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Abstract—The study of signatures of aging in terms of ge-
nomic biomarkers can be uniquely helpful in understanding the
mechanisms of aging and developing models to accurately predict
the age. Prior studies have employed gene expression and DNA
methylation data aiming at accurate prediction of age. In this line,
we propose a new framework for human age estimation using
information from human dermal fibroblast gene expression data.
First, we propose a new spatial representation as well as a data
augmentation approach for gene expression data. Next in order to
predict the age, we design an architecture of neural network and
apply it to this new representation of the original and augmented
data, as an ensemble classification approach. Our experimental
results suggest the superiority of the proposed framework over
state-of-the-art age estimation methods using DNA methylation
and gene expression data.

I. INTRODUCTION

Healthy aging requires accurate assessment and modifica-
tion of healthcare strategies and culture. However, this could
not be done without understanding the aging process in terms
of transcriptional changes in cellular scale. In fact, even though
transcriptional changes of age-related genes differ among dif-
ferent tissue types [1], modeling these changes of expression
level across the human lifespan, would extend the general
understanding of aging and heterogeneity in senescence of
individuals with the same age. Along with this, prior studies
suggest that age prediction using trasncriptional changes such
as gene expression level will be feasible almost accurately
and could be very helpful in disease prevention and anti-aging
therapeutics.

With an emphasis on the mentioned suggestion, this work
relates to the general problem of estimating human age from
genomic data, a known genotype to phenotype problem [2],
[3]. The human genome has close to 30,000 genes. Each
gene responds to biological stress or defined experimental
conditions, and this response is captured by its level of
expression under such condition. The gene expression data
records information about the observed levels of expression for

given set of genes in the genome, under specified experimental
conditions. Thus, our challenge is, given a data set of gene
expression values under specified experimental condition(s),
in particular, gene expression data from human dermal fibrob-
lasts, the main cell type available in skin connective tissue
[4], from several individuals, how can we recover the age for
a given individual in the set? Addressing this question will
have significant implications in various fields, from health
and precision medicine (chronological age and biological
age) to improved understanding of experimental transcriptomic
datasets. On one hand, this problem is made very challenging
because of the very limited data sets currently available. On the
other hand, the decreasing cost of data acquisition (and hence
increasing data availability) imply that this type of problem
will become a dominant feature in the health and in particular,
personalized medicine of the future. This work is also expected
to have tremendous impact on forensic investigations involving
genomic data evidence, including human trafficking and child
exploitation.

Here, first we review the prior similar approaches to
human age estimation, including those that use information
about gene expression, or other types genomic data, and
then we propose our framework based on a new approach to
gene expression data representation and inference. Our main
contributions include:

• A new framework for age estimation using a dataset of
gene expression data of human dermal fibroblasts, which
outperforms the state-of-the-art method on this dataset
and dataset of methylation data.

• A novel data representation as well as data augmentation
methods for gene expression data, which allow us to
apply well-known deep learning tools such as artificial
neural networks (ANNs).

The paper is organized as follows. The next section re-
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views related work. Section 3 presents our proposed data
representation scheme and data augmentation method for gene
expression data. Section 4 presents our neural network-based
framework for age prediction using gene expression data.
Section 5 presents the experiments and the results. Section
6 concludes the paper.

II. BACKGROUND AND RELATED WORK

With increasing availability of different types of genomic
data, accurate age estimation has emerged as an important
problem domain in different applications. The connection
between human age and genomic data has been the focus
of various studies, and has thus been investigated from many
angles and perspectives. Tsuji et al [5] found some association
between age and chromosome telomere lengths and used it
for human age estimation. Richter et al [6], tried to find a
connection between age and mitochondria DNA while working
on probable cause of high mutation rate of mtDNA. Authors
of reference [7] extended the work on single tissue type to
multi-tissue, hoping to represent a better age prediction model
for so many tissue types. Similarly, a modeling on age based
on epigenetic data is presented in [8]. With an emphasis on
general pattern analysis, Peters et al [9] characterized the age
by modeling variations within gene expression data inherently
linked to the aging. Authors of reference [10] modified their
previous model on discriminating relevant gene expression
patterns related to young people and old people. Moreover, a
study on whole genome methylation data by reference [11]
strongly suggested general patterns of signature of aging.
Xu et al [12] proposed a method based on support vector
regression to estimate the age from DNA methylation data
which achieved an average accuracy of 4.7 years. However,
there are only a handful of studies that try to connect human
gene expression data with age. Clearly, such a connection
could have significant implications for health and disease
studies, for instance, in the area of human biological age
estimation [13], [14], or in personalized medicine. In other
words, the problem of age estimation can be studied using the
increasingly available gene expression data, with a potential
for significantly improved accuracy at low cost.

