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Abstract
In few-shot classification, the primary goal is to learn

representations from a few samples that generalize well for
novel classes. In this paper, we propose an efficient low
displacement rank (LDR) regularization strategy termed
Ortho-Shot; a technique that imposes orthogonal regular-
ization on the convolutional layers of a few-shot classi-
fier, which is based on the doubly-block toeplitz (DBT)
matrix structure. The regularized convolutional layers of
the few-shot classifier enhances model generalization and
intra-class feature embeddings that are crucial for few-shot
learning. Overfitting is a typical issue for few-shot mod-
els, the lack of data diversity inhibits proper model infer-
ence which weakens the classification accuracy of few-shot
learners to novel classes. In this regard, we broke down
the pipeline of the few-shot classifier and established that
the support, query and task data augmentation collectively
alleviates overfitting in networks. With compelling results,
we demonstrated that combining a DBT-based low-rank or-
thogonal regularizer with data augmentation strategies, sig-
nificantly boosts the performance of a few-shot classifier.
We perform our experiments on the miniImagenet, CIFAR-
FS and Stanford datasets with performance values of about
5% when compared to state-of-the-art.

1. Introduction
The performance of convolutional neural network

(CNN) models largely depend on training a network with
a lot of labelled instances and a spectrum of visual vari-
ations which are mostly in thousands per class [29]. The
cost of labelling these data manually by human annotation
as well as the scarcity of data that captures the complete
diversity in a specific class significantly limits the poten-
tial of current vision models. However, the human visual
system (HVS) can identify new classes with fewer labelled
examples [27, 40], this unique trait of the HVS reveals the
need to dive into new paradigms that would learn to gen-
eralize new classes with a limited amount of labelled data
for each novel class. Recently, significant progress has
been made towards better solutions using ideas of meta-

Figure 1: The convolution expression; Conv(K, X) is con-
verted into a faster DBT vector representation; y = Mx.

learning [42, 48, 69, 32, 33, 38]. Empirically, it has been
observed that the convolutional filters learned in deeper lay-
ers are highly correlated and redundant [64], thereby result-
ing in unstable training performance and vanishing gradi-
ents. These shortcomings of convolutional neural networks
are also more damaging in few-shot classification due to the
small data size. The potential pitfalls of such convolutional
layers could result in under-utilization of model capac-
ity, overfitting, vanishing and exploding gradients [16, 7],
growth in saddle points [13] and shifts in feature statistics
[24], which collectively affect model generalization.

The doubly block-toeplitz (DBT) matrix [18] is part of a
class of low displacement rank (LDR) matrix constructions
[72] that guarantee model reduction and computational
complexity reduction in neural networks which is achieved
by regularizing the weight matrices of network layers. The
storage requirement of such a DBT-regularized network is
reduced from O(n2) to O(n) and the computational com-
plexity can be reduced from O(n2) to O(nrlogn), due to
the fast matrix-vector multiplication property of LDR struc-
tured matrices as shown in Figure 2. It is also well estab-
lished [34, 58] that when filters are learned to be as orthog-
onal as possible, model capacity is better utilized which in-
turn improves feature expressiveness and intra-class feature
representation [1, 62, 59, ?].
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Figure 2: Toeplitz covariance matrices from features sam-
ples. This requires learning O(n) parameters, in contrast to
O(n)2 for generic covariance matrices.

Our goal is to present an effective baseline model that
harnesses good learned representations for few-shot classi-
fication kinds of tasks which perform better or at par with
current few-shot algorithms [66, 63, 61, 53, 55, 42, 48, 38].
In a nutshell, we tackled the few-shot learning limitations
by imposing orthogonal regularization on the model base-
line which is a simpler yet effective approach compared to
techniques used previously in [65, 15, 44]. We also incor-
porated data augmentation strategies that significantly im-
proved data diversity and overall model performance.

1.1. Contributions:
• We adopted an efficient orthogonal regularization tech-

nique on convolutional layers of the few-shot classifier
that enhances model generalization and intra-class fea-
ture embedding, using the doubly block toeplitz (DBT)
matrix structure.

• We broke down the pipeline of a few-shot learner, and
based on our findings, we established three augmenta-
tions strategies namely: support augmentation, query
augmentation and task augmentation that aid in mini-
mizing overfitting.

• We show with compelling results that combining a
DBT-based regularizer with a robust augmentation
strategy improves few-shot learning performance at an
average of 5%.

2. Related works
Orthogonal regularization. In convolutional networks,

orthogonal weights have being used to stabilize layer-wise
distributions and to make optimization as efficient as pos-
sible. In [4, 37] the authors introduced orthogonal weight
initialization driven by the norm preserving property of an
orthogonal matrix. However, it was shown that the orthog-
onality and isometry property does not necessarily sustain
throughout training [4] if the convolutional layers are not
properly regularized. In other works, [25, 43, 23] con-
sidered Stiefel manifold-based hard constraints of weights
[?], but their performance reported on VGG networks [52]
were not as promising. These aforementioned methods

[25, 43, 23] are associated with hard orthogonality con-
straints and in most cases, they have to repeat singular value
decomposition (SVD) during training which is computa-
tionally expensive on the GPUs. A recent work adopted soft
orthogonality [2, 3, 4, 67], where the Gram matrix of the
weight matrix K is required to be close to identity, given as
λ
∥∥KTK − I

