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Learning Multi-Granularity Temporal
Characteristics for Face Anti-Spoofing

Zhuo Wang™, Qiangchang Wang, Weihong Deng

Abstract—Face anti-spoofing (FAS) is essential for securing
face recognition systems. Despite the decent performance, few
existing works fully leverage temporal information. This would
inevitably lead to inferior performance because real and fake
faces tend to share highly similar spatial appearances, while
important temporal features between consecutive frames are
neglected. In this work, we propose a temporal transformer
network (TTN) to learn multi-granularity temporal characteris-
tics for FAS. It mainly consists of temporal difference attentions
(TDA), a pyramid temporal aggregation (PTA), and a temporal
depth difference loss (TDL). Firstly, the vision transformer (ViT)
is used as the backbone where comprehensive local patches are
utilized to provide subtle differences between live and spoof
faces. Then, instead of learning temporal features on global
faces which may miss some important local cues, the TDA
is developed to extract motion-sensitive cues on each of the
comprehensive local patches. Moreover, the TDA is inserted into
different layers of the ViT, learning multi-scale motion-sensitive
local cues to improve the FAS performance. Secondly, it is
observed that different subjects may have different visual tempos
in some actions, making it necessary to model different temporal
speeds. Our PTA aggregates temporal features at various tempos,
which could build short-range and long-range relations among
multiple frames. Thirdly, depth maps for real parts may change
continuously, while they remain zeros for spoof regions. In order
to locate motion features on facial parts, the TDL is proposed
to guide the network to locate spoof facial parts where motion
patterns between neighboring frames are set as the ground truth.
To the best of our knowledge, this work is the first attempt to
learn temporal characteristics via transformers. Both qualitative
and quantitative results on several challenging tasks demonstrate
the usefulness and effectiveness of our proposed methods.
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I. INTRODUCTION

ACE recognition (FR) has achieved a series of break-
throughs [1]-[3] in recent years which has greatly ben-
efited various applications, such as mobile phone login and
airport check-in. Although great success has been achieved,
FR models may be spoofed by various presentation attacks
(PAs), including print photo, video replay, and 3D mask.
Consequently, fields with high safety requirements are subject
to attack risks which may lead to a dramatic loss. For example,
an attacker could bypass a biometrics model in the financial
institution to steal money. To secure FR systems, face anti-
spoofing (FAS) [4] is developed to detect PAs which is receiv-
ing increasing attention from both academia and industry.
Recent CNN-based methods [5], [6] extract spatial features
to discriminate between live and spoof faces. Although these
approaches obtain significant improvements, they ignore tem-
poral information which is important for FAS. Because real
and fake faces tend to share very similar spatial appearances
when presented only on a single frame. Consequently, comple-
mentary information between neighboring frames is neglected,
resulting in the loss of important temporal information.
Previous methods utilize temporal cues to detect face live-
ness, such as eye-blinking, lip or mouth movements [7], [8].
These methods are robust to paper attacks, but vulnerable to
replay attacks or print attacks with eye/mouth cut. There-
fore, it is necessary to extract facial motion features on
the whole face, instead of limited small areas. Some tradi-
tional methods achieve this by concatenating features from
continuous frames [9], [10] or proposing temporal-specific
features, such as Haralick features [11], HOOF [12], and
optical flow [13]. However, these methods suffer from poor
generalization due to the inferior representational ability. With
the development of deep learning, several works apply it to
model temporal features. The optical flow map and Shearlet
image features are extracted [14]. Long-relation information
is captured by using RNNs as temporal structures [15], [16].
The 3D convolution is used to learn spatiotemporal features
of consecutive frames [17], [18]. Two-stream networks are
proposed to model face temporal features [19], [20]. The rPPG
signal is also explored [16], [21]. While these works can learn
temporal information, they achieve this by directly learning on
whole faces. However, many important cues may lay in local
regions. To address this issue, some methods [22]-[26] explore
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Fig. 1. The pipeline of learning multi-granularity temporal characteristics
for FAS. Special information is extracted from single frames, including global
classification embeddings and local patch embeddings. Then, those features
are transmitted to the PTA and TDA for a more accurate binary and depth
supervision. Thus, their mixed score is utilized for the final decision.

spatial features from partial patches for more local details.
Nevertheless, we argue that some important local patches may
appear at arbitrary locations for faces with pose variations,
material changes, and different illumination. Therefore, it is
expected to capture comprehensive local features from all
patches along with the deepening of the network. Moreover,
due to the subtle motion in local regions for FAS, it is expected
that motion-sensitive cues to separate living and spoofing lie
in local patches.

Combined with the abovementioned viewpoints, a tem-
poral transformer network (TTN) is proposed to extract
rich multi-granularity temporal information as illustrated in
Fig. 1, which consists of temporal difference attentions (TDA),
a pyramid temporal aggregation (PTA), and a temporal depth
difference loss (TDL). Firstly, spatial information about each
local patch in a frame is extracted via vision transformers
(ViT) [27]. Different from the image-based structure CNNs,
patch-based ViT utilizes the relation-based mechanism to
exploit local fine-grained information for liveness detection.
Then, to capture subtle motion-sensitive cues, our proposed
TDA learns temporal attention on each local patch between
neighboring frames, emphasizing motion-relative channels and
suppressing motion-unrelated ones. Since every local patch
is explored thoroughly, important motion-sensitive cues are
less likely to be neglected. Besides, to explore complementary
hierarchical information, our TDA is inserted into different
transformer encoders. In such a way, fine-grained spatiotem-
poral information in low layers and abstract spatiotemporal
representations in high layers are captured simultaneously to
benefit the FAS. Secondly, when presented in facial videos,
different subjects may have different temporal speeds because
of various factors, such as mood. For example, an excited
live face tends to blink faster than a sad live face. Since
short-range and long-range relations among multiple frames
are complementary, it is necessary to model variances in the
temporal speed. To achieve this goal, a pyramid temporal
aggregation (PTA) is developed to aggregate global face
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representations from multiple frames via shifted windows.
Thirdly, depth maps may continuously change over time for
live face regions, while they remain zero for spoof facial parts.
Thus, a temporal depth difference loss (TDL) is proposed to
supervise the depth changes between adjacent frames, which
is also beneficial to distinguish the motion regions from static
backgrounds. To the best of our knowledge, this work is the
first effort to apply transformer networks to learn temporal
information for FAS. Qualitative and quantitative results on
several challenging tasks demonstrate the effectiveness of our
proposed modules.
The main contributions of this work are four-fold:

1. Temporal difference attentions (TDA) are proposed to
hierarchically learn temporal cues on comprehensive
local patches, capturing coarse-to-fine motion-sensitive
cues to distinguish the bona fide and presentation
attacks.

2. Pyramid temporal aggregation (PTA) is developed to
cover different temporal speeds on multiple frames,
building rich short-range and long-range connections
between different frames to utilize their complementarity
for liveness detection.

3. With depth maps between adjacent frames as the ground
truth, a temporal depth difference loss (TDL) is designed
to guide networks to learn relative changes of depth
information in temporal sequences, further boosting the
FAS performance.

4. With these modules, our model outperforms the state-
of-the-art methods on various benchmark tests.

The rest of this paper is organized as follows. In section II,
we provide a brief review regarding the related works on
face anti-spoofing and transformer networks. In section III, the
whole framework of the temporal transformer network (TTN)
is introduced. Then, experimental results and visual analysis
are shown in Section IV. Section V concludes this paper.

II. RELATED WORKS
A. Face Anti-Spoofing

As the development of deep learning in image processing,
several methods apply CNNs to learn discriminative fea-
tures [5], [14], [16], [23], [28]-[30]. Recently, [31] employs
the popular transformer network for zero-shot FAS. How-
ever, these works do not consider the discriminative temporal
information.

Temporal-based methods in the early time focus on some
easily observable movements [6], [7], such as eye-blinking,
opening and closing the mouth. Those methods can effectively
identify some print attacks, but become vulnerable to replay
attacks, 3D mask attacks, or print attacks with eye/mouth cuts.
Besides, some methods [11]-[13] also make a distinction by
capturing temporal-specific features. For example, [12] adopts
multifeature videolet aggregation of multi-LBP and HOOF for
liveness detection. However, these traditional feature descrip-
tors fail to exploit the comprehensive texture and motion cues,
due to their limited representational abilities.

Recent temporal-based methods can be grouped into three
categories. One common strategy is to capture temporal

Authorized licensed use limited to: West Virginia University. Downloaded on May 28,2022 at 18:09:47 UTC from IEEE Xplore. Restrictions apply.



1256

information via recurrent neural networks. Feng et al. [15]
adopts an LSTM to learn temporal features. Xu et al. [16]
leverages the rPPG signal by a CNN-RNN. One alternative is
to use the two-stream network. [19] introduces the temporal
shift module for motion patterns. Besides, 3D CNNs are
employed to extract spatiotemporal features on continuous
frames [17], [18]. However, most of these methods extract
temporal features on global images, but fail to fully explore
motion-sensitive cues in patch levels.

To alleviate this issue, [22], [23] capture local features on
random patches in face images. Atoum et al. [24] utilizes
deep reinforcement learning to find suspicious sub-patches
for FAS. Cai et al. [25] destroys the global structure of
images into patches to make the network concentrate on
local details. However, most existing patch-wise methods only
explore spatial features from partial patches, which may miss
some important patches due to the changes of external factors.
Moreover, almost all these methods are conducted on a single
frame, which may cause temporal relations to be not exploited
thoroughly.