Holly et al [10] provided a statistical model based on gene
expression data for age-group classification which helped pave
the way for this avenue of research. Fleischer et al [15] de-
veloped a computational method to predict age based on gene
expression data from skin fibroblast cells using an ensemble
of machine learning classifiers. They generated an extensive
RNA-seq dataset of fibroblast cell lines derived from a total of
143 individuals whose ages range from 1 to 94 years. Using
this dataset, their method predicted chronological age with a
median error of 4 years, outperforming algorithms proposed by
prior studies that predicted age from DNA methylation [10],
[12], [17], and from gene expression data for fibroblasts [10].

This work is along this same line of estimating age for
individuals using information from their gene expression data.
Our work is different in terms of the new data representation
scheme we introduce, and the proposed new data augmentation

Fig. 1. Spacial data representation for three individuals; left to right: 1 year
old, 30 years old and 61 years old.

Fig. 2. Data Augmentation Scheme.

method for this type of data. With these two innovations,
it becomes possible to build a parallel framework that can
exploit the power of deep learning techniques, such as artificial
neural networks. While there are also machine learning and
deep learning tools for 1-D data representation that could
be used for these types of data, our 2-D data representation
achieves the highest accuracy compared to previous work.
More importantly, one of the key advantages of the spatial (2-
D) representation is that, due to the fixed spatial location of
expression value associated with each gene, there is more flex-
ibility in exploiting potential long-range associations between
genes [18]–[20], beyond just adjacent or co-located genes.

III. DATA REPRESENTATION AND AUGMENTATION

In this section we describe our novel data representation
scheme and data augmentation approach for gene expression
data which enable us to use artificial neural networks.

A. Dataset and Normalization

Our database which is from [15], consists of a matrix
of expression values from 27,142 genes for a total of 143
individuals represented in two groups (133+10). Age ranged
from 1 year to 94 years. In fact, the dataset provides us with
expression value of each and every gene for all individuals.
Certainly, with only 143 samples, there is need for more
data in order to train our neural network. Thus, we need to
perform data augmentation to generate synthetic datasets. Each
row contains the expression values from certain genes across
143 individuals. Each column is the expression values of the
27,142 different genes for a given subject. Considering the
rows, it seems that despite the values in a column, values in a
row are in a smaller range, i.e., expression values for a certain



gene across all individuals are in a relatively small dynamic
range, but different genes expression values for a certain
individuals vary significantly. This has also been observed in
other general genomic datasets. [21]–[23].

Data normalization in known to accelerate the learning
process of the network. Thus, before doing any further steps
such as data augmentation, we normalize each row (specific
gene) of the database individually, as a pre-processing step.
After applying standard normalization to each row, as shown
below, corresponding data samples of each row are centered
at zero with unit variance: z = (x−µ)

σ , where µ and σ are
respectively, the mean and standard deviation of the original
data samples x, and z is the normalized data.