∥∥2
F

, where λ is the Frobenius norm-based reg-
ularization coefficient. It’s a more efficient approach than
the hard orthogonality assumption [25, 43, 23, 20, 68] and
can be viewed as a different weight decay term limiting the
set of parameters close to a Stiefel manifold [?]. Their ap-
proach constrained orthogonality among filters in one layer,
leading to smaller correlations among learned features and
implicitly reducing the filter redundancy. However, there
are special cases where the Gram matrix cannot be close to
identity which implies that matrix K is overcomplete [58].
Similarly, other works explored orthogonal weight initial-
ization [55], mutual coherence with the isometry property
[4], penalizing off-diagonal elements [9] towards improv-
ing kernel orthogonality.

In general, the orthogonality of K alone is not sufficient
to make the linear convolutional layer orthogonal among
its filters. Due to these shortcomings, we apply the im-
proved regularization technique used in [64, 31]. We adopt
the DBT matrix denoted as M with a filter K, while we
keep the reshaped input x and output y intact. The matrix
multiplication; y = Mx enforces the orthogonality ofM as
shown in Figure 1 and Figure 3.

Augmentation. Data augmentation has become a well
established technique for most image classifiers and deep
networks, as it provides an efficient strategy that signifi-
cantly mitigates the models’ vulnerability to overfitting. In
contrast, data augmentation still has room for expansion and
adaptation in few-shot classification or other derivatives of
meta-learning in general. Existing works [57, 26, 56], apply
basic data augmentation strategies like random crops, hor-
izontal flips and color jitter as the staple method for most
meta-learning applications. However, these aforementioned
techniques have plateaued in performance with little room
for significant improvement [47, 41]. Other works have
added random noise to labels to alleviate overfitting [46],
some techniques rotate all the images in a class and con-
sider the newly rotated class as distinct from its parent class.
Recent works [12, 51, 41, 15, 45] are recording better per-
formance values when augmentation strategies are injected
within the meta-learning pipeline.

In our work, we explored the benefits of including aug-
mentation strategies along the pipeline of a DBT regularized
few-shot classifier. We identified how different augmen-
tation approaches could affect a few-shot classifier when
placed strategically along the classifier pipeline. At the core
of our findings, we observed that the classifier is more sen-
sitive to query data than support data.
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Figure 3: A doubly block-Toeplitz (DBT) matrix M ∈
R(NH′W ′)×(CHW ) derived from the kernel tensor K ∈
RN×C×k×k.

Toeplitz matrix applications. Kimitei et al. [28] used
toeplitz matrices with Tikhonov regularization [39] as a
mathematical approach to restoring blurred images. They
explored their techniques on image restoration, enhance-
ment, compression and recognition. In [19], the authors
presented modern computational methods for treating lin-
ear deconvolution problems, they showed how to exploit the
toeplitz structure to derive efficient numerical deconvolu-
tion algorithms. In compressive sensing applications [54],
toeplitz-like matrices allow the entire signal to be efficiently
acquired and reconstructed from relatively few measure-
ments, compared to previous compressive sensing frame-
works where a random measurement matrix is employed.

3. Background
We consider a meta learning scenario for an N-

shot, K-way classification problem where the training
and testing task datasets can be represented as T =
{Dtraini ,Dtesti }Ii=1. Such a meta-training task is divided
into Dtraini = {(xt, yt)}Tt=1 and Dtesti = {(xq, yq)}Qq=1,
called a meta-training set [42, 48, 69, 32, 33, 38]. The set
of Dtrain and Dtest represent a small number of samples
from the same distribution. We implement a DBT-based
learner Bdbt(·) to train the model for a given input feature
denoted as y = fθ(x∗), where (*) denotes implementations
for train and test sets. We then map train and test examples
into a DBT structured embedding space Ψ∗ = fθ(x∗).

The objective of our model becomes:

θ = Bdbt(Dtraini ;φ)

= arg min
θ
Lbase(Dtraini ; θ, φ) +R(θ),

(1)

where φ represents the parameters of the embedding model,
Lbase is the loss function and R is the regularization as
described in Section 4.2. At the end of meta-training, the
performance of the model is evaluated on a set of tasks
S = {(Dtrain

i , Dtest)}Ii=1 called the meta-testing set. The
final evaluation representation over the test set is:

ES [Lmeta(Dtest; θ, φ)]. (2)

The goal of meta learning is to learn a transferable effi-
cient embedding model fθ that generalizes to new tasks.
As described in section 4, we deviated from popular tech-
niques [63, 53, 55, 14] that train classifiers with convolu-
tional blocks with some form of hard orthogonality con-
straint [41]. Our strategy, imposes a better low displace-
ment rank DBT-based soft orthogonality constraint on the
classifier network to produce more efficient embeddings for
the base learner. The final embedding model is given as:

φ = arg min
φ
Lce(Dnew;φ), (3)

where Dnewi is the task from T and Lce denotes the cross-
entropy loss between predictions and ground truth labels.