Therefore, in our work, the spatial transformer is employed
to explore the comprehensive spatial information from all
patches, while the temporal transformer is used to integrate
continuous frames for temporal information extraction. More-
over, different from FAS-SGTD [32] with a two-stage training,
our method utilizes patch embeddings for depth supervision,
and classification embeddings for binary supervision simulta-
neously in an end-to-end fashion, which is more suitable for
large-scale training.

B. Transformer Networks

Transformers [33] have been widely used in natural lan-
guage processing (NLP). Recently, they have shown great
potential in multiple computer vision (CV) tasks. A CNN and
a transformer were combined for object detection [34]. A pure
transformer network was applied for image classification [27].
The segmentation problem was reformulated from a sequence-
to-sequence perspective [35]. A hierarchical architecture with
shifted windows was utilized to reduce the calculation, obtain-
ing excellent performances on several CV tasks [36].

Transformers are also utilized to extract temporal
information in video-related tasks. A temporal transformer
network was proposed for general time-series classification
in [37]. A spatiotemporal transformer was utilized for visual
tracking in [38]. Pure transformers were proposed for video
classification, capturing spatial and temporal information
simultaneously in [39]. The seminal idea of multi-scale
feature hierarchies was combined with transformer models,
outperforming concurrent vision transformers on video
recognition [40]. To the best of our knowledge, this work
is the first attempt to employ transformer networks to learn
temporal information for FAS.

III. METHODOLOGY

In this section, for a comprehensive understanding, a single-
frame structure based on transformers is firstly introduced
to FAS. Then, to capture temporal information between
frame sequences, the aforementioned single-frame structure is
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Fig. 2. (a) Illustration of vision transformer structure for single-frame FAS.
Position embeddings are omitted in our diagram, because they have been
added to patch and classification embeddings. (b) The detailed structure of
the transformer encoder layer.

extended to a multi-frame one by adding temporal transformer
layers. Furthermore, temporal difference attentions (TDA)
are proposed to learn the temporal difference and promote
depth estimation. A pyramid temporal aggregation (PTA) is
developed to learn multi-scale temporal information based on
the global information of each frame. Lastly, the proposed
temporal depth difference loss (TDL) and overall loss are inte-
grated for reliable training and great generalization capability.

A. Transformer Network for Face Anti-Spoofing

To explore relations between local patches in bona fide and
presentation attacks, vision transformer (ViT) [27] is utilized
for spatial feature extraction. As shown in Fig. 2 (a), an input
image x is firstly split into N x N non-overlapped patches.
After linear projections, these patches are embedded into 1D
patch embeddings z; € R'*€,1 < i < L and integrated as
Zp € RL*C where L = N? is the number of split patches
and C represents the embedding dimension. Then, learned
classification embedding z.;; € R'C and position embedding
Zpos € RLAD*C gre set to capture classification information
and retain positional information, respectively. Therefore, the
sequence of feature embeddings z € RE+D*C is input to the
following transformer encoder layers as follows:

concat(Zcis, Zp) + Zposs

.zl ey

Z

zp = lz1,22, .-

A transformer encoder layer consists of multi-head self-
attention (MSA) and multi-layer perception (MLP), as shown
in Fig. 2 (b). The relations between patch and classification
embeddings are calculated continuously along with the cas-
caded transformer encoder layers. Therefore, feature embed-
dings of adjacent layers can be expressed as follows:

Y = MSA(LN(Z)) + 2,
2 = MLP(LNGY) + ., @

where 7/ € RWHDXC g the input of [-th encoder layer, y!
is the temporal variable, and MLP is composed of two linear
projections with GELU as the activation function.

Finally, the classification embedding z.;; contains sufficient
classification information. A linear classifier with a softmax
layer is used to decode the classification information for the
final decision between live and spoof faces.
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The overall architecture of our temporal transformer network (TTN). Firstly, N successive frames are fed into transformer layers for extracting

spatial features that contain global classification embeddings and local patch embeddings. Then, classification embeddings of Ny frames are transmitted
into the pyramid temporal aggregation (PTA) to integrate spatiotemporal information for binary classification. Additionally, to promote the generalization
capacity, temporal difference attentions (TDA) are proposed to enhance motion-related channels on each local patch for precise depth estimation. Lastly, the
temporal depth difference loss (LtpL) is used to model depth motion effectively. Thus, depth loss (Lpsg + LtpL) and binary loss (LBinary) are employed

simultaneously to supervise the model learning.

Compared with CNNs, transformers have the following
advantages for spatial feature extraction: 1) Different from
directly encoding the whole images, transformers encode the
separated patches. It can promote the network to describe
fine-grained information and eliminate adverse effects of
padding operation on subtle information; 2) Relation-aware
mechanism is adopted to exploit intrinsic textures and capture
long-range spatial features. Specifically, self-attention layers
are applied to exploit relations between different patches,
then weigh them continuously; 3) Transformers have global
receptive fields through all layers, which provides a larger
learning capability.

B. Temporal Transformer Network

Although the single-frame transformer can capture
long-range spatial features by exploiting relations between
local patches, temporal information in continuous frames is
omitted, which contains sufficient fine-grained information
based on short-term and long-term moving patterns. Therefore,
we expand the single-frame model to the multi-frame one
with some effective modules and build our new architecture,

e., the temporal transformer network (TTN), as shown in
Fig. 3.

The TTN mainly consists of a spatial transformer net-
work, a temporal transformer network, and a depth estima-
tion. As introduced in III-A, continuous N, face images

N . . .
{x(@)}; :f | are fed into the network and their corresponding
feature embeddings are extracted by a cascade of weight
shared transformers. Feature embeddlngs {z(t,)}l_1 consist

of cla551ﬁcat10n embeddings {z.ss (tl)} _; and patch embed-

dings {zp(t,-)}l.zl. Specifically, the former contains impor-
tant global classification cues, while the Ilatter describes
local patches. Therefore, patch embeddings of each frame
are utilized to predict depth maps with the assistance of
temporal difference attentions (TDA) for depth supervision.
Classification embeddings of each frame are passed into a
pyramid-based temporal transformer structure, called pyramid

temporal aggregation (PTA), to capture multi-scale temporal
characteristics for binary classification. Depth supervision and
binary supervision are used commonly to obtain an excellent
generalization capability for FAS.

C. Temporal Difference Attentions

Temporal difference attentions (TDA) are designed to
utilize temporal information in adjacent frames, enhancing
motion-sensitive channels of patch embeddings for depth
estimation.

Since depth supervision is proposed by [23], it has been
widely used in FAS due to its great capability of extracting
fine-grained details. These detailed cues in local regions are
vital and effective for distinguishing between bona fide and
presentation attacks. Specifically, pseudo depth maps are gen-
erated as supervisory signals to enlarge differences between
living and spoofing. In training, these pseudo depth maps are
set as the ground truth, which guides our networks to learn
useful information. In testing, predicted depth maps constitute
an important component of final decision scores.

An image is split into patches, then patch embeddings
{z p(t,-)};vz‘ll € REXC about local patches are captured by a
spatial transformer network. Patch embeddings can be utilized
for depth estimation with the guidance of depth supervision.
However, the dimension C of patch embedding z, is usu-
ally too large to precisely focus on critical channels that
are beneficial to depth estimation. Therefore, it is necessary
to enhance vital channels of patch embeddings that encode
motion information by utilizing the short-term temporal differ-
ences between adjacent frames. The above judgment is based
on the following facts: 1) For a patch embedding, partial
channels tend to encode motion information which is related to
dynamic parts, while a part of ones encodes static information
related to silent regions; 2) In living videos, dynamic regions
such as face parts usually contain depth information, but
silent regions such as background parts contain less; 3) For
attack videos, subtle spoofing cues can be better exploited
in channels that model motion information. To sum up, the
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Fig. 4. Tllustration of temporal difference attentions (TDA).

TDA is proposed to explore the temporal difference between
local regions of adjacent frames and assist networks to utilize
short-term motion information for precise depth estimation.

This TDA can be illustrated in Fig. 4. The patch embedding
zp(t) at time ¢ and that of two adjacent frames {z,(f —
At), z,(t + Ar)} are utilized to accurately estimate the depth
map D(t) at time ¢. Firstly, we convert the patch embed-
dings {zp(t,-)}f.\g1 € REXC to the 2D structure {fl,,(t,-)}f.\g1 €
RN*NxC Next, a 1 x 1 2D convolution layer is adopted
to reduce feature channels for efficient calculation and to
obtain f; € RN*NxXC/r  Then, to capture the short-term
differences between frame x(r) and its two adjacent frames
{x(t—At), x(t+At)}, the spatial features of extended receptive
field in the two adjacent frames are extracted by a 3 x 3 2D
convolution layer and a subtraction is conducted between them
to obtain temporal differences. This process can be formally
formulated as follows:

Diff(t,t — At) = f,(t) — K3 ® f,(t — At),

Diff(t,t+ At) = f,(1) — K3 ® f,(t + A1), 3)
where {Diff(t,t — At), Diff(t,t + Ar)} € REXC are the
temporal difference at time t. K3 is a 3 x 3 2D convolution
layer. ® denotes the convolution operation.

