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ARTICLE

A Late Pleistocene third molar of Hylochoerus (Suidae, Mammalia) from Rusinga Island, 
Kenya: paleoenvironmental implications and a note on the hypsodonty of African 
forest hogs
Ignacio A. Lazagabaster a,b, Thure E. Cerling c and J. Tyler Faith d,e

aLeibniz Institute for Research on Evolution and Biodiversity, Museum Für Naturkunde, Berlin, Germany; bDepartment of Maritime Civilizations, Charney 
School of Marine Science and Recanati Institute for Maritime Studies, University of Haifa, Haifa, Israel; cDepartment of Geology and Geophysics, 
University of Utah, Salt Lake City, UT, USA; dNatural History Museum of Utah, University of Utah, Salt Lake City, Utah, USA; eDepartment of Anthropology, 
University of Utah, Salt Lake City, UT, USA

ABSTRACT
African forest hogs (genus Hylochoerus) are extant Afro-tropical suids that inhabit a variety of forest 
environments and thick bushlands and are predominantly herbivores. Hylochoerus likely evolved from a 
Pleistocene Kolpochoerus majus-like ancestor, but its recent evolutionary history is virtually unknown. Here, 
we describe a partial right lower third molar from the Late Pleistocene Wasiriya Beds of Rusinga Island (~50- 
36 ka). The crowns are mesiodistally compressed in a bunolophodont fashion and arranged in columnar 
pillars that resemble those of extant Hylochoerus. We provide accurate data derived from computed 
tomography on the hypsodonty index (HI) of extant Hylochoerus and show that the Rusinga third molar 
crown was as tall as those of its modern counterpart (HI = 1.8–2.0). Stable carbon isotope analyses suggest 
that the diet of the Rusinga specimen (δ13C = −17.0 ‰) was also like that of extant forest hogs (δ13C 
average = −17.6 ‰). This extremely negative value contrasts strikingly with those of other fossil large 
herbivores at Rusinga (δ13C average = −0.7 ‰.). Among the potential explanations for this anomaly, the 
most likely is that the Late Pleistocene paleoenvironments were more heterogeneous than previously 
considered and may have included closed-canopy woodland in the highlands of Rusinga.
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Introduction

Despite the rich eastern African Plio-Pleistocene fossil record, the 
latest part of the Pleistocene is not well sampled, and the fossil 
record tends to be sparse. As a result, the recent evolutionary 
history of many African taxa remains obscured (Frantz et al. 
2016). Today, sub-Saharan African Suidae form a clade with three 
genera, Potamochoerus, Phacochoerus, and Hylochoerus, all of 
which show distinct craniomandibular and dental adaptations and 
diverse ecological associations (Ewer 1958, 1970; Harris and White 
1979; Harris and Cerling 2002; Souron 2012, 2017; Souron et al. 
2015a; Lazagabaster 2019). The two living Potamochoerus species 
retain a relatively primitive suine dentition, characterised by low- 
crowned, bunodont teeth with thick enamel. Extant Potamochoerus 
species show a high degree of dietary flexibility, being capable of 
exploiting a wide array of dietary items throughout different habi-
tats, from closed forest to open woodland/bushland (Leus and 
Macdonald 1997; Melletti et al. 2017; Seydack 2017). The cranio-
mandibular and dental similarities of Potamochoerus with Pliocene 
Kolpochoerus and other archaic-looking specimens have brought 
confusion to the origin and evolution of these genera (White 1995; 
Bishop 2010; Souron 2012; Souron et al. J-R 2015b). Warthogs 
(genus Phacochoerus) have high-crowned third molars arranged 
in multiple rows of rounded columnar pillars. Their hypsodont 
dentition allows them to feed on grasses for most of the year in 
various types of open and occasionally dry savannah grassland/ 
bushland habitats (Cumming 1975, 2013; Butynski and Jong 
2017). Phacochoerus likely descends from a stock of Plio- 

Pleistocene Metridiochoerus via M. modestus but the early diver-
gence of the two living warthog species inferred from molecular 
studies is strongly at odds with the fossil record because warthogs 
older than 1.5–1.0 Ma are unknown (Harris and White 1979; 
Gongora et al. 2011; Frantz et al. 2016).

African forest hogs are the largest on average of all the wild suids 
on Earth, though some wild boar populations and domestic pigs 
can be larger (D’Huart 1993; D’Huart and Kingdon 2013; Reyna- 
Hurtado et al. 2017). Only one species in the genus Hylochoerus has 
traditionally been recognised, H. meinertzhageni, with at least three 
subspecies accepted (Grubb 1993, 2005; D’Huart and Kingdon 
2013), but it has been suggested that these forms could represent 
three different species (Groves and Grubb 2011; Gongora et al. 
2017). The diet of forest hogs consists mainly of herbaceous plants 
and grasses (D’Huart and Kingdon 2013; Reyna-Hurtado et al. 
2017), and they also feed occasionally on woody plants, ferns, 
seeds, larvae, worms, carrion, and eggs (D’Huart 1978; Kingdon 
1979). Forest hogs mostly occupy Afrotropical montane forests and 
other closed habitats throughout western, central, and eastern 
Africa (Figure 1, D’Huart 1993, Cerling and Viehl 2004, D’Huart 
and Kingdon 2013, D’Huart and Yohannes 2014, Reyna-Hurtado 
et al. 2017). They are differentiated from other extant African suids, 
among various craniodental and mandibular traits, in having buno-
lophodont and relatively hypsodont molars (Harris and White 
1979; Thenius 1981; Souron 2012). Hypsodonty is a relative mea-
sure of tooth crown height and while Hylochoerus molars are 
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usually described as high-crowned, meticulous quantitative data on 
hypsodonty is lacking.

