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Abstract
Task graphs have been studied for decades as a foun-
dation for scheduling irregular parallel applications and
incorporated in many programming models including
OpenMP. While many high-performance parallel libraries
are based on task graphs, they also have additional sched-
uling requirements, such as synchronization within inner
levels of data parallelism and internal blocking commu-
nications.

In this paper, we extend task-graph scheduling to sup-
port efficient synchronization and communication within
tasks. Compared to past work, our scheduler avoids dead-
lock and oversubscription of worker threads, and refines
victim selection to increase the overlap of sibling tasks.
To the best of our knowledge, our approach is the first
to combine gang-scheduling and work-stealing in a sin-
gle runtime. Our approach has been evaluated on the
SLATE high-performance linear algebra library. Relative
to the LLVM OMP runtime, our runtime demonstrates
performance improvements of up to 13.82%, 15.2%, and
36.94% for LU, QR, and Cholesky, respectively, eval-
uated across different configurations related to matrix
size, number of nodes, and use of CPUs vs GPUs.

CCS Concepts: • Computing methodologies → Parallel
programming languages; • Software and its engineering
→ Runtime environments.
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1 Introduction
On-node parallelism in high-performance computing sys-
tems has increased significantly in recent years. This
massive amount of parallelism has the potential to de-
liver significant speedups, but there is a concomitant bur-
den on application developers to exploit this parallelism
efficiently while facing challenges such as inherent load
imbalances and communication/synchronization require-
ments. One popular approach to reducing the complexity
of application development for modern processors is to
introduce high-performance libraries. High-performance
linear algebra libraries have pioneered the use of task
graphs to deal with load imbalances in parallel kernels
such as LU, QR, and Cholesky factorizations while also
exploiting data locality across dependent tasks.

At the same time, there is now increased support for
task-parallel execution models with task dependencies in
modern parallel programming models, such as OpenMP.
Many task graphs in real-world applications include li-
brary calls or nested instances of parallel regions that
involve blocking operations such as barriers. They of-
ten include interleaved sequences of communication and
computation operations for latency hiding. It’s critical
for performance to efficiently compose these multiple par-
allel instances with low-level synchronization primitives.
A key motivation for our work is that current task-based
programming systems do not handle this composition
effectively.
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The most typical way to schedule the multiple par-
allel instances with blocking sychronizations on task
graphs is to spawn a pool of kernel-level threads for
each instance, which leads to oversubscription on the
underlying hardware threads. This oversubscription can
delay intra/inter-node communication or synchroniza-
tion operations, which often occur in periodic time steps.
The delay can lead to overall degraded performance as a
result. Scheduling these operations without interference
from other parallel regions helps reduce the overall criti-
cal path of the application. One approach to addressing
the challenge of oversubscription due to multiple parallel
instances is to adopt the use of user-level contexts such
as tasks and user-level threads (ULTs)[5, 23] to map
multiple parallel instances onto a fixed number of worker
threads. However, adopting user-level contexts can lead
to deadlock because all user-level contexts from the same
parallel region are not guaranteed to be scheduled simul-
taneously onto worker threads when a low-level blocking
operation occurs. This is because the user-level contexts
are usually non-preemtible and the operating system has
lack of control over them, which causes a deadlock when
they’re blocked on low-level synchronization primitives.
Figure 1(a) shows how adopting user-level contexts such
as tasks or ULTs can lead to deadlock when a parallel
instance contains blocking synchronization operations.
This composition problem exists in most task-based pro-
gramming models because they cannot take control of
the low-level blocking primitives in parallel instances
that arise from user-written codes or library calls.

(a) Deadlock in multiple parallel instances from tasks or ULTs

(b) Deadlock avoidance with gang-scheduling of parallel in-
stances

Figure 1. Deadlock issues across multiple parallel in-
stances created as user-level contexts such as tasks or
user-level threads(ULTs)

In this work, we show how a standard task scheduling
runtime system can be extended to support the real-
world constraints discussed above by (1) combining gang-
scheduling [33] and work-stealing [8] and (2) supporting
hybrid victim selection. We also implement our approach
in LLVM OpenMP runtime. Thus, for the rest of this
paper, we use OpenMP terms to explain our approach.

Our approach provides deadlock-avoidance in the sce-
nario where multiple user-level contexts are synchro-
nized with blocking operations. The integration of gang-
scheduling with work-stealing helps nested parallel re-
gions run efficiently without oversubscription and dead-
lock. The parallel regions to be gang-scheduled are cre-
ated as ULTs and scheduled onto a set of least loaded
cores, as shown in Figure 1(b). Workers can schedule
other tasks in work-stealing mode while they are gang-
scheduling ULTs from specified parallel regions. Gang-
scheduled parallel regions(or simply, gangs) are assigned
a monotonic identifier to enforce an implicit ordering of
gangs and their ULTs. This monotonic identifier guar-
antees multiple gangs and their ULTs can be scheduled
without being blocked as in Figure 1(a) and able to be
stolen by idle workers with deadlock avoidance, which
compares the identifier of the current worker and the
gang-scheduled ULTs without bookkeeping on a global
data structure as in prior work on gang-scheduling imple-
mentations. This hybrid combination of gang-scheduling
and work-stealing reduces interference and increases data
locality for data parallel tasks that involve synchroniza-
tion and communication in each time step. An appli-
cation developer can use our API and environmental
variable to apply this gang scheduling to a specific par-
allel region or globally throughout the program.

In addition to gang-scheduling, our runtime system
adopts a hybrid victim selection policy in work-stealing
to facilitate communication-computation overlap. We’ve
discovered that a heuristic for victim-selection, which
starts random stealing with the last successful victim
for the first steal trial, can prevent the overlapping of
communication and computation on task graphs as in
Locality case of Figure 2. Figure 2 shows the performance
difference from different victim selection policies.