3.1. Doubly-block toeplitz (DBT) regularization

The feature interaction between two weights vectors v
and w, within the layers of a few-shot classifier involves a
convolution operation which can simply be represented as
v ∗w =

∑k
i=0 v(i)w(k− i), such that if v has length m and

w has length n then v ∗ w has length m + (n − 1). Un-
fortunately, this computation involves O(nm) operations
which is not suitable for fast linear algebraic computations
and intra-class parameter sharing which is critical for few
shot learning. For such computations, if we consider a sin-
gle convolution layer with input tensor X ∈ RC×H×W and
kernel K ∈ RN×C×k×k, the convolution’s output tensor is
expressed as Y = Conv(K,X), where Y ∈ RN×H′×W ′

,
we replaced the convolution operator (∗) with Conv(.) for
simplicity. N , H , W and C are the number of kernels,
height, width and channel of the input tensor, respectively.
While k represents the kernel size andH ′,W ′ are the height
and width for the output tensor, respectively.

Inline with our goal to improve the computational
complexity and enhance better feature representation, we
adapted a DBT matrix construction by utilizing the linear
property of the convolution operation. The convolution ex-
pression; Conv(K, X) is converted into a faster DBT matrix-
vector representation given as:

Y = Conv(K,X)⇔ y = Mx. (4)

This simple rearrangement establishes the foundation for
adapting the DBT regularizer in our few-shot classifier net-
work. Where M is the DBT matrix, x and y represent flat-
tened input and output tensors, respectively. M is structured
and is of rank r << min(m,n) [58], this representation
minimizes the storage requirements to (mr + nr) param-
eters and accelerates the matrix-vector multiplication time
to O(mr + nr). Section 1: Figure 1 in the supplementary
material shows the hierarchy for storage cost and operation
count for matrix-vector multiplications. This DBT formula-
tion stabilizes the spectrum of the newly derived DBT-based
matrix M . In section 1.1 and 1.4 of the supplementary ma-
terial, we reflect the overall benefit of the DBT model.
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Figure 4: The network depicts a DBT-regularized few shot learner. The network embeddings Bdbt(·) are regularized based
on the DBT structured matrix. The dotted box of the CNN block illustrates the inner translation between convolution layer
embeddings f(·) and the more efficient DBT-based embeddings denoted as f ′(·), see above. The Algorithm 1 gives a logical
representation of the training process.

Algorithm 1 Ortho-shot algorithm

Require: D ← {X ,Y}Ni=1

1: procedure ORTHOGONAL-REGULARIZER

2: Iro ← t(I) . toeplitz matrix
3: M ← Conv(K,K)
4: y ← λ(‖M − Iro‖)
5: ψ(·)←Mx . DBT based output

Require: Dtrain,Dtest ← {X t,Yt ; X q,Yq}Ki=1

6: procedure FEW SHOT LEARNING

7: if Train then
8: for i = 1 do, T
9: Bdbt ← Sψ . DBT model

10: Ldce + Lorth ← loss(Bdbt(X t),Yt)
11: Ltotaldbt ← Ldce + λLorth
12: . (orthogonal regularization)
13: if Test then
14: for i = 1 do, Q
15: Ltest ← loss(Bdbt(X q), Y q)

4. The proposed method

We present an efficient low displacement rank (LDR)
regularization strategy termed Ortho-Shot that imposes or-
thogonal regularization on the convolutional layers of a few-
shot classifier which is based on the doubly-block toeplitz
(DBT) matrix structure [64, 23]. Our technique, as reflected
in section 4.1 deviates from popular methods that train clas-
sifiers with convolutional blocks with some form of hard or-
thogonality constraint. We also adapted a set of augmenta-
tion strategies based on the support, query and task datasets
to boost overall model performance. In general, our ap-
proach enhances model generalization, intra-class feature
embeddings and also minimizes overfitting for a few-shot
classifier. To further describe our approach, we consider
a single convolutional layer case. We extract feature em-
beddings X ∈ RC×H×W from the intermediate convolu-

tional layers of the few-shot classifier and then flatten it to
a vector x ∈ R1×(H×W ). The weight tensor; K of our
model is also converted to a doubly block-Toeplitz (DBT)
matrix M ∈ R(NH′W ′)×(CHW ) derived from kernel tensor
K ∈ RN×C×k×k as shown in Figure 3. With the afore-
mentioned matrix structure, we are able to apply a better
orthogonality constraint as described by the Lemma in 4.2.
In Figure 4, we show a fully regularized setup for a sin-
gle CNN block. The network embeddings Bdbt(·) are reg-
ularized based on the DBT structure and the entire losses
from each respective layer is summed up to Lorth. We
show promising results for our technique as described by
the CAM plots in Figure 5.

4.1. Convolutional orthogonality

A DBT kernel matrixM can be applied on both a rectan-
gular or square case, where kernelM ∈ R(NH′W ′)×(CHW )

dimensions can be rectangular (NH ′W ′) ≤ (CHW ) or
square, (NH ′W ′) > (CHW ). In the rectangular case, the
uniform spectrum applies row orthogonal convolution while
the square case requires column orthogonal convolution. In
theory, the DBT kernel M is highly structured and sparse
[31] as a result, an equivalent representation is required to
regularize the spectrum of M to be uniform [64, 23]. We
give the cases for both row and column orthogonality and
we also propose an equivalent representation in this section.