B. Spatial Representation

Here, we propose a new data representation for the gene
expression data from an individual, and a methodology for data
augmentation. In fact,data representation and in general data
visualization is very helpful in better extracting the necessary
information or modeling the data [33], [38]. To analyse the
data, we need to extract the columns of the data matrix, which
captures the expression values across all genes (27,142 genes),
for each individual. As we will explain in the next section, we
design a deep neural network classifier in order to perform the
classification w.r.t the age for the subjects. We extract each
column and reshape it to a square two-dimensional matrix,
where each element of this matrix represents the expression
values for a specific gene. We reshape the vector by moving the
elements in the vector to a the matrix, filling from top left to
the down right of the matrix (165x165=27,225) which the last
83 elements of the matrix (27,225-27,142=83) are padded with
zeros. Therefore, we will have 143 squared matrices for the
143 subjects. Then we transform each matrix to a square image
data, where each pixel location of every image represents the
gene expression value of a specific gene. By so doing, we
provide a spacial (2-D) representation for expression values of
all genes for each individual. Fig. 1 shows some examples for
three individuals in different age groups. More importantly,
the figure also shows the nature of the 2D representation
for the gene expression data, and the difficulty of analyzing
such representations. It is noteworthy to mention that while
one could say that representing 1-D data in the form of 2-D
data may seem ad hoc (leading to possibly irrelevant spatial
relationships), this type of representation makes it simpler to
explore and possibly exploit potential long-range relationships
between genes, for instance, using simple 2D convolution
kernels. This may not be as simple, or as computationally
efficient, using 1-D representations. Further, since each pixel
location in this type of 2-D data (image) is associated with
a unique gene, this could be even helpful at the analysis
stage (for instance, using artificial neural networks) in terms
of allowing us to easily compare a given gene across all
individuals (or subset of individuals) in the data set.

C. Data Augmentation

Although the data representation is a 2D matrix of each
column’s data samples, the resulting images are not the same
as traditional natural images, like face, or natural real-world
objects. First, based on our pre-evaluation experiment, well-
known data augmentation techniques for image data, such as
basic image manipulations [24], did not prove to be effective
for this type of image data. The reason may be the nature of
the data, which is totally different from normal image datasets.
Further, in applying data augmentation on this type of data,
we need to recognize the meaning of the resulting augmented
data. For instance, simply flipping the image, or rotating the
data will lead to outcomes that may not be meaningful, given
the information represented in the images.

Thus, in order to augment this type of data, we should
consider the basic representation of the data, in other words,
augment the data in the feature space. In this line, besides ma-
chine learning tools, classical signal processing methods and
tools could be effective [28], [30], [37]. We need to generate
new features (expression values of a given gene, which is in a
row) for a certain subject (values in a given column), without
significantly shifting the statistical distribution of the sample
data [25] to generate a new subject with the same label (no
change in the subject’s label),

Therefore, as shown in Fig. 2 and presented in correspond-
ing equations, first we add a random Gaussian variable with
mean zero and standard deviation σ=β*σd, where σd is the
standard deviation of the original data samples of a given row;
then allocate the same label of the original data (age of each
column as an individual) to the columns of the generated data.
Here β is an adjustable parameter (based on our experiments,
the best value for β is 0.13). Here we have X ∼ N (µ, σ2)

and P (x) = 1
σ
√
2π
e−(x−µ)

2/2σ2

.
In other words, we need to add some random variable

to each row (feature) considering the standard deviation of
the row, without significantly changing the data distribution.
Otherwise we can not assign the label of the original data to the
generated data. Ideally, in order to be able to assign a label to a
generated data which is not the same as the label of the original
data, we need to comprehensively model the biological func-
tionality and role of each gene in aging. However, this is not
practical with today’s technology. Therefore, our approach to
augment the data is to generate new data samples which do not
remarkably deviate from the original data samples distribution
individually (just a new copy of the data samples with a small
deviation) so that we can assign the same label to the generated
data sample. While this may be seen as a strong assumption
from one viewpoint, this has already been used by other data
augmentation methods for different data types [26], [27]. Our
results show that this assumption is sound. Using this method
we will synthesize different versions of the dataset with the
corresponding labels [25], [27], [36].

We have tried several values for β, starting from 0.05 to
0.25. Using the validation data, the best results is associated
with β = 0.13. Since we have 27,142 different genes, we



need to use 27,142 random random Gaussian variables with
mean zero and standard deviation associated with the standard
deviation of each row and add them to the data accordingly, in
order to generate a new set of the data with the same labels.
For data augmentation, since we added a random variable to
each row for every set for data augmentation, one may ask
why just 5 sets of augmentations? In order to address this
question, we have also performed 5 more sets (totally 10 sets)
of data augmentation. However, the results did not improve
remarkably. We suspect that this may be caused by the fact
that we may be generating similar copies of the augmented
data when we generate many sets.