Figure 2. Difference in critical path of mixed sequences
of communication and computations. Hybrid victim se-
lection makes work-stealing alternate between these two
sequences.
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The existing OpenMP runtime systems such as LLVM
OpenMP schedule tasks as in the Locality case using
the last successful victim for the first steal trial, while
our approach pursues both the Locality and the Over-
lapping cases. Ours is the first work to propose and
implement a hybrid scheduling of gang-scheduling and
work-stealing. Our implementation is demonstrated on
real-world examples.

The contributions of this paper are as follows:
∙ Extension of task-based runtime systems to in-

tegrate gang-scheduling with work-stealing in an
efficient manner.

∙ Introduction of hybrid victim selection to increase
the overlap of tasks in task graphs while still pre-
serving data locality.

∙ Evaluation of our approach on real-world linear
algebra kernels in the SLATE library: LU, QR,
and Cholesky factorizations. Relative to the LLVM
OMP runtime, our runtime demonstrates perfor-
mance improvements of up to 13.82%, 15.2%, and
36.94% for LU, QR, and Cholesky, respectively,
evaluated across different configurations.

2 Background
2.1 Task graphs in Task-Level Programming Models
Many task-level parallel programming models have in-
troduced task graphs in different ways to extract par-
allelism from irregular parallel applications. The first
type of interface for task graphs is explicit task depen-
dency through objects such as promises and futures in
C++ 11 [24], Habanero [6] and Go [17]. Tasks wait on
objects until the predecessors of the objects put data
on the objects, which resolve the dependencies of the
successors. The other type is implicit task dependency,
which automates the management of objects with the
help of compiler and runtime that form dependencies
through directives as depend in OpenMP 4.0 [31] or
data flow of variables in Legion [7]. After the preceeding
tasks are completed, dependency of the successors are
automatically resolved and they become ready tasks.

2.2 User-level threads for Task-Level Programming
Models

In parallel programming models, user-level threads (ULTs)
have been used to benefit from their lightweight con-
text switching overhead. Storing necessary data for con-
text switching in user space rather than in kernel space
reduces the context switching overhead of user-level
threads relative to that of kernel-level threads. There
have been several implementations of user-level threads
that benefit from its lightweight context switching over-
head in different contexts [26, 38, 39]. In spite of the
benefits of ULTs, they have deadlock issues because of

a lack of coordination with kernels as described in Fig-
ure (a). The OS kernel cannot identify the status of each
ULT, which can lead to deadlock when ULTs perform
blocking operations such as barriers and locks. There
have also been efforts where runtime systems share ULT
information with the OS kernel, such as scheduler activa-
tions [4]. However, all previous works required significant
changes in both the ULT runtime and OS kernel, which
has inhibited the adoption of their APIs in operating
systems.

2.3 Gang-scheduling and Work-stealing
Gang-scheduling [19, 33] was initially proposed to reduce
the interference of a group of tightly-coupled threads
by other threads or processes. Gang-scheduling, as first
introduced, uses a matrix to pack thread requests from
processes in which each row is scheduled one at a time.
Thus, context switching occurs when it moves from one
row to the next row, which reduces the delay in commu-
nication across threads incurred by unnecessary context
switching. However, a waste of resources results when
the threads in each gang have a load imbalance or insuffi-
cient cores are available to meet their requests. Different
packing policies have been proposed to address these
inefficiencies [18, 19, 40], but they did not solve the issue
completely. Also, gang-scheduling introduces significant
overhead through its use of global data structures.

In contrast, work-stealing enables each worker to ex-
ecute tasks whenever there are available tasks to steal.
Each worker creates tasks and pushes them into work-
stealing queues which can be global or local. Then, other
workers steal tasks from the work-stealing queues by
running a work-stealing algorithm. Depending on the
work-stealing algorithm used, work-stealing can maxi-
mize either load balancing or locality. Optimizing work-
stealing for load balancing can reduce locality through
context switching and communication delays. Extended
work-stealing algorithms have been introduced to allevi-
ate the cost of work-stealing by considering the locality
of participating processing elements [1, 13, 21, 30]. Some
of the previous work also extended work-stealing to dis-
tributed systems [16, 27, 29, 36].

3 Design
This section describes the algorithm and interface we de-
signed to address the limitations of current task-parallel
runtimes mentioned in Section 1. We propose the use
of gang-scheduling to schedule ULTs of a parallel re-
gion without oversubscription and deadlock. Our design
supports the use of gang-scheduling for specific paral-
lel regions or globally, while other parallel regions and
tasks are scheduled with work-stealing. In addition to
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gang-scheduling, we also discuss how the victim selec-
tion policy, which impacts how a task graph is traversed,
affects the overlapping of communication and compu-
tation tasks, and we propose a hybrid victim selection
policy to improve the overlapping supported by the task
scheduler.

3.1 Gang-Scheduling of Data-Parallel Tasks
3.1.1 Integrating gang-scheduling with workstealing.
Gang-scheduling and work-stealing have not been used
together in task scheduling. Each has its advantages
and disadvantages as compared to the other. Integrat-
ing them so that each can be used in cases when it is
beneficial can improve the overall performance of task-
parallel applications. We propose extending the omp
parallel construct to schedule threads of selected parallel
regions in gang-scheduling mode. Users can apply gang-
scheduling to upcoming or all parallel regions through
our proposed API in Listing 1. By default, all top-level
parallel regions are scheduled in gang-scheduling mode.
Other parallel regions that are not set by the proposed
API are scheduled in work-stealing mode by putting all
their ULTs into the calling worker’s local work-stealing
queue. For the rest of this paper, we refer to ULTs to be
scheduled in gang-scheduling mode as gang ULTs, while
other ULTs and tasks are referred to as normal ULTs
and tasks.
export OMP_GANG_SCHED =1; // Apply gang - scheduling to

