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Abstract

In this paper, we present a simple approach to train Gen-
erative Adversarial Networks (GANs) in order to avoid a
mode collapse issue. Implicit models such as GANs tend
to generate better samples compared to explicit models that
are trained on tractable data likelihood. However, GANs
overlook the explicit data density characteristics which
leads to undesirable quantitative evaluations and mode col-
lapse. To bridge this gap, we propose a hybrid generative
adversarial network (HGAN) for which we can enforce data
density estimation via an autoregressive model and support
both adversarial and likelihood framework in a joint train-
ing manner which diversify the estimated density in order
to cover different modes. We propose to use an adversar-
ial network to transfer knowledge from an autoregressive
model (teacher) to the generator (student) of a GAN model.
A novel deep architecture within the GAN formulation is
developed to adversarially distill the autoregressive model
information in addition to simple GAN training approach.
We conduct extensive experiments on real-world datasets
(i.e., MNIST, CIFAR-10, STL-10) to demonstrate the effec-
tiveness of the proposed HGAN under qualitative and quan-
titative evaluations. The experimental results show the su-
periority and competitiveness of our method compared to
the baselines.

1. Introduction

Generative models have extensively grown in recent
years. The main goal of a generative model is to approx-
imate the true data distribution which is not known. Gen-
erative models are based on finding the model parameters
that maximize the likelihood of the training data. This is
equivalent to minimizing the Kullback-Leibler (KL) diver-
gence (Dxr,(Pdata||Pmoder)) between the data distribution
DPdata and model distribution p,,,q¢;- Although this objec-
tive spans multiple modes of the data, it leads to generat-
ing vague and undesirable samples [45]. There are other
approaches that minimize D g 1,(Pmodet||Pdata) Which are
usually referred to as the reverse KL divergence [34] and
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this is the main idea behind the generative adversarial net-
works. Although these models generate sharp images, min-
imizing the reverse KL divergence causes the model dis-
tribution to focus on a single mode of the data and ignore
the other modes. This is known as the mode collapse in
the generative adversarial models [33]. This happens be-
cause the reverse KL divergence measures the dissimilarity
between two distributions for the fake samples, and there
is no penalty on the fraction of the model distribution that
covers the data distribution [2]. To address this problem,
the authors in [1] suggested the Wassertein distance which
has the weakest convergence among existing GANs. How-
ever, they used weight clipping to approximate the Wasser-
tain distance which causes a pathological behavior [33].

In general, the choice for modeling the density function
is challenging. There are two ways to estimate the den-
sity function namely, implicit methods and explicit meth-
ods. Implicit approaches tend to calculate the model pa-
rameters without the need for the analytical form of p,,oge;-
Explicit models have the advantage of explicitly calculat-
ing the probability densities. There are two well-known
implicit approaches, namely GAN and Variational AutoEn-
coder (VAE) which try to model the data distribution im-
plicitly. The VAEs try to maximize the data likelihood lower
bound, while a GAN performs a minimax game between
two players during its optimization in which for an opti-
mal discriminator, the algorithm tries to find a generator that
minimizes the Jensen-Shannon divergence (JSD). The JSD
minimization has been proven empirically to behave more
similar to the reverse KL divergence rather than the KL di-
vergence [21, 33]. This behavior leads to the aforemen-
tioned problem of mode collapse in GAN models, which
causes the generator to create similar looking images with
poor diversity of samples.

In contrast to VAE models which implicitly compute the
likelihood of the data space, autoregressive models have the
advantage of tractable likelihood and can generate diverse
samples. The basic idea of these models is to use the au-
toregressive connections to model an image pixel by pixel.
In fact, autoregressive approaches model the joint distribu-
tion of pixels in the image as the product of conditional dis-
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Figure 1. Proposed HGAN framework with an autoregressive model, a generator, and a discriminator is trained by using two types of real

data.

tributions [35]. However, these models suffer from a slow
synthesis when compared to GANs.