Hylochoerus likely descends from a lineage of bunolophodont 
suids formed by Kolpochoerus phillipi and its descendant K. 
majus that goes back at least 2.8 Ma. This lineage shows gradual 
evolution towards the mesiodistal compression of the molar 
main pillars, the elaboration of talon/id complexity, and the 
increase in coronal cementum cover thickness (Souron et al. 
2015b; Lazagabaster et al. 2018). If the origin of Hylochoerus is 
traceable back to a K. majus-like ancestor, the characteristic 
features in the skull and the dentition of Hylochoerus must 
have evolved relatively rapidly during the Late Pleistocene. 
Unfortunately, the fossil record of Hylochoerus is very sparse. 
The only securely dated and well-identified fossils of 
Hylochoerus are those from Member III of the Kibish 
Formation ~0.1 Ma (Figure 1, Assefa et al. 2008). Therefore, 
the past diversity of Hylochoerus and the evolution of its 
derived craniomandibular and dental traits remain uncharted.

Here, we describe a distal fragment of a lower right third 
molar from Late Pleistocene (~50 to 36 ka) deposits at Rusinga 
Island, Kenya (Figure 1), that we attribute to an extinct form of 
Hylochoerus. We report for the first time rigorous Hylochoerus 
lower third molar hypsodonty values obtained from micro-CT 
scans and provide previously unpublished stable carbon isotopic 
data. These data allow us to discuss the importance of the fossil 
suid tooth in the context of the paleoenvironments at Rusinga 

and our understanding of the Late Pleistocene suid fossil 
record.

Depositional setting

The specimen was recovered in 2007 from the Late Pleistocene 
Wasiriya Beds at the Nyamsingula locality on Rusinga Island 
(Figure 1). Outcrops of the Wasiriya Beds are discontinuously 
exposed around the perimeter of Rusinga Island, typically ~15- 
36 m above the present-day level of Lake Victoria (Tryon et al. 
2010, 2012). They document a succession of valley-fill sediments 
and tephra deposits, with the main lithologies including (1) poorly- 
sorted sandstones and conglomerates that represent phases of high- 
energy erosion and deposition in seasonal channels, (2) fine- 
grained sandstones and siltstones that have been pedogenically 
modified (i.e., poorly developed paleosols) and represent intervals 
of landscape stability, and (3) primary and variably reworked fine- 
grained tephra deposits that derive from sources in the Rift Valley 
(Tryon et al. 2010, 2012; Blegen et al. 2015). The maximum age of 
the Wasiriya Beds is constrained by U-series ages of 111–94 ka from 
a tufa deposit at the base of the sequence (Beverly et al. 2015), 
consistent with the composition of the basal Wakondo Tuff, which 
probably derives from eruptions of Mt. Suswa dated to 100 ± 10 ka 
(Blegen et al. 2015). The minimum age is provided by Menengai 
Tuff, which is at the top of the Wasiriya Beds sequence and has been 
40Ar/39Ar dated to 35.62 ± 0.26 ka (Blegen et al. 2016). The 

Nyamsingula

Rusinga Island

Lake Victoria

E 34.16°

S 0.40°

S 0.35°

5 km

Late Pleistocene Wasiriya Beds
Rusinga Island

Extant Hylochoerus range

Kibish

Figure 1. Map of Africa showing the current geographical distribution of extant Hylochoerus according to the IUCN and the location of fossil sites discussed, including 
Kibish, in Ethiopia, and the Late Pleistocene Wasiriya Beds and the Nyamsingula locality of Rusinga Island, in Kenya.
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sediments exposed at the Nyamsingula locality are stratigraphically 
above the ~50 ka Nyamita Tuff (Blegen et al. 2015, 2017) and 
suggest that the vertebrate fossils from this locality are between 
~50 ka and ~36 ka in age.

Material and methods

Comparative specimens

We examined Hylochoerus mandibles from the mammal collections 
at the National Museum of Kenya, in Nairobi (n = 1), the Museum 
für Naturkunde in Berlin, Germany (n = 5), and the Chicago Field 
Museum, U.S.A. (n = 4). Additional fossil suid metrics were com-
piled from the literature (see references in Table 1). Third molar 
mesiodistal lengths were taken as maximal occlusal lengths, bucco-
lingual widths were taken basally on the first and on the second pair 
of main lateral pillars, and heights were taken as maximal crown 
heights. All measurements were taken by one of us (I.A.L.) with 
digital calipers to ensure consistency. A summary of the metric data 
is given in Table 1.

