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Abstract

This paper presents a supervised mixing augmentation
method termed SuperMix, which exploits the salient regions
within input images to construct mixed training samples.
SuperMix is designed to obtain mixed images rich in visual
features and complying with realistic image priors. To en-
hance the efficiency of the algorithm, we develop a variant
of the Newton iterative method, 65X faster than gradient
descent on this problem. We validate the effectiveness of Su-
perMix through extensive evaluations and ablation studies
on two tasks of object classification and knowledge distil-
lation. On the classification task, SuperMix provides com-
parable performance to the advanced augmentation meth-
ods, such as AutoAugment and RandAugment. In par-
ticular, combining SuperMix with RandAugment achieves
78.2% top-1 accuracy on ImageNet with ResNet50. On the
distillation task, solely classifying images mixed using the
teacher’s knowledge achieves comparable performance to
the state-of-the-art distillation methods. Furthermore, on
average, incorporating mixed images into the distillation
objective improves the performance by 3.4% and 3.1% on
CIFAR-100 and ImageNet, respectively. The code is avail-
able at https://github.com/alldbi/SuperMix.

1. Introduction

Despite the revolutionary performance of deep neural
networks (DNNG), they easily overfit when the training set
is qualitatively or quantitatively deficient [27, 33]. Quality
of the data can be interpreted as how well the data is ex-
pressive of the true distribution of inputs in the underlying
task. This helps the model to learn discriminative patterns
likely to occur at inference time. Quantity of the data, on the
other hand, allows the model to observe discriminative pat-
terns from different views and generalize the task-specific
notions according to the major factors of variation in the in-
put domain. Although analytical analysis of such important
properties of the data has remained arduous [16], empirical
evaluations on training deep models often highlight a com-
mon observation: incorporating more data leads to a better
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Figure 1: SuperMix combines salient regions in input im-
ages to construct unseen data for training.

generalization [25, 13]. Hence, data augmentation has be-
come a fundamental component of the training paradigms,
aiming to enlarge the training set by transforming images in
the given dataset.

Conventional image data augmentation involves combi-
nations of context-preserving transformations, such as hori-
zontal flip, crop, scale, color manipulation, and cut out [17,
12, 9]. Recently, notable efforts have been devoted to im-
proving the augmentation, e.g., by automating the search for
the optimal augmentation policies [4, 20, 5]. The majority
of these methods have focused on transforming single im-
ages, while ignoring the potentially very useful combination
of multiple images for augmentation. To address this short-
coming, several studies have considered combining multi-
ple images to construct novel images [18, 22, 34, 32, 29].
However, these methods either mix images blindly and dis-
regard the salient regions [34, 11, 32, 29] or do not scale to
large-scale problems [18]. Furthermore, the current mixing
functions are not expressive enough and often suppresses
visual patterns by averaging or covering features in one im-
age with the trivial features in another image. The corre-
sponding pseudo labels are also not accurate and constrain
the training performance [11].

This paper presents a mixing augmentation approach
termed SuperMix, which exploits the salient regions of in-
put images to construct more advantageous mixed data. The
supervision for this purpose can be obtained from the target
model itself, i.e., self-training [26, 30, 23, 19, 2, 31], or



a more sophisticated model aiming to guide a student net-
work via knowledge transfer [, 14]. Figure | provides a
visual comparison of mixed images produced by different
methods. In a nutshell, the contributions of the paper are as
follows:

* We formalize the problem of supervised mixing aug-
mentation using a set of mixing masks associating the
pixel value at each spatial location in the mixed image
to the spatial locations in the input images.

* The optimization problem is carefully constrained to
assure that the solutions are rich in salient features and
comply with the realistic image priors.

* We develop a modified Newton iterative algorithm for
SuperMix, suitable for large-scale applications. This
approach provides 65 x speed-up as compared to SGD
on ImageNet.