The lack of explicit density function in GANS is prob-
lematic for two main reasons. Many applications in deep
generative models are based on the density estimation. For
instance, the count-based exploration methods [36] rely
on density estimation have achieved state-of-the-art perfor-
mance on reinforcement learning environments [15]. The
second reason is that the quantitative evaluation of the
generalization performance of such models is challenging.
Since GANs typically are able to generate sharp samples by
memorizing the training data, the evaluation criteria based
on ad-hoc sample quality metrics [42] does not capture the
mode collapse issue.

Recently some approaches have been trying to solve the
mode collapse issue. MGAN [20] trains many genera-
tors by using a classifier and a discriminator. Using many
generators and also a classifier in addition to the classical
GAN make this model computationally complex and prone
to over-fit the training dataset. There are some other ap-
proaches that attempt to use autoencoders as regularizers or
additional losses to penalize the missing modes [48, 49].
In [51] authors used an LSTM-based autoregressive model
in their discriminator function and considered the recon-
struction loss as the penalty for fake data. However, in their
GAN model they trained their discriminator only on the true
data as it becomes unbounded for the fake data synthesized
by the generator. SNGAN [31] utilizes spectral normaliza-
tion to stabilize the training of discriminator. It controls
the Lipschitz constant of the discriminator to mitigate the
exploding gradient problem and the mode collapse issue.
SAGAN [52] uses the self attention layer to capture the fine
details from distant part of image. The authors combined
their model with spectral normalization on both the gener-

ator and discriminator. BigGAN [4] is designed for class-
conditional image generation. The focus of the BigGAN
model is to increase the number of model parameters and
batch size, then configure the model and training process.
It utilizes the recent techniques introduced by SNGAN [31]
and SAGAN [52]. StyleGAN [22], is an approach for train-
ing generator models capable of synthesizing very large
high-quality images via the incremental expansion of both
discriminator and generator models from small to large im-
ages during the training process. In addition, it changes the
architecture of the generator significantly.

We propose a simple effective GAN architecture and a
training strategy with the goal of adversarially distilling the
explicit information of the data distribution provided by the
autoregressive model in addition to mimicking the real data
which leads to generating samples with a distribution very
close to the actual data distribution and helps to avoid pos-
sible mode collapse. To resolve the issue of sharp good-
looking samples but poor likelihood estimation in the case
of adversarial learning (and vice versa in the case of max-
imum likelihood estimation), our proposed hybrid model
bridges implicit and explicit learning models by augment-
ing the adversarial learning with an additional autoregres-
sive model. Our approach combines the implicit and ex-
plicit density function estimation into a unified objective
function. In our model, the HGAN generator is guided
by exploiting the explicit data probability density from the
knowledge provided by the autoregressive model while it is
also responsible to learn the data distribution via the adver-
sarial learning. HGAN model exploits the complementary
statistical properties of data obtained from an autoregressive
model by utilizing a GAN to effectively diversify the esti-
mated density function and capturing different modes of the
data distribution as well as avoiding possible mode collapse.



In short, our main contributions are: (i) a novel adver-
sarial model to train a generator in a GAN framework in or-
der to stabilize the training process; (ii) the proposed model
is able to estimate the data density by mimicking an au-
toregressive model and simultaneously combining it with
the adversarial learning process; (iii) a comprehensive per-
formance evaluation of our proposed method on real-world
large-scale datasets of diverse natural scenes as well as mit-
igating adversarial examples in a defense scenario.

2. Background
2.1. Generative Adversarial Nets:

GAN is a min-max game between a generator G and
a discriminator D, both parameterized via neural net-
works [13]. Training a GAN can be formulated as the fol-
lowing objective function:

mci;n mSXE-TNPdam(w) [lOgD(I)]+ (1
E. ~ P.log(1 - D(G(2)))],

where x is from a real data distribution Py, and z is a sam-
ple from a prior distribution P,. The generator is a mapping
function from z which approximates P,,,4.;. GAN alterna-
tively optimizes D and G in a minimax game using stochas-
tic gradient-based algorithm. Generator is prone to map ev-
ery z to a single x that is most probable to be recognized
as a true data, and this leads to a mode collapse. Another
issue with GAN is that at optimal point of D, minimizing
the generator is equal to minimizing the JSD between the
true data distribution and model distribution which is em-
pirically shown to cause the mode collapse by generating
few modes and ignoring other modes [21].