Furthermore, we concatenate the temporal differences
between frame x (r) and adjacent frames {x(t — At), x (t+Ar)}:

Diffeon(t) = concat[Diff(t,t — At), Diff(t,t + At)],
“)
where Diffeon(t) € RN*NX2C/7 Then, a global average
pooling layer is utilized to summarize the differences:

P(1) = avgPool[Dif feon(t)], P(t) € RV (5)

Another 1 x 1 2D convolution layer recovers the pooling

difference P(7) to the origin channel dimension C and the
attention weights A(f) can be obtained as follows:

Pori(t) = K1 ® P(t), Poi €

A(t) = o (Pori), A1) € R™C, ©)

RIXC,

where ® is the convolution operation and ¢ denotes the
sigmoid function.
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Finally, to excite the motion-sensitive channels that contain
vital depth information, we conduct a channel-wise multipli-
cation between the original patches feature map f,(¢) and the
attention weight A(z) at time 7 to obtain the enhanced patches
feature map f,(t) € RV*VN*C | as follows:

Jo(t) = A1) - £ (). @)

On the other hand, there exists complementarity between patch
embeddings from different layers. For example, in lower lay-
ers, most patches are correlated with surrounding areas, which
would capture low-level location spatial details. In higher
layers, most patches can correlate with larger regions, which
would capture more high-level semantic information. There-
fore, to fully exploit their complementarity as well as balance
calculation costs, we collect patch embeddings of every three
layers from the frame at ¢, represented as {z?j ()}, € REXC.
Then after the channel weighting operation of TDA, we obtain
the weighted patch feature maps {f;"(t)}?:1 € RNXNxC,
Different from the concatenation in CNN-based methods [16],
we fuse these features by using the addition operation accord-
ing to the experimental validation. Therefore, the final patch
features of frame x(¢) that are weighted by TDA and fused
from different layers are represented as frinqi(¢) as follows:

Frinat @ =3 F@, frina(0) € RVNE @)

Lastly, as shown in Fig. 3, the predicted depth map D,(¢)
of frame x(¢) is estimated after a Fully Convolutional Net-
work (FCN) decoder. For our N y-frame input {x (t,-)}f.vzf], the
corresponding predicted depth maps {D,, (ti)}f.\gl are obtained,
which can promote the reliability for depth supervision.

D. Pyramid Temporal Aggregation

Pyramid temporal aggregation (PTA) is developed with a
pyramid structure to capture multi-scale temporal characteris-
tics that contain short-term as well as long-term relations.

The classification embeddings {zs (t,-)}l}.vzf1 contain global

features of frames {x(ti)}fv:fl. Different from being directly
used for classification, these N y-embeddings are firstly inte-
grated as z.; € RV/*C, then go through the pyramid-like
transformer structure PTA to further learn temporal informa-
tion implied in consecutive frames with a binary supervision.
As shown in Fig.3, the major difference between the PTA
and basic transformer layer in Fig. 2 (b), is that the basic trans-
former layer contains single multi-head self-attention (MSA),
while our PTA has multiple MSAs. Specifically, besides the
global attention module with a temporal receptive field, PTA
contains two additional window attention modules with local
receptive fields. Therefore, Eqn. (2) is replaced as follows:

vl = (Wi-MSA, Wo-MSA, MSANLN(Z")) + 7.,
T = MLP(LNG))) + ', ®)

where z/ € RV/*C is the input of I-th PTA layer. y' is the
intermediate variable. {W;-MSA, Wp-M SA} are MSAs whose
receptive sizes are w1 = 2 and wy = %

The window-based self-attention module splits the classi-

fication embeddings of N -frames into L%J non-overlapped
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Fig. 5. Illustration of shifted window partitioning between adjacent temporal
transformer layers. For example, when the sequence length Ny is 8 and the

N
size of the window self-attention w is 2, the shifting step is Lu—{j = | between
the /-th layer and its adjacent ones.

windows. This partition is beneficial to separate the successive
sequence into multiple independent slices for temporal infor-
mation exploration. However, the lack of connections across
windows may limit its information integration capability.
Inspired by [36], a shifted window partitioning approach is uti-
lized along with our temporal transformer layers. Specifically,
the windows with the size of w constitute new windows by
shifting 5 step length across the adjacent temporal transformer
layers, as shown in Fig. 5. Thus, the information interactions
between different windows are obtained.

To sum up, the pyramid structure with multiple recep-
tive fields is beneficial for multi-scale temporal informa-
tion integration. Specifically, {W;-MSA, Wo-MSA, MSA}
can independently concentrate on short-term, middle-term, and
long-term temporal cues, respectively. Therefore, this pyramid
structure provides rich modeling variances in temporal speed
for FAS. Besides, transformers have the ability of parallel
computing, thus are more efficient in processing temporal
sequences, which is beneficial for temporal feature extraction.

E. Loss Function

Besides developing a novel temporal network architecture,
we also propose a temporal loss function for network train-
ing. To guide the network to learn motion depth effectively,
we develop the temporal depth difference loss (Ltpp) to
supervise depth changes between adjacent frames.

1) Temporal Depth Difference Loss: Previous depth-based
works usually use Euclidean Distance Loss (Lgpr) to super-
vise a single frame in a pixel-wise way. Intuitively, this
approach merely assists the network to learn absolute distances
from objects to the camera. However, the distance changes
between adjacent frames are also important for depth supervi-
sion. Because for live faces, the depth maps may persistently
change over time, while for spoof faces, such as print and
replay attacks, depth maps always keep zero. On the other
hand, the temporal difference depth can be taken to distinguish
the motion regions from static backgrounds at the pixel level.

Therefore, we propose the temporal depth difference loss
(LtpL) to offer stronger supervision for multi-frame methods,
which promotes a more accurate depth estimation by using
temporal information. The formula is as follows:

b= 3, | (96 = 26) = (2p =25 ) a0

where {D%,, D;,_l} and {D.., D’G_l} represent the predicted
and ground-true depth maps at frames ¢ and 7 — 1, receptively.
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TABLE I
THE SUMMARY OF DATASETS USED IN OUR EXPERIMENTS

) Num (Videos)
Dataset Subject Attack Types Live Spoof
Replay-Attack [41] 50 Print, Replay 200 1000
CASIA-FASD [42] 50 Print, Replay 150 450
MSU-MFSD [43] 35 Print, Replay 70 210
OULU-NPU [44] 55 Print, Replay 720 2880
MLFP [45] 10 Mask 150 1200
Siw [17] 165 Print, Replay 1320 3300
CASIA-SURF [46] 1000 Print, Cut 3000 18000
WMCA [47] 72 Print, Replay, Partial, Mask 347 1332
CeFA [48] 1607 Print, Replay, Mask 6300 27900

2) Overall Loss: To make better use of global and local
information, both binary and depth supervisions are employed
jointly to supervise our network. The overall 10ss Loverall 1S
defined as follows:

Y

where Lginary is a binary cross-entropy loss, and Lpepy mea-
sures the difference between the ground-true depth map (Dg)
and predicted depth map (Dp). Specifically, Lpepm consists
of two parts, Lpepth = Lmse + LtpL, where Lysg measures
Euclidean distances based on pixels, and LtpL is the proposed
temporal depth difference loss.

Loveral = @  LBinary + (1—-a)- Lpepth,

IV. EXPERIMENTS
A. Datasets and Metrics

1) Datasets: To evaluate our approach comprehensively, the
following nine public datasets are used in our experiments.
A summary of these datasets is given in Table I.

OULU-NPU [44] is a commonly used dataset for
intra-dataset testing in FAS. Four protocols were designed
to assess different performances. Protocol 1 evaluates
the generalization capability under different environments.
Protocol 2 evaluates the influence of different attack medi-
ums. Protocol 3 evaluates the effect of different camera
sensors. Protocol 4 is the most challenging, with all the
above three factors considered simultaneously. Similarly,
SiW [16] defines three protocols for a comprehensive assess-
ment. Protocol 1 deals with the variations of face poses
and expressions. Protocol 2 evaluates the performance under
different attack mediums of the same spoof type. Proto-
col 3 evaluates the generalization of unknown presenta-
tion attacks. CASIA-MFSD [42], Replay-Attack [41], and
MSU-MFSD [43] are three classical datasets in the FAS
community. However, since they have been published for a
long time, the number and quality of videos in these datasets
may be outdated. Nowadays, these datasets are mainly used
for cross-dataset and cross-type testings. CASIA-SURF [46]
is a large-scale multi-modal dataset for FAS, including three
modalities (i.e., RGB, Depth, and NIR). Different attacks
are divided into training, validation, and testing subsets for
intra-dataset testing. CeFA [48] is a multi-modal FAS dataset,
covering three modalities, different ethnicities, 1607 subjects,
and 2D plus 3D attack types. Four protocols are reported in our
experiments following the official definition. The above two
datasets are used to investigate the performance in multi-modal
datasets. MLFP [45] contains 1350 videos in visible, near-
infrared, and thermal spectrums with presentation attacks using
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TABLE 11
DETAILED CONFIGURATIONS FOR TTN-T AND TTN-S

Spatial parts Temporal parts
Model | Dimension Heads [Tnput length Layers | Input length Layers
TTN-T 192 3 197 12 Ny 4
TTN-S 384 6 197 12 Ny 4

latex and paper masks. WMCA [47] consists of 1679 short
videos, including multiple attack types shown in Table XIII.
Two protocols are provided by this dataset: seen protocol and
unseen attack protocol, respectively. The above two datasets
are used to evaluate the performance against 3D mask attacks.