As discussed later in Section 5, we need to design our
experiments in such a way that divides the dataset into several
non-overlapping parts, where each part should be indepen-
dently used for training and testing in different rounds of
the experiment. We use a major proportion of the original
data for training and the remaining part as the test data.
Data augmentation is performed only on the training data.
For data partitioning, the data is randomly divided into four
fixed partitions, then at every round of the experiment (four
rounds in total), we use three out of four parts for the data
augmentation. Here, all these three parts (75% of the original
data) plus augmented data are designated for training, and the
last part (25%) is used for testing. Furthermore, we mention
that, data augmentation as described above is applied five times
to the 75% of the original data. Thus, at each round, the
training data will consist of 107 + (5 x 107) = 642 images,
while the test data consists of 36 images.

IV. AGE ESTIMATION FRAMEWORK

In this section we present our framework for age estima-
tion from gene expression data that exploits the outcome
of our proposed data representation and data augmentation
schemes. After data representation and augmentation, we feed
the data to a network designed for age-group classification.
Given our 2-D representation of the gene expression data, it
become natural to analyze such images using two dimensional
convolutional neural networks (CNNs). We emphasize that
our data representation scheme (spatial 2-D rather than 1-
D representation) makes it natural to exploit the modeling
capability of deep learning architectures for the problem of
age estimation using our type of data. In fact, with our
spatial representation, each pixel location represents a specific
gene, while the pixel intensity value indicates the expression
level for the gene. Thus, any specific gene is located in a
fixed pixel location in the image, possible relations between
genes can be captured using a simple convolution mask. This
means that our neural network can more easily learn these
possible relationships, even between genes that may be widely
separated in the genome. This is confirmed in our experiments
by changing the order of genes in the spatial representation
for some of individuals and then training the network. In fact,
one possible reason could be that even by changing the order
of the genes, almost for all individuals in a certain age group,
the expression values are quite similar.

Fig. 3. Network architecture for age estimation via an ensemble of age-group
classifiers.

A. Network Architecture

The core objective in this work is to develop an effective
framework for age estimation from gene expression data. How-
ever, as mentioned earlier, in order to accomplish it, we need
a suitable data representation, and a proper method for data
augmentation, especially given the limited data sizes. Given
our 2-D spatial data representation, artificial neural networks
(ANNs), for instance, using convolutional neural networks
(CNNs) become natural candidates for learning in such a
framework. Here, we elaborate on our network architecture
and the rationale behind its design. Initially, we performed
pre-evaluation experiment on some well-known deep neural
networks, such as VGG19 and ResNet18 in order to emphasize
the importance of compatibility between the network and the
data or task [34], [39]. Our preliminary experiments showed
that, due to the size of dataset, these deep neural networks did
not produce good results. Thus, for this work, we designed
a shallower neural network as shown in Fig. 3. The first two
layers are two identical convolutional blocks consisting of a
convolution layer followed by max-pooling (2 x 2) and ReLU
activation function. Then we incorporate three fully connected
layers and finally a softmax classifier as the last layer of the
network.

B. Age Grouping

One major problem of age estimation from genetic datasets
is the paucity of data with age information. Our gene ex-
pression dataset has only 143 individuals, which is quite
small for training a neural network. One way to mitigate
this problem is to use the data for classification of age
groups, rather than direct age estimation, which will be a
regression problem. Combining the classification results, one
can then perform the required age estimation. Previous work
on this dataset [15], proposed several ensemble classifiers
using different machine learning tools. The best median ab-
solute error and mean absolute error reported were 4 and 7.7
years, respectively. Inspired by this work, we developed our
framework for ensemble classification using neural networks
on our proposed data representation and augmentation. This
resulted in an average median absolute error and mean absolute
error of 4.1 and 3.69 years, respectively. Fleischer et al [15]
incorporated twenty sets of age groupings each with a fixed
age bin widths of 20 years. Working with so many age groups
will obviously be computationally intensive, since we have
to perform classification for each grouping. In our work, we



use just six sets of age groupings, with possibly varying age
bins, and bin sizes. Given the small size of our dataset, the
first sets of age-groupings used bin widths of 20 years, but
varying bin positions. This makes it easier for each age group
to have enough subjects for the system to learn during training.
The last two sets of groupings are defined based on biological
rationale [29]. The age ranges, size and structure of the six
age-groupings (G1 to G6) are shown below:

G1: [0-20], [21-40], [41-60], [61-80], [81-100]
G2: [0-5], [6-25], [26-45], [46-65], [66-85], [86-100]
G3: [0-10], [11-30], [31-50], [51-70], [71-90], [91-100]
G4: [0-15], [16-35], [36-55], [56-75], [76-95], [96-100]
G5: [0-2], [3-12], [13-24], [25-45], [46-64], [96-100]
G6: [0-11], [12-24], [25-49], [50-69], [70-100]

C. Combining Classifiers Results

Each classification round associated with one of the
train/test partitions, predicts an age group for the test subjects
individually. Here, the label with the highest probability in
the output of the softmax is selected as the predicted class
or age-group. We need to combine the results to compute an
estimated age for each subject and then average the results
over the four rounds. Our approach for combining the results
is similar to voting-based regression.