Micro-computed tomography

Four Hylochoerus skulls were scanned using the YXLON FF35 CT 
computed tomography system in the Micro-CT Laboratory of the 
Museum für Naturkunde in Berlin, Germany. All scans have a 
resolution between 106 μm and 113 μm. Three specimens are adults 
(two females and one male) and the other is a juvenile (with the 
lower third molar still unerupted). Lower third molar morphology 
was examined by segmenting the tooth enamel using the grey value 
variation tool in VGStudio Max 3.3. Third molar mesiodistal 
lengths and buccolingual widths were taken close to the cervix. 
The height was measured from the middle point of the cusp at the 
cervix level to the top (occlusal part) of the cusp on the first and on 
the second pair of main lateral pillars (Figure 2). Additional metrics 
obtained in a similar fashion on Hylochoerus CT scans from the 
Royal Museum of Central Africa (n = 10) were kindly provided by 
A. Souron. The results are provided in Table 2 and summarised in 
Table 1.

Carbon and oxygen stable isotope analyses

Enamel from modern Hylochoerus (n = 12) and from the fossil 
specimen were analysed for 13C/12C and 18O/16O ratios using the 
conventional δ13C and δ18O notation where δ13C = (Rsample/ 

Rstandard – 1) * 1000 and Rsample and Rstandard are the 13C/12C ratios 
for the sample and the standard, respectively, with an analogous 
equation for δ18O, using the international reference material VPDB 
(Vienna Pee Dee Belemnite) as reference material. All samples were 
treated using conventional methods (Passey et al. 2002) in an area 
of about 5 mm x 1 mm x 0.5 mm (deep) mid-way from the cervix to 
the occlusal surface of the teeth. About 200 micrograms for each 
specimen were analysed using a Gas Bench at 50°C coupled to an 
Isotope Ratio Mass Spectrometer (IRMS). Temperature corrections 
for fossil and modern samples were made according to (Passey et al. 
2007). The stable isotope results can be found in Appendix 1. In 
addition, a dataset of δ13C and δ18O values were compiled from the 
literature for extant and Pleistocene fossil African suid taxa, which 
includes the genera Hylochoerus, Kolpochoerus, Phacochoerus, 
Potamochoerus, and Metridiochoerus (Appendix 2). Note that taxo-
nomic identifications have been updated by IAL and A. Souron and 
may differ from the original source. All δ13C values for modern taxa 
are corrected to the pre-industrial δ13C of atmospheric CO2 
(δ13C1,750).

Systematic palaeontology

Institutional Abbreviations – FMNH, Chicago Field Museum of 
Natural History, Chicago, USA. KNM, National Museums of 
Kenya, Nairobi, Kenya; MRCA, Royal Museum for Central Africa, 
Belgium; ZMB, Museum für Naturkunde, Berlin, Germany.

Dental terminology – Generally adapted from Harris and 
White (1979) and Boisserie et al. (2014).

Dental abbreviations – C, canines. I, incisors. P, premolars; M, 
molars; m3, lower third molar.

Class Mammalia Linnaeus 1758 
Order Artiodactyla Owen 1848 

Family Suidae Gray 1821 
Genus Hylochoerus Thomas 1904

Generic diagnosis
Adapted from Souron (2012). Relatively large suid, especially 
among the Suinae, with marked sexual dimorphism; males can 
weigh over 250 kg. Cranio-mandibular structure derived with 
respect to Potamochoerus and Sus. Dental formula is reduced: 1/3I 
1/1 C 3–2/2P 3/3 M. Incisors and mesial premolars reduced relative 
to Potamochoerus. Incisors less hypsodont than in Potamochoerus 

Table 2. Individual lower third molar measurements of extant Hylochoerus from CT-scans. Abbreviations: BL1 and BL2, buccolingual width of first and second lophid, 
respectively; H1 and H2, lingual height of first and second lophid, respectively; HI1 and HI2, hypsodonty index of first and second lophid, respectively. All measurements in 
mm.

Specimen MD BL1 BL2 H1 H2 HI1 HI2 Sex Tooth side
MRAC 603 36 14 14 14 13 1.0 0.9
MRAC 2226 43 16 16 24 23 1.5 1.4
MRAC 2228 43 15 14 9 9 0.6 0.6
MRAC 2490 40 15 15 14 14 0.9 0.9
MRAC 2908 42 15 15 30 30 2.0 2.0
MRAC 3418 38 14 14 13 13 0.9 0.9
MRAC 13842 40 12 13 19 19 1.6 1.5
MRAC 14002 48 17 16 30 30 1.8 1.9
MRAC 15292 35 14 14 14 14 1.0 1.0
MRAC 17783 43 15 16 21 20 1.4 1.3
ZMB 39651 42.6 15.7 15.8 23.5 22.5 1.5 1.4 Male R
ZMB 39653 36.8 14.7 14.6 28.9 27.9 2.0 1.9 Female R
ZMB 83342 43.3 14.4 14.3 26.4 23.7 1.8 1.7 Female R
ZMB 83343 41.7 14.8 14.9 29.6 27.2 2.0 1.8 Juvenile R
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or Sus, and with less lingual relief. Third molars elongated (longer 
than in Potamochoerus) and more hypsodont than Potamochoerus, 
but less than in Phacochoerus. Simple dental wear pattern, with 
mesiodistally compressed crown pillars and bunolophodont aspect. 
Developed troughs between main cusp rows, which are filled with 
coronal cement. Skull broad and short. Cross-section of the ros-
trum is rounded. Muscles of the rhinarium are reduced, leaving no 
marked insertions on the bones of the skull. Ridge of the supra- 
canine process of males is reduced with respect to Potamochoerus 
and restricted to a low crest. Upper canine oriented laterally and 
somewhat dorsally. Zygomatic arch oriented slightly more obli-
quely to the sagittal plane of the skull than in Potamochoerus. In 
males, the zygomatic arch has significant mid-lateral expansions 
covered by rugose bone. Parietal wide between the temporal lines, 
and usually concave. Occipital relatively low and wide. Mandible 
with a relatively wide mandibular symphysis.

