visible images is collected by
cycling through all of the subject’s visible data, as exempli-
fied in Table 4.
Protocol 1 data is captured at three ranges from one thermal

camera and two visible cameras. Thermal data from each
range is paired with visible data from the camera and range
that is most similar in terms of mean IPD.

E. EVALUATION METRICS
The standard face landmark detection evaluation metric [26],
[35], [36] is the mean Normalized Root Mean Square Error
(NME), defined as the Euclidean distance between the pre-
dicted landmarks ŷi and ground truth landmarks yi, normal-
ized by the inter-pupil distance (IPD) di:

NME =
1
N

N∑
i=1

1
L

∑L
j=1

∥∥ŷi,j − yi,j
∥∥
2

di
, (22)

where N is the number of images in the test set and L is
the number of landmarks. The notation NME (%) indicates
the values have been scaled by a factor of 102. We consider
any image with a NME (%) equal to or greater than 10% to
be a failed detection. As per [37], in addition to the NME

FIGURE 3. CED curve in terms of NME(%) on Protocol 1.

metric, the Standard Deviation (Std), Median, Median Abso-
lute Deviation (MAD), andMaximum Error statistics are also
reported.

We provide the Cumulative Error Distribution (CED)
curve, displaying the proportion of images with NMEs falling
below threshold values ranging from 0% to 10%, as well as
the Area Under the CED Curve (AUC10%) and the Failure
Rate at 10% (FR10%), defined as the proportion of test images
with a NME (%) greater than 10%.

F. EVALUATION ON ARL DATASET
All of the models learned using transfer learning techniques
outperform the baseline model with the exception of the
siamese network. The tabulated results are given in Tables 5
and 6. Fig. 3 displays the CED curve for Protocol 1. LKR
performs best on Protocol 1 with a NME (%) of 3.90, fol-
lowed closely by LLR at 3.91. Although, as shown in Table 9
and further discussed in Section IV-G, the best performance
on Protocol 1 is actually achieved by RPT with a NME (%)
of 3.82 due to more rigorous sub-sampling of the highly
correlated thermal data. The RPT model, with its increased
number of parameters during training, is more prone to
over-fitting but has a greater capacity to relate knowledge
between the source and target domains. This is further
demonstrated on Protocol 2, where the RPT model performs
best, able to take advantage of the increased amount of train-
ing data. We can see the siamese network is unable to beat
the baseline network, indicating the non-trivial differences
between the visible and thermal domains.

Inspection of the qualitative examples from the ARL
dataset in Fig. 4 indicates the high level of accuracy of the
neural networks. That the LLR, LKR, and RPT approaches
achieve similar error rates may be an indication that the
models are approaching a soft limit in terms of performance
on the ARL Dataset. One may also observe that the human
annotated ground-truth landmarks are not always perfect
(e.g., row 4 right eye in Fig. 4), further placing a soft cap
on performance.
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TABLE 5. Landmark detection performance statistics in terms of NME(%) on Protocol 1 of the ARL Dataset.

TABLE 6. Landmark detection performance statistics in terms of NME(%) on Protocol 2 of the ARL Dataset.

FIGURE 4. Qualitative results on ARL Dataset by landmark region. Region crops are centered around the
ground truth landmark.

Table 7 presents the average performance on each of the
five landmark locations: left eye center (LEC), right eye
center (REC), base of nose (BoN), left mouth corner (LMC),

right mouth corner (RMC). These results are obtained from
the models trained on Protocol 1 with ground truth bounding
boxes.
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TABLE 7. NME(%) per individual facial landmark.

TABLE 8. NME(%) per camera range.

Unsurprisingly, all models detected the eyes and nose more
accurately than the corners of the mouth. It is less clear
why the left mouth corner has consistently lower error rates
than the right mouth corner. Given the overall imbalance in
confidence for the different landmark locations, it may be
prudent to consider a weighted approach when calculating a
transformation to be used for image alignment.

Table 8 presents the average performance based on the
subject’s distance from the camera. The results are obtained
from Protocol 1 using ground truth bounding boxes.

Both LLR and LKR perform similarly well, with LLR
having an advantage at the 2.5m range and LKR having an
advantage at the 7.5m range.