* We demonstrate that mixed images intrinsically induce
smooth predictions, and thus, help reveal knowledge of
the teacher model in knowledge distillation.

2. Related work

Data augmentation: Data augmentation aims to improve
the generalization of the model by enlarging the train set
using transformations preserving the context of inputs in
the learning problem. Conventional image transformations
for this purpose are horizontal flip, crop, scale, color ma-
nipulation, and cut out [17, 12, 9]. A contemporary trend
of research on the topic has focused on selecting the best
sequence of transformations according to the task, dataset,
and learning model. AutoAugment (AA) [4] automated
the search for augmentation policies given a predefined set
of transformations. Despite the significant performance of
AA, it suffers from prohibitive training complexity imposed
by Reinforcement Learning. Multiple approaches have at-
tempted to reduce the training complexity by employing
more efficient search methods, e.g., density matching in fast
AutoAugment (FAA) [20], or population based augmenta-
tion (PBA) [15]. RandAugment (RA) [5] have shown that
the search space and selection criteria can be significantly
simplified by carefully combining random transformations.
However, these methods ignore the potentially useful com-
bination of multiple images for augmentation.

Mixing augmentation: Several recent studies have con-
sidered employing multiple images for data augmentation
[18, 34, 11, 32, 29]. Smart Augmentation [|8] proposed
merging multiple images from the same class using a DNN
trained concurrently with the target model. However, train-
ing an additional deep model alongside every target model
is resource exhaustive and severely limits the scalability
of the approach for large-scale problems. Moreover, the

method is restricted to merge images from the same class
which limits the diversity and novelty of visual patterns
in the merged images. MixUp [34, 29] combined a pair
of images for the augmentation by convex linear interpo-
lation. CutMix [32] proposed overlaying a cropped area
of an input image on another image to augment the data.
Although MixUp and CutMix have demonstrated notable
improvements to the training of object recognition models,
they suffer from major shortcomings. First, they often av-
erage or replace salient regions in one image with insignif-
icant regions, e.g., background, in another image. Second,
due to the lack of supervision the labels computed for the
mixed images are not accurate and limits the usefulness of
the mixed images. However, SuperMix addresses these is-
sues by extracting the salient regions of inputs and carefully
combining them according to the realistic image priors and
saliency-preserving constrains.

3. Supervised Mixing Augmentation

Given a training set D = {(z;,v;)} X", mixing meth-
ods take a subset X C D to produce the mixed image Z
and the corresponding label g. A crucial property of mixed
images is that they must reside close to the manifold of the
training data since the goal of the mixing is to enlarge the
support of the training distribution. Previous mixing meth-
ods [34, 29] have considered this requirement by employ-
ing operations that preserve local smoothness of images.
MixUp [34, 29] combines a pair of images (z;, ;) using
convex linear interpolation as: & = rx; + (1 — r)x;, where
r ~ Beta(q, @) is a random mixing weight from the sym-
metric Beta distribution with « € (0, 00). Due to the lack of
supervision, the soft label for & is computed using the same
linear interpolation as: § = rd(y;) + (1 — r)d(y;), where
d(+) is the one-hot encoding function. This blind mixing
suffers from two shortcomings. First, coefficient  assigns
an equal importance to the whole image which can suppress
important features by averaging with the background or less
important features from the other image. Second, the com-
puted soft label, ¢, does not accurately describe the proba-
bility of classes represented by the mixed image and, thus,
limits the effectiveness of the augmentation.