2.2. Autoregressive Models:

Autoregressive models can be designed by using recur-
rent networks (PixeIRNNs) or a CNN (PixelCNNs) [47].
These models learn the join distribution of pixels of
an image x as a product of conditional distributions
p(x;|x1, ..., x;—1), where x; is a single pixel:

p(z) = Hp(l“i\xl, e i) 2
i=1

The ordering of pixel dependencies is row by row and in
each row, pixel by pixel. Therefore, every pixel (z;) de-
pends on all the pixels above and left of it (x1,...,x;—1).

2.3. Knowledge distillation:

Knowledge distillation is mostly used in image classi-
fication problem where the output of neural network is a
probability distribution over categories. The probability is

calculated by applying a softmax function over logits which
are the output of the last fully connected layer. Hinton
et al. [19] used logits to transfer the embedded informa-
tion in a teacher network to student network. In order to
train a student network F' to generate student logits F'(z;),
a parameter called temperature 7" is introduced. After-
wards, the generalized softmax layer converts logits vector

ti = (tf, ) tfj) to a probability distribution g;,
j 6xp(tj/T)
MT(tL) = (qi, w}le'f‘@ qg = 71. (3)
> exp(ty/T)

where higher temperature 7' produces softer probability
over categories.

Hinton et al. [19] proposed to minimize the KL diver-
gence between teacher and student output as follows:

N
Lin(FT) = 5 Y KL(Mr(6)|[Mr(F@). @)
i=1

In [50] instead of forcing the student to exactly mimic
the teacher by minimizing KL-divergence in Equation (4),
the knowledge is transferred from teacher to student via dis-
criminator in a GAN-based approach.

3. Proposed Hybrid GAN:

We now present our novel hybrid approach to tackle the
problem of mode collapse in GANs. In general, GANs can
generate good-looking samples but have intractable like-
lihoods. On the other hand, autoregressive models are
likelihood-based generative models which can return ex-
plicit probability densities. The idea is to utilize a mixture
of these two models rather than a single model as in a typi-
cal GAN.

In our proposed hybrid model, the generator’s first task is
to learn the data distribution without any explicit model just
like a regular GAN such that G(z) ~ & ~ Pja1,. On the
other hand, its second task is to perform sampling where
it samples a random vector z ~ P, and maps it to an au-
toregressive model P: such that G(z) ~ z¢ ~ Pe. This
forces our hybrid model to learn the probability density
of the autoregressive model using the adversarial training
method. These two tasks together provide a hybrid model
which gives more attention to the likelihood of the data for
estimating P,,,q4¢; in the data space.

A natural question to ask is why one should use ad-
versarial learning when autoregressive model can return a
tractable likelihood. The reason is that the synthesis from
these autoregressive models are difficult to parallelize and
usually inefficient on parallel hardware [24]. Moreover, it
is not practical to perform accurate data manipulation since
the hidden layers of autoregressive models have unknown
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Figure 2. Samples generated by the proposed HGAN compared with the samples generated from DCGAN and AutoGAN on CIFAR-10.

