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Quasistatic magnetoconvection with a tilted magnetic field
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A numerical study of convection with stress-free boundary conditions in the presence of
an imposed magnetic field that is tilted with respect to the direction of gravity is carried
out in the limit of small magnetic Reynolds number. The dynamics are investigated over
a range of Rayleigh number Ra and Chandrasekhar numbers up to Q = 2 x 10°, with the
tilt angle of the imposed magnetic field vector fixed at 45° relative to vertical. For a fixed
value of Q and increasing Ra, the convection dynamics can be broadly characterized by
three primary flow regimes: (1) quasi-two-dimensional convection rolls near the onset of
convection, (2) isolated convection columns aligned with the imposed magnetic field, and
(3) unconstrained convection reminiscent of nonmagnetic convection. The influence of
varying Q and Ra on the various fields is analyzed. Heat and momentum transport, as
characterized by the Nusselt and Reynolds numbers, are quantified and compared with
the vertical field case. Ohmic dissipation dominates over viscous dissipation in all cases
investigated. Various mean fields are investigated and their scaling behavior is analyzed.
Provided Ra is sufficiently large, all investigated values of Q exhibit an inverse kinetic
energy cascade that yields strong “zonal” flows with an amplitude that scales as Q'/3.
Relaxation oscillations, as characterized by a quasiperiodic shift in the predominance of
either the zonal or nonzonal component of the mean flow, occur when Ra and Q are
sufficiently large.

DOI: 10.1103/PhysRevFluids.7.043504

I. INTRODUCTION

Convection in the presence of externally imposed magnetic fields, or magnetoconvection (MC), is
important in stars and planetary interiors [1]. Magnetic fields can lead to novel flow regimes relative
to nonconducting fluids. Notably, imposed magnetic fields induce flow anisotropy. The resulting
change in flow structure, however, is dependent on the direction and magnitude of the imposed
magnetic field, implying that a rich variety of dynamics can be realized in MC. In the context
of planets and stars, the magnetic field tends to be self-generated through dynamo action and is
therefore spatially (and temporally) complex. It is therefore of interest to understand how field
direction, in addition to field magnitude, influences the underlying convective motions.

The periodic plane layer geometry provides a particularly simple system in which to study MC.
The linear theory of MC for the plane layer is well established and provides a useful starting point
for understanding the resulting nonlinear dynamics [2]. The constant gravitational field is denoted
by g = —gZz (where Z is the unit vector pointing normal to the planar boundaries) and the uniform
imposed magnetic field is By. In the present work we focus solely on the limit in which the induced
magnetic field is weak relative to the imposed field—known as the quasistatic limit (e.g., Ref. [3])—
and we therefore limit our present discussion to this case. When g and By are aligned, which we
refer to as vertical MC (VMC), convection is stabilized and the horizontal scale of the most unstable
eigenmodes decreases with increasing field strength. When By is horizontal (HMC), the preferred
mode consists of two-dimensional (2D) convection rolls with their axes aligned with By. The general
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case of a tilted magnetic field (TMC) is essentially a mixture of these two previous cases in which
the most unstable eigenmodes consist of 2D rolls aligned with the horizontal component of the
imposed magnetic field, but with a horizontal length scale that decreases with increasing magnetic
field strength.

The nonlinear evolution of MC has been investigated both experimentally and numerically for a
variety of magnetic field configurations. VMC dynamics has been studied for both the quasistatic
limit and for the case of arbitrarily large induced magnetic fields using numerical simulations (e.g.,
Ref. [4]). In the discussion here, we focus on those results pertaining to the quasistatic limit. Given
the preference for fluid to move parallel to the imposed magnetic field direction, the vertical field
geometry tends to limit horizontal mixing when the field strength is sufficiently large [5]. In confined
geometries, such as cylinders, distinct flows such as convective wall modes are also present [6—8].
Heat and momentum transport, while always weaker than nonmagnetic Rayleigh-Bénard convection
(RBC), both increase at a rate that is faster than RBC [5,8]. For sufficiently strong buoyancy forcing,
VMC data appears to approach the corresponding RBC data [5,8,9], which suggests an expected
weakening dynamical role of the imposed magnetic field.

Studies of HMC show that 2D rolls persist over a significant range of parameter space and
can yield heat transport that is more efficient than RBC [10-13]. The flow eventually transitions
to anisotropic 3D convection that can exhibit rich time-dependent motions [14—16]. In confined
geometries, the lateral walls can have a significant influence on the dynamics due to the formation
of Hartmann boundary layers [11]. The stabilizing role played by these boundary layers leads to an
increase in the critical temperature gradient required to initiate convection.