Suppose that for a given test subject Sx, the six classifiers
predict the following intervals as their respective age bins: I1,
I2, I3, I4, I5 and I6; Let these intervals be represented by their
corresponding start and end points: < si, ei >, i = 1, 2, ..., 6.
To compute a single number for the estimated age rather than
an age bin, first, we compute the mean of the intervals, next we
compute the average of all six means as the estimated age for
Sx. That is, Ax = 1

6

∑6
i=1(

ei+si
2 ), where Ax is the estimated

age for subject Sx.
Besides the accuracy of the individual classifiers, as a metric

of evaluation, we also used the mean absolute error, and the
median absolute error.

V. EXPERIMENTS

A. Data Augmentation

As described in the section III-C, we add a random Gaussian
variable with mean zero and adaptive standard deviation to
each row. We have X ∼ N (µ, σ2) where σ=β*σd and σd is
the standard deviation of the original data samples of a given
row (each row consists of the expression values of a certain
gene across all individuals).

Next we assign the same label of the columns of the
original data to the columns of the generated data (each
column contains the expression values of all genes for a
certain individual), where β is a parameter adjusted using
validation data. Since we use the label of the original subject
for the generated sample subject, we need to adjust the β
so that the new generated subject does not deviate notably
from the original sample subject. Therefore, we should try
several values of β and test the accuracy of the classifiers
(mean absolute error) over the validation data. We have tried

several β values, starting from 0.05 to 0.25. We found that
best results were associated with β = 0.13.

B. Framework Implementation

We carried out a set of parallel experiments as depicted in
Fig. 4. Specifically, we randomly divided the original dataset
(143 columns associated with the gene expression values of
143 subjects) into four fixed parts. For each experiment, one
of the parts (25%) was selected as the test data and the
remaining three parts (75%) were used for data augmentation
and training; which is divided to two parts, one for training
(65%) and one for validation (10%). The validation data is
used for hyper-parameter tuning and also adjusting the value
of β.

As we have six sets of age-groupings, at each of the
experiments we assigned corresponding labels to each subject
(image) based on the labeling protocol presented in Section
IV-B. Then we trained six identical classifiers with the pro-
posed architecture as shown in Fig. 3, each of them for one
of the labeling protocols. At the end of the experiments, we
would have four sets of test results, with each result associated
with one of the four independent rounds of the experiments
(train/test partitions in Fig. 4), where each set of test results
provides us with six predicted labels (one label from each
of the six classifiers). The results of the six classifiers are
combined to estimate of the subject’s age. We used Adam
algorithm [35] as the optimizer, using 100 epochs, and a
learning rate of 0.001. Our loss function was the cross entropy
loss, and we wrote the code from scratch in Pytorch.

In binary classification, where the number of classes N
equals 2, the cross-entropy loss can be calculated as:

LC = −(y log(p) + (1− y) log(1− p)). (1)

However, in this work we deal with a multiclass classifi-
cation scheme where the number of classes, N , can be 5, 6,
or 7 depending on the corresponding age grouping. Thus, we
have:

LC = −
N∑
c=1

(yo,c log(po,c)) (2)

where, N is the number of classes, and y is the binary
indicator function representing whether the output observation
is the ground truth class. Likewise, yo,c is defined for the
multiclass scenario, and po,c represents the probability of the
output being ground truth class.

VI. RESULTS

A. Age-group classification results

Before proceeding with age estimation, we first investigated
the performance of the proposed data representation and
network on age group classification, using each of the six
age groupings, since these will form the basis for our age
estimation. Table I shows the classification results for each of
the six sets of age-groupings. Table I shows the classification
performance on each age-grouping, using each of the four data



Fig. 4. Pipeline of the proposed framework for age estimation from gene expression data.