Algorithm 1: HGAN Training procedure using
stochastic gradient descent

Input : minibatch images x, number of training batch steps S
1 0¢,0G, ¢p + initialize network parameters

2 forn =1t S do

x¢ < pe(x) {Forward through auto model }

z ~ N (0, 1)Z {Draw sample of random noise }

% < G(z) {Forward through the generator }

sry < D(x¢) {Auto model output}

sp < D(2) {G(z) output}

& < G(z) {Forward through the generator }

Sry < D(x¢) {Real data}

10 sf, < D(x¢, &) {G(2) output}

1 Lp + log(sr,)+log(sr,)+log(l—sys ) +log(l—sy,)

e ® N A n R W

12 ¢p < ép — % {Update discriminator }
13 Lag < log(sf1) +log(ssa)
14 Og < 0g — % {Update generator}
15 Epi — |:L'2 7p5(93i)|
OLp,
16 Og + 0 — U {Update auto model}
17 end

marginal distributions [15]. However, GAN models are fast
in synthesizing and also can have useful latent space for
downstream tasks especially in ones which have an encoder
such as AGE or ALI[10, 46]. Fig. 1 illustrates the architec-
ture of our proposed Hybrid GAN (HGAN) model.

In naive GAN, the odds that the two distributions p, and
Pdata Share support in high-dimensional space, especially
early in training, are very small. If p, and pgq¢. have non-
overlapping support the Jensen-Shannon divergence is satu-
rated as is locally constant in 6. Also, there might be a large
set of near-optimal discriminators whose logistic regression
loss is very close to optimum, but each of these possibly
provides very different gradients to the generator. There-
fore, training the discriminator might find a different near-
optimal solution each time depending on initialization, even
for a fixed gy and pg.tqo- We instead employ autoregressive
model to augment the gradient information obtained by or-
dinary back-propagation. In fact, we are interested in ma-
nipulating the feature space of a discriminator, using the
autoregressive model as a tool to tell us *how* to perform
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Figure 3. Training G(z) to mimic the autoregressive model’s out-
put with an adversarial learning process. In this network which
we denote as AutoGAN, the real data is obtained from the autore-
gressive model’s output and fake data is the generated output from
G(z).

that manipulation.

In our Hybrid GAN, the discriminator observes two
types of real inputs: the real data x and the output of the
autoregressive model x¢. The fake input, G(z), is mim-
icking the output of the autoregressive model x¢ ~ Pe in
addition to the real data x ~ Pj,;,. We consider two terms
for the discriminator D, namely D; and D,. D; is the first
discriminator which is related to the first task, where G(2)
is fake and x¢ is real. D, is related to the second task, where
G(z) is fake and z is real. However, all the parameters are
shared between discriminators 1D and D, and in fact there
is only one discriminator D.

Algorithm 1 summarizes the training procedure. After
getting the input image, output of the autoregressive model,
and noise, the proposed model generates a fake image (line
5). sy, and s;, indicate the scores for the first (x¢) and
second real inputs (z). sy, and sy, measures the score of
fake inputs containing the generator’s output (G(z)) trying
to mimic the first and second real input, respectively. Note
that we use % to indicate the gradient of D’s objective
function with respect to its parameters, and likewise for G
and p¢.

In the first fake input of discriminator, the generator at-
tempts to generate data that is as close as possible to the



Table 1. Experiment on MNIST dataset containing 10 different
modes.

GAN Variants | Chi-square (x10°) | KL Div
WGAN 1.32 0.614
MIX+WGAN 1.25 0.567
DFM 1.46 0.623
Improved-GAN 1.13 0.436
ALI 2.34 0.875
BEGAN 1.06 0.944
MAD-GAN 0.24 0.145
GMAN 1.86 1.345
DCGAN 0.90 0.322
MGAN 0.32 0.211
SAGAN 0.29 0.148
SNGAN 0.25 0.146
HGAN 0.23 0.141

autoregressive model’s output. Therefore, the generator’s
task is to make G(z) ~ x¢ ~ P;. However, for the sec-
ond round of fake input, the generator tries to fool the dis-
criminator in a way that its generated data is as close as
possible to the real data. Thus, it is responsible to make
G(z) ~ © ~ Pyatq. While G acts similar to a typical gener-
ator in a regular GAN, our hybrid method tries to maximize
the likelihood of a mixture model by adversarially distilling
the properties of autoregressive model.