all parallel regions
void ompx_set_gang_sched (); // All following parallel

regions are gang - scheduled after this call
void ompx_reset_gang_sched (); // Parallel regions

after this call are scheduled in default
scheduling policy

Listing 1. API to apply gang-scheduling to parallel
regions

3.1.2 Gang-scheduling of user-level threads. When mul-
tiple gang-scheduled parallel regions are running simul-
taneously, it is important they be scheduled without the
possibility of deadlock. To prevent deadlock as described
in Figure 1a, we assign a monotonically increasing gang
id to each parallel region, which is incremented atomi-
cally across all workers. We use this gang id to restrict
the scheduling order of gangs so as to guarantee that
deadlock does not occur while gangs run in parallel with-
out serialization. Algorithm 1 describes how the gang
ULTs from a parallel region are assigned the gang_id
and nest_level of the current worker; the runtime system
then gang-schedules gang ULTs of each parallel region.
GANG_SCHED() is synchronized by a shared lock in
the fork stage of a region in the OpenMP runtime. The
fork phase involves access to global data structures which
are synchronized by a global lock for the fork and join
phases in the runtime system. Thus, parallel regions

Algorithm 1 Gang-schedule a Parallel Region with Load
Balancing and Monotonic Gang ID

1: Init: worker->gang_id = worker->nest_level = -1
for all workers

2: function fork_parallel_region(𝑛_𝑟𝑒𝑞𝑢𝑒𝑠𝑡, 𝑡ℎ𝑟𝑒𝑎𝑑𝑠)
3: Obtain_Fork_Lock()
4: if gang_sched_enabled then

◁ set by the interface in Listing 1
5: GANG_SCHED(n_request, threads)
6: else
7: Push(Local_TaskQueue, threads)
8: Release_Fork_Lock()
9: function gang_sched(𝑛_𝑟𝑒𝑞𝑢𝑒𝑠𝑡, 𝑡ℎ𝑟𝑒𝑎𝑑𝑠)

10: ◁ Gang-schedule threads to n_request workers
11: gang_id = GET_MONOTONIC_GANG_ID()
12: workers = GET_WORKERS(n_request)
13: n_gang_threads += n_request
14: for i = 0 to n_request-1 do
15: threads[i]->gang_id = gang_id
16: threads[i]->nest_level = cur_worker->nest_level
17: Push(worker[i]->gang_deq, thread[i])
18: function get_workers(𝑛_𝑟𝑒𝑞𝑢𝑒𝑠𝑡)
19: ◁ Retrieve a list of least loaded n_request workers
20: avg_load = n_gang_threads / n_workers
21: reserved_workers

= least_loaded_workers(n_request, avg_load)
◁ obtain n_request workers of which gang deq has

ULTs less than or equal to 𝑎𝑣𝑔_𝑙𝑜𝑎𝑑
22: return reserved_workers

have an inevitable serialization in the fork phase, and
gang_sched contributes a marginal additional waiting
time to the fork phase of each region.

When each gang is assigned a set of workers (“re-
served” workers), the workers that are closer to the cur-
rent worker and less loaded with gang-scheduled ULTs
have higher priority in GET_WORKERS(). We assume
that all the worker threads are pinned to avoid any mi-
gration cost and uncertainty that may be caused by the
OS thread scheduler.

Gang ULTs become stealable after they are pushed to
the reserved workers’ gang ULT deq. Other workers can
steal the gang ULTs from the reserved workers, which
enables an earlier start of gang ULTs if the reserved work-
ers for the gang are busy executing other normal ULTs
and tasks. This is because we only consider the number
of gang ULTs on each worker in GANG_SCHED(). This
additional work-stealing resolves unidentified load imbal-
ance without tracking all normal ULTs and tasks. The
work-stealing of gang ULTs happens at every scheduling
point, such as barriers, along with normal tasks and
ULTs. SCHED_ULT_AND_TASK() in Algorithm 2
is the scheduler function, which schedules a ULT or
task on each worker in the synchronization points. Gang
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Algorithm 2 Scheduling Gang ULTs with Deadlock Avoid-
ance through the Eligibility Function

1: function sched_ult_and_task() ◁ Schedule a ULT or
task

2: if ULT = STEAL_GANG_ULT(Local_Gang_deq)
then

3: return ULT
4: else if task = POP_TASK(Local_TaskQueue) then
5: return task
6: victim = SELECT_VICTIM()
7: if ULT = STEAL_GANG_ULT(Remote_Gang_deq
8: (victim)) then
9: return ULT

10: else
11: return Steal_Task(Remote_TaskQueue(victim))
12: function steal_gang_ult(deq)
13: head = deq->head
14: ULT = deq[head]
15: if IS_ELIGIBLE_TO_SCHED(ULT) then
16: if CAS(&deq->head, head, (head+1)) then
17: worker->gang_id = ULT->gang_id
18: worker->nest_level = ULT->nest_level
19: return ULT
20: return false
21: function is_eligible_to_sched(ULT)
22: ◁ Check if worker can steal ULT
23: if ULT->nest_level > worker->nest_level then
24: return true
25: else if ULT->nest_level == worker->nest_level

∧ ULT->gang_id < worker->gang_id then
26: return true
27: return false

ULTs have the highest priority in work-stealing and
go through an additional function, IS_ELIGIBLE_TO
_SCHED(), to check if each gang ULT from a victim
worker can be scheduled on the caller.