In comparison to VMC and HMC, less is presently known about the nonlinear behavior of
TMC. Previous 2D studies of TMC have found mean flows and traveling wave solutions that are
generated by the broken symmetry associated with the tilted magnetic field [17]. This previous work
suggests that the mean flows tend to travel in the direction of the tilt, though the dependence of the
amplitude of this mean flow on the input parameters, namely the imposed field strength, has not
been investigated in detail. In addition, to our knowledge the efficiency of heat and momentum
transport has been unexplored for TMC.

Rotating convection (RC) has been studied in great detail due to its relevance for planetary and
stellar applications [18]. Like MC, RC with a vertical rotation vector stabilizes the convection and
yields anisotropic structures [2]. The inverse kinetic energy cascade is prevalent in RC provided
that the influence of rotation is strong; the resulting flows are characterized by vortices that span the
horizontal length of the system and are approximately invariant in the direction of the rotation axis
[19-22]. When the two horizontal dimensions are unequal, the inverse cascade is instead manifested
by the presence of large-scale horizontally directed jets [23]. Recent studies of RC with a tilted
rotation axis find that both jets and vortices are present, depending on the tilt of the rotation axis
(and likely also the relative importance of rotation and inertia) [24,25].

In the present work, we carry out a systematic investigation of three-dimensional TMC using
direct numerical simulations. Flow regimes are delineated, and heat and momentum transport
are quantified over a range of imposed field strengths and buoyancy forcing. When possible, a
comparison is made with recent VMC simulations; we find that the primary difference between
TMC and VMC is the presence of magnetically constrained turbulent states in the former. We
find that TMC, like rotating convection, yields an inverse cascade of kinetic energy, characterized
by energetic (relative to the convection) mean flows that tend to be dominated by a meandering,
alternating jet structure. In some cases, we also find that these jets can become unstable and give
rise to relaxation oscillations.

II. METHODS

We employ a periodic plane layer geometry, as shown in Fig. 1. The Cartesian coordinate system
is denoted by x = (x, y, z). The fluid layer has depth H and horizontal extent L. The spatially
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FIG. 1. Geometry used in the present study. The fluid layer has depth H and horizontal extent L.

uniform imposed magnetic field vector is given by
By = Byn, )
where we define the vector
n=mX+nz, 2

with n; = sin@ and 13 = cos 6. The angle 6 is measured relative to the vertical and fixed in the
present study to 6 = 45°.

The fluid is Oberbeck-Boussinesq with density p, kinematic viscosity v, thermal diffusivity «,
thermal expansion coefficient o, magnetic diffusivity A, and vacuum permeability p. The dimen-
sional temperature difference between the bottom and top boundaries is denoted by A7 > 0. The
governing equations are nondimensionalized with length H, viscous diffusion timescale (H?/v),
flow speed (v/H ), magnetic field B, pressure p(v/H)?, and temperature AT, to give

Ra ..
D,u:—VP—{—P—aTz—i—Qn-Vb—i—Vzu, 3)
T
0=7-Vu+ Vb, )
1 2
D, T = —V°T, &)
Pr
V-u=0, (6)
V.-b=0, )

where ¢ is the nondimensional time, the material derivative is denoted by D;(-) = 9;,(-) +u - V(-),
u = (u, v, w) is the velocity field, b is the induced magnetic field, T is the temperature, and P is the
reduced pressure.

The nondimensional parameters appearing in the above equations are the Rayleigh number, the
thermal Prandtl number, and the Chandrasekhar number defined by, respectively

ATH?
Ra= XATH  p_V
KV K

_ BH?
T pvur’

®)
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In all cases presented here, the thermal Prandtl number is fixed at Pr = 1, whereas Ra and Q are
both varied.

The quasistatic magnetohydrodynamic equations (3) and (4) represent the physical scenario
in which the induced magnetic field is asymptotically smaller than the imposed magnetic field.
Denoting the magnetic Prandtl number as Pm = v/, the induced magnetic field is of size O(Pm),
and the limit Pm — 0 is taken in the governing equations. A consequence of this approximation
is that the Lorentz force becomes linear and the induced magnetic field adjusts instantaneously
to the velocity field, as indicated by the lack of a time derivative in Eq. (4). The quasistatic
approximation is well satisfied in laboratory experiments that use liquid metals in which Pm =
0(107%) (e.g., Refs. [11,15,26-28]). For further details on this approximation, we refer the reader
to Refs. [3,29,30].