Row orthogonality case. The row of matrix M corre-
sponds to a filter at a particular spatial location flattened to
a vector, denoted as Mi,h′w′ ∈ RCHW . The row orthogo-
nality condition is given as:

〈Mi,h′
1,w

′
1
·Mjh′

2,w
′
2
〉 =

{
1, ih′

1,w
′
1

= jh′
2,w

′
2

0, otherwise.
(5)

This results to an equivalent of Equation 4 as the following
self-convolution:

Y = Conv(K,K, padding = P, stride = S) = Ir0, (6)
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where Ir0 ∈ RN×N×(2P/S+1)×(2P/S+1) is a tensor with an
identity matrix at the centre and zeros entries elsewhere.

Column orthogonality case. If Xi,hw ∈ RC×H×W de-
notes an input tensor, which has all zero except an entry at
the ith input channel at spatial location (h,w). Then we can
denote the flattened vector as xihw ∈ RC×H×W derived
from Xi,hw. A column vector Mi,hw of M is obtained by
multiplying M and column vector xi,hw. Similar to the row
orthogonality,

Y = Conv(KT ,KT , padding = k − 1, stride = 1) = Ic0,
(7)

where KT is the input-output transposed K, i.e., KT ∈
RC×N×k×k, Ic0 ∈ RC×C×(2k−1)×(2k−1) has all zeros ex-
cept for the center C ×C entries as an identity matrix. Fig-
ure 2 illustrates the DBT matrix M structure of our model.

4.2. Row-column orthogonality equivalence

To develop an equivalent representation for row and
column orthogonality, we build on the equation described
by lemma 1, which states that the minimizing of the
column orthogonality and row orthogonality costs are
equivalent [31] due to the property of the Frobenius norm.

Lemma 1: The row orthogonality cost λ
∥∥KKT − Ir0

∥∥2
F

is equivalent to the column orthogonality cost
λ
∥∥KTK − Ic0

∥∥2
F

+ U where U is a constant. This
implies that convolution orthogonality independent of the
shape of M (square or rectangular) can be regularized,
given as:

Lorth = λ
∥∥KTK − Ir0

∥∥2
F
, (8)

where Lorth is the DBT-based orthogonal regularization
term that depends only on Equation 6 and replaces theR(·)
term in Equation 1.

5. Experimental setup and analysis
Our experiments were conducted on the miniImagNet,

CIFAR-FS, Stanford Dogs and Stanford Cars datasets, re-
spectively. We used the R2-D2 base leaner [8], the ”ResNet-
12” and ”64-64-64-64” backbone for different few-shot
learning modes used in our work. Data augmentation strate-
gies were also analysed to determine the best combination
for a DBT-regularized model. The complete details for of
the entire setup is expressed in section 1.2 of the supple-
mentary material.

5.1. Data augmentation strategy

Motivated by the impact of applying a diverse augmenta-
tion strategy on meta-learners, we established three unique
augmentation approaches; support, query and task augmen-
tation that contribute to the overall classifier performance,
aimed at minimising overfitting. Our empirical analysis
confirm that support augmentation increases the number

of fine tuning data while the query data improves evalu-
ation performance while training the classifier. Similarly,
task augmentation is used to increase the number of classes
per task while training. We adapted a couple of augmenta-
tion techniques such as CutMix [70], where image patches
are cut and pasted among training images and the ground
truth labels are also mixed proportionally within the area of
the patches. Mixup [50], a technique that generates con-
vex combinations of pairs of examples and their labels,
which proved to be effective for support and query aug-
mentation strategies. As well as Self-Mix [71] in which
an image is substituted into other regions in the same im-
age. This dropout effect improves few-shot learning gen-
eralization overall. In addition, we implemented standard
data augmentation techniques by randomly erasing patches
from the images (Random Erase), horizontally flipping the
images (Horizontal Flip), rotating the images at different
specified angles (Rotation) and Color Jitter, where we ran-
domly change the brightness, contrast and saturation of the
images. To boost the performance of our augmentation
strategy, we combine different augmentation techniques us-
ing the MaxUp augmentation approach proposed in [17].
The rationale behind MaxUp augmentation is to minimize
training loss by performing parameter updates on the task
that maximizes loss in a min-max optimization manner, the
MaxUp expression is given as:

min
θ
ET [max

M∈S
L(Bθ′ ,M(T q))], (9)

where θ′ represents the model parameters, B is the base
model, L is the loss function and T is a task for both support
and query data; T s and T q , respectively.

5.2. Augmentation performance

In this section, we investigate the performance of a few-
shot classifier for different augmentation strategies. We in-
vestigated three test cases that check the training perfor-
mance when data is sampled from the support, query and
task data, respectively. Our approach is similar to tech-
niques adapted by [41, 30, 50] that examine the impact of
augmentation on a diverse set of data combinations.

Case 1: We trained the model at an equal number of sup-
port and query data as indicated in Table 1, so as to establish
a baseline performance of the model. We use this strategy
to compare the impact of any of the data pools (support or
query) when any of the augmented pairs is reduced.