3.1.3 Deadlock avoidance with the eligibility function.
The eligibility function, IS_ELIGIBLE_TO_
SCHED() compares the nest-level and gang_id of the
current worker with the corresponding variables in the
victim gang ULT which are assigned in GANG_SCHED().
This function guarantees parallel regions are scheduled
in a certain partial order where gangs, which are started
earlier or in lower nested levels, have precedence over
those that started later or are in upper levels. This
implicit ordering through the identifier also allows multi-
ple gangs to run simultaneously without serialization of
gangs based on certain global data structures. Further,
any idle worker can steal and schedule the gang ULTs
in the partial order with the eligibility function, which
removes unnecessary waiting time which existed in the
previous gang-scheduling implementations.

With Algorithm 1 and 2, gangs are pushed in the
order of gang_id. When some of workers are trying to

steal in synchronization points, they’re allowed to steal
from ULTs with smaller gang_id and bigger nest_level,
through the eligiblity function. However, the function
prevents stealing ULTs with a bigger gang_id and smaller
nest_level than the caller, which makes gangs in the task
graph to be scheduled in one direction without cycles.

In this way, our gang-scheduling approach prevents
deadlock of multiple parallel regions contending on the
same pool of workers as described in Figure 1(b).

3.1.4 Comparison with previous work. With the al-
gorithms and heuristics described in this section, only
selected parallel regions are guaranteed to be scheduled
in gang-scheduling mode. The gang-scheduling we pro-
posed is relatively relaxed compared with previous work
because our algorithm guarantees a parallel region to
run simultaneously at some point in runtime. Some of
the threads in the region can run earlier than others,
which results in less waiting time and more efficient use
of workers. Our scheme doesn’t require a global table
to keep track of threads and reduces waiting time by
allowing each region to start immediately and to make
ULTs stealable after being gang-scheduled.

3.2 Hybrid Victim Selection for Overlapping and
Data Locality

Task graphs involving communication and computation
tasks are commonly used to exploit parallelism by over-
lapping tasks in different iterations of iterative applica-
tions. In linear algebra kernels, block-based algorithms
have similar task graphs to overlap the waiting time of
current tasks by doing some computation for the next
tasks. As mentioned in Section 1, many task-level run-
time systems use heuristics to schedule tasks in task
graphs to maximize data locality and minimize failed
steal trials. One of the common heuristics is to do ran-
dom stealing with the first victim from previous victims

Algorithm 3 Work-Stealing with hybrid of history and
random victim selection

1: Init: prev_victim_id[] for all workers
2: function Do_WorkStealing()
3: victim = SELECT_VICTIM()
4: if task = STEAL_TASK(victim) then
5: Push(prev_victim_id, victim)
6: Push(prev_victim_id, -1)
7: else
8: Pop(prev_victim_id)
9: return task

10: function Select_Victim
11: if Top(prev_victim_id) >= 0 then
12: return Top(prev_victim_id)
13: else
14: return Random_VICTIM()
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where the steal was successful. This heuristic is intu-
itively helpful when there are a few tasks in the graph
while other workers are idle. Tasks graphs for irregular
workload often have a few sibling tasks at a time. Each
of the tasks on the graph is paralellized in fine-grained
manner through a group of child tasks or nested-parallel
regions. This heuristic makes all workers to work on the
few victim workers where the tasks in the top-level graph
are scheduled and child tasks generated from them to
be stolen without unnecessary steal failures.

However, this heuristic may prevent the overlapping of
communication and computation across sibling tasks. For
example, there’s a task graph starting with a root task.
With the heuristic, the initial thread, which runs the root
task and creates the sibling tasks in the middle of the
root tasks, is the only thread with tasks, which makes
all other workers mark this thread as their successful
victim. So, this initial thread keep creating tasks as
a producer while others continue stealing from them.
Even though the stolen tasks have also some child tasks,
other workers keep stealing from the initial thread until it
becomes empty. This heuristic doesn’t hamper the overall
progress of the task graph if all tasks are computation
but may reduce the overlapping of computation and
communication in the task graphs we’re targeting.

To resolve these unintended anomalies while we keep
the benefit of this heuristic, we came up with a simple
heuristic to make random stealing to start with and
without previous successful victims alternatively. This
simple heuristic can make threads to steal from the few
loaded busy threads in the scenarios where the heuristic
is beneficial with at most one failed steal trial, while the
overlapping of communication and computation tasks
happens as intended.

Algorithm 3 is a combined algorithm that chooses vic-
tim workers for stealing. Each worker calls do_workstealing
when their local-task queue is empty and waiting for
other threads on any synchronization point. First, each
worker tries to steal the victim thread where the previ-
ous successful steal happens. If this steal turns out to
be successful, then it pushes the victim thread id and a
value, which cannot be a thread id(-1 in Algorithm 3).
This value makes the worker try random-stealing after
a successful steal. If the current steal fails, regardless
of whether it uses the previous victim or a randomly
chosen victim, it moves back to its previous slot in the
prev_victim_id. If the entry has a valid victim thread id,
this worker will try to steal from the victim where the lat-
est successful steal occurred. If not, it keeps stealing from
randomly chosen victims. This combined selection of vic-
tim from history and random method prevents workers
from repeatedly stealing from the same victim, which
would result in a serialized sequence of communication
and computation without overlapping.

4 Implementation
In this section, we introduce our integrated runtime sys-
tem of Habanero-C library and LLVM OpenMP runtime
to implement the proposed gang-scheduling algorithm
and victim selection policy.

4.1 Overview of Our Implementation
We integrated LLVM OpenMP runtime and Habanero-C
library (HClib) to use HClib’s user-level threading rou-
tines. This integrated runtime creates OpenMP threads
as user-level threads that run on HClib workers. This
runtime can run pure C++ codes using HClib APIs,
OpenMP codes, and HClib with OpenMP codes. In this
work, we use pure OpenMP codes to focus on the task
dependency graph issues in production-level applications.
The user needs to load this library to their application
binary using OpenMP through LD_PRELOAD. The
LLVM OpenMP runtime supports gcc, icc, and clang,
so any OpenMP binary built with the compilers can
run on our integrated runtime without any change to
their codes, which runs on HClib workers without our
gang-scheduling. User needs to call our APIs to schedule
their parallel regions in gang-scheduling as described in
Section 3. Hybrid-victim selection is by default enabled.