3.1. Mixing function

We formalize a general formulation for the augmentation
function that allows multiple images to be combined locally.
We use a set of mixing masks M = {m,;}fz_ol, where m; :
A — [0, 1] associates each spatial location v € A in z; with
a scalar value m;(u). Using the mixing masks, we define

the mixing function as:
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Figure 2: Schematic diagram of the proposed method for mixing k& = 2 input images using the supervision from f7.

where x; is the i*" sample in X, the operator ® denotes
the element-wise product, and » -, m;(u) = 1 to hold the
convexity of the combination. The mixing function recovers
MixUp [34] when k£ = 2 and all values in each mask are
equal. It also recovers CutMix [32] when & = 2 and all
values except the cropped area in one of the masks are equal
to one. Figure 1 provides a visual comparison of the role of
the masks in the mixing augmentation. In the next section,
we describe how knowledge of a teacher model can be used
to compute M such that the mixed image, &, encompasses
the rich visual information of images in X.

3.2. Supervised mixing

Let fT : RW>HxC _ [0 1]" denote the probability
vector predicted by the teacher (T) for n classes and f;
be the probability for the i** class. We optimize the set of
masks M in Equation 1 such that all salient regions in X,
according to the knowledge of the teacher, be present in the
mixed image, Z. This can be interpreted as: fT(:%) ~ 1,
where ¢ is high for classes associated with images in X.
We formulate the target soft label, ¢, computed in previous
approaches [34, 32] for k£ = 2 using the Beta distribution.
We generalize for £k > 2 by sampling the mixing coeffi-
cients from the Dirichlet distribution. Let (rq, ..., 7—1) ~
Dir(«) be a random sample from the symmetric multivari-
ate Dirichlet distribution with parameter a and size k, we
define the target soft label as:
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where y” (2;) = arg max; f (z;) is the predicted class for
x; € X, and 6(+) is the one-hot encoding function.

The set of mixing masks can be optimized to minimize
the divergence between the output of the teacher model on
the mixed image and the target soft label computed in Equa-
tion 2. The masks must also hold two additional properties

to comply with the realistic image priors. First, generated
images must reside close the manifold of the training data.
In practice, this interprets that each mask must be spatially
smooth so that the generated images resemble the spatial
structure of the inputs. Second, masks must be sparse across
the input samples to ensure each spatial location in the out-
put image is assigned merely to a single image which pre-
vents averaging multiple images at each spatial location and
suppressing important features. Considering these, the opti-
mization problem for finding the mixing masks can be writ-
ten as:
argmin KL(fT(2)||§) + Ao Lo (M) + X Ls(M) s.t.:

mo,...,Mk—1
a.0<m;(u) <1, b g mi(u) =1,
7
3)

where L, is a penalty term for the roughness of masks, e.g.,
total variation (TV) norm, L is a loss function to encourage
sparsity of masks across input samples, and K L(-||-) is the
Kullback-Leibler divergence.

Here, we provide an iterative algorithm to solve the op-
timization problem efficiently. At each iteration ¢, the con-
vexity conditions can be satisfied by the following normal-
ization:

t

= )
Lo s(m)

where s(-) is the sigmoid function. Hence, the generalized

mixing function in Equation 1 takes the normalized masks

to construct . Using the normalized masks, we define the

sparsity promoting loss as:

L= 7 Zﬁlf(u) (mi(u) —1). Q)

This loss function encourages the mask values to approach
0 or 1. Since the values of masks at each spatial location
sum to 1, due to the normalization in Equation 4, only one
of the masks takes the high value to minimize the loss.



Figure 3: Visualizing the effect of smoothing factor, o, and
the sparsity promoting weight, As;, on the mixed images.
Masks are estimated using ResNet34 and are associated
with the ‘horse’ class.

3.3. Optimization Method

A proper set of mixing masks can be estimated by mini-
mizing the objective of SuperMix as Lsys = KL+ AL, +
AsLs. A reduced form of this problem has been studied in
saliency detection and explanation of DNN predictions by
employing SGD [10] or deep generators [6]. However, the
current problem is more complex since multiple images are
involved in the optimization and the roughness penalty and
sparsity promoting loss should be minimized on all the cor-
responding masks. As we discussed and evaluated in Sec-
tion 4.4, SGD is very slow and not feasible for solving the
problem in case of large-scale image recognition tasks. Fur-
thermore, employing a dedicated deep model to mix data by
extending [6] makes the algorithm model-dependent and is
not computationally efficient.