Hylochoerus sp.

Referred material
KNM-RU 49738, partial right lower third molar with collection 
number RU 2007-449 from Rusinga Island, Kenya, and curated at 
the National Museums of Kenya in Nairobi (Figure 3).

Locality and horizon
Late Pleistocene Wasiriya Beds at the Nyamsingula locality on 
Rusinga Island and dated to between ~50 ka and 36 ka (Figure 1).

Taxonomic remarks
The eastern African suid K. limnetes likely gave rise to two highly 
derived forms during the Pleistocene, the eastern African species K. 
olduvaiensis and its southern African counterpart K. paiceae. It has 
been suggested that there are no clear diagnostic characters separ-
ating these two species and that K. olduvaiensis is a junior synonym 
of K. paiceae (Souron 2012, 2017). We follow this recommendation 
here for simplicity, as it does not impact our anatomical compara-
tive analyses.

Description
Specimen KNM-RU 49738 is a distal fragment of a right m3. There 
is marked space between pillar rows and the main pillars are 
mesiodistally compressed. The mesiodistal compression is stronger 
than the typical condition seen in the third molars of other derived 
kolpochoeres, including K. majus and K. paiceae, and resembles 

more the derived lophodonty of extant Hylochoerus. The occlusal 
morphology also matches that of extant Hylochoerus where the 
third molar main lateral pillars have mesial and distal invaginations 
of the enamel rim, though generally, suid tooth cusps (-ids) tend to 
have a simpler, rounded morphology as wear progresses. 
Nevertheless, in K. majus the third molar cusps (-ids) are more 
circular despite the mesiodistal compression. In K. paiceae, the cusp 
(-id) occlusal invaginations tend to get less marked towards the 
distal end of the third molar and the distal cusps (-ids) often show a 
certain degree of mesiodistal compression. In lateral view, the 
arrangement of pillars is somewhat reminiscent of other hypsodont 
suids, including K. majus, K. paiceae, Metridiochoerus spp., and 
Phacochoerus spp. The distal tapering of the tooth is like in 
Hylochoerus or Kolpochoerus, and unlike Phacochoerus. There is 
considerable coronal cementum cover occlusally, forming denser 
patches around and between cusps. Laterally, the coronal cemen-
tum cover is appreciably thinner and in some areas it is not pre-
served, revealing the corrugated enamel surface that is typical of 
other suids with cementum cover. In recent Hylochoerus there are 
usually cementum gaps between lateral cusps, though in some 
individuals, especially those with heavily worn teeth, the coronal 
cementum cover is extremely extended.

It is not possible to determine with certainty how much of the 
mesial part of the tooth is missing, whether it is missing one pair of 
main lateral pillars or more. The morphology of the apical portion of 
the tooth, however, provides a clue about this issue. In suines, the m3 
cervix tends to be wider mesially, specifically close to the first and 
second pair of lateral pillars. Two examples showing extant 
Hylochoerus and Sus scrofa m3 axial sections at approximately the 
level of the cervix are pictured in Figure 3B-5 and 3C; the mesial 
widening is marked with a curved, dashed line. This widening reflects 
not only the larger size of the main four mesial cusps but also the larger 
size of the roots that support them. Distally to the first two pairs of 
laterals, the cervix outline continues more or less straight or narrows 
gradually towards the distal end of the tooth. This pattern mirrors what 
is seen in KNM-RU 49738 in apical view (Fig. 3A-6). Based on this 
comparison, we argue that the Rusinga m3 is likely missing just the first 
pair of lateral pillars (the metaconid and protoconid). We have 
restored an approximation of the occlusal outline of the mesial portion 
of the tooth using extant Hylochoerus m3s as template (Figure 3-A4 
and 3-A5). The nomenclature used in the rest of the description below 
is followed based on this tentative reconstruction. We note that any 
conclusions derived from estimations of the length, the total number of 
main lateral pillars, or the morphology of the missing mesial portion of 
the tooth should be taken with caution.