Classifier Accuracy
(P1)

Accuracy
(P2)

Accuracy
(P3)

Accuracy
(P4)

C1 100% 100% 97% 100%
C2 69% 69% 72% 72%
C3 75% 72% 75% 75%
C4 78% 81% 78% 81%
C5 64% 61% 64% 61%
C6 89% 89% 92% 92%

TABLE I
ACCURACY ON DIFFERENT CLASSIFIERS/AGE-GROUPINGS (SEE ALSO FIG.
4). P1, P2, P3 AND P4 DENOTE THE RESULTS FOR EXPERIMENTS USING
TRAIN/TEST DATA PARTITIONS P1, P2, P3 AND P4 , RESPECTIVELY. THE

BEST ACCURACY IS ASSOCIATED WITH THE CLASSIFIER #1 AND #6
RESPECTIVELY.

partitions. The best accuracy is associated with the classifier
#1 and #6 respectively. Since the label data is balanced, this
may imply that these two age groupings are possibly more
effective for age prediction from a biological perspective. This
may be because these two groupings were derived based on
some biological considerations [29].

B. Age estimation results and comparison

To ensure robustness, we expose our framework to more
randomness, by performing the whole experiment three times.
Fig. 5 shows the plot of the true age compared with the
estimated age using our proposed method. The estimated ages
are generally close to the true ages. Table I summaries the
performance of the proposed framework. The table shows
the impact of the 2-D representation used in this work, and
of the data augmentation. Using the performance metric of

Fig. 5. True vs predicted age.

mean absolute error (MAE), our proposed method outperforms
current state-of-the-art method on this dataset [15], and is
comparable to similar methods on other genomic datasets, such
as epigenetic data [8], or DNA methylation data [31]. Our
method produced comparable results in terms of the median
absolute error (MdAE).

In fact, compared to the reference [15], it can be seen that
our three key contributions in this work, i.e., data represen-
tation, data augmentation, and new framework for prediction,
have helped to improve the prediction accuracy. Without data



Ref. Algorithm Age bin MAE MdAE
[15] LDA ensemble 20 7.7 4
[15] GNB ensemble 20 16 8
[15] RF ensemble 20 11.8 5
[15] SVM N/A 11.9 10.2

Ours 1-D ANN (no DA) varying 11.8 9
Ours ANN (2D, no DA) varying 7.1 7.7
Ours ANN (2D, DA) varying 3.69 4.1

TABLE II
ACCURACY OF AGE ESTIMATION FROM FIBROBLAST TRANSCRIPTOMES,

FOR VARIOUS ALGORITHMS. ACRONYMS: MAE (MEAN ABSOLUTE
ERROR); MDAE (MEDIAN ABSOLUTE ERROR); GNB (GAUSSIAN NAIVE
BAYES); SVM (SUPPORT VECTOR MACHINES); RF (RANDOM FOREST);

DA (DATA AUGMENTATION).

augmentation it was not feasible to achieve better results using
the neural network. This is because almost all of the deep
learning tools, and in particular neural networks, need huge
amounts of data to train [16], [32]. Moreover, our initial
experiment without data augmentation did not lead to desired
training of the artificial neural networks, and consequently the
results were not satisfactory as it is reported in Table II. Our
proposed framework achieved a mean absolute error of 3.69
and median absolute error of 4.1 which shows the effectiveness
of the method compared to the results of the work on gene
expression data such as [9], [10], [15] as well as work on
methylation data such as [7], [11], [12]

VII. CONCLUSION

Human age estimation using genomic data has important
implications for research on multiple areas including under-
standing the individual aging, relevant healthcare strategy and
precision medicine regarding the aging.

In this paper, we proposed a new framework for age esti-
mation using a dataset of gene expression values, for subjects
with age ranging from 1 year to 94 years. The core idea of
the proposed framework is to use a new representation of the
information in the gene expression data, along with appropriate
data augmentation for this type of data to improve the accu-
racy. This is then accompanied with a suitable neural network
architecture to more accurately estimate the age. Experiments
using the proposed framework show the effectiveness of the
proposed approach. A comparative analysis with state-of-the-
art methods in age estimation using genomic data is also
included.
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