4. Experiments

We show the effectiveness of our proposed approach in
different experiments with real-world datasets. For the fair
evaluation, we use the same experimental settings that are
identical to prior works [33, 12, 20]. Therefore, we use the
results from the latest state-of-the-art GAN-based models to
compare with ours.

We used Pytorch [38] to implement our framework. The
generator and discriminator architecture is adopted from
DCGAN [39]. In addition, pixelCNN++ [43] architec-
ture is chosen for the autoregressive model. For training
we used Adam optimizer [23] with the first-order momen-
tum of 0.5, the learning rate of 0.0002, and batch size
of 64. For the generator the ReLLU activation [32], and
for the discriminator the Leaky ReLU activation with the
slope of 0.2 is considered. Weights are initialized from
an isotropic Gaussian: A(0, 0.01) and zero biases. To
show the effectiveness of the proposed framework, we per-
form two types of experiments on MNIST dataset and com-
pare our methods to the other well-know GANSs, namely
WGAN [1], MIX+WGAN [42], DFM [49], Improved-
GAN [42], ALI [10], BEGAN [3], MAD-GAN [12],
GMAN [11], DCGAN [39], MGAN [20], SNGAN [31],
and SAGAN [52]. It should be noted that our method cannot
be compared directly with BigGAN [4] and StyleGAN [22]
since the mentioned models are based on larger models and
different settings (i.e., BigGAN is using class conditional
setting or StyleGAN purpose is for having more control

Table 2. Results for the Inception scores on CIFAR-10 dataset.

Objective | Inception Score
DCGAN 6.40
AutoGAN 6.17
HGAN 7.46

Table 3. Results for the test MODE scores on the MNIST dataset.

Objective | MODE Score
DCGAN 9.28
AutoGAN 9.32
HGAN 9.51

over the latent space for high resolution image generation).
Following [12], we reuse the KL-divergence [27] and the
number of captured modes [6] as the criteria for the com-
parison to illustrate the superiority of our method compared
to others. Moreover, we perform the quantitative experi-
ments on more complicated real-world datasets namely the
CIFAR-10 [25] and STL-10 [8] datasets.

4.1. MNIST

The data distribution of the MNIST dataset can be ap-
proximated with ten dominant modes. Here, following [6]
we define the term ‘mode’ as a connected component in the
data manifold.

For the sake of evaluation, we train a four-layer CNN
classifier on the MNIST digits and then apply it to com-
pute the mode scores in the generated samples from the
proposed method. We repeat the procedure and apply the
trained classifier to discover the mode scores on different
baseline GAN methods. We also have the ground truth by
measuring the performance of classifier on the MNIST test
set. The number of generated samples from each method is
equal to the number of test set which is 10,000. Afterwards,
we use Chi-square distance and the KL-divergence to com-
pute distance between the two histograms (ground truth vs.
each GAN model). Table 1 shows the performance of our
proposed HGAN compared to the other methods. From Ta-
ble 1, it is evident that our proposed method could outper-
form the other methods in capturing all the modes in the
MNIST dataset.

4.2. Stacked and Compositional MNIST

In this experiment, the goal is to explore the performance
of our proposed HGAN in a more challenging scenario. In
order to illustrate and compare HGAN with other baselines,
we utilized similar setup as in [12]. Authors in [30] cre-
ated a Stacked MNIST with 25,600 samples where each
sample has three channels stacked together with a random
digit from MNIST in each of them. Therefore, the Stacked
MNIST contains 1,000 distinct modes in the data distribu-
tion. In [7], a similar process is applied to MNIST dataset.
They created the Compositional MNIST whereby they took
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Figure 4. Images generated by our proposed HGAN trained on natural image datasets.

Table 4. Stacked-MNIST experiment. There are 1,000 modes in
the dataset.