A B

Width 
2nd pair

Length

Width 
1st pair
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Figure 2. Lower third molar measurements taken on CT scans of extant Hylochoerus. The specimen pictured is the right lower third molar of ZMB 83342 in A) sagittal, B-C) 
coronal, and D) transverse planes.
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We infer that the Rusinga m3 was composed of a total of four 
rows of main lateral pillars, which is typical in Hylochoerus and K. 
majus, while in K. paiceae there is at least an additional pair and 
usually two more pairs distally. There is, however, variation in this 
character in all the species mentioned. Examples of extant 
Hylochoerus m3s with only three and four pairs of main lateral 
pillars are shown in Figure 3(d-e). Distal to the presumed hypoco-
nid and entoconid (the second pair of main lateral pillars), there is 
another pair of well-developed lateral pillars, though these are 

smaller and have a simpler morphology than their mesial counter-
parts. The tooth is terminated by three additional pillars. The one 
situated on the lingual side is larger and taller than the other two 
and the tip is already in occlusion. The buccal pillar is unworn but 
through wear progression, the lingual and buccal pillars would have 
formed another pair of main laterals. The distalmost pillar is shorter 
but has a wide base. There would have been two rounded median 
pillars (only the distal one and the distal portion of the mesial one 
are preserved) between the presumed first and second pair of main 

Extant Hylochoerus

A1 A2

A4

1 cm

A5

F

D

E

1 cm

Rusinga Hylochoerus sp.

A3

A6

B1

B2

B4

B5

B3

B6

C

*

*

*

Figure 3. The right lower third molar fragment KNM-RU 49738 from Rusinga Island (A) and comparative lower third molars of extant Hylochoerus (B and D-F) and Sus scrofa 
(C). The fossil tooth in A1) buccal, A2) lingual, A3) distal, and A6) apical views, and A4-5) reconstruction of the missing mesial portion in occlusal views. Occlusal views of B1) 
ZMB 39651, D) ZMB 83342, E) ZMB 39652, and F) ZMB 39653. Right hemimandible of ZMB 39651 in lateral view (B4), with the lower third molar enamel extracted from 
micro-CT scans in B2) buccal, B3) lingual, B5) occlusal, and B6) distal views. Coronal cross-section at the level of the cervix in B7) ZMB 39651 and C) Sus scrofa.
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lateral pillars. This feature is present in Hylochoerus but also in 
other kolpochoeres, including K. majus and K. paiceae. Between the 
second and third pair of main lateral pillars, there is another pair of 
oval-shaped median pillars. The presence of one or two median 
pillars between rows of lateral pillars in the talonid is variable but 
occurs often in K. majus, K. paiceae, and other Kolpochoerus. In 
extant Hylochoerus there is generally only one single median pillar 
separating the second and third pair of laterals, but sometimes there 
can be two. One example is the Hylochoerus m3 pictured in Souron 
et al. (2015a: Figure 1(c)).

The mesiodistal length of the preserved fragment is 38 mm. The 
total length cannot be accurately estimated but, in our reconstruc-
tion, the tooth would have been between 46–50 mm long. This is in 
the upper range of extant Hylochoerus and K. majus m3 metrics. 
The m3 mesiodistal length average of extant Hylochoerus in our 
dataset is 40.9 ± 3.0 mm (n = 14), with a specimen reaching 48 mm 
(Table 1). The m3 mesiodistal length average is 40.9 ± 3.0 mm 
(n = 14) in Hylochoerus, 44.0 ± 3.6 mm in K. majus (n = 18), and 
67.9 ± 3.9 mm in K. paiceae (n = 52), with individual specimens 
reaching 48.0 mm, 55.3 mm, and 83.7 mm, respectively. It is 
noteworthy that our extant Hylochoerus m3 metrics derive from 
basal measurements taken on CT-scans, while most published 
measurements were taken with calipers and occasionally on speci-
mens that had the base still inside the mandible and not visible. The 
different approaches can produce results that are not directly com-
parable. To demonstrate this point, we remeasured the m3s of the 
four scanned Hylochoerus individuals with a caliper on the original 
specimens. We show that there can be a significant overestimation 
of the m3 length (max m3 length: 43.3 mm from CT-scans, 
46.5 mm with a caliper) and width (15.7 mm from CT-scans, 
18.5 mm with a caliper).

The hypsodonty index (HI) is calculated through the divi-
sion of the maximum unworn crown height by its buccolingual 
width at the base. The maximum crown height in KNM-RU 
49738 is 26.3 mm labially and 29.2 mm lingually. However, the 
tooth is slightly to moderately worn and the estimated max-
imum height without wear would have been between 30 to 

32 mm. The buccolingual width at the base is normally mea-
sured on the anterior portion of the tooth, which in the case of 
KNM-ER 49738 is missing. For this reason, we use the width 
at the base of the presumed second pair of main lateral pillars 
(in our reconstruction), which measures 16.1 mm. In a sample 
of H. meinertzhageni (n = 8), the difference between the width 
of the first and second lophid is negligible (Table 2; 17.5 mm 
and 17.9 mm respectively). The resultant HI of the fossil 
specimen is between 1.8 to 2.0. This HI estimation is consid-
erably higher than the HI value of 1.36 for H. meinertzhageni 
reported in Janis (1988), with a maximum m3 height of 
21 mm. The m3s examined in Janis (1988) must have had a 
certain amount of wear and/or were still inside the mandible, 
evidently producing underestimations of height and overesti-
mations of width. The data derived from CT-scans presented 
here, however, indicate that extant Hylochoerus teeth are as 
high as 30 mm (Table 2), with a HI up to 2.0. The derived 
kolpochoeres K. majus and K. paiceae m3s can also reach this 
height, though in K. majus it is a rare condition while in K. 
paiceae m3 crowns are often taller. The hypsodonty of the 
Rusinga tooth is therefore compatible with extant 
Hylochoerus but also with other derived Pleistocene 
kolpochoeres.