The mechanical boundary conditions are impenetrable, stress free, constant temperature, and
electrically insulating, which can be written as

ou  dv

=—=—=0 at z=0,1. 9
v 0z 90z a ©)

The thermal boundary conditions are constant temperature
T=1 at z=0, T=0 at z=1. (10)

Electrically insulating electromagnetic boundary conditions are used such that the current density
Jj =V x b is zero within the insulator. With these boundary conditions, the magnetic field at z = 0
and z = 1 must be matched to a potential field; the numerical details of this matching procedure can
be found in Ref. [31].

All flow variables are assumed to be periodic in the horizontal dimensions. Both the velocity
and magnetic fields are represented in terms of poloidal and toroidal scalars such that the solenoidal
conditions are satisfied exactly. The resulting equations are solved numerically with a pseudospec-
tral algorithm using Fourier series in the horizontal directions and Chebyshev polynomials in the
vertical direction. A third-order implicit-explicit Runge-Kutta time-stepping method is used. Further
details of the code are given in Ref. [32].

An important parameter for the simulations is the aspect ratio of the computational domain,
defined by

L
r==

m.

(1)

For the simulations, we scale the horizontal length in integer multiples (n) of the (dimensionless)
critical horizontal wavelength, X., such that L = nX.H. The aspect ratio then becomes

T = nh,. (12)

The critical wavelength is determined from linear stability theory, as detailed in Ref. [2]; here
we provide a brief overview. Upon linearizing the governing equations and assuming normal
mode solutions with horizontal wave vector k = (ky, k), the most unstable eigenmodes consist
of longitudinal rolls oriented parallel to the imposed magnetic field (i.e., k, = 0) with marginal
Rayleigh number [2]

(7T 2 + kz) 2
Ray = ———[(7* +/5)" + 7*n3Q]. (13)
y
Minimizing the above expression gives
2k 4 312kt — *niQ —n® =0, (14)

where k. = 27 /A, is the critical horizontal wave number. For the field strengths used in the present
study, Q = (2 x 10%,2 x 10°,2 x 10%), we find k. ~ (5.6842, 12.8343, 18.9823) with correspond-
ing critical Rayleigh numbers Ra, & (1.5207 x 10%, 1.0784 x 10°,1.0281 x 107). We found that
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n = 10 is sufficient for convergence of bulk quantities such as the heat transport. Thus, this value
is used unless stated otherwise. For the imposed field strengths used in the present study, the aspect
ratios corresponding to n = 10 are given by I' &~ (11.1, 4.9, 3.3). In Sec. III D 1, we report on the
effects of varying the aspect ratio.

For future reference, it is also helpful to investigate the asymptotic limit Q — oo. In this limit,
the critical wave number and the critical Rayleigh number are given by, respectively,

a 1 6 a
KO - (3030)°, Ra® - 72%p3Q (0 — o). (15)

A. Definitions

Various forms of averaging are used to present the results. For some generic scalar quantity,
f(x, 1), horizontal averages are defined by

- 1
fan== | foxodxdy. (16)
)
Other averages will be denoted with an overline and a superscript to denote the dimension in which
the quantity is averaged. For instance, the zonal average is defined by

—y 1

Fazn= F/f(x,t)dy- A7)
Averages in time and in the direction of the magnetic field are similarly defined. Volume and time-
averaged quantities are denoted with angled brackets,

(f) = f(x,t)dxdt, (18)

t'T? Jorx
where ¢’ is the time interval.

The Reynolds number is defined by Re = UH /v, where U is a characteristic speed. We find it
useful to compute Reynolds numbers that utilize both the three-dimensional velocity field (denoted
by Re) and only the vertical component of the velocity (denoted by Re,). In the nondimensionaliza-
tion used here, these Reynolds numbers become

Re = (2 + v2 + w?), Re, =/ (w?). (19)

The Nusselt number quantifies the nondimensional global heat transport across the layer and is
defined as

Nu = 1 + Pr(wT’), (20)

where T'(x, v, z,¢t) = T(x, v, z,t) — T (z, t) is the fluctuating temperature.

III. RESULTS
A. Parametric overview and flow regimes

We investigate imposed magnetic field strengths of Q = (2 x 10,2 x 10°,2 x 10%), which
were chosen so that the critical Rayleigh number, Ra,, for each field strength corresponds
with those used in recent VMC simulations [5]. We explore Rayleigh numbers up to Ra =
(132Ra,, 28Ra,, 7Ra,) for each of the three values of Q. Data for the simulations are summarized
in Table I. While spatial resolution requirements are significant for many of the simulated flows, we
find that the primary limiting factor for the computations done at larger values of Q and Ra is the
presence of slowly evolving relaxation oscillations that require extremely long computation times
to obtain converged statistics.