G. SUB-SAMPLING AND THERMAL-TO-VISIBLE RATIO
There are only 4 visible images available per camera per
range per subject versus 384 thermal images per range per
subject in Protocol 1. However, the thermal data was recorded
at 60 frames per second, resulting in many images being
highly correlated. This ablation study examines the effect of
sub-sampling the thermal image frames at a variety of rates
to obtain different ratios of thermal-to-visible image pairs.

The coupled models are trained on six different ratios of
thermal-to-visible data, as shown in Table 9. In each case,
the baseline model is trained on the same set of thermal
images as the coupled models. The models are evaluated on
the same sets of test data used in Subsection D. Due to the
small training set sizes when sampling at ratios of 1:2 and
1:4, the number of training steps are reduced to 5,000 for all
models.

Interestingly, the coupled models perform better when
sampling thermal images at ratios of 8:1, 4:1, and 2:1 com-
pared to when using the default ratio of 48:1 when sampling
every other thermal frame. This may be due to an increased
likelihood at the 48:1 ratio that training batches contain more
highly correlated images, leading to overfitting. The highest
performance achieved on Protocol 1 is with RPT when using
an 8:1 thermal-to-visible ratio. With more parameters than

TABLE 9. NME(%) by ratio of unique thermal to visible training images.

the other networks, RPT is more susceptible to overfitting,
and therefore benefits from careful data sampling.

H. IMAGE PAIR ALIGNMENT
In this ablation study, we examine the importance of
well-aligned imagery in the training of the transfer learning
models. The results given in Section IV-F are obtained from
transfer learning models trained with same-subject image
pairs which were relatively well-aligned by virtue of using
the ground-truth landmarks to calculate the face crop.

Two means of inducing image misalignment are
considered: random-subject image pairing, and random
image augmentations. In random-subject image pairing,
the same-subject constraint is removed. In order to introduce
a misalignment between same-subject image pairs, we con-
sider two scenarios in which random data augmentation
is applied to the pair of images either jointly or indepen-
dently. In addition to horizontal flipping, random translations
and scaling are applied to the face bounding boxes. In the
joint augmentation case, horizontal flipping of the thermal
and visible image is synchronized and the bounding box
coordinates are randomly offset by the same values. In the
independent augmentation case, random horizontal flipping
and the random bounding box offset values are independently
determined for each image. The (1x,1y) offset values for
the top-left and bottom-right corners of the bounding box are
obtained by uniformly sampling four integers in the ranges
of [−5, 5], [−10, 10], and [−15, 15]. During evaluation,
no random augmentation was performed.

Table 10 presents the results of the ablation study on Proto-
col 1. The use of a same-subject image pairing strategy with
joint random augmentations results in better performance.
However, image misalignment induced by independent per-
turbations to the face bounding boxes do not drastically
reduce the performance of the transfer learning models, even
when the variance is increased to ±15 pixels. Compared
to transfer learning strategies such as Maximum Mean Dis-
crepancy (MMD) which apply a constraint to the outputs of
corresponding layers, LLR, LKR, RPT, and siamese networks
instead place their constraints on the network parameters
themselves. We reason that this important difference makes
parameter transfer learning methods less reliant on well-
aligned, time-synchronized paired data—a useful property as
time-synchronized datasets are limited in number and more
difficult to collect. These results, along with those from the
previous Section IV-G, indicate special attention should be
paid to how the data is sampled and paired.
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FIGURE 5. The variance of the human annotations.

FIGURE 6. Qualitative results on RWTH Aachen dataset by landmark region. Region crops are
centered around the ground truth landmark.

I. HUMAN LEVEL BENCHMARK
To establish a point of reference for performance, we asked
10 human participants each manually annotate 20 images
representing 20 different subjects across Volumes 1 and 2. All
participants received the same set of 20 images to annotate,
the same annotation software, and the same instructions,
including how to zoom in and out.

For a given model trained on a fold of the data, for each
landmark in a given image, we measure the Mahalanobis dis-
tance from a model’s prediction to the cluster of human anno-
tations. Mahalanobis distance measures the distance from a
point to a distribution by taking into account the covariance
of the distribution. For this reason, it is widely used for
outlier detection. We assume the distribution of landmark
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TABLE 10. Impact of image (mis)alignment on NME(%). Image pairs are
generated using either a Same-Subject (SS) or Random-Subject (RS)
pairing policy. Misalignment is also induced with Independent (I) and
Joint (J) augmentation strategies per range of random bounding box
offset values (e.g., [−5, 5]).

TABLE 11. Percentage of outliers by confidence level.