Case 2: We initiated training of the classifier by ran-
domly sampling from 5 and 10 unique samples per class of
the support data while using the entire query data pool. Us-
ing this approach, we reduced the influence of support data
in order to examine the impact of the diverse pool of query
data on the classifier. Our findings reflected in Table 1 show
accuracy values at ± 2%. This is a clear indication that
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Figure 5: Illustration of CAM plots. (a) The second row represents CAM plots for single classes. The red squares highlight
regions of interest clearly highlighted by the model.(b) Shows more complex scenarios where multi classes are involved.
Classes are clearly separated from non-classes of interest. In (c), all the objects separated by bounding boxes are clearly
localised as indicated by the CAM plot.

Table 1: Few-shot classification accuracy (%) using R2-
D2 base leaner with a ResNet-12 backbone on CIFAR-FS
dataset. Support, Query and Task columns represent the
number of samples per class for support, query data and the
total number of tasks available.

Support Query Task 1-shot 5-shot
500 500 full 71.41± 0.21 86.01± 0.08
100 500 full 70.11± 0.01 83.00± 0.03
10 500 full 70.72± 0.01 81.41± 0.32
500 300 full 69.41± 0.11 72.41± 0.08
500 100 full 59.00± 0.21 70.41± 0.08
5 (random) 500 full 61.01± 0.11 80.41± 0.08
10 (random) 500 full 63.01± 0.30 81.24± 0.02

augmentation of query data plays a more significant role in
the overall model performance. In contrast, we reduced the
number of query data while maintaining the initially set cap
for support data and recorded a decline in accuracy.

Case 3: To evaluate the impact of task augmentation,
we used the CIFAR-FS data to initially allocate 10 distinct
5-way classification tasks (252 combinations) before train-
ing, while the support and query datasets are maintained
equally at 500, respectively. We observed a decline in per-
formance. However, as we increased the amount of task
data, significant improvement is recorded, which confirms
that task augmentation is crucial in few-shot learning.

In summary, we broke down the few-shot learning pro-
cess to determine the influence of support, query and task
augmentation, respectively. Our findings confirm that our
baseline learner is most sensitive to query data [41]. In ad-
dition, task augmentation provided significant value (about
2%) that cannot be overlooked by the classifier.

5.3. Augmentation modes
This section builds on the findings of section 5.1, where

we established three core data augmentation cases; support,
query and task data augmentation. Similar to [41, 17, 12],

Figure 6: Accuracy results for training and validation on
R2-D2 base-learner [8] with a DBT-regularized ResNet-12
backbone on the CIFAR-FS dataset. (Top Left) Baseline
model and (Top right) Augmentation ”Aug” and MaxUp.
The MaxUp augmentation strategy narrows down the gen-
eralization gap and reduces overfitting. (Bottom left) 1-shot
classification and (Bottom Right) 5-shot classification for
Query data augmentation.

we used the CutMix, SelfMix, MixUp, Random Crop
and Horizontal Flip augmentation methods on the support,
query and task datasets, respectively. We identified the best
augmentation combinations that suit a few-shot learner and
with our findings, we picked the best strategy to determine
which mode of augmentation suits a DBT-regularized few-
shot learner. To start with, we used the R2-D2 base learner
[8] and the CIFAR-FS database to evaluate the augmenta-
tion performance on support, query and task augmentations
as shown in Table 1. Our findings show that the pair of
CutMix and SelfMix augmentation produces the best re-
sults with over 2.5% in accuracy improvement [41]. Other
approaches lag behind in performance at about ± 3% for

6



Figure 7: Accuracy plots for different datasets compared
to the baseline model. Augmentations techniques were ap-
plied on Task ”T” and Support ”S” datasets. Overall, accu-
racy for 5-shot is maintained at 85-88% while for 1-shot, a
range of 65-68% is recorded.

Table 2: Few-shot classification accuracy (%) using R2-D2
base leaner with a ResNet-12 backbone on the CIFAR-FS
dataset. Support(S), Query(Q) and Task(T) data are used on
different augmentation strategies.

Augmentation 1-shot 5-shot
CutMix(Q) 76.01± 0.21 87.14± 0.08
+ CutMix(S) 75.11± 0.31 85.30± 0.14
+ Horizontal Flip(S) 76.32± 0.11 87.01± 0.23
+ Rotation(T) 75.33± 0.25 87.68± 0.03
SelfMix(Q) 76.04± 0.21 86.81± 0.08
+ CutMix(S) 76.19± 0.29 86.35± 0.16
+ Horizontal Flip(S) 75.27± 0.32 86.88± 0.03
+ Rotation(T) 75.61± 0.22 87.40± 0.18
MixUp(Q) 72.14± 0.01 82.81± 0.08
+ CutMix(S) 71.03± 0.29 85.15± 0.11
+ Horizontal Flip(S) 72.27± 0.10 83.08± 0.01
+ Rotation(T) 74.10± 0.11 85.10± 0.22

both 1-shot and 5-shot cases. Secondly, since the CutMix
and SelfMix methods stand out as the best augmentation
approach for our setup, we used them as bases to combine
augmentations on the three data cases; support, query and
task, respectively as shown in Table 2. Model performance
significantly improved with the best case occurring when
CutMix (query) is combined with SelfMix (support).