A useful measure for characterizing the relative importance of the imposed magnetic field is the
ratio Ha/Re., where the Hartmann number is defined as Ha = /0. The ratio Ha/Re, represents the
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TABLE L. Details of the simulations. Q is the Chandraskehar number, Ra is the Rayleigh number, Nu is the
Nusselt number, Re is the Reynolds number, Re, is the Reynolds number based only on the vertical component
of the velocity, At is the time-step size and N, x N, x N, denotes the physical space resolution. The thermal
Prandtl number is fixed at Pr = 1 for all simulations.

) Ra Nu Re Re, At N, x Ny x N,

2 x10°  1.53 x10*  1.012 % 0.000 0.822 4 0.000 0.719 4+ 0.000 1073 96 x 96 x 48

2 x10° 2 x10* 1.30 +0.03 5.05+0.19 416 £0.18 1073 96 x 144 x 48

2 x10° 2.5 x10* 1.54 £ 0.04 8.29 + 0.24 6.61 +0.21 1073 144 x 192 x 48
2 x10° 4 x10* 2.19 +0.04 17.86 +0.24 11344030 5x10™* 144 x 192 x 48
2 x10° 6 x10* 2.83 +0.05 30.98 + 0.35 1647 +£036 2x10™* 192 x 288 x 72
2 x10° 1 x10° 3.75 £ 0.05 54.80 + 0.37 25124043 1x107% 288 x 288 x 144
2 x10° 2 x10° 5.22 £0.07 103.43 £ 0.71 40.81 £0.66 4 x 107 288 x 384 x 144
2 x103 4 x10° 7.06 £+ 0.09 179.71 £ 0.79 63.67+1.03 4x107 384 x 576 x 144
2 x10° 6 x10° 8.38 +0.09 229.58 +1.90 8139 £ 1.14 2x 107> 576 x 576 x 144
2 x103 1 x10° 10.35 £ 0.11 285.17 £ 2.17 11031 £1.25 1x107 768 x 768 x 192
2 x103 2 x10° 13.42 +£0.12 214.17 £ 2.16 154754+139 5x107% 768 x 768 x 288
2x10° 1.1 x10°  1.024 £ 0.006 2.11 £0.29 2.01 +0.28 1073 96 x 144 x 96

2 x10° 1.3 x10° 1.17 £ 0.02 8.13 £ 0.52 7.16 £ 0.55 1073 96 x 144 x 96

2x10° 1.5 x10° 1.31 £ 0.02 13.84 4+ 0.54 10.73 £ 0.67 1073 144 x 192 x 96
2 x10° 1.7 x10° 1.46 £+ 0.03 20.69 + 0.62 1433 £0.79 1073 144 x 192 x 96
2 x10° 2 x10° 1.72 £ 0.03 3244 £0.63 19.53 £ 0.92 1073 192 x 192 x 96
2x10° 2.2 x10° 1.87 + 0.04 41.26 + 0.64 22.65 £0.96 1073 192 x 192 x 96
2 x10° 2.5 x10° 2.10 £0.04 55.79 +0.70 27.05 £1.02 1073 192 x 192 x 96
2 x10° 3 x10° 245+ 0.04 81.53 £0.76 3423 £1.11 1073 192 x 288 x 96
2 x10° 4 x10° 3.11 £ 0.07 134.82 +1.32 47.60 + 1.70 1073 288 x 384 x 96
2 x10° 6 x10° 424 £0.13 240.66 + 1.88 70.43 £+ 3.00 1073 288 x 384 x 144
2 x10° 8 x10° 5.18 £0.16 344.60 4+ 2.37 90.74 +3.77 5x107% 576 x 576 x 192
2 x103 1 x107 6.55 +£0.27 32343 4+7248 112.83+3.82 5x10°° 576 x576 x 192
2x10° 1.5 x107 8.30 £ 0.38 548.14 + 114.34 15427+ 646 2 x 107 576 x 576 x 288
2 x10° 3 x107 1267 £0.40 92173 £19551 25140 +£644 2x107% 576 x 768 x 288
2 x10°  1.04 x107  1.015 % 0.000 2.651 £ 0.000 2.575 £ 0.000 1076 96 x 144 x 144
2 x10° 1.1 x107 1.07 £0.01 6.75 £ 0.37 6.54 £ 0.35 10-° 96 x 144 x 144
2 x10° 1.3 x107 1.21 £0.01 16.17 £ 0.75 13.33 £ 0.76 10— 144 x 192 x 144
2 x10° 1.5 x107 1.37 £ 0.02 29.24 +0.91 20.16 £ 1.20 10-6 144 x 192 x 144
2 x10° 2 x107 1.81 £0.03 73.14 £ 1.03 36.13 £ 1.59 107° 144 x 288 x 144
2 x10® 2.5 x10’ 2.25 4+ 0.04 125.88 +1.29 51.13 £2.28 10-6 192 x 288 x 144
2 x10° 3 x107 2.64 £.06 184.21 + 1.91 63.98 £+ 3.06 10~ 288 x 288 x 144
2 x10° 4 %107 341 +.07 305.61 4+ 2.88 89.59 £ 4.62 10-° 384 x 384 x 192
2 x10° 5 %107 4.14 £.10 422,72 +£5.20 113.64 +5.24 107° 384 x 576 x 192
2 x10° 7 x107 5.46 +.14 663.70 4+ 3.09 156.39 + 8.06 10-6 576 x 576 x 288