2) Evaluation Metrics: For a fair comparison with previous
works, the original metrics are used in our experiments.
Specifically, Attack Presentation Classification Error Rate
(APCER), Bona Fide Presentation Classification Error Rate
(BPCER), and Average Classification Error Rate (ACER) [49]
are widely used in OULU-NPU, SiW, WMCA, CASIA-SURF,
and CeFA. The ACER is the mean of APCER and BPCER
as a whole assessment of bona Fide and attack presentation:
ACER = (APCER + BPCER)/2. HTER is adopted for
cross-dataset testing, which is the mean of False Rejection
Rate (FRR) and False Acceptance Rate (FAR): HTER =
(FRR + FAR)/2. Area Under Curve (AUC) is also utilized
for cross-dataset testing and cross-type testing, which is the
area under the ROC curve. Equal Error Rate (EER) is defined
as the threshold point where False Positive Rate (FPR) is
equal to False Rejection Rate (FRR), which is used in MLFP.
Among the above metrics, a larger AUC value indicates better
performance, while the other metrics are the opposite (i.e.,
a small value means better performance).

B. Implementation Details

1) Data Preparation: All datasets we used are video data.
Thus, we first extract all frames in every video. Next, if the
datasets provide face locations, we crop and resize faces
to 224 x 224 as the RGB format. Otherwise, we adopt
MTCNN [50] for face detection. Then, a dense face align-
ment approach (i.e., PRNet [51]) is used to generate the
ground-truth depth maps with size 28 x 28 for genius faces,
while spoof depth maps are set to zeros.

2) Networks Setting: Two network structures are tested,
denoted as TTN-T and TTN-S. Their sizes of input images
are both 224 x 224 and the patch sizes are set to 16 x 16.
The main differences lie in the number of attention heads and
embedding dimensions. More details are provided in Table II.

3) Training Setting: For the single-frame method, a single
frame is extracted from a video as the input. For the multi-
frame method, a video clip of length N/ is extracted from
a video as the input, and the sampling interval is three to
make sampled frames cover enough temporal information.
To completely compute the depth maps of the first and last
frame in the clip, we need to extend one extra frame at the
place of beginning and end. However, the calculation of loss
functions and decision scores cover the initial Ny merely.

4) Testing Setting: In testing, we calculate the final classifi-
cation score to separate bona fide and presentation attacks.
Specifically, Ny frames are fed into the network and the
corresponding Ny depth maps are generated. The scoring
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formula is defined as follows:

1 N
Score =0 -bj+(1—a)- N_fzgll | Disean!

L ()
where « is the same as that in Eqn. (11). b; is the living logit
of binary classification. In the second term, D}, ,,, represents
the mean depth values on the pixel-wise level at frame 7.

5) Hyper-Parameter Settings: The batch size is set to
256 for all single-frame methods and it is 56 for multi-frame
ones with Ny = 8 due to the limited GPU memory. a is set
to 0.4 through all experiments. Adam optimizer is used when
the learning rate (Ir) and weight decay are both set to Se-5.
The Ir is halved every 50 epochs and training stops at 150"
epoch.

6) Pre-Training: Our networks consist of three parts: the
spatial transformer, temporal transformer, and depth esti-
mation. For better feature extraction, we utilize pre-trained
weights on ImageNet [52] provided from [27] to initialize the
transformer layers and input linear projection layers in the
spatial transformer. Differently, the temporal transformer and
depth estimation modules are trained from scratch.

C. Ablation Study

To verify the superiority of our TTN as well as the contri-
butions of each component, multiple incomplete models are
built up by controlling different variables. All ablation studies
are conducted on TTN-S and the performance is measured on
multiple testing scenarios, including intra-dataset testings on
OULU-NPU, cross-dataset testings from SiW to OULU-NPU,
and cross-type testings on CASIA-MFSD, Replay-Attack, and
MSU-MEFESD. Their quantitative results are shown in Table III.

1) Efficacy of FEach  Module and the Loss
Function: As shown in Table III, Model 1 can be treated
as a single-frame baseline, consisting of the backbone
network (DeiT-S [53]). Model 2 utilizes single-scale temporal
attention layers to integrate the features of multiple frames for
classification. Model 3 adds the module of depth estimation
whose cross-layer patch embeddings are fused in an additive
manner. Model 4 introduces Ltpy, to depth loss for forecasting
temporal information of depth changes. Model 5 deploys TDA
modules to enhance depth estimation by exploiting motion
areas. Model 8 is our final model where multiple receptive
fields are used to explore multi-scale temporal features
independently. From the results, Model 2 is better than
Model 1, which indicates the advantage of the multi-frame
method compared with the single-frame one. Model 3 exceeds
Model 2 by adding depth supervision which can illustrate its
effectiveness for FAS. The usefulness of the proposed loss
LtpL is verified by comparing Model 3 and Model 4. The
observation that Model 5 obtains a performance improvement
over Model 4, demonstrates that motion information is
beneficial for depth estimation. Finally, compared with
Model 5, the improvement of Model 8§ reflects the necessity
of learning multi-scale temporal information.

2) Multi-Scale Temporal Features Analysis: As shown in
Table III, different structures of pyramid temporal aggregation
are compared by Models 5, 6, 7, and 8. Specifically, the size
of attention windows Wi, W> is set to 2 and % respectively,
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TABLE III
THE ABLATION STUDY OF EACH PROPOSED MODULE AND THE LOSS FUNCTION
Intra-dataset (ACER%)J| Cross-dataset (ACER%).. Cross-type (AUC%)7T
Model | Lrpr | Add  TDA PTA 1 2 3 Z 1 2 3 7 intra inter
1 w/o PTA 2.8 1.2 1.3+0.9 4.0+1.5 7.9 9.8 9.1£3.6 4.6+4.4 97.54+4.6 86.9+12.1
2 w/ PTA (W) 1.7 1.2 14+£1.3 38+34 7.5 9.8 8.9+3.2 4.64+2.5 97.54+4.2 87.1t£124
3 v w/ PTA (W) 1.2 1.1 1.440.6 35434 7.1 9.6 83124 42426 97.743.8 88.6+10.3
4 v V4 w/ PTA (W) 1.0 1.3 1.2+£0.9 33+52 6.9 9.3 7.842.2 4.443.7 97.64+3.9 88.3+10.8
5 v v w/ PTA (W) 0.8 1.0 1.2+0.8 3.3+£3.0 6.4 8.9 7.5+2.8 4.0£3.1 97.9+4.4 88.8+10.5
6 VA V4 w/ PTA (W1, W) 0.7 0.8 1.2£1.0 3.1£29 59 8.7 7.1£1.9 3.7£2.8 98.0+4.2 89.34+10.2
7 v Vv w/ PTA (W5, W) 0.4 0.9 1.0£1.3 2.742.8 5.7 8.4 74424 35423 98.11+3.9 89.64+10.3
8 v v w/ PTA (W, Wy, W) 02 06 09+0.7 29+14 54 85 6.7+23 3.1+3.6 97.944.2 89.74+9.2
Features Models Features Models 18
Feal M1 Fea2, Fea3 M8
Fea2 M2 Fea2, Fea4 M9 15
Fea3 M3 Fea3, Fead M10
Fead M4 Feal, Fea2, Fea3 Ml P
Feal, Fea2 M5 Feal, Fea2, Fea4 Mi12 §
Feal, Fea3 M6 Fea2, Fea3, Fead Mi13 § 09
Feal, Fea4 M7 Feal, Fea2, Fea3, Fea4 Ml14
0.6
1.2 1 Add
0.3
Concat
1.0 |
00 4701 2/02 3/03 404 5/05 6/06 7/07 8/038
0.8 4 Sampling interval At / the value of a
as . . . . .
i Fig. 7. Ablation study of different sampling intervals At and hyper-parameter
2 06+ o on OULU-NPU Protocol 1.
047 5) The Setting of Different a: Hyper-parameter a is to
0.2 - balance the proportion of binary and depth supervision by
compositing loss function and evaluation score. Specifically,
0.0

-——— 77— 7T
ML M2 M3 M4 M5 M6 M7 M8 M9 MLO M11 M12 M13 M14

Fig. 6. The comparative experiments of models with different layers to fuse
features for depth estimation on OULU-NPU Protocol 1. Different fusion

methods are denoted by different colors, while different fusion strategies are
distinguished by their corresponding symbols listed there.

which can concentrate on exploiting short-term and middle-
term information for splitting living and spoofing. Attention
window W represents the global receptive field. Experimental
results indicate that exploring multi-scale attention regions can
obtain better results. This mechanism is favorable to weaken-
ing the negative effects of abnormal frames by increasing the
model variances in the temporal domain. More analysis will be
provided in the latter section. Thus, for the trade-off between
speed and accuracy, this pyramid structure which consists of
three independent attention fields is adopted in our final model.