5.4. DBT-regularization with data augmentation

As discussed in section 1, DBT-based regularization im-
proves model generalization and intra-class feature expres-
siveness. Data augmentation on the other hand creates suf-
ficient data diversity which helps to mitigate overfitting. In
this section, we highlight the collective benefits of combing
a DBT-based regularizer with augmentation strategies for
few-shot learning, using different datasets.
Accuracy results with different datasets: In this section,
we setup a testing scheme where we evaluate our method

Figure 8: Model accuracy plots for CIFAR-FS and mini-
ImageNet datasets on CNN and DBT model baselines with
augmentation ”Aug” and without Augmentation for 5-shot
and 1-shot cases.

over four runs which is quite similar to techniques applied
in [60]. We computed the mean accuracy as the accu-
racy for every run, the experiments are conducted on the
Stanford Dogs, Stanford Cars, miniImageNet and CIFAR-
FS datasets, respectively as shown in Table 4 and Table
3. Our accuracy results for 5-shot were maintained at 80-
88% while for 1-shot at a range of 65-68% as shown in
Figure 7 and Figure 8. Our baseline integrated with the
DBT-based regularizer ”DBT-baseline” model performs at
about 2% better than state-of-the art without data augmen-
tation. Applying the CutMix and SelfMix augmentation on
the query ”Q” and support ”S” datasets, show significant
improvement. Rotation ”R” and Horizontal Flip ”HF” are
integrated into the CutMix and SelfMix data augmentation
modes, respectively as indicated in Table 3.
Improvement with MaxUp augmentation: In this sec-
tion, we evaluate the performance of our model with the
Max-Up approach for both 1-shot and 5-shot classification.
We use a similar experimentation setting described in [41]
at different augmentation pool sizes. Figure 6 and Table 4
depict the impact of Max-Up with the augmentation strate-
gies; denote generally as ”Aug” for both train and valida-
tion data. We also show results for the baseline model with-
out augmentation (DBT-baseline), with CutMix and MaxUp
augmentation for different Query data schemes. We observe
from Figure 6 (Top right) that the generalization gap shrinks
considerably and by implication, overfitting is minimized
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Table 3: Comparison to prior work on miniImageNet and CIFAR-FS. Few-shot classification accuracy (%) using R2-D2
base leaner a ”ResNet-12” and ”64-64-64-64” backbone on CIFAR-FS and miniImageNet datasets, respectively. We applied
Rotation (R) to the CutMix and Horizontal Flip (HF) to the SelfMix augmentation modes. ”Q” denotes query data, ”S”
represents support data and ”M” dentotes MaxUp.

CIFAR-FS 5-way miniImageNet 5-way
DBT-model Backbone 1-shot 5-shot 1-shot 5-shot
Basline(No Aug) ResNet-12 70.26 ± 0.61 83.12 ± 0.53 55.03 ± 0.40 74.06 ± 0.24
CutMix(Q) ResNet-12 71.46 ± 0.24 84.32 ± 0.73 57.36 ± 0.24 74.46 ± 0.11
CutMix(Q) + M ResNet-12 72.00 ± 0.01 86.20 ± 0.61 58.13 ± 0.25 75.69 ± 0.74
SelfMix(S) + R ResNet-12 62.56 ± 0.54 79.82 ± 0.33 50.38 ± 0.63 71.44 ± 0.08
SelfMix(S) + M ResNet-12 63.51 ± 0.78 80.20 ± 0.66 57.31 ± 0.89 72.69 ± 0.70
CutMix(S) + HF 64-64-64-64 60.56 ± 0.29 85.32 ± 0.73 62.26 ± 0.63 79.28 ± 0.63
CutMix(S) + M 64-64-64-64 63.42 ± 0.17 86.33 ± 0.66 63.31 ± 0.89 80.69 ± 0.54
SelfMix(Q) + HF 64-64-64-64 75.56 ± 0.84 84.32 ± 0.73 66.31 ± 0.89 82.69 ± 0.74
SelfMix(Q) + M 64-64-64-64 76.42 ± 0.38 86.10 ± 0.36 67.39 ± 0.34 83.44 ± 0.24

Table 4: Experimental results that compare prior work on the Stanford Dogs, Stanford Cars and CIFAR-FS dataset. Average
few-shot classification accuracy with 95 % confidence intervals. The second column shows which kind of embedding is
employed, we used a 4-layer convolutional network with their respective filters in each layer.