Figure 3. Implementation of Integrated HClib and
OpenMP runtime

Figure 3 shows how OpenMP instances are scheduled
onto HClib workers when gang-scheduling is enabled
through the interface in Algorithm 1. User-level threads
in each gang can be stolen by idle workers. When idle
workers try to steal a ULT from any gang, they check
with IS_ELIGIBLE_SCHED function if it is fine to
schedule the ULT by comparing their active gang_id and
nest_level with the ULT. Within each gang, OpenMP
threads steal tasks through the hybrid victim selection.
In the following sections, we will describe how we im-
plement gang-scheduling and work-stealing for nested-
parallel regions in this integrated runtime system.

4.2 Scheduling of Parallel Regions on the shared pool
of workers

Multiple OpenMP instances can run on this integrated
runtime system by gang-scheduling and work-stealing, so
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workers may have different nest-levels. User-level threads
from each OpenMP instance running on the workers
should be able to get access to each other. So, we im-
plemented that each worker has arrays for its active
gang_id, nest_level and thread_array. These arrays are
indexed by internal_nest_level of each worker to point
to active entries in the arrays for the current running par-
allel region. These variables are used to schedule multiple
parallel regions simultaneously in gang-scheduling and
support work-stealing of ULTs and tasks within/across
parallel regions.

Figure 4 shows how our implementation schedules mul-
tiple parallel regions onto the shared workers. When any
ULT on each worker tries to schedule a new OpenMP
instance onto workers, it creates a new thread_array
which is assigned an atomically incremented gang_id.
Each ULT also contains a copy of gang_id, nest_level
and pointer to thread_array. In Figure 4, there are two
parallel regions, gang(0) with 3 ULTs and gang(1) with
2 ULTs. Gang(0) is pushed to the worker [0,1,2] and
gang(1) is placed on worker 1 and 3. The active entries
on each worker are accessed through internal_nest_level
which starts from 0 and is incremented when a new
parallel region is scheduled. For example, worker 1 first
schedules thread 1 from gang(0) and then it schedules
the nested parallel region, gang(1), which increments in-
ternal_nest_level from 0 to 1. When ULTs are scheduled
by worker threads, gang_id, nest_level and thread_array
on each worker are updated. ULTs also update its cor-
responding entry in the shared thread_array. Gang_0
and gang_1 in Figure 4 show the updated information
of worker id and internel_nest_level where ULTs are

Figure 4. Gang-scheduling for nest-parallel regions and
Work-stealing within and across gangs

scheduled. When a ULT tries to steal a task from other
ULTs within each gang, this information is used to get
access to a work-stealing queue of a victim ULT.

When a idle worker tries to steal a ULT from other
busy workers, first it checks whether the ULT is eligible
through the IS_ELIGIBLE_SCHED, and then steal the
ULT. After the ULT is stolen, the worker copies the
information of the ULT to its local entries indexed by
incremented internal_nest_level for gang_id, nest_level
and thread_array. Each worker keeps a separate array
of queues for normal ULTs and tasks indexed by inter-
nal_nest_level, which are reused without being reallo-
cated for each new instance. For gang ULTs, each worker
has a local gang_deq where a master thread initiating a
parallel region pushes a gang ULT through gang_sched
function in Algorithm 1, which has highest priority over
other queues. Each worker gets a ULT by atomically
popping from this gang_deq. On any scheduling point,
each worker checks this queue first before they schedule
tasks in queues[internal_nest_level].

5 Application Study
We use three linear algebra kernels from the SLATE
library [20] to showcase the benefits of our work: LU,
QR, and Cholesky. SLATE is a state-of-the-art library
developed by the University of Tennessee that is designed
to make efficient use of the latest multicore CPUs and
GPUs in large-scale computing with common parallel
computing techniques such as wavefront parallelism for
latency hiding and heterogeneous use of CPU and GPU
in distributed environments. SLATE outperforms exist-
ing vendor-provided libraries and its predecessor, ScaLA-
PACK [14]. For our evaluation, we used the NERSC
Cori GPU cluster and built SLATE from its main repos-
itory(https://bitbucket.org/icl/slate) with the configu-
ration in Table 1. For the baseline OpenMP runtime
system, we used the LLVM OpenMP runtime, which was
forked from the LLVM github repository on 06/29/2020.

Hardware Configuration (per node) Software Configuration
Cluster NERSC Cori GPU SLATE 06/22/2020 Commit
CPU 2 x Intel Skylake 6148 (20C, 40SMT) Compiler GCC 8.3
GPU 8 x Nvidia V100 MKL 2020.0.166
NIC 4 x dual-port Mellanox EDR CUDA/MPI 10.2.89, OpenMPI 4.0.3

Table 1. Hardware/Software Configuration for Experi-
ments

We tested different configurations of ranks-per-node
and cores-per-rank using the LLVM OMP baseline, and
selected the best configurations for all our experiments
as follows. For LU and QR, we ran each kernel with 4
MPI ranks on each node with 10 OpenMP threads per
rank , while for Cholesky, we used 2 MPI ranks per node
with 20 OpenMP threads per rank. For GPU runs, we
used 4 GPUs per node which showed the best baseline
performance. The OpenMP threads and HClib workers
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are pinned in the same fashion, using the best affinity
setting among those tested.