GAN Variants | KL Div | # Mode Covered
WGAN 1.02 868
MIX+WGAN 0.98 874
DFM 1.13 843
Improved-GAN 1.45 847
ALI 2.03 802
BEGAN 1.89 819
MAD-GAN 091 890
GMAN 2.17 756
DCGAN 2.15 712
MGAN 0.94 896
SAGAN 0.97 886
SNGAN 0.91 889
HGAN 0.88 891

three random MNIST digits and placed them at three quad-
rants of a 64 x 64 dimensional image. This also resulted
in a data distribution with 1,000 modes. Distribution of the
generated samples was estimated with a pre-trained MNIST
classifier which classifies the digits in each channel or quad-
rants, and consequently decides which of the 1,000 modes
is generated by the particular GAN method’s generator.
Table 4 and 5 show the performance of the proposed
method as well as other GAN methods in terms of the
KL divergence and the number of modes recovered for the
Stacked and Compositional MNIST datasets. As shown in
Table 4, our method outperformed all the other GAN meth-
ods in terms of the KL divergence and the number of cap-
tured modes. MGAN surpasses ours in only the number
of captured modes. It is evident from Table 5 that our pro-
posed HGAN outperforms all the other baselines in terms of
the KL divergence and it is the closest to the true data distri-
bution. Also, in terms of the number of captured modes, our
method as well as MGAN, MAD-GAN, WGAN, SNGAN
and MIX+WGAN capture all the 1,000 modes in the Com-

Table 5. Compositional-MNIST experiment. There are 1,000
modes in the dataset.

GAN Variants | KL Div | # Mode Covered
WGAN 0.25 1000
MIX+WGAN 0.21 1000
DFM 0.23 965
Improved-GAN 0.67 934
ALI 1.23 967
BEGAN 0.19 999
MAD-GAN 0.074 1000
GMAN 0.57 929
DCGAN 0.18 980
MGAN 0.12 1000
SAGAN 0.095 1000
SNGAN 0.083 1000
HGAN 0.078 1000

Table 6. Inception scores on the CIFAR-10 and STL-10 datasets.

Model CIFAR-10 STL-10
Real data 11.24 +0.16 | 26.08 & 0.26
WGAN 3.82 4+ 0.06 —
MIX+WGAN | 4.04 +0.07 —
DFM 772 +0.13 | 851+0.13
Improved-GAN | 4.36 + 0.04 -
ALL 5.34 4+ 0.05 —
BEGAN 5.62 —
MAD-GAN 7.34 —
GMAN 6.00 £+ 0.19 —
DCGAN 6.40 £+ 0.05 7.54
MGAN 833 £0.10 | 9.22 £0.11
SAGAN 7.51+0.15 | 8.61 £0.11
SNGAN 758 +£0.12 | 8.79+0.14
HGAN 7.46 +£0.11 | 8.94+0.13

positional MNIST experiment.

4.3. Real-world Datasets

In this section, the proposed HGAN framework is ap-
plied on more complicated real-world datasets to evalu-
ate its effectiveness on more challenging large-scale image



Table 7. FIDs on CIFAR-10 and STL-10 (lower is better).

Model DCGAN | DCGAN+TTUR [18] | WGAN-GP [16] | GAN-GP | MGAN | SAGAN | SNGAN | HGAN
CIFAR-10 37.7 36.9 40.2 37.7 26.7 26.3 25.5 26.1
STL-10 - - 55.1 - - 43.6 432 42.1

Table 8. Classification accuracies of using Defense-GAN and Defense-HGAN strategies on the MNIST dataset with L =200 and R = 10.

Attack No Attack (Defense-GAN) | Defense-GAN | No Attack (Defense-HGAN) | Defense-HGAN
FGSM (e = 0.3) 0.989 0.961 0.991 0.974
PGD 0.989 0.956 0.991 0.969
CW (I3 norm) 0.989 0.945 0.991 0.965

data.

4.3.1 Datasets.

We use two widely-adopted datasets, namely CIFAR-
10 [25] and STL-10 [9]. CIFAR-10 dataset contains 50,000
training images with the resolution of 32 x 32 for 10 differ-
ent classes: airplane, automobile, bird, cat, deer, dog, frog,
horse, ship, and truck. STL-10 dataset subsampled from the
ImageNet [41] and is more diverse database compared to
CIFAR-10. This dataset composed of 100,000 images with
the resolution of 96 x 96. For the sake of fair comparison
with the baselines in [49], we follow the same procedure as
in [26] to resize the STL-10 down to 48 x 48.