3) Multi-Scale Spatial Features Analysis: Different layers
for feature fusion are investigated here. As shown in Fig. 6,
Feal, Fea2, Fea3, and Fea4 represent the patch features from
layer 3, layer 6, layer 9, layer 12, respectively, which are
distributed from low level to high level. Different fusion meth-
ods and strategies are evaluated on OULU-NPU Protocol 1.
It can be observed: 1) For fusion, the result of directly
adding is better than concatenation in general; 2) For specific
fusion strategy, feature fusion from low layer to high layer
progressively is beneficial for more accurate depth estimation.
Thus, to make a trade-off between speed and accuracy, the
feature fusion approach of M14 is applied in our final model.

4) Sampling Interval Analysis: We conduct several exper-
iments by capturing input sequences with different sampling
intervals (At), as shown in Fig. 7. Different sampling intervals
imply different spans of temporal information. The ACER is
the lowest when A? is set to 3.

global information is used to make a judgment of binary
classification, while local details are exploited by estimating
depth maps. They work together to promote effectiveness and
generalization simultaneously. As shown in Fig. 7, the model
achieves the best performance when « is set to 0.4.

6) Channel Weighting Versus Spatial Weighting: The TDA
is proposed to enhance relevant channels of patch embeddings
for depth estimation, which is channel weighting. To verify
its effectiveness, we replace it with other weighting methods
for comparisons, including spatial weighting and CBAM [54].
Specifically, CBAM can be regarded as a cascaded structure
of channel weighting and spatial weighting. Their ACERs on
OULU-NPU Protocol 1 are 0.9 and 1.3 respectively, while
channel weighting can achieve 0.2. These results can be
explained by the following facts: 1) Different from convo-
lutions, the spatial size of patch embeddings is equal to the
number of sliced patches that are non-overlapped and encoded
by channel-wise features. Thus, directly weighting the propor-
tion of different patches may be less accurate than channel
weighting; 2) For patch embedding, some channels encode
motion, while some encode static information, which can be
assigned to different weights by channel weighting. This is
beneficial for utilizing temporal information. To sum up, the
approach of channel weighting is adopted in our approach.

D. Intra-Dataset Testing

Intra-dataset testings are conducted on OULU-NPU and
SiW datasets. We strictly follow their protocols designed for
OULU-NPU and SiW to make a fair evaluation.

1) Results on OULU-NPU: In Table IV, we compare our
model with recent SOTA methods. Our approach shows the
best performance on all four protocols, which proves its gener-
alization capability under different testing scenarios, including
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TABLE IV
INTRA-DATASET TESTING ON FOUR PROTOCOLS OF OULU-NPU
Prot. Method APCER(%)] BPCER(%)., ACER(%)]
DRL-FAS [25] 54 4.0 47
Disentangled [55] 1.7 0.8 1.3
STDN [56] 0.8 1.3 1.1
CDCN [57] 0.4 1.7 1.0
FAS-SGTD [31] 2.0 0.0 1.0
CDCN-PS [58] 0.4 1.2 0.8
1 DCN [26] 1.3 0.0 0.6
DC-CDN [59] 0.5 0.3 0.4
CDCN(MT) [60] 0.0 0.8 04
CDCN++ [57] 0.4 0.0 0.2
NAS-FAS [61] 0.4 0.0 0.2
TTN-T (Ours) 1.2 0.0 0.6
TTN-S (Ours) 0.4 0 0.2
Disentangled [55] 1.1 3.6 24
DCN [26] 22 22 22
DRL-FAS [25] 3.7 0.1 1.9
FAS-SGTD [31] 2.5 1.3 1.9
STDN [56] 23 1.6 1.9
CDCN [57] 1.5 1.4 1.5
2 CDCN-PS [58] 14 1.4 14
CDCN(MT) [60] 1.3 1.4 14
CDCN++ [57] 1.8 0.8 1.3
DC-CDN [59] 0.7 1.9 13
NAS-FAS [61] 1.5 0.8 12
TTN-T (Ours) 0.8 0.8 0.8
TTN-S (Ours) 0.4 0.8 0.6
DRL-FAS [25] 4.6£3.6 1.3+£1.8 3.0+1.5
STDN [56] 1.6+1.6 4.0+5.4 28433
FAS-SGTD [31] 32420 22+14 2.71+0.6
CDCN [57] 24413 2.242.0 23+14
Disentangled [55] 2.8+2.2 1.7+2.6 22422
CDCN(MT) [60] 23+1.5 1.9+1.8 21+1.7
3 CDCN-PS [58] 1.9+1.7 2.0+1.8 2.0+1.7
DCN [26] 23427 1.442.6 1.9£1.6
DC-CDN [59] 22428 1.6£2.1 1.9+1.1
CDCN++ [57] 1.7£1.5 2.0+1.2 1.840.7
NAS-FAS [61] 2.1+1.3 1.4+1.1 1.740.6
TTN-T (Ours) 0.8+£0.9 14+£1.8 1.1+0.9
TTN-S (Ours) 1.0+1.1 0.84+1.3 0.9+0.7
DRL-FAS [25] 8.1£2.7 6.9£5.8 72439
CDCN [57] 4.6+£4.6 9.2+8.0 6.9+2.9
CDCN++ [57] 42434 5.8+4.9 5.0+2.9
FAS-SGTD [31] 6.7+7.5 33+4.1 5.0+2.2
CDCN-PS [58] 2.9+4.0 5.8+4.9 4.8+1.8
Disentangled [55] 54429 3.31+6.0 44+£3.0
4 DC-CDN [59] 54433 2.5+4.2 4.043.1
STDN [56] 2.343.6 52454 3.8+4.2
CDCN(MT) [60] 0.9£2.0 6.41+4.9 3.7+29
DCN [26] 6.7£6.8 0.040.0 33434
NAS-FAS [61] 42453 1.7+2.6 29428
TTN-T (Ours) 42424 3.8+4.0 4.0+2.3
TTN-S (Ours) 33428 2.54+2.0 29+14

external environment, attack mediums, and camera variations.
It is worth noting that the excellent accuracy of ACER on
protocols 2 and 3 is 0.6% and 0.9%, showing that our TTN
model can grasp the interval cues by utilizing the relations
of patches and frames. On protocol 4, our method has the
same mean ACER value as NAS-FAS [61], but with a lower
standard deviation, indicating great accuracy and stability.

2) Results on SiW: As shown in Table V, our method ranks
first on protocols 1 and 2. This not only proves the effective-
ness of our method toward poses and expressions changes, but
also shows the generalization capability on cross mediums.
Protocol 3 evaluates the performance of unknown PAs. Our
method is better than FAS-SGTD [32] and DRL-FAS [24]
which are multi-frame methods, but slightly worse than
CDCN++ [57] which is a single-frame one. The reason could
be that there exists a temporal difference between different
attacks, such as print and replay attacks. Print attacks are in a
static mode, while replay attacks are presented in a dynamic
mode. Thus, this different attribute in sequences may cause
difficulties to adapt to unknown PAs for multi-frame methods.
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TABLE V
INTRA-DATASET TESTING ON THREE PROTOCOLS OF SIW
Prot. Method APCER(%)] | BPCER(%)} | ACER(%)}
FAS-SGTD [31] 0.64 0.17 0.40
CDCN++ [57] 0.07 0.17 0.12
STDN [56] 0.00 0.00 0.00
1 DRL-FAS [25] - - 0.00
DCN [26] 0.00 0.00 0.00
TTN-T (Ours) 0.00 0.00 0.00
TTN-S (Ours) 0.00 0.00 0.00
CDCN++ [57] 0.004-0.00 0.0940.10 0.0440.05
FAS-SGTD [31] 0.004-0.00 0.0440.08 0.0240.04
STDN [56] 0.004-0.00 0.0040.00 0.00£0.00
2 DRL-FAS [25] - - 0.00£0.00
DCN [26] 0.004-0.00 0.0040.00 0.00£0.00
TTN-T (Ours) 0.004-0.00 0.004-0.00 0.00£0.00
TTN-S (Ours) 0.004-0.00 0.004-0.00 0.00+0.00
STDN [56] 8.30+3.30 7.5043.30 7.90+3.30
DRL-FAS [25] - - 4.5140.00
DCN [26] 3.80+£4.30 3.00£2.60 3.4040.90
3 FAS-SGTD [31] 2.63+3.72 2.92+43.42 2.7843.57
CDCN++ [57] 1.9740.33 1.7740.10 1.90+0.15
TTN-T (Ours) 3.66+3.02 3.51£3.18 3.5843.09
TTN-S (Ours) 2.69+2.05 2.67+2.00 2.68+2.03
TABLE VI
THE RESULTS OF CROSS-DATASET TESTING FROM SIW TO OULU-NPU
Prot. Method APCER(%)] | BPCER(%)} | ACER(%)}
Auxiliary [17] - - 10.0
FAS-SGTD [31] 1.7 13.3 7.5
1 TTN-T (Ours) 3.8 10.0 6.9
TTN-S (Ours) 0.8 10.0 5.4
Auxiliary [17] - - 14.1
FAS-SGTD [31] 9.7 14.2 11.9
2 TTN-T (Ours) 7.6 114 9.5
TTN-S (Ours) 6.4 10.6 8.5
Auxiliary [17] - - 13.845.7
FAS-SGTD [31] 17.5+4.6 11.74+12.0 14.6+4.8
3 TTN-T (Ours) 6.1£3.3 8.1+5.1 7.1£1.9
TTN-S (Ours) 6.91+4.3 6.4+5.3 6.7+2.3
Auxiliary [17] - - 10.0£8.8
FAS-SGTD [31] 0.8£1.9 10.0£11.6 54457
4 TTN-T (Ours) 1.3£1.9 7.5£6.3 44437
TTN-S (Ours) 1.3£1.3 5.0£7.1 3.1+3.6

E. Cross-Dataset Testing

To evaluate the performance in cross domains, we utilize
five datasets (CASIA-MFSD, Replay-Attack, MSU-MFSD,
SiW, and OULU-NPU) to perform cross-dataset testings.