We ran SLATE’s performance test suite to measure
the performance of each kernel in GFlops with different
configurations. Each performance measure is a mean of
6 runs after the first run as warm-up. We ran the kernels
with small and large matrices to cover common sizes of
input matrices on single and multi-node runs. For GPU
runs, we used only large matrices where the GPU version
starts to outperform the CPU-only runs. For Cholesky,
we ran the CPU-only version because the GPU version
of Cholesky offloads the trailing matrix update to the
GPU, without offering an opportunity to overlap the
trailing task and panel task (since no prior runtime was
able to exploit this overlap using the victim selection
approach in our runtime).

For comparison, we ran the test suite with the ScaLA-
PACK reference implementation using sequential MKL
(denoted by ScaLAPACK (MKL)), the SLATE default
implementation using omp task depend on LLVM OpenMP
runtime (denoted by LLVM OMP), and the same SLATE
implementation on our integrated runtime (denoted by
HClib OMP).

5.1 Overview of Task Graphs for LU, QR, and
Cholesky in SLATE

Figure 5 shows the general form of task graphs for factor-
ization kernels in SLATE. SLATE uses lookahead tasks
and panel factorization for overlapping of computation
and communication as well as data locality. Factoriza-
tion kernels factor panels (each panel is a block column)
and then send tiles in the factored panel to other ranks
so that they can update their next block column and
trailing submatrix. Lookahead tasks update the next
block column for the next panel factorization, and the
trailing submatrix task updates the rest of the trailing
submatrix. Panel and lookahead tasks are assigned a
higher priority than trailing submatrix computation with
a priority clause to accelerate the critical path of the
task graph, which is supported by only a few OpenMP
runtime systems such as GNU OpenMP. Regardless of
the support of priority, it doesn’t guarantee that the
scheduling of higher priority tasks will precede lower pri-
ority tasks even when it is supported because a priority
clause simply gives precedence to only ready tasks speci-
fied with higher priority. The trailing submatrix[i-1] task
and its child tasks become ready earlier than the panel
task[i] and its child tasks. For this sequence of tasks, the
common history-based work-stealing can prevent the ex-
pected overlapping of computation in trailing submatrix
and communication in panel task. Cholesky factorization
has significant degradation from this anomaly as shown
in Figure 7(b).

Figure 5. Simplified task graph of factorization kernels
in SLATE

Each factorization kernel has a different series of com-
putations and communication routines in the panel,
lookahead, and trailing submatrix tasks depending on
its algorithm. Each of the tasks consists of a block of
columns. In the following sections, we’ll discuss in detail
how our suggested approaches improve the performance
of these kernels.

5.2 LU, QR Factorization: Gang-Scheduling of
Parallel Panel Factorization

LU factorization is a basic factorization kernel for solving
linear systems of equations in which the coefficient matri-
ces are non-symmetric. Several optimizations for LU fac-
torization have been suggested. SLATE adopts a multi-
threaded panel algorithm to achieve a best-performing
LU implementation [28]. Figure 6 shows what each task
in the task graph in Figure 5 does in the LU and QR
factorization of SLATE. First, the LU factorization in
SLATE does a panel factorization on a block of columns
in panel tasks. The panel factorization is parallelized in
a nested-parallel region.

Figure 6. Panel, lookahead, and submatrix tasks of LU
and QR in SLATE with 2 threads for the nested parallel
region in Panel task

Each panel is internally decomposed into tiles. Each
thread is persistently assigned tiles in a round-robin man-
ner, which helps cache reuse and load balancing. Each
thread factors a column, and an updated trailing matrix
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in the assigned blocks is synchronized at the end of each
step (using a custom barrier operation in the library),
until a master thread does partial pivoting across threads
and other ranks. Because of these synchronizations, a
user-level threaded runtime without coordination can
lead to deadlock. After the panel factorization, all ranks
exchange the rows to be swapped for partial pivoting;
the first rank broadcasts the top row down the matrix.
The default implementation in SLATE uses a nested par-
allel region for the parallel panel factorization. However,
this nested parallel region interrupts the communication
and synchronization by oversubscription of threads on
the same cores. Our gang-scheduling makes sure the
nested parallel region runs on reserved workers without
interference from OpenMP threads in the upper level
while other workers can schedule trailing submatrix tasks
for overlapping. As Figure 5 implies, trailing submatrix
task[i-1] can run concurrently with panel task[i]. The
workers, which are scheduled for gang-scheduling, help
to execute the trailing submatrix tasks by work-stealing
when they reach the join barrier of the nested parallel
region.

Prior to the detailed evaluation of LU and QR, let’s
see how much each of our approaches affects the perfor-
mance of LU and QR. Figure 7a shows the performance
difference between LLVM and HClib OMP with gang-
scheduling and hybrid victim selection. As shown in
Figure 7(a), gang-scheduling gives significant speed-up
to both LU and QR while hybrid-victim selection gives
incremental benefit to only QR. Hybrid victim selec-
tion makes the intended overlapping of sibling tasks to
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Figure 7. Performance Difference of LU,QR and Cholesky
with Gang-scheduling(only LU and QR) and and hybrid
victim Selection on LLVM and HClib OMP (Seq: Se-
quential Panel Factorization, Par: Parallel Panel Factor-
ization, Gang-scheduling is applied to HClib(Par))

happen. It helps LU and QR to schedule panel and sub-
matrix tasks concurrently but panel tasks in LU and QR
takes much longer than trailing submatrix. So, the im-
proved overlapping doesn’t lead to significant reduction
in the overall execution time of LU and QR. Cholesky is
improved significantly by the hybrid victim selection, be-
cause its panel tasks take much shorter time than trailing
submatrix tasks. This will be explained in Section 5.4.
Figure 7 shows that both LLVM and our runtime show
similar performance under the same condition(history
stealing, sequential panel in LU and QR) , which means
both runtimes have similar runtime overhead by default.