Taxonomic discussion
According to Souron et al. (2015b), the origin of Hylochoerus dates 
to the Late Pliocene K. afarensis, which gave rise to a lineage of 
bunolophodont suids composed of two chronospecies, K. phillipi 
and K. majus. The species K. phillipi is known from the Ethiopian 
sites of Ledi Geraru ~2.8–2.6 Ma (Lazagabaster et al. 2018) and 
Matabaietu ~2.5 Ma (Souron et al. 2015b). The dental morphology 
of the Konso material ~1.9 Ma is morphologically intermediate 
between K. phillipi and K. majus (Suwa et al. 2014), while more 
typical K. majus is found throughout various eastern African sites 
dating from 1.8 Ma to ca. 0.5 Ma: Olduvai Beds I–IV, in Tanzania 
(Leakey 1942; Cooke 2007; Bibi et al. 2018); the Upper Lomekwi 
and Nariokotome Mbs. in West Turkana and Olorgesailie, in Kenya 
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Figure 4. Stable carbon isotope values of Late Pleistocene Rusinga Island suids and comparative modern and fossil data for other African suid species and genera. The 
values shown for Kolpochoerus spp. do not include those of K. majus.
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(Harris and White 1979; Harris et al. 1988; Souron 2012; Potts et al. 
2018); Buia, in Eritrea (Medin et al. 2015); Mb. L of the Shungura 
Fm., the Busidima Fm. at Gona and Asbole, the Lower Herto and 
Daka Mbs. and the upper Bodo beds of the Bouri Fm., in the Middle 
Awash, and the Melka-Kunture Fm. of Garba IV, in Ethiopia 
(Harris and White 1979; Clark et al. 1994; White 1995; Geraads 
et al. 2004a, 2004b; Gilbert 2008; Everett 2010; Souron 2012). Some 
undescribed specimens from the Middle Awash ~0.1 Ma in 
Ethiopia may also be attributed to K. majus (Souron et al. 2015b). 
Sometime possibly during the Middle to Late Pleistocene, a popula-
tion of K. majus likely gave rise to Hylochoerus but the only securely 
identified fossil remains of Hylochoerus are those from Kibish, in 
Ethiopia, also dated to ~0.1 Ma (Assefa et al. 2008).

The m3 from Rusinga described here was briefly noted in Faith’s 
(2014) overview of extinct Late Pleistocene African mammals. He 
reported it as Kolpochoerus, suggesting that the level of compression 

of the pillars and cementum most closely resembled K. majus. 
However, our reanalysis indicates that the mesiodistal compression of 
the main pillars and the distance between pillar rows are more accen-
tuated than in K. majus third molars, and the occlusal morphology – 
with mesiodistal invaginations – aligns this tooth better with 
Hylochoerus. In K. paiceae, the m3 distal cusps can sometimes show 
mesiodistal compression but not to the degree of the Rusinga tooth. 
Furthermore, K. paiceae teeth tend to be longer and more hypsodont 
than our estimated metrics. Other Plio-Pleistocene suid genera, 
Metridiochoerus spp., and Phacochoerus spp., have taller crowns than 
KNM-RU 49738 and the main lateral pillars are not mesiodistally 
compressed. Unfortunately, the fragmentary nature of this fossil does 
not allow us to compare absolute numbers with confidence. For this 
reason, further specific taxonomic attribution of the Rusinga specimen 
is not feasible, especially considering that the taxonomic configuration 
of extant forest hogs has not been fully resolved (Reyna-Hurtado et al. 
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Figure 5. Stable carbon isotope values of Late Pleistocene Rusinga Island large mammals, including Bovidae, Equidae, Hippopotamidae, and Suidae.
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2017). Distal third molar fragments can sometimes share similar 
morphologies across different suid genera. Given the great intra-spe-
cific variability in extant and fossil suid third molars (Harris and White 
1979), the possibility that this tooth belongs to another late-surviving 
Kolpochoerus lineage (e.g., K. paiceae) should be taken into considera-
tion, though we find this hypothesis unlikely. Kolpochoerus paiceae 
evolved elongated third molars with tall-columnar pillars and cemen-
tum cover that resemble those of Metridiochoerus spp. (Souron 2012), 
which have resulted in several misidentifications (e.g., in Omo- 
Shungura suids, Cooke 2007). The latest known K. paiceae remains, 
however, are dated to 0.8 Ma (Souron 2012).