4.3.2 Evaluation Protocols.

For quantitative evaluation, we consider the Inception score
which was introduced in [42]. This metric computes
exp(Eq[Dkr(p(yl2)|[p(y))]). where p(y|z) is the condi-
tional label distribution for image x estimated by the refer-
ence Inception model. The metric rewards good and varied
samples and is found to be well-correlated to human judg-
ment. The code provided in [42], is used to compute the In-
ception score for 10 partitions of 50,000 generated samples.
For qualitative evaluation of the quality of images generated
by our proposed HGAN framework, we show the samples
generated by HGAN which are drawn randomly rather than
cherry-picked.

4.3.3 Inception Results.

Table 6 shows the Inception scores obtained by our pro-
posed HGAN method as well as the baselines. For the fair
comparison, only models which are trained completely in
an unsupervised manner without the label information are
included in Table 6. Also, the reported results on STL-10
for DCGAN and D2GAN are based on the models trained
on 32 x 32 resolution. Table 6 shows the superiority of our
proposed HGAN compared to the other methods in the lit-
erature for both the STL-10 and CIFAR-10 datasets.

4.3.4 Image Generation.

For the qualitative assessment, we present samples which
are randomly selected from the images generated by the
proposed HGAN. It can be seen from Fig. 4 that the im-
ages generated by HGAN are visually recognizable images
of cars, ships, trucks, birds, airplanes, dogs, and horses in
the CIFAR-10 database. Moreover, in the case of the STL-
10 dataset, HGAN is able to produce images including car,
trucks, ships, airplanes, and different kinds of animals in-
cluding horses, cats, monkeys, deers, and dogs with wider
range of background such as sky, cloudy sky, sea, and for-
est. These visually appealing images confirms the diversity
of the generated samples by HGAN.

4.4. Frechet Inception Distance results.

The main disadvantage of the inception score is that it
does not compare the statistics of the synthetic samples and
the real world ones. Therefore, we evaluate HGAN using
the Frechet Inception Distance (FID) proposed in [18]. Ta-
ble 7 compares the FIDs obtained by HGAN with baselines
collected in [20, 31]. It should be noted that some methods
in the literature use the Resnet [17] architecture. Here, for
the fair comparison we show the results of different meth-
ods when using DCGAN architecture.

4.5. Ablation Study

In the previous sections, we examined the mode cover-
age of the proposed framework compared to the other base-
lines in three separate experiments. In order to show the ef-
fectiveness of our HGAN framework, we perform another
experiment with two different datasets, namely the MNIST
and CIFAR-10 datasets. In this setup, we consider G(z)
within two complete separate training approaches. In the
first approach, G(z) is trained as a regular GAN such as
a DCGAN, and in the second approach G(z) is trained to
mimic the autoregressive model’s output with an adversar-
ial training. We denote the first approach as DCGAN and
the second approach as AutoGAN. Fig. 3 depicts the frame-
work of AutoGAN. We compare the performance of these
two networks with the proposed HGAN in terms of sample
quality.

Table 3 and 2 show the highest Inception/MODE
scores [42] of DCGAN, AutoGAN, and HGAN monitored
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Figure 5. Classification accuracy of Defense-GAN and Defense-HGAN on the MNIST and CIFAR-10 datasets in the case of no attack and
also under FGSM white-box attack with ¢ = 0.3. (a) MNIST classification accuracy varying L (with R = 10). (b) CIFAR-10 classification
accuracy varying L (with R = 10). (c) MNIST classification accuracy varying R (with L = 100). (d) CIFAR-10 classification accuracy

varying R (with L = 100).

Table 9. Classification accuracies of using Defense-GAN and Defense-HGAN strategies on the CIFAR-10 dataset with L =200 and R =

10.