Figures 8(a), 8(b), 8(e) show the performance of LU
factorization on single- and multi-node runs on Cori
GPU in double precision. The LU implementation of
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Figure 8. Performance of LU / QR factorization on single
/ 4-node of Cori-GPU (Skylake + V100) with double
precision (CPU: CPU-Only, GPU: CPU+GPU)
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SLATE includes the sequential global pivoting phase
after the OpenMP region, so the overall improvement is
relatively small compared with other kernels, which is
up to 13.82% on CPU-only runs. Our gang-scheduling
has diminishing improvement in CPU-only runs with
bigger matrices. However, with bigger matrices, the GPU
version of LU outperforms CPU-only runs and the re-
duction in synchronization and communication leads to
noticeable improvement in GPU runs. We’ll explain this
performance trend in CPU-only and GPU runs in the
following section.

Similarly, QR factorization does parallel panel factor-
ization. Unlike LU, QR doesn’t include partial pivoting,
so panel tasks in QR do not involve global communica-
tion for pivoting and QR doesn’t have sequential global
pivoting after the parallel region. Thus, QR factoriza-
tion shows relatively more significant speed-up with
our runtime over the baseline LLVM OpenMP runtime
with oversubscription compared with LU factorization.
SLATE uses a communication-avoiding QR algorithm
for QR factorization. It doesn’t include any communi-
cation in the panel factorization, while each panel task
transfers the tiles factored after the panel factorization
to other ranks before it proceeds with lookahead and
trailing submatrix tasks. The panel factorization is also
the most critical task to the task graph of QR factoriza-
tion in SLATE. Thus, gang-scheduling helps minimize
the interference of the nested parallel regions as it does
for LU.

Figures 8(c), 8(d), 8(f) show the performance of QR
factorization on single- and multi-node runs. Our work
improves the QR factorization up to 14.7% at CPU-only
runs and 15.2% at GPU runs on a single node over
CPU-only and GPU runs with LLVM OpenMP run-
time. Gang-scheduling shows considerable improvement
in 4-node runs up to 12.8%. QR factorization also has di-
minishing returns of improvement with bigger matrices,
as explained in the following section.

5.3 Detailed Analysis of Improvement in LU and QR
Figure 9 represents how much MPI routines, panel task
and other routines consist of the overall execution time
in terms of critical path. The tasks transfer tiles between
ranks in the beginning and end of panel, lookahead,
and submatrix tasks. So, MPI communication and panel
factorization determines the length of the critical path
of LU and QR task graphs. Child tasks from lookahead
and trailing submatrix tasks run in parallel with these
routines to overlap the critical routines, which consists
of most portion of Others. Each bar is normalized to the
total execution time of LLVM with the corresponding
input matrix.

The benefits of gang-scheduling in our integrated run-
time for single- and multi-node runs diminish for both
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Figure 9. Detailed Critical Path of LU and QR factor-
ization on a single node with LLVM and HClib OMP
(CPU: CPU-Only, GPU:CPU+GPU)

LU and QR factorization. Gang-scheduling helps remove
the delayed synchronization by oversubscription with
deadlock avoidance, which leads to reduction in Panel.
The reduction makes the tile transfer happen earlier, at
the end of the panel task, which shortens the waiting
time in other MPI ranks that need the tiles to proceed.
This is shown on the reduction of MPI Comm in Figure 9.
This improvement is diluted with the combined effect
of oversubscription. The degree of degradation incurred
by oversubscription depends on the inter-barrier time of
an application [22]. The bigger input matrix has longer
inter-barrier time, which leads to less significant degrada-
tion from context switching by oversubscription. Rather,
oversubscription hides waiting time from OS and hard-
ware events monitored at the kernel-level, which makes
our runtime shows increase in Others consisting of single-
threaded BLAS kernels. It is because the latency hiding
of oversubscription is removed. The decreasing degra-
dation of oversubscription on bigger matrices leads to
diminishing returns of gang-scheduling over oversubscrip-
tion.

However, the benefit of gang-scheduling becomes more
significant on the GPU offloaded version because a sig-
nificant portion of computation in others is offloaded to
GPUs where oversubscription helps on the large matrices.
A larger portion of the single-threaded BLAS kernels is
offloaded in LU than in QR. So, QR has diminishing re-
turns on the GPU version as the size of the input matrix
becomes bigger. If more computation in QR is offloaded,
our gang-scheduling can bring more improvement in QR.

5.4 Cholesky Factorization: Maximized Overlap of
Communication and Computation

Cholesky factorization is a decomposition of a Hermitian
positive definite matrix into a lower triangular matrix
and its conjugate transpose. Cholesky is used for stan-
dard scientific computations such as linear least squares
and Monte Carlo simulations. It has proven to be twice
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as efficient as LU when it is applicable. The panel fac-
torization is much lighter, so lookahead and trailing sub-
matrix tasks are critical to improving the performance
of Cholesky. As we mentioned above, trailing submatrix
tasks [i-1] and panel task[i] can run concurrently. LU and
QR factorization have heavy panel tasks which are par-
allelized in a nested-parallel region, so any workers that
finish lookahead tasks will push dependent panel tasks
into ready queues. Most often, they’re pushed to the
worker’s work-stealing queue, so panel tasks are likely to
be scheduled just after lookahead tasks. Also, the panel
tasks are heavy and take a large portion of execution
time, so the degree of overlapping of the panel tasks
and trailing submatrix tasks have limited impact on the
performance. In Figure 7(b) , Cholesky is highly influ-
enced by the victim policies which affect the overlapping
of the two tasks while LU and QR doesn’t have much
difference by the victim policies as shown in Figure 7(a).