We develop a fast and efficient algorithm to optimize the
mixing masks based on Newton’s iterative method for find-
ing roots of a nonlinear system of equations in the underde-
termined case [21, 24]. Specifically, instead of optimizing
Lsn, we optimize L,, = KL + AL using a smooth
projection (SP) [7] that directly satisfies the smoothness of
masks. As we analyze later in Section 4.4, this significantly
improves the execution time of the mixing. Considering the
first-order approximation of L'y,, at M, each mask is up-
dated at iteration ¢ to find the roots as: m} ™! « m!+ Am!.
Here, the update is computed using the Newton’s method
as:
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where the gradient is with respect to M?, the concatenation
of {mf,...,m}_,}. Since both the divergence and L are
nonnegative, |L',,| = L,,;. This formulation uses the
f2-norm projection to compute AM?. We modify it using
SP to preserve the smoothness of masks and compute the
smooth update as:
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where g, * VLY,, is a smoothed version of the gradients
using the 2D Gaussian smoothing filter g with the standard

Algorithm 1 SuperMix

1: inputs: Classifier f7, set of k images X,
low-pass filter g. .
output: Mixed sample Z.
Y = {argmaxjij(xi) txi € X}
Sample (ro, ..., r%—1) from Dir(a).
)= rid(y" (w1).
: Initialize (mo, ..., mk—1) < 0,
720« %ZzieX xi, t — 0.
. condition = Top-k predicted classes by f(#') are notin Y.
8: while condition do
9: Loy = KL(fT(&Y)9) + AsLs.
10: AM? £ —9o * VL.

— SM

T 9oV LG )TV LY
11: mitt « mi 4+ Am, fori € {0,..., k— 1}
20wt = s(mtt)) S s(ml ).

k—1
13: @ e S meomith

=0
14: t—t+1
15: end while
16: return Z°.
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deviation o. It must be noted that all matrices in Equations
6 and 7 are vectorized before the matrix operations, and are
reshaped back at the end of the iteration. In addition, due to
the smoothness of masks, we optimize a down-sampled set
of masks and up-sample them before performing the mix-
ing. Algorithm 1 and Figure 2 demonstrate the detailed al-
gorithm and schematic diagram for SuperMix, respectively.
Termination Criteria: The algorithm terminates when the
Top-k predicted classes of f7 (i) are the same as the pre-
dicted class for samples in X. For instance, when X con-
sists of two images recognized as ‘cat’ and ‘dog’, the Top-2
classes in () should be classes of ‘cat’ and ‘dog’. This
criterion assures that important features in the input set are
visible in the mixed image. Figure 4 provides a visual com-
parison of the mixed images produced by different methods.

4. Experiments

We evaluate the performance of SuperMix on two tasks
of object classification and knowledge distillation [1, 14]
using two benchmark datasets of CIFAR-100 [17] and Im-
ageNet [8]. For knowledge distillation, we evaluate Super-
Mix on two major previous SOTA methods [14, 28] and
two mixing augmentation techniques including MixUp and
CutMix. For the sake of fair comparison, pseudo labels for
these blind mixing methods are computed using the same
teacher employed in SuperMix. All training experiments
use random horizontal flip and random crop as the default
augmentations. We perform the algorithm on random sets
of input samples drawn from D to generate D’. For the sake
of brevity, we define the augmentation factor k = ‘g“ to
show the ratio of the size of the mixed dataset over the size
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Figure 4: Visual comparison of the mixed images generated by SuperMix, MixUp, and CutMix, with k € {2,3,4} on
ResNet34. Class activation maps [35] are computed for two classes in mixed images.