Palaeoecology and paleoenvironment: stable isotope 
analyses

Plants that use the C3 photosynthetic pathway (tropical dicots: 
trees, bushes, herbs) differ in their discrimination against 13CO2 
from plants that use the C4 photosynthetic pathway (tropical 
grasses and sedges). C4 photosynthesis is typically prevalent in 
warm and seasonally dry, open habitats, whereas C3-plants dom-
inate in conditions of lower water stress, cooler ground tempera-
tures, and closed canopy (Pearcy and Ehleringer 1984; Cerling et al. 
2011; Uno et al. 2011). In large mammals, higher enamel δ13C are 
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associated with C4-plant eaters (e.g., grazers; generally δ13C > −1 
‰) while more negative δ13C values are found in the enamel of C3- 
plant consumers (e.g., browsers; generally δ13C < −8 ‰; Cerling 
et al. 2015).

The δ13C of KNM-RU 49738 is −17.0 ‰, which is well within 
the range of extant Hylochoerus, with an average of −16.7 ± 2.5 ‰ 
for 24 modern specimens corrected to the pre-industrial value and a 
range between −13.6 ‰ and −22.6 ‰ (Figure 4). The extremely 
negative δ13C value for KNM-RU 49738 contrasts with most of the 
other large herbivores at Rusinga Island, with an average δ13C value 
of −0.7 ± 2.6 ‰ (n = 58; Figure 5; data from Garrett et al. 2015). 
This is one of the most negative δ13C values for any fossil tooth 
enamel from Africa; other herbivores with such negative values are 
found in cave deposits in Southeastern Asia and are interpreted as 
being associated with closed canopy conditions (Bocherens et al. 
2017; Ma et al. 2017, 2019; Bacon et al. 2018). Thus, this particular 
sample presents an interesting puzzle for interpretation since there 
is no other clear evidence for closed-canopy conditions in the 
associated fauna or isotopes, and most lines of evidence point to 
relatively dry conditions and an expansion of C4 grasslands across 
the Lake Victoria basin during the Late Pleistocene (e.g., Tryon 
et al. 2010, 2012, 2016; Faith et al. 2015, 2020; Garrett et al. 2015; 
Beverly et al. 2017). The Rusinga Hylochoerus may derive from 
sediments reflecting a humid phase that is otherwise not repre-
sented by the faunas, but analysis of paleosols from Rusinga and 
nearby Karungu indicate that relatively dry conditions persisted 
from ~94-36 ka (Beverly et al. 2017). The complete absence of 
Later Stone Age artefacts (dating from < 36 ka in the region; 
Tryon et al. 2016; Blegen et al. 2017) at Nyamsingula also suggests 
that it is unlikely the specimen derives from undocumented or 
eroded Holocene deposits that sample a more humid climate with 
closed habitats.

Other alternative hypotheses that could result in comparable 
negative δ13C signals are selective diets of C3 plants in arid open 
environments or C3 graminoids or forbs in open but humid 
environments (e.g., close to water bodies that provide shade and 
humidity; Souron 2018). The consumption of aquatic plants can 
also result in negative δ13C values (Chappuis et al. 2017). In 
modern tropical lowland African ecosystems, C3 herbaceous 
plants are generally scarce (abundance < 10%, Sage et al. 1999). 
However, C3 graminoids, forbs, and ferns, can be relatively abun-
dant in certain savannah ecosystems (e.g., Kruger National Park; 
Codron et al. 2005) and in some lowland African Plio-Pleistocene 
habitats (Bonnefille 2010; Feakins et al. 2013; Albert et al. 2015; 
Lüdecke et al. 2016; Magill et al. 2016). To our knowledge, how-
ever, there are no records of extant Hylochoerus feeding on aquatic 
plants or consistently venturing on open habitats to feed (D’Huart 
1978; Kingdon 1979; D’Huart and Kingdon 2013; Reyna-Hurtado 
et al. 2017).

The Plio-Pleistocene suids with the most negative δ13C are those 
from the Karonga basin in the Malawi Rift (Lüdecke et al. 2016), 
Elandsfontein in the southwestern Cape of South Africa (Luyt et al. 
2000), and Aramis in the Middle Awash, Ethiopia (White et al. 
2009). The case of Elandsfontein is unique because the southwes-
tern Cape has long had a winter rainfall regime that favours C3 
grasses and dicots (Luyt et al. 2000; Lehmann et al. 2016); today the 
region is dominated fynbos, renosterveld, and strandveld plant 
communities that unlike anything found in eastern Africa. In the 
case of Karonga and Aramis, these negative δ13C have been inter-
preted as reflecting closed-canopy habitats and gallery forests 
respectively (Luyt et al. 2000; White et al. 2009). Furthermore, 
forest/closed canopy species tend to have more negative δ13C than 
open-habitat species. For example, duikers (Cephalophus spp.), 

which inhabit rainforests and forests, display more negative δ13C 
than the eland (Taurotragus oryx), a woodland-savanna species 
(Cerling et al. 2003). Both bovids, however, are almost exclusive 
C3 feeders. In Queen Elizabeth National Park in Uganda, which has 
both warthogs and forest hogs, where the forest hogs are living near 
the boundary of grassland/forest, the δ13C values are enriched 
(δ13C = −12 to −13 ‰; Cerling and Viehl 2004). These results 
suggest that the fossil forest hog would have consumed C4 resources 
if it had inhabited open grasslands. Therefore, the extremely nega-
tive δ13C of KNM-RU 49738 is most likely an indication of the 
presence of closed canopy.