1) Results on OCIM: As shown in Table VII, for an
overall evaluation, we conduct cross-dataset testing by using
a leave-one-out (LOO) strategy. Specifically, three datasets
are randomly selected for training and the rest one is used
for testing. It can be observed that our method achieves the
best performance among all models trained without domain
information, which demonstrates its generalization capacity
and robustness against unknown data distribution. Besides,
when joined with SSDG [62], our method can gain a better
performance, especially on O&C&I to M and O&C&M to 1,
which indicates the use of domain labels can further enhance
the effectiveness of our approach. According to [27], training
transformers requires a large-scale training data set, however,
CASIA-MFSD, Replay-Attack, and MSU-MFSD are three
low-resolution video datasets that contain few samples for
sufficient training. Thus, we implement further cross-dataset
testing experiments on relatively larger datasets (i.e., SIW and
OULU-NPU) to further verify the superiority of our method.

2) Results From SiW to OULU-NPU: Table VI shows
the cross-dataset results where models are trained on SiW
and tested on each protocol of the OULU-NPU dataset.
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TABLE VII
THE RESULTS OF CROSS-DATASET TESTING ON OULU-NPU, CASIA-MFSD, REPLAY-ATTACK, AND MSU-MFSD
O&C&I to M O&M&I to C O&C&M to 1 1&C&M to O
Method HTER(%)] | AUC(%)T | HTER(%)] | AUC(%)T | HTER(%)] | AUC(%)T | HTER(%)] | AUC(%)T

Binary CNN [5] 29.25 82.87 34.88 71.94 34.47 65.88 29.61 77.54

IDA [43] 66.67 27.86 55.17 39.05 28.35 78.25 54.20 44.59

Color Texture [63] 28.09 78.47 30.58 76.89 40.40 62.78 63.59 32.71

Auxiliary (Depth) [17] 22.72 85.88 33.52 73.15 29.14 71.69 30.17 77.61

NAS-FAS [61] 19.53 88.63 16.54 90.18 14.51 93.84 13.80 93.43

TTN-T (Ours) 11.25 95.08 11.30 95.33 15.75 91.25 14.44 93.50

TTN-S (Ours) 9.58 95.79 9.81 95.07 14.15 94.06 12.64 94.20

O&C&I to M O&M&I to C O&C&M to 1 1&C&M to O
Method HTER(%)] | AUC(%)T | HTER(%)] | AUC(%)T | HTER(%)] | AUC(%)T | HTER(%)] | AUC(%)T

MMD-AAE [64] 27.08 83.19 44.59 58.29 31.58 75.18 40.98 63.08

MADDG [29] 17.69 88.06 24.50 84.51 22.19 84.99 27.98 80.02

RFMeta [65] 13.89 93.98 20.27 88.16 17.30 90.48 16.45 91.16

SSDG-R [62] 7.38 97.17 10.44 95.94 11.71 96.59 15.61 91.54

SDFANet [66] 4.28 97.59 12.56 93.63 6.14 97.30 12.26 94.29

VLAD-VSA [67] 4.29 98.25 8.76 95.89 7.79 97.79 12.64 94.00

TTN-T-SSDG (Ours) 6.25 97.27 11.11 95.33 13.62 94.70 14.69 92.48

TTN-S-SSDG (Ours) 542 98.08 10.00 96.11 10.12 95.73 12.47 94.58

TABLE VIII
AUC (%) OF THE INTRA-DATASET CROSS-TYPE AND INTER-DATASET CROSS-TYPE TESTING ON CASIA-MFSD, REPLAY-ATTACK, AND MSU-MFSD
CASIA-MFSD Replay-Attack MSU-MFSD
Method Protocol ideo T Cut photo | Warpped Photo | Video | Digital Photo | Printed Photo | Printed Photo | HR Video | Mobile Video Overall

DTN [68] 90.00 97.30 97.50 99.90 99.90 99.60 81.60 99.90 97.50 95.9046.20
CDCN [57] 08.48 99.90 99.80 100.00 99.43 99.92 70.82 100.00 99.99 96.48F9.64
CDCN++ [57] 98.07 99.90 99.60 99.98 99.89 99.98 72.29 100.00 99.98 96.631+9.15
BCN [69] Intra | 99.62 | 100.00 100.00 99.99 99.74 99.91 71.64 100.00 99.99 96.771£9.99
NAS-FAS [61] 99.62 | 100.00 100.00 99.99 99.89 99.98 74.62 100.00 99.98 97.12E8.94
TTN-T (Ours) 99.06 99.89 100.00 100.00 100.00 100.00 87.25 9981 96.75 98.0813.96
TTN-S (Ours) 99.57 | 100.00 100.00 100.00 100.00 100.00 §7.06 100.00 94.50 97.90F4.19
SVMI+IMQ [70] 88.41 75.14 75.23 88.21 71.20 56.41 56.62 71.12 49.75 70.23+12.69
CDCN [57] 72.20 79.31 8422 97.73 94.89 96.70 7425 98.88 100.00 88.69£10.56
CDCN++ [57] Inter | 73.12 76.64 78.36 96.66 92.92 97.67 7425 98.13 100.00 87.53£10.90
TTN-T (Ours) 88.90 90.12 91.93 85.50 98.16 99.80 74.44 99.19 99.94 92.0018.01
TTN-S (Ours) 90.26 79.60 95.17 68.81 93.82 95.88 88.87 95.19 99.82 89.71E£9.17

OULU-NPU and SiW are two high-resolution video datasets
that contain a relatively larger number of samples for training
and testing. Our method outperforms the multi-frame method
FAS-SGTD [32] and Auxiliary [16] on all four protocols
(5.4%, 8.5%, 6.7%, and 3.1% ACER, respectively). The above
experimental results and phenomena demonstrate the inductive
learning capability of our method in cross-domain scenarios.

FE. Cross-Type Testing

Following the protocol proposed in [70], we use
CASIA-MFSD, Replay-Attack, and MSU-MFSD to perform
intra-dataset cross-type testing and inter-dataset cross-type
testing.

1) Intra-Dataset  Cross-Type Testing: As shown in
Table VIII, we adopt the Leave-One-Out (LOO) strategy
for different attack types in the same dataset to evaluate
the robustness of encountering unknown attacks. Five
SOTA methods are listed for comparison. Our proposed
methods achieve the best overall performance (98.08+3.96%
AUC), which indicates the capability to process unknown
presentation attacks.

2) Inter-Dataset Cross-Type Testing: The data distribution
in the same dataset is similar. However, in reality, unknown
presentation attacks usually appear in different domains.
Therefore, to make a comprehensive evaluation, we further
estimate the performance of our method with inter-dataset
protocols in [70], as shown in Table VIII. Specifically,
SVM1+IMQ is proposed in [70], which consists of one-class
SVM with a Gaussian kernel based on image quality fea-
tures. To compare comprehensively, we implement the popular

methods, i.e., CDCN and CDCN++ [57], and evaluate their
performance under the inter-dataset setting. In this testing,
our method retains the best performance compared with other
methods, demonstrating that our method has a great adaption
capability towards unseen domains and unknown attacks.

On the other hand, it is observed that the performance
of TTN-T is better than TTN-S on both intra- and inter-
datasets cross-type testing even though TTN-T has fewer
parameters than TTN-S. This indicates that small models may
have advantageous in cross-type scenarios, especially when
only small datasets are available for training.

G. Comparison With Pre-Trained Baselines

To prove the effectiveness of our proposed multi-frame
methods, several single-frame networks are implemented as
baselines. Specifically, we utilize DeiT-T [53] and Deit-S [53]
as the backbone of ViTranZFAS [31] for a fair compar-
ison. To explore the superiority of transformer structures,
we compare different network structures as the backbone for
FAS, including ResNet [71], DenseNet [72], and CDCN [57].
Meanwhile, all baseline models are pre-trained on ImageNet.
Specifically, for ResNet, DenseNet, and Deit based structures,
we take the standard pre-trained models and replace the final
layers with a fully connected layer for binary classification. For
CDCN based structures, we first flatten the generated map in
an element-wise way, then connect a suitable head classifier for
ImageNet pre-training. Lastly, the head classifier is removed
when training on FAS with depth supervision.

1) Evaluation Performance: To make an overall analy-
sis, we compare our method with baseline methods on
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TABLE IX
THE OVERALL EVALUATION OF OUR TTNS AND PRE-TRAINED BASELINES

Testing condition Intra-dataset (ACER%)J Cross-dataset (ACER%). Cross-type (AUC%)?1 .