Automated aug. Mixing aug. SuperMix
Dataset  Model Base. AA[N] FAADO]  RA[G] | MixUp  CutMix  SuperMix || +RA[5]
car. | WRNA02, 740 79.3 79.4 79.2 72 7.9 79.7 79.9
oo WRN28-10 | 812 82.9 82.7 83.3 82.1 82.9 83.6 83.9
S-5(26 296d) | 82.9 85.7 85.4 85.6 84.8 85.0 85.5 85.8
ImageNer RESNeUS0 [ 76.3/03.1(77.6/98.8 77.6/937 T7.6/93.8 |T7.0/93.4 77.2/935 7TT.6/937 | 78.2/940
ResNet200 | 78.5/94.2 | 80.0/95.0 80.6/95.3 80.4/95.3 |79.6/94.8 79.9/94.9 80.8/95.4 | 81.3/95.6

Table 1: Performance of augmentation methods on CIFAR-100 (Top-1 accuracy) and ImageNet (Top-1/Top-5 accuracy).

of the original dataset.

For knowledge distillation on CIFAR-100, we also con-
sider an additional baseline by using unlabeled data from
the training set of ImageNet32x32 [3] (ImgNet32) to con-
struct unlabeled sets. This helps to better evaluate the role
of the data provided by the mixing augmentation methods.
We use SGD optimizer with an initial learning rate of 0.1
and momentum of 0.9. Weight decay is set to 5e — 4. The
learning rate is decayed by 0.1 at epochs 200, 300, 400, and
500, and the maximum number of epochs is set to 600.
Since in our experiments x > 1, the number of epochs ac-
cording to the mixed dataset will scale with % to keep the
number of training iterations fixed for all experiments. For
instance, when x = 5, the maximum number of epochs
for the mixed dataset is 120. The batch size is set to 128
and 256 for CIFAR-100 and ImageNet, respectively. For
the CIFAR-100 dataset, we set o of the Gaussian smooth-
ing in SuperMix to 1 and the spatial size of the masks to
8 x 8. For ImageNet, o is set to 2 and the size of masks
is set to 16 x 16. For all benchmark comparisons, we set
a = 3 and \; = 25. Moreover, in all experiments, the per-
formance of SuperMix is evaluated by generating 5 x 10°
and 10° images on CIFAR-100 and ImageNet, respectively,
unless otherwise noted. All the hyper-parameters for the
distillation experiments are selected according to the exper-

imental setup of [28] and the ablation studies in Section 4.3.
Network architectures and settings for baseline methods are
provided in the supplemental material.

4.1. Object classification

We follow the standard setup of evaluation for automated
augmentation [4, 20, 15] and compare them with SuperMix
on the task of object classification. For SuperMix, we first
train the target model on the original dataset and then use it
to generate mixed data with k£ equal to 2 and 3 for CIFAR-
100 and ImageNet, respectively. Afterward, we train the
target model from scratch on the mixture of the augmented
data and the original data. Rest of the result are reported
from the original papers. As an additional evaluation, we
combine SuperMix with RangAugment (RA) [5]. For this
purpose, we first mix images using SuperMix and then ap-
ply RA with the default parameters [5] for CIFAR-100 and
ImageNet. Table 1 presents the results for these experi-
ments. On four out of five experiments, SuperMix provide
performance competitive to SOTA approaches of automated
augmentation. Furthermore, combining RA with SuperMix
further improves the performance of classification across all
the experiments. These evaluations highlight the effective-
ness of mixing multiple images for data augmentation.