TABLE 12. Percentage of outliers by range on Protocol 1 (α = 0.05).

annotations follow a normal distribution and is therefore
equivalent to the chi-square distribution with 2 degrees of
freedom. Predictions are considered outliers if their Maha-
lanobis distance exceeds critical values calculated at confi-
dences of 95% and 99%. Table 11 reports the percentage of
outlying predictions for each model across the five folds of
both Protocols 1 and 2, while Table 12 accounts for the outlier
percentages by camera range. Fig. 5 depicts the variance of
the human annotations at the three different camera ranges.

The low percentage of outliers among the LLR, LKR, and
RPT models indicate they are reaching human-level perfor-
mance. This could explain why, of the three aforementioned
models, it is difficult for one to consistently outperform the
others, thus supporting the reasoning that they are achieving
results that are as good as can be expected given the imperfect
nature of the ground truths. The majority of outlying predic-
tions occur at the 5.0m range. At the 7.5m range, the models
perform nearly as well as the human annotators.

J. GENERALIZATION TO RWTH AACHEN DATASET
It is not possible to train the transfer learning networks on the
RWTH Aachen dataset because it lacks any corresponding
visible imagery. Thus, we evaluate on the entire Aachen

TABLE 13. NME(%) on RWTH Aachen university thermal face dataset.
Models were trained on Protocols 1 and 2.

TABLE 14. NME(%) for RWTH Aachen video sequences A (Off-Pose), B, C,
and D (Off-Pose). Models trained on Protocol 1.

dataset using models trained on Protocols 1 and 2 of the ARL
dataset. The results are presented in Table 13.
The LLR, LKR, and RPT outperform both the AAM and

baseline models. Of the models trained on Protocol 1, RPT
is the best performing, whereas of the models trained on
Protocol 2, LLR is the best performing. This differs from the
evaluation results on the ARLDataset, where LKR performed
best on Protocol 1 and RPT on Protocol 2.

Of the 2,935 images evaluated, 546 images are from
the s-shaped head movement video sequence (Sequence
A), 377 are from the facial action units (AUs) sequence
(Sequence B), 1,782 are from the emotions sequence
(Sequence C), and 230 are from the arbitrary head move-
ment and expression sequence (Sequence D). Table 14 shows
the results on the individual video sequences. The models
perform poorly on Sequences A and D, wherein a majority
of faces are at an off angle from the camera. This drop in
performance is expected because this type of variance is not
expressed in the training data. However, the qualitative results
for upright and frontal faces, shown in Fig. 6, demonstrate the
generalizability of the neural network models to an unseen
dataset that has similar variability in facial pose and expres-
sion to that of the ARL Dataset.

In terms of landmark detection speed, we observed an
AAM fitting time per image of 5.1s, which is similar to the
7.31s reported in [12]. For the CNN-based models, we timed
a detection speed of 0.02 seconds per image compared with
0.03 seconds in [12]. The implementation of the AAM algo-
rithm used in both this study and [12] does not take advantage
of GPU-accelerated parallel processing, resulting in expect-
edly slower speeds compared to the CNN models.

V. CONCLUSION
This work demonstrates that thermal face landmark detec-
tion can be improved via transfer learning with visible
data. Except for the siamese network, all of the parameter
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transfer learning methods yield improvement over the base-
line network. The Residual Parameter Transfer (RPT) model
achieved the best performance on Protocol 1 (when using
an 8:1 thermal-to-visible image ratio) and Protocol 2 of
the DEVCOM ARL Dataset. The Linear Layer Regulariza-
tion (LLR) model performed best on the RWTH Aachen
University Thermal Face Dataset, showcasing its ability to
generalize to an unseen dataset, while RPT performed second
best, indicating a susceptibility for overfitting. Additionally,
we demonstrate the resilience of LLR, LKR, and RPT to
image pair misalignment. As such, these methods are well
suited to multi-spectral datasets which lack precisely aligned
and time-synchronized data.

A point of future work is to extend the scope of this
study to training on paired thermal and visible datasets that
include variations in pose or occlusion. Quantitative and
qualitative results suggest we may have reached a soft cap on
the performance attainable on Volumes 1 and 2 of the ARL
Dataset, limiting efforts to study the relative capabilities of
the transfer learning approaches. The use of training data that
does not rely on same-subject image pairs is also an avenue
of exploration as it would potentially allow for a much larger
body of visible data to be leveraged for transfer learning.
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