Protocol T 2 3 7 T 2 3 7 intra inter Params(M) | FLOPs(G) | Run-time(ms)
ResNetI8-TF [71] | 53 19 25%29 81%49 | 114 119 89%32 83%57 | 933496 83.1E129 .18 146 178
ResNetS0-TF [71] | 27 1.2 20428 56+19 | 65 99 75428  48+46 | 90.0£132 7774127 | 2351 329 357

DenseNet121-TF [72] | 2.8 1.6 3.0+3.5 58420 | 74 113 06438  4043.1 | 9514123 845+124 6.96 229 78.9
DenseNetl61-TF [72] | 1.3 12 17423 50424 | 82 105 78422 46425 | 968464 8694113 26.48 623 86.9
CDCN-TF [57] 10 10 16+12 44410 | 112 128 117436 834100 | 966484  90.0+9.7 2.63 291.5 52033
CDCNpp-TF [57] | 02 1.0 14+L1 33409 | 148 155 117456 54475 | 968463  90.8410.3 226 3125 5416.2
ViTranZFAS-T [30] | 22 1.1 16417 42425 | 77 115 98435 67461 | 969463 852+114 572 8.6 16.8
ViTranZFAS-S [30] | 1.8 1.2 13409 40+15 | 79 98  9.1+3.6 46444 | 975446 869+12.1 22.05 33.9 17.5
TTN-T (Ours) 06 08 [1£09 40%23 | 69 05 7.1E19 44%37 | 98.1£40 92.0%8.0 899 10.1 364
TTN-S (Ours) 02 06 09407 29+14 | 54 85 67423 31436 | 979442 897492 34.44 37.0 374
0 Aq—m.s dDCNpp-TR 01 TTNS despite fewer parameters (2.63M and 2.26M). The inconsis-
NT TTNT tency between parameters and computational cost is due to
o DerfseNetl61TF cpchTr 1 DenseNet161(TE the parameter sharing mechanism of the convolution operator.
. TanzrAs-S , | pumanzeas-s However, computational cost can affect the efficiency of the
£ Wilzrret < ° | evitranzrasT whole system, thus it is usually considered more important
& g in practice. Furthermore, we analyze the trade-off between
3 —benseMeti2H 3 A BenseMeti21— : :
< < nseRE the performance ACERs, FLOPs and run-time, as shown in
Fig. 8. It can be noted that our TTNs achieve the best balance
44 4
between these factors. Therefore, our TTNs are expected to
5 s work well in large-scale learning and real-world applications.
3) The Importance of Pre-Training: It is difficult to train
0 100 200 300 20 40 60 80 transformers from scratch, due to the lack of sufficient training
GFLOPs Run-time(ms) data. Thus, following [27], pre-trained weights on ImageNet
Fig. 8. The comparison between different models on ACER(%) of are utilized in our spatial transformers for better feature extrac-

OULU-NPU protocol 1, GFLOPs and run-time (ms).

multiple evaluation scenarios, including intra-dataset test-
ings on OULU-NPU, cross-dataset testings from SiW to
OULU-NPU, and cross-type testings on CASIA-MFSD,
Replay-Attack, and MSU-MFSD. Their quantitative results are
shown in Table IX.

Compared with single-frame baselines (i.e., ViTranZFAS-T
and ViTranZFAS-S), our multi-frame methods obtain better
performance, which proves that the proposed temporal mod-
ules can explore additional information to distinguish between
living and spoofing. Meanwhile, the performance of the other
compared networks is inferior to TTNs, which indicates the
advantages of our transformer-based network to integrate
long-range spatial information and multi-scale temporal infor-
mation, simultaneously. On the other hand, it is worth noting
that some models show unbalanced performances in different
evaluation scenarios. For example, ResNet networks have
a poor performance in cross-type conditions, compared to
the performance on intra-dataset and cross-dataset scenarios.
However, our TTNs retain great results under all protocols.
This phenomenon demonstrates the great generalization capac-
ity of our method toward different scenarios.

2) Model Efficiency: In Table IX, we list the number of
parameters, FLOPs, and Run-time to compare the model
size and computation efficiency between different methods.
Specifically, the run-time is the inference time for one video
on a single 2080Ti GPU. Although TTNs have a large learning
capacity with a large number of parameters (8.99M and
34.44M), they have relatively low FLOPs (10.1 GFLOPs and
37.0 GFLOPs) and run-time (36.4ms and 37.4ms). In contrast,
CDCN and CDCN++ have higher FLOPs (291.5 GFLOPs
and 312.5 GFLOPs) and run-time (5203.3ms and 5416.2ms)

tion. Due to the shortage of inductive bias, vision transformers
are usually pre-trained on a large number of samples and
transferred to medium-scale or small-scale datasets, which are
different from CNN-based methods. This strategy is widely
used in many other tasks when using the vision transformer,
such as classification [27], detection [73], segmentation [35],
and so on. To sum up, using pre-trained weights in vision
transformers is a vital characteristic and indispensable.

H. Experiments on Multi-Modal Datasets

Besides single-modal RGB input, multi-modal data
(i.e., RGB, Depth, and NIR) can also be beneficial for
performance improvement. To investigate such gains on
our network, we implement TTNs on multi-modal datasets
CASIA-SUREF [46] and CeFA [48]. To utilize the multi-
modal input, we adopt a halfway fusion approach [46]
to assemble the spatial and temporal information from
different modalities, which can be marked as TTN-T-NHF
and TTN-S-NHE, respectively.

1) Experiments on CASIA-SURF: As shown in Table X,
we measure the performance of our networks on the
intra-testing protocol of CASIA-SURF. When only using
single-modal RGB input, our method can obtain the lowest
ACER of 3.5%, which demonstrates the effectiveness of our
method on subtle feature extraction. When joining multi-
modal inputs, the ACERs can even be further minimized
to 1.0%, which shows a competitive performance compared
to the SOTA multi-modal fusion methods SEF [46] and
PSMM-Net [48].

2) Experiments on CeFA: Besides the intra-testing
on CASIA-SUREF, we conduct experiments on
protocols 1, 2, 3, and 4 of CeFA, respectively. The results are
reported in Table XI. It can be observed that our method can
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TABLE X
THE RESULTS OF INTRA-DATASET TESTING ON CASIA-SURF
Modality Method APCER(%)] | BPCER(%)] | ACER(%){
ResNet18 [71] 40.3 1.6 21.0
Single-scale SEF [74] 8.0 14.5 113
Single TTN-T (Ours) 4.0 33 37
TTN-S (Ours) 3.8 32 35
NHF [46] 5.6 3.8 4.7
Single-scale SEF [74] 3.8 1.0 2.4
Multi-scale SEF [74] 1.6 0.08 0.8
Multi PSMM-Net [48] 0.7 0.06 04
TTN-T-NHF (Ours) 0.8 2.2 1.5
TTN-S-NHF (Ours) 0.4 1.6 1.0
TABLE XI
THE RESULTS ON FOUR PROTOCOLS OF CEFA
Prot. Method APCER(%)J. BPCER(%)J. ACER(%)J
PSMM-Net [48] 2.440.6 4.6+2.3 35+1.3
MA-Net [75] 16.745.6 12.448.1 14.64+6.6
TTN-T (Ours) 24+1.0 8.7+5.2 5.64+3.0

1 TTN-S (Ours) 5.4+4.6 4.1£2.0 4.742.6
TTN-T-NHF (Ours) 0.9+1.2 34409 23409
TTN-S-NHF (Ours) 0.0£0.0 42+1.6 2.140.8

PSMM-Net [48] 7.7£9.0 3.1+£1.6 54453
MA-Net [75] 20.946.8 1.2£1.7 11.1+44
TTN-T (Ours) 3.7£2.0 0.440.1 2.1£1.1

2 TTN-S (Ours) 5.6+5.7 0.6+0.4 3.1£3.0
TTN-T-NHF (Ours) 2.940.8 0.5+0.0 1.7+£0.4
TTN-S-NHF (Ours) 1.6+0.6 0.3£0.2 1.0+0.4

PSMM-Net [48] 19.448.7 5.0+1.8 122452
MA-Net [75] - - -
TTN-T (Ours) - - -

3 TTN-S (Ours) - - -
TTN-T-NHF (Ours) 2.0+0.8 0.8+0.3 14404
TTN-S-NHF (Ours) 1.1£0.5 0.6£0.1 0.9+0.2

PSMM-Net [48] 7.8+£2.9 5.5+3.0 6.74£2.2
MA-Net [75] 30.4+13.6 18.1+£3.3 24.345.9
TTN-T (Ours) 7.8+1.6 8.8+3.4 83124

4 TTN-S (Ours) 6.442.3 6.5+3.6 6.542.1
TTN-T-NHF (Ours) 24422 1.9+04 22+1.0
TTN-S-NHF (Ours) 1.44+1.9 2.440.7 1.9+1.3

achieve a competitive performance despite the single-modal
RGB input. Moreover, when utilizing multi-modal inputs, the
performance is further improved and ranks the first on all four
protocols (2.1%, 1.0%, 0.9%, and 1.9% ACER, respectively).
The above results prove the generalization capacity of our
method on multi-modal cross-domain testing scenarios.

1. Experiments on 3D Mask Datasets

To prove the effectiveness of TTN against 3D mask attacks,
experiments on MLFP [45] and WMCA [47] are conducted.