Teacher WRN-40-2; ResNet56 ResNet110 ResNet32x4 VGG13
Student WRN-16-2 WRN-40-1 ResNet20 ResNet20 ResNet32  ResNet8x4 VGG8
Teacher acc. 75.61 72.34 74.31 79.42 74.64
Student acc. 73.26 71.98 69.06 69.06 71.14 72.50 70.36
KD [14] 74.92 73.54 70.66 70.67 73.08 73.33 72.98
= CRD [28] 75.48 74.14 71.16 71.46 73.48 75.51 73.94
S ImgNet32 74.91 74.80 71.38 71.48 73.17 75.57 73.95
g CE+ MixUp 76.20* 75.53 72.00 72.27 74.60* 76.73 74.56
£ CutMix 76.40* 75.85* 72.33 72.68 74.24 76.81 74.87
k= SuperMix 76.93* 76.11* 72.64* 72.75 74.80* 77.16 75.38*
= ImgNet32 76.52* 75.70* 72.22 72.23 74.24 76.46 75.02*
'éj KD+ MixUp 76.58* 76.10* 72.89* 72.82 74.94* 77.07 75.58*
CutMix 76.81* 76.45* 72.67" 72.83 74.87* 76.90 75.50"
SuperMix 77.45* 76.53* 73.19* 72.96 75.21" 77.59 76.03*

Table 2: Classification performance (%) of student models on CIFAR-100. Teacher and student are from the same architecture
family but different depth/wideness and capacity. We denote by  results where the student surpasses the teacher performance.
Only ImgNet32 uses unlabeled data from an external source. Average over 4 independent runs.
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Figure 5: Evaluating the role of augmentation size and hyper-parameters.

4.2. Knowledge Distillation

In addition to KD [14] and CRD [28], we consider a
simple method for distillation to highlight the effectiveness
of mixing augmentation. In this method, we train the stu-
dent models to classify mixed images labeled by the teacher
model. The labels only show the winner class and does not
contain any information regarding the rest of the classes.
We refer to this method as Cross-Entropy (CE) distillation.
Results on CIFAR-100: Tables 2 and 3 presents the re-
sults for two challenging scenarios of distillation. In the
first scenario, teacher and student are from the same fam-
ily of architectures but have different depth/wideness and
capacity. In the second scenario, teacher and student are
from completely different network architectures. Employ-
ing the simple CE method using the mixed data consistently
outperforms previous methods in both distillation scenar-
ios. The data generated by SuperMix demonstrates the
best performance across all evaluations, and, on five out
of seven teacher-student setups from the same architecture
family, students trained on the SuperMix data outperform
their teachers. Last four rows in Tables 2 and 3 present
the results for knowledge distillation using the original KD
[14]. More importantly, results on MixUp, CutMix, and
SuperMix demonstrate that they can notably enhance the

performance of the distillation techniques.

These observations highlight three crucial points. First,
the limited size of the training set is a major factor con-
straining the performance of knowledge distillation. Ac-
cording to Table 2, almost all of the students achieve com-
parable results to CRD when external data of ImgNet32 is
provided. Second, mixing augmentation provides more in-
formative data for distillation compared to unlabeled data
from an external source. Third, the supervised mixing re-
sults in rich images that are highly favorable for knowledge
distillation and outperforms blind mixing methods.

Results on ImageNet: We showcase the effectiveness of
the mixed data on ImageNet by distilling the knowledge of
ResNet-34 into ResNet-18. Table 5 presents the results for
the distillation on the ImageNet dataset. Using the simple
CE method consistently outperforms the previous SOTA ap-
proaches. In five out of eight experiments of distillation
using mixed images, the student outperforms the teacher.
This demonstrates the scalability and effectiveness of the
mixing augmentation for the task of knowledge distillation.
Moreover, combining mixed data with the original distilla-
tion objective further enhances the distillation performance
validating the effectiveness of the mixing augmentation for
knowledge transfer in large-scale datasets.