Stanford Dogs 5-way Stanford Cars 5-way CIFAR-FS 5-way
Model 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Matching Networks [63] 35.80 ± 0.99 47.50 ± 1.03 34.80 ± 0.98 44.70 ± 1.03 61.16 ± 0.89 72.86 ± 0.70
MAML [14] 44.81 ± 0.34 58.68 ± 0.31 47.22 ± 0.39 61.21 ± 0.28 55.92 ± 0.95 72.09 ± 0.76
Relation Nets [55] 43.33 ± 0.42 55.23 ± 0.41 47.67 ± 0.47 60.59 ± 0.40 62.45 ± 0.98 76.11 ± 0.69
Prototypical Networks [53] 37.59 ± 1.00 48.19 ± 1.03 40.90 ± 1.01 52.93 ± 1.03 51.31 ± 0.91 70.77 ± 0.69
DN4 [35] 45.41 ± 0.76 63.51 ± 0.62 59.84 ± 0.80 88.65 ± 0.44 52.79 ± 0.86 81.45 ± 0.70
PABN [22] 45.65 ± 0.71 61.24 ± 0.62 54.44 ± 0.71 67.36 ± 0.61 63.56 ± 0.79 75.35 ± 0.58
MATANet [10] 55.63 ± 0.88 70.29 ± 0.62 73.15 ± 0.88 91.89 ± 0.45 67.33 ± 0.84 83.92 ± 0.63
GNN [49] 46.38 ± 0.78 62.27 ± 0.95 55.85 ± 0.97 71.25 ± 0.89 51.83 ± 0.48 63.69 ± 0.94
Rfs [60] 55.64 ± 0.28 62.02 ± 0.63 79.64 ± 0.44 69.74 ± 0.72 83.41 ± 0.55 83.50 ± 0.11
Rfs-distill [60] 56.01 ± 0.48 64.82 ± 0.60 82.14 ± 0.43 71.52 ± 0.69 86.03 ± 0.49 84.10 ± 0.28
DBT-baseline 56.06 ± 0.03 71.00 ± 0.25 73.49 ± 0.01 92.02 ± 0.33 74.41 ± 0.50 84.21 ± 0.65
+ CutMix(Q) + R 56.36 ± 0.64 71.39 ± 0.04 73.69 ± 0.51 93.00 ± 0.15 74.81 ± 0.37 86.01 ± 0.67
+ SelfMix(Q) + HF 56.86 ± 0.64 72.19 ± 0.78 74.21 ± 0.01 93.30 ± 0.35 75.01 ± 0.15 87.01 ± 0.74
+ MaxUp 57.06 ± 0.63 73.15 ± 0.22 75.34 ± 0.41 94.38 ± 0.25 76.41 ± 0.25 87.68 ± 0.24

when the MaxUp strategy is adapted. MaxUp also adds the
extra boost with an average of about 2.3% in performance.
Comparison with different methods: We compared our
results against different methods [49, 10, 22, 35] as shown
in Table 4. We observed that [60] is closest to ours but we
outperform their approach significantly for the 5-shot cases
by over 6% on the average. We recorded a better perfor-
mance than GNN [49] and MATANet [11] using both the
5-way 1-shot and 5-way 5-shot few-shot learning settings,
we saw an improvement of about 3.3% 4.2% and 3.16%
on Stanford Dogs, Stan-ford Cars, and CIFAR-FS, respec-
tively for 5-way 1-shot task while for the 5-way5-shot task,
our method achieved about 4.7%, 2.1%, and 4.9% overall.
Clearly, the MaxUp boost is significant in almost all cases.

6. Conclusion
We proposed a structured doubly block-toeplitz (DBT)

matrix based model that imposes orthogonal regularization

on the filters of the convolutional layers termed Ortho-Shot.
Our approach was aimed at maintaining the stability of ac-
tivations, preserving gradient norms, and enhancing feature
transferability of deep networks. We also broke down the
pipeline of a few-shot learner and based on our findings,
we established three augmentations strategies that aid in
minimizing overfitting and increasing data diversity. Our
findings and empirical results confirm that a DBT regular-
ized model is beneficial to few-shot classification and meta-
learning in general.
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Supplementary Materials
7. VC dimension and sample complexity

The Vapnik–Chervonenkis (VC) dimension is a measure
of the capacity (complexity, expressive power, richness, or
flexibility) of a set of functions. In our setting we focus on
neural networks where all the weights are of low discrim-
inant rank (LDR) such as the Toeplitz-like, Hankel-like,
Vandermonde-like, and Cauchy-like matrices.

7.1. Bounding VC dimension

Theorem 1 For input x ∈ X and parameter θ ∈ RW ,
let f(x, θ) denote the output of the network. let F be the
class of functions {x −→ f(x, θ) : θ ∈ RW }. Let Wl be the
number of parameters up to layer l i.e the total number of
parameters in layer (1,2,...,l). we define the depth effective
path as:

L̄ :=
1

W

L∑
l=1

Wl, (10)

Then the total number of computations units is given as :

U :=

L∑
l=0

nl (11)

Inline with works of [6, 21, ?, ?].If k=1, corresponding
to piece-wise linear networks, it can be shown that:

VCdim(sign F) = O(L̄Wlog(pU)) = O(LWlogW ).
(12)

Lemma 1. Let pq, ..., pm be polynomials of degree at
most d in n ≤ m variables, then we define:

K := |{(sign(p1(x)), ..., (sign(pm(x))) : x ∈ Rn}|,
(13)

i.e., if K is the number of possible sign vectors given by
the polynomials, then K ≤ 2(2emd/n)n. To partition the
parameter space RW for a fixed input xj , the output f(x, θ)
on each region in the partition implies S = P1, ..., PN of
the parameter RW.