Attack No Attack (Defense-GAN) | Defense-GAN | No Attack (Defense-HGAN) | Defense-HGAN
FGSM (e = 0.3) 0.763 0.684 0.794 0.741
PGD 0.763 0.671 0.794 0.738
CW (Il norm) 0.763 0.646 0.794 0.731

during the training phase. The samples generated by each
of the mentioned methods on the CIFAR-10 dataset is also
shown in Fig. 2.

As it is illustrated in Table 3 and 2, HGAN outperforms
both DCGAN and AutoGAN in terms of sample quality.
One possible reason behind this is in HGAN, the addition
of adversarially distillation of the data information from
the autoregressive model (pixelCNN++) in the G(z) ob-
jective function can stabilize its optimization, thus avoid-
ing the mode collapse issue. Finally, the hybrid nature of
the proposed method leads to a better performance for both
datasets.

4.6. Comparison with WGAN in Defense Frame-
work

Despite a very rich research work leading to very in-
teresting GAN algorithms, it is still challenging to assess
which algorithm performs better compared to others. In this
experiment we evaluate the effectiveness of HGAN com-
pared to WGAN in a defense scenario. We believe this
could be another way of assessment for GAN frameworks.

Adversarial examples [40] are neural network inputs
which are designed to force misclassification. These in-
puts often appear normal to humans while cause the neu-
ral network to make inaccurate predictions. Various de-
fenses have been proposed to mitigate the effect of ad-
versarial attacks [44, 37, 29]. In this experiment we
use our proposed HGAN as a defense mechanism against
three different white-box attacks: Fast Gradient-Sign
Method (FGSM) [14], Carlini-Wagner (CW) attack (with 5
norm) [5], and Projected Gradient Descent (PGD) [28]. For

the fair comparison, we adopt the same set of experiment
as Defense-GAN [44]. Instead of using WGAN, we use
our proposed HGAN in Defense-GAN framework which
we denote as Defense-HGAN. We also compare Defense-
HGAN with Defense-GAN in the case of no attack. Table 8
and 9 show the classification performance of our method
compared to Defense-GAN on the MNIST and CIFAR-10
datasets, respectively. It should be noted that the classifica-
tion accuracy results on the MNIST and CIFAR-10 is 0.994
and 0.886, respectively. We note that Defense-HGAN out-
performs Defense-GAN which shows the superiority of our
HGAN comparing to WGAN in Defense-GAN framework.

We also compared the effect of different numbers of it-
erations L and random restarts R for Defense-GAN and
Defense-HGAN on the MNIST and CIFAR-10 datasets.
Both methods need to look for an appropriate datapoint in
the latent space which leads to generating an image closer
to the input image. As it is shown in Fig. 5 classification
performance of HGAN is better than Defense-GAN which
means that HGAN could do a better job in capturing the
data distribution compared to WGAN on the MNIST and
CIFAR-10 datasets.

5. Conclusion

We have proposed a novel approach to address the mode
collapse issue in GANs. Our idea is to design a hybrid
model which tries to learn the distribution of data via a mix-
ture of density estimating models utilizing an autoregressive
model and an adversarial learning. For this purpose, we in-
troduce a minimax game between a generator, an autore-



gressive model, and a discriminator to optimize the prob-
lem of minimizing the JSD between Pj,t, and Pyo4e;. In
our proposed HGAN, the generator is responsible to learn
the autoregressive model output in addition to modeling the
real data just like a regular GAN. Distillation of autoregres-
sive model is beneficial for the HGAN since it also models
the distribution of the same data but in an explicit way. It
makes the generator to give more attention to the likelihood
of the data and stabilize its optimization. This helps the
proposed model to capture more data modes which leads to
generating a more diversified set of images. Comprehen-
sive study on MNIST and also more challenging real-world
datasets show the effectiveness of our HGAN in covering
data modes and avoiding mode collapse as well as generat-
ing diverse and visually appealing images.
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