Teacher VGG13 ResNet50 ResNet32x4 WRN-40-2
Student MobileNetV2 MobileNetV2 VGGS8 ShuffleNetV1 ShuffleNetV2 ShuffleNetV1
Teacher acc. 74.64 79.34 79.42 75.61
Student acc. 64.60 64.60 70.36 70.50 71.82 70.50
KD [14] 67.37 67.35 73.81 74.07 74.45 74.83
< CRD [28] 69.73 69.11 74.30 75.11 75.65 76.05*
S ImgNet32 68.85 68.01 73.96 76.80 77.56 75.87*
g CE+ MixUp 71.13 71.71 75.41 78.16 78.84 77.29%
£ CutMix 70.93 70.64 75.84 77.89 79.32 77.50*
Z SuperMix 71.65 72.13 76.07 78.47 79.53* 77.92*
= ImgNet32 69.14 68.44 74.32 76.87 77.90 76.23*
'5 KD+ MixUp 71.29 71.99 75.59 78.22 79.14 77.44*
CutMix 71.10 70.93 76.01 77.92 79.53* 77.65%
SuperMix 71.81 72.40 76.28 78.51 79.80* 78.07*

Table 3: Classification performance (%) of student models on CIFAR-100. Teacher and student models are from different
architectures. We denote by « results where the student surpasses the teacher performance. Average over 4 independent runs.
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Table 4: Comparison of execution time.

4.3. Ablation studies

Impact of the size of the training set: In this part, we
investigate how the size of the dataset affects the distilla-
tion performance by measuring the Top-1 test accuracy of
WRN-16-2 versus the augmentation size on CIFAR-100.
For all the mixing methods, we set k = 2 and o = 1, i.e.,
sampling mixing coefficients from the uniform distribution.
Figures 5a presents the results for these evaluations. The
distillation performance improves by increasing the aug-
mentation size and plateaus at 5 x 10°. All the datasets
generated using mixing augmentations outperform the un-
labeled dataset of ImgNet32. This highlights the superiority
of mixed images for knowledge transfer compared to unla-
beled data from an external source. Based on these obser-
vations, we set the size of the mixed dataset to 5 x 10° for
all experiments on CIFAR-100.

Impact of k: We evaluate the role of £ by conducting ex-
periments on CIFAR-100 and ImageNet datasets. Figures
5b and 5c present the results for this evaluation. A major
shortcoming of MixUp and CutMix is that they mix images
without any supervision. Including more input images to
produce a mixed image increases the chance of incorrect
cropping in CutMix, and averaging overlapping features in
Mixup. This explains the notable deterioration of the dis-
tillation performance in all experiments with k& > 2 using

these augmentation methods. Both of these incidents de-
grade the quality and effectiveness of features in the mixed
image, which can also be observed from the visual compar-
isons provided in Figure 4. We observe that the spatial size
of the image can limit k. Performance of distillation using
SuperMix degrades for k£ > 2 on CIFAR-100. However on
ImageNet, k£ = 3 yields the best distillation performance.
Impact of a: Parameter o determines the probability dis-
tribution for the presence of each input class in the mixed
image. We measure the performance of distillation versus
several values of « to identify its optimal value. Figure 5d
presents results for these experiments. For @ — 0, the mix-
ing augmentation becomes inactive since only one input cat-
egory will appear in the augmented images, i.e., rg = 1 or
ry = 1. For @« — 400, the contribution of images be-
come equal, i.e., 79 = r1 = 0.5. This is more favorable
for distillation since both input images contribute equally to
the mixed image. For a = 1, contribution of each input in
the mixed image is selected from the uniform distribution
Unif(0, 1). According to the figures, we select a« = 3 for all
other experiments unless otherwise noted.

Sparsity among masks: The sparsity promoting loss forces
each spatial location in the output image to be assigned to
only one image in the input set. This improves the mixing
performance by preserving the most important features in
each spatial location. We evaluate the performance of dis-
tillation versus A4 in Figure Se. By increasing the weight
of sparsity the performance of distillation improves until
As =~ 30. After that the accuracy of masks degrades since
the sparsity promoting loss dominates the KL loss. Fig-
ure 3 evaluates this phenomenon by visualising the mixing
mask versus .