The δ18O of KNM-RU 49738 is −1.9 ‰, which is also comparable to 
the values of extant Hylochoerus, with an average of −2.6 ± 1.8 ‰ 
(n = 22; Figure 6). Oxygen isotopes in palaeoecological contexts are 
generally associated with external water dependency (Sponheimer and 
Lee-Thorp 1999, 2001; Harris and Cerling 2002). Variations in oxygen 
isotope composition of mammalian tooth enamel are mainly a function 
of the oxygen isotope composition of food and liquid water. Leaf δ18O 
water is enriched (typically 10–30% more) in comparison to the 
meteoric source (Epstein et al. 1977; Yakir and Others 1998). Thus, 
mammal species that obtain the majority of their water from the plants 
they eat should display more positive δ18O in comparison to obligate 
drinkers (Sponheimer and Lee-Thorp 1999, 2001; Harris and Cerling 
2002). In African bovids, browsers tend to show more enriched δ18O 
than do grazers. Interestingly, in African suids the patterns seem to be 
reversed: taxa that inhabit forested habitats (Hylochoerus, Po. porcus, 
and some populations of Po. larvatus) have generally low values of both 
δ18O and δ13C (Figure 6), while both ratios get higher in grazer taxa 
(Ph. africanus and some populations of Po. larvatus). Nevertheless, 
KNM-RU 49738 fits clearly in the isotope ecospace of extant 
Hylochoerus (with negative δ18O and δ13C). It is worth mentioning 
that the only hippopotamid sampled in Rusinga also has negative values 
of δ18C and δ13O that are close to those of Hyochoerus (Figures 5–6; 
Garrett et al. 2015). The values for this tooth are also extremely negative 
points among Plio-Pleistocene African hippopotamids (e.g., Harris 
et al. 2008; Cerling et al. 2008, 2015); such negative values are more 
common in C3-grazers in swampy habitats (e.g., the pigmy hippopo-
tamus Choeropsis liberiensis). The presence of grassy/sedgy wetlands, 
therefore, cannot be completely ruled out.

The most likely explanation for the presence of Hylochoerus on 
Rusinga, and its very negative δ13C value, is that the Late 
Pleistocene environment was more heterogeneous than previously 
considered. At the Nyamita locality (~3 km SW of Nyamsingula), 
spring-fed rivers and wetlands promoted locally dense vegetation 
cover of the sort that could favour Hylochoerus, including woody 
vegetation, as well as grasses and sedges (Beverly et al. 2015; Garrett 
et al. 2015). This alone may not explain the δ13C value, so it is also 
plausible that there were some patches of closed-canopy forest in 
the highlands on Rusinga where Pleistocene deposits are not found.

Conclusions

Despite being a single and fragmented specimen, the lower third molar 
crown morphology of the Rusinga fossil – namely, its bunolophodont 
aspect – matches that of extant Hylochoerus third molars. We show that 
its crown height and hypsodonty index were as high as those of extant 
forest hogs. The acquired hypsodonty in the K. phillipi-K.majus- 
Hylochoerus lineage mirrors what happened in multiple African suid 
lineages since the Miocene (Harris and White 1979; Souron et al. 2015b; 
Souron 2017; Lazagabaster et al. 2018), though not to the extreme of 
some derived taxa (e.g., Notochoerus scotti, Metridiochoerus compactus 
or Phacochoerus). What is unique about Hylochoerus among African 
suids is its derived lophodonty. Kolpochoerus is usually associated with 
open-grassland to mixed savannah habitats after 2.5 Ma, and stable 
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carbon isotopes suggest its diet was mainly composed of C4 resources 
(Harris and Cerling 2002; Bibi et al. 2013; Cerling et al. 2015; 
Lazagabaster 2019; Negash et al. 2020). While multiple suid taxa were 
evolving adaptations to eating more abrasive foods in the context of C4- 
grasslands expansion in Africa, the available fossil evidence suggests 
that Hylochoerus turned away from the open habitats and into the 
forests. Comprehending exactly when and how did this happen is 
currently unattainable, as the third molar described here and the 
remains from Kibish are the only Hylochoerus fossil remains known 
to date (Assefa et al. 2008). The association of Hylochoerus with closed 
habitats (D’Huart 1993; Cerling and Viehl 2004; D’Huart and Kingdon 
2013; D’Huart and Yohannes 2014; Frantz et al. 2016) may explain why 
its fossil record is so sparse and provide new insights into the paleoen-
vironmental at Rusinga, which appears to have been more heteroge-
neous than typically considered.

The Rusinga Hylochoerus adds to a growing body of evidence 
showing that geologically recent faunas are quite different from those 
of the present-day (Faith 2014; Faith et al. 2019, 2020). Extant species, 
including the Rusinga Hylochoerus, are often found well outside their 
historic ranges (e.g., Rowan et al. 2015; Lesur et al. 2016; Faith et al. 
2020) – leading to the formation of non-analogue species combinations 
– and it is becoming increasingly clear that extinct species were numer-
ous (Faith 2014). Considerable work remains ahead if we are to sort out 
the emergence of what we would recognise as ‘modern’ eastern African 
faunal communities and the impact of terminal Pleistocene climatic 
changes in the present configuration of African ecosystems.
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