Figure 10 shows that the panel factorization of Cholesky
factorization is done in a bunch of independent tasks and
takes less time than trailing submatrix tasks, so when the
panel task becomes available after its preceding looka-
head task is done, child tasks from the preceding trailing
submatrix task are already being scheduled. The timing
for the child tasks from the panel tasks is determined by
how each worker chooses a victim for work-stealing. If
they use the typical history-based victim selection, every
worker will keep stealing from the worker in which the
trailing submatrix is running and create its child tasks.
This work-stealing from the same victim leads to a delay
in the scheduling of the panel task and less overlapping
of inter-node communication on the panel task with the
child tasks from the trailing submatrix task.

Figures 11(a), 11(b), 11(c) show the performance of
Cholesky factorization. As we expected, the improved
overlapping of computation in trailing submatrix tasks
and communication in panel tasks enhances the per-
formance of Cholesky factorization significantly. The
improvement is more significant with bigger matrices
because it takes more time to transfer tiles to other
ranks and update the trailing submatrix, which gives
more opportunity for overlapping. On a single node, the
improvement is up to 36.94% with double-precision. On
4-node runs, the kernel is improved up to 28.83%.

We analyze Cholesky in detail to clarify where the im-
provement comes from. We profile each OpenMP worker

Figure 10. Panel, Lookahead, and Submatrix Tasks of
Cholesky in SLATE
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Figure 11. Performance of Cholesky factorization on
single/4-node of Cori-GPU (Skylake + V100) with dou-
ble precision (CPU: CPU-Only)

in different MPI ranks and compute the average of each
event such as Idle, MPI_Recv, MPI_Isend/Wait, and
Compute which includes all computations from panel,
lookahead, and trailing submatrix tasks. The largest
portion of Idle consists of waiting time until the up-
dated tiles are received through MPI_Recv from other
MPI ranks. Figure 11(d) shows the detailed analysis of
Cholesky factorization on a single node with two matrix
sizes on LLVM and HClib OMP. In the small matrix, the
amount of computation is relatively small, which doesn’t
affect the degree of overlapping significantly regardless
of when MPI routines are called. However, on the large
matrix, the computation from the trailing submatrix
takes longer time, which can overlap MPI routines. So,
our victim selection successfully hides the latency of
MPI routines, which leads to significant reduction in the
overall idle time.

6 Related Work
6.1 Priority and Criticality of Tasks on Task Graphs
There have been a couple of previous works regarding
criticality and priority of tasks on a task graph. Critical-
ity aware task scheduler and its application [10, 15]
suggested runtime extensions to assign higher prior-
ity(critical) to tasks on the longest path of a task graph.
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J. Richard et al. [37] studied the overlapping of OpenMP
tasks with asynchronous MPI routines in which the ap-
plication uses the priority clause and task loops. These
works accelerate the execution of a task graph by sched-
uling certain tasks first, which is at odds with the task
graphs where multiple sibling tasks are created for la-
tency hiding. It can rather prevent intended overlapping
of multiple sibling tasks and its child tasks.

6.2 Runtime Systems Based on User-level Threads
User-level threads have been adopted to benefit from
their lightweight context switching cost. One of the most
common uses of ULTs is to remove the oversubscription
by multiple parallel regions. Lithe [34] resolved the com-
posability of different OpenMP instances by providing
a dedicated partition of cores to each instance through
user-level contexts. However, this partitioning can lead
to less resource utilization because of imbalanced loads
across instances. Several runtime systems [5, 23, 32, 35]
share the underlying kernel-level threads through work-
stealing or their own scheduling algorithm with ULTs.
They tried to make use of the lightweight context switch-
ing cost of ULTs in different contexts but couldn’t resolve
the deadlock issue completely. Shenango [32] tried to
provide a bypass for blocking kernel calls, but other
blocking operations used in library calls or written by
users can lead to a deadlock. Our work benefits from
the advantages of ULTs without deadlock or inefficient
resource utilization due to coarse-grained partitioning.

6.3 Communication and Computation Overlap
Asynchronous parallel programming models [2, 11, 12,
25] have been suggested for overlapping by making all
of the function calls asynchronous, which directs the
runtime system to interleave communication and com-
putation inherently. However, the asynchronous parallel
programming models require significant effort on the
part of users to write their applications explicitly with-
out deadlock, and tracking control flow of functions calls
is not intuitive. To reduce this burden in explicit parallel
programming, there have been introduced implicit par-
allel programming models such as Legion, PaRSEC, and
StarPU [3, 7, 9]. These implicit parallel programming
models extract parallelism from user codes and handles
the communication and synchronization implicitly in
their runtime internals.

7 Conclusion
In this work, we proposed gang-scheduling and hybrid
victim selection in our runtime system to improve the
performance of task graphs involving inter/intra-node

communication and computation. Our approach sched-
ules nested parallel regions involving blocking synchro-
nizations and global communications with minimal in-
terference as well as with desirable data locality. It is
implemented efficiently using a monotonic identifier and
an eligibility function to enforce an ordering of gangs so
as to ensure the absence of deadlock. Also, it interop-
erates with work-stealing to minimize unused resources
within and across gangs. Our suggested victim selection
resolved the problem of the common heuristic based
on a history of previously successful steals by applying
random-stealing and history-based alternatives within a
fixed window size to overlap communication and compu-
tation.

We evaluated our work on three commonly used linear
algebra kernels, LU, QR, and Cholesky factorizations,
from the state of the art SLATE library. Our approach
showed an improvement for LU of 13.82% on a single
node in double precision and of 11.36% on multiple
nodes. The improvements for QR went up to 15.21%
on a single node and 12.78% on four nodes with double
precision. Cholesky factorization was improved up to
36.94% on a single node and 28.83% on multiple nodes
by our hybrid victim selection. Finally, our approach is
applicable to any application written using task graphs
that also needs to perform additional synchronization
and communication operations as in the SLATE library.
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