4.4. Execution time

Here, we compute the execution time of SuperMix. To
this aim, we define two baselines for the sake of compar-



o 7 CE KD CE KD CE KD CE KD
X% &
&Qﬂ& %\96 KD CRD +MiXUpk:2 +CutMixp—o +SuperMixk:2 +SuperMixk:3
Top-1 73.31 69.75 70.66 71.17 | 73.03 73.29 73.18 73.33* 73.42* 73.62* 73.65* 73.83*
Top-5 91.42 89.07 89.88 90.13 | 91.27 91.44 91.36 91.44* 91.51* 91.66* 91.67* 91.82*

Table 5: Top-1 and Top-5 classification accuracy of ResNet18 on ImageNet dataset. Results where the student surpasses the
teacher performance are marked by %. Average over 4 independent runs.
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Figure 6: Visualizing representations for the mixed images.

ison. For the first baseline, we use SGD instead of the
Newton method to optimize the set of masks. The sec-
ond baseline is the Newton method without SP. Hence, the
optimization in both baselines is performed on Lgps =
KL 4+ M\;L; + AsLs. Inspired by the previous work on
saliency detection [10], we use the TV norm for the spatial
smoothness loss as: L5 = 577 >; Youen |[Vmi(w)|[3.
Based on experimental observations, we set Ay, = 250,
learning rate of SGD to 0.1. All other parameters are set
to the values identified in previous sections. All algorithms
are implemented with parallel processing on two NVIDA
Titan RTX with batch size of 128. For further implementa-
tion details, please refer to the released code.

Figure 4 presents the results for these comparisons.
Newton method with SP, i.e., SuperMix, is at least 65X
faster than SGD on both datasets. Moreover, due to SP
which directly satisfied the spatial smoothness condition,
SuperMix is at least 19X faster than the same algorithm
when it has to include L.

4.5. Embedding space evaluations

We perform two sets of evaluations on CIFAR-100 to
further analyze characteristics of the mixed images. In the
first set of experiments, we feed the original data and the
mixed images to VGG13 and visualize the output of the log-
its layer, in 2D for three random classes using PCA. The Su-
perMix images are generated with £ = 2. Figure 6 demon-
strates these evaluations. Representations for the SuperMix
data has less overlap with the distribution of the represen-
tations for the original data. This suggests that the Super-

=
=)

Natural
MixUp
CutMix
Img32
SuperMix

0.8

0.6

Expected probability

#1 #2 #3 #4 #5

Figure 7: Distribution of top 5 predictions.

Mix data encompass more novel structure compared to the
original data, unlabeled data from other mixing methods or
an external source. The SuperMix data are harder to clas-
sify for the model since the representations are concentrated
close to the center of the embedding. To better evaluate this,
we compute the class standard deviation (c-std) of represen-
tations for each class. The computed values are reported on
the top of the corresponding images in Figure 6.

Hinton et al. [14] pointed that smoothing out the pre-
dictions of a model can better reveal its knowledge of the
task. Since SuperMix generates images by combining mul-
tiple inputs, the outputs of the model on SuperMix data are
intrinsically more smooth compared to that of the other aug-
mentation types. We validate this by computing the average
of the sorted Top-5 probability predictions of VGG13 on the
original and augmented images of CIFAR-100. As demon-
strated in Figure 7, predictions of the target model is sig-
nificantly smoother on mixed images. Moreover, SuperMix
produces the data with the most smooth labels.

5. Conclusion

In this paper, we studied the potential of mixing multiple
images using supervision of a teacher for the data augmen-
tation. We proposed SuperMix, a supervised mixing aug-
mentation method that combines salient regions in multiple
images to produce unseen training samples. The effective-
ness and efficiency of SuperMix is validated through exten-
sive experiments, evaluations, and ablation studies. Specifi-
cally, incorporating SuperMix data for distillation enhances
the state of the art of knowledge distillation. SuperMix pro-
vides comparable performance to the automated augmen-
tation methods, and when combined, notably improves the
generalization of the model.
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