Hence, we have:

K ≤
N∑
j=1

|{(signf(x1, θ)), ..., signf(xm, θ)) : θ ∈ Pj}|,

(14)
Hence from Lemma 1, we can show that by recursive

construction, SL−1 is a partition of RW such that for S ∈
SL−1 [59]. The network output for input xj is a fixed poly-
nomial of θ ∈ S which collectively gives:

K ≤
N∑
j=1

|{(signf(x1, θ)), ..., signf(xm, θ)) : θ ∈ Pj}|

≤ 2(
2emkdL
WL

)WL ,

(15)

with the size of SL−1 and equation (6) we get:

K ≤
L∏
l=1

2(
2emkdL
WL

)WL (16)

We can take logarithm and apply Jensen’s inequality, with
W̄ :=

∑L
l=1Wl :

K ≤
L∏
l=1

2(
2emnlpdl
WL

)WL

log2K ≤ L+
L∑
l=1

Wllog22(
2emnlpdl
WL

)

= L+ W̄
L∑
l=1

Wl

W̄
log22(

2emnlpdl
WL

)

≤ L+ W̄ log2

( L∑
l=1

Wl

W̄

2emnlpdl
WL

)

= L+ W̄ log2
2emnp

∑L
l=1 nldl

W̄

(17)

We bound
∑L
l=1 nldl using the bound on dl; since the de-

gree of an LDR matrix dl is at most:

l−1∑
j=0

nldl ≤ c1kl−1
l−1∑
j=0

nc2j

≤ LUc1kL−1U c2 ≤ U c2+2Lk

(18)

where c is a constant L ≤ U thus

log2K ≤ L+ W̄ log2

(
2c1empU

2+c2k
L

W̄

)
(19)

To bound the VC-dimension, if VCdim(signF ) = m there
exists m data points x1, ..., xm such that the output of the
model can have 2n sign patterns[62]. The bound on log2K
then implies:

V Cdim(signF) ≤ L

+ W̄ log2

(
2c1epU

2+c2k
L

V Cdim(signF
W̄

)
= O(L̄Wlog(pU) + L̄LWlogk)

(20)

Hence completing the proof. Since the number of parame-
ters W is around the square root of the number of parame-
ters of a network (e.g doubly block toeplitz based network)
with unstructured layers, the sample complexity of an LDR
network is much smaller than that of unstructured networks
(e.g CNN) which is beneficial for deep networks.
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Figure 9: Captions for each class shows the storage cost
and operation count for matrix-vector multiplication. Our
proposed Toeplitz-like is of lowest rank. compared to cir-
culant, standard convolutional filters, and orthogonal poly-
nomial transforms.

7.2. Space and time complexity.

The proposed DBT-model has a time complexity of
O(nrlogn) and the small number of parameters also makes
the network perform better with limited amount of training
data which is crucial for few-shot learning [34]. We also
ran tests on the model backbone with two NVIDIA GeForce
GTX 1080 Ti GPU and a batch size of 64. Table 1 reflects
the accuracy performance and we see an overall model per-
formance of about 4%. Similar to [?], the network used in
our test consists of 4 convolutional layers, 1 fully-connected
layer and one softmax layer. Rectified linear units (ReLU)
are used as the activation units. Images were cropped to
24x24 and augmented with horizontal flips, rotation, and
scaling trans-formations. We use an initial learning rate
of 0.0001 and train for 800-400-100 epochs with their re-
spective default weight decay. Our efficient DBT-based ap-
proach obtains a test error of 6.61%, compared to 5.26%
obtained by the conventional CNN model. At the same
time, the DBT-based network is 4x more space efficient and
1.2x more time efficient than the conventional CNN-based
model.

7.3. Optimization setup.

An SGD optimizer with a momentum of 0.9 and a weight
decay of 2ε−5 was used for our setup. We used a learning
rate initialized at 0.0001 with a decay factor of 0.1 applied
for all datasets. We trained over 100 epochs for miniIma-
geNet and 200 epochs for both CIFAR-FS and 150 epochs
for Stanford Dogs and Stanford Cats, respectively.

7.4. Architecture

The works of [42, 32, 60] used a ResNet12 as backbone
for their model, we used a similar structure but replace the
convolutional layer with a doubly-block toeplitz matrix the
network consists of 4 residual blocks and 3 x 3 kernels.

A 2x2 max-pooling layer is applied after each of the first
3 blocks; and a global average-pooling layer is on top of
the fourth block to generate feature embeddings. Similar to
[58], we used spectral regularization and changed the num-
ber of filters from (64, 128, 256, 512) to (64, 160, 320, 640).

Usefulness of DBT regularization The DBT matrix
represents a class of structured matrices whose layers in-
teract multiplicatively (Ai, Bi) at O(nrlogn) time as com-
pared to convolutional layers that are linear and unstruc-
tured and are implemented in about O(n2) time [34]. The
generic term structured matrix refers to an nxm matrix that
can be described in fewer than nm parameters and is capa-
ble of fast operation with at most double the displacement
rank, which is far simpler for computations [34]. Hence,
if F denotes a class of neural networks comprising of L
DBT layers, W total parameters and piece-wise linear acti-
vations, we can measure the complexity, expressive power,
richness, or flexibility of F via a measure referred to as the
Vapnik–Chervonenkis (VC) dimension [62, 5].

For a simple classification problem of the form: {x →
sign f(x) : f ∈ F}, the VC dimension (V Cdim) of the
class is expressed as:

V Cdim(sign F) = O(LWlogW ). (21)

VCdim(·) matches the standard bound for unconstrained
weight matrices [6, 21, 59].
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