1) Experiments on MLFP: Dataset MLFP contains three
different data types: visible, near-infrared, and thermal spec-
trums. The training-testing protocol based on subjects and
masks unseen is obeyed in our experiments, thus their average
EERs are reported in Table XII. For near-infrared and thermal
spectrums, it is difficult to generate pseudo depth maps, thus
we use binary maps to replace depth maps in these two testing
scenarios, which are labeled as TTN-T-BM and TTN-S-BM.
As shown in Table XII, it can be observed: 1) The results of
thermal spectrums arrive at the minimum EER of 1.2%, which
proves the viewpoint in [45] that the thermal imaging spectrum
is most effective in detecting mask attacks; 2) Compared with
the results of using different ground-truths in visible, we can
observe that pseudo depth maps can further reduce the EER,
thus are more suitable for map supervision in our network;
3) There exist substantial reductions (25.5%, 36.9%, and 9.6%,
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TABLE XII
EER (%) OF FACE PRESENTATION ATTACK DETECTION ON MLFP
Method VIS| NIRJ Thermal|
HOG [76] 349 45.5 24.5
ULBP [77] 38.7 49.0 21.3
BSIF [78] 29.2 43.3 15.0
LPQ [79] 40.0 43.8 13.7
RDWT+Haralick [12] 329 42.0 10.8
TTN-T (Ours) 7.1 - -
TTN-S (Ours) 3.7 - -
TTN-T-BM (Ours) 7.6 6.0 2.7
TTN-S-BM (Ours) 5.0 5.1 1.2

Fig. 9. Feature distributions on OULU-NPU Protocol 1. Left: features of
single-frame baseline. Right: features of our TTN. Color code means: red =
live, green = printerl, blue = printer2, orange = replayl, black = replay2.

respectively) in EER, compared with the other methods, which
proves the effectiveness of our method against mask attacks.
2) Experiments on WMCA: The results of protocols seen
and unseen on WMCA are shown in Table XIII. Specifically,
on protocol unseen, the Leave-One-Out (LOO) strategy is
adopted to measure the generalization capacity when encoun-
tering different attacks. With only RGB input, our method can
achieve the best performance on protocols seen (2.6% ACER)
and unseen (8.8% ACER). It can be observed that our method
has poor performance for unseen attacks replay and glasses.
For replay, our video-based method may be confused by the
similar temporal characteristics between replay attacks and live
faces. For glasses, it may cause mistakes in depth estimation
due to the similarities between the appearance of the glass
attacks and bone fide wearing medical glasses. However, the
above shortages can be effectively relieved when using RGB
and depth inputs together. The performance can be further
improved and achieve the first rank among all methods.

J. Visualization and Analysis

1) Feature Distribution Visualization: As shown in Fig. 9,
the feature distribution of testing videos on OULU-NPU Pro-
tocol 1 is visualized in the 2D plane via t-SNE [84]. The right
image represents features of our multi-frame method TTN-S
which presents a well-clustered characteristic, compared with
the left image representing features of single-frame baseline
ViTranZFAS-S [31]. This observation indicates that the tem-
poral information embedded between frames is beneficial to
distinguish living from spoofing more accurately.

2) Depth Estimation Visualization: As shown in Fig. 10,
original images represent input RGB images; Original depth
maps are generated by PRNet [51]; Depth estimation results
of w/o TDA and final model are also shown for comparison.
It can be observed that our TTN achieves more accurate
depth estimation compared with the model w/o TDA. Because
TDA modules utilize feature differences of adjacent frames to
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TABLE XIII

COMPARISON OF THE RESULTS OF PROTOCOLS ‘SEEN’ AND ‘UNSEEN’ ON WMCA. THE VALUES ACER(%) REPORTED ON
TESTING SETS ARE OBTAINED WITH THRESHOLDS COMPUTED FOR BPCER=1% ON DEVELOPMENT SETS.
‘RGB-D’ DENOTES USING BOTH RGB AND DEPTH INPUTS

Unseen
Modality Method Seen |"Flexiblemask  Replay  Fakchead  Prints _ Glasses  Papermask  Rigidmask  MeanE5td
ResNet50 [71] 40.9 14.5 15.7 38.0 32.7 273 20.1 30.2 25.549.0
CDCN [57] 384 12.1 8.7 427 30.1 11.7 11.9 30.4 21.1£13.2
RGB Auxiliary (Depth) [17] 42.7 13.2 12.5 473 322 23.7 13.9 40.4 26.2414.1
TTN-T (Ours) 3.0 15.1 33.8 1.3 0.4 40.4 3.0 6.0 143+16.4
TTN-S (Ours) 2.6 10.7 21.9 1.3 0.0 254 0.0 2.0 8.8+10.9
MC-PixBiS [80] 1.8 49.7 3.7 0.7 0.1 16.0 0.2 34 10.5+16.7
MCCBB-OCCL-GMM [81] 33 22.8 314 1.9 30.0 50.0 4.8 18.3 22.74+15.3
MC-ResNetDLAS [82] 42 333 38.5 49.6 3.8 41.0 47.0 20.6 3344149
RGB-D CMFL [83] - 124 1.0 2.5 0.7 335 1.8 17 7.6£11.2
TTN-T-NHF (Ours) 0.8 26.4 0.0 0.0 0.0 15.9 1.8 8.0 7.44+10.2
TTN-S-NHF (Ours) 0.3 21.7 1.7 1.7 0.0 21.3 0.7 2.3 7.11+9.9
Living

BESCICAC 1D
20008010

EnTEEE

Fig. 10. The depth estimation and attention visualization results of hard samples in OULU-NPU. For attention visualization, bright regions represent activation
areas for spoof cues. (a) Original images. (b) Original depth. (c) Depth estimation w/o TDA. (d) Depth estimation of final network. (e) Attention visualization
w/o TDA. (f) Attention visualization w/o PTA. (g) Attention visualization of the final network.

enhance the motion-related channels that play an important
role in depth estimation. Specifically, some local cues are
easily distinguished in dynamic mode, but difficultly in static
mode. Thus, TDA strengthens this based on motion and
promotes the ability of our model for depth estimation.

3) Spatial Attention Visualization: To locate spatial regions
that distinguish between live and spoof faces, we use the
Transformer Attribution Method [85] to realize spatial atten-
tion visualization on the partial and final networks, as shown
in Fig. 10 (e)-(g). Specifically, brighter areas in attention
maps represent higher weights for spoofing cues during clas-
sification. It is observed that the attention values are evenly
scattered on live faces, while biased distributions are shown
on spoof faces. Specifically, in spoof faces, there exist large
attention values in facial parts, especially corners of the eye,
and sides of the nose, indicating that these regions may contain

more spoofing cues. Furthermore, compared with (e) and (g),
attention activation in spoofing of (e) is merely focused on the
mouth and its surrounding area while that of (g) can cover
more valid areas. Besides, attention activation in living of
(e) includes many noise activation regions compared with that
of (e). The above phenomenon proves the effectiveness of our
TDA on extracting the inherent characteristics by weighing
motion-sensitive feature channels. Compared with (f) and (g),
attention in spoofing of (f) shows an incomplete covering when
missing some valid areas, which demonstrates the use of our
PTA is beneficial to capture more potential spoofing cues by
adding multiple time windows for rich short-range and long-
range connections between different frames.

4) Temporal Attention Illustration: The temporal trans-
former also utilizes multiple self-attention layers to integrate
classification information from different frames. Different
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Fig. 11.
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(d)

Ilustration of temporal attention distribution upon clips containing abnormal frames. The clips in (a) and (b) contain black frames, while clips

in (c) and (d) contain noise frames. The green border represents a living video clip and the red border represents a spoofing video clip. Temporal attention
weights are illustrated in histograms. The score is calculated according to Eqn. (12), which is normalized between 0 and 1. Specifically, the closer the score
is to 1, the more likely to be judged as live faces. The closer the score is to 0, the more likely to be judged as spoof faces.

from the basic transformer layer, we propose a pyramid struc-
ture to capture multi-scale temporal characteristics by using
multiple window attention of different sizes parallelly. Thus,
each attention layer can independently concentrate on different
scales of temporal information. This not only extracts the
overall temporal cues, but also enhances the robustness against
abnormal frames in video clips. Specifically, for the single
global attention layer, abnormal frames may draw high weights
due to their abnormality compared with other frames, which
may damage the reasonable temporal information extraction.
However, our PTA with multiple window attention of different
sizes can weaken this influence by collecting local and global
temporal features independently. The ablation illustration is
performed in Fig. 11. The temporal attention distribution is
more scattered for the model w/ PTA, which can fully utilize
the classification embedding from different frames for the
final decision. On the contrary, the model w/o PTA assigns
large weights on abnormal frames, which may lead to missing
some important classification clues that are concealed by
high-weight abnormal features. The score changes before and
after adding PTA prove our point of view experimentally.

V. CONCLUSION

In this paper, we propose a temporal transformer net-
work (TTN) to learn rich multi-granularity temporal charac-
teristics for face anti-spoofing (FAS). It consists of temporal
difference attentions (TDA), pyramid temporal aggregation
(PTA), and a temporal depth difference loss (TDL). Firstly,
unlike most existing works that learn temporal features on
global images, the TDA captures motion-sensitive local cues
on comprehensive local patches. Secondly, the PTA aggregates
features on multiple tempo speeds, learning short-range and
long-range relations among different frames. Thirdly, with the
motion-sensitive spoof patterns as the ground truth, the TDL
can supervise networks to locate spoof facial parts accurately.
To the best of our knowledge, learning temporal information
via transformers for FAS has not been studied before. Exper-

imental results on several benchmarks have demonstrated the
superiority of our proposed methods.
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