relative influence of the Lorentz force to inertial forces in the quasistatic limit (e.g., Refs. [3,29]).
By restricting the Reynolds number to only include the vertical component of the velocity field, we
are attempting to better characterize the relative influence of the magnetic field on the small-scale
convection. As discussed later, mean flows develop that have magnitudes significantly larger than
the vertical component of the velocity field. Figure 2 shows this ratio for all of the simulations.
Cases in which Ha/Re, >> 1 are considered magnetically constrained in the sense that the Lorentz
force enters the leading order force balance (cf. Ref. [5]). For values of Ha/Re, < 1, inertia plays a
leading-order dynamical role and the resulting motions are only weakly influenced by the imposed
< 1 for the smallest field

magnetic field. In the present study, we only find cases with Ha/Re,
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FIG. 2. Parametric overview of the simulations, as characterized by the ratio Ha/Re., where Ha = /Q is
the Hartmann number and Re, is the Reynolds number based on the rms of the vertical component of the
velocity field. The critical Rayleigh number is denoted by Ra,. The ratio Ha/Re, represents the relative size of
the Lorentz force and inertia: Cases with Ha/Re, 2 O(1) are considered magnetically constrained.

strength of Q = 2 x 10?; for these cases, we find that the convective structures are no longer aligned
with the (tilted) magnetic field.

To illustrate the structure of the flow field as both Q and Ra are varied (and therefore also Ha/Re,),
we show volumetric renderings of the fluctuating temperature in Fig. 3 for each of the three values
of O and three particular values of Ra. As predicted by linear theory, for Ra ~ Ra., we observe
anisotropic convective rolls that are predominantly aligned with the x component of the imposed
magnetic field—these structures are evident in Fig. 3(a) and to a lesser degree in Figs. 3(d) and
3(g). As the Rayleigh number is increased, we find that the rolls develop a large-scale, k, = 1,
modulation; with our aspect ratio this corresponds to a wavelength of A = 10A.. This modulation
interacts nonlinearly with the convective rolls and leads to the formation of a large-scale mean flow
that is discussed in more detail below. Further increases in Ra lead to the development of convective
columns that are aligned with the imposed magnetic field. These structures are particularly evident
inthe 0 =2 x 10° and Q = 2 x 10° cases, e.g., Figs. 3(e), 3(f), 3(h), 3(i). These cases also show
that the convective structures are elongated in the x direction. For Q = 2 x 10?, the tilt of the
convective structures is less noticeable; in Fig. 3(b) some tilt is observable, though for sufficiently
large Rayleigh number the tilt is no longer obvious [Fig. 3(c)]. Despite the lack of constraint in
simulations with Ha/Re, < 1, we find that the magnetic field still plays an important dissipative
role, as discussed in the next section.

B. Heat and momentum transport

Figure 4 shows the Nusselt number, where both the new TMC data and the VMC data from
Ref. [5] are shown for comparison. The slope of the Nu-Ra data increases with Q, similar to VMC.
However, in VMC there is a steeper increase in Nu near the onset of convection and a subsequent
reduction in the growth rate of Nu with increasing Ra. This difference between VMC and TMC
is exhibited in the corresponding compensated value, Nu/(Ra/Ra.), as shown in Fig. 4(b). The
Nu ~ Ra/Ra, scaling behavior is independent of viscous dissipation, which might be expected in
the limit Q — oo (e.g., Ref. [33]). However, we find that viscous dissipation becomes important in
all cases just after the onset of convection, which suggests a possible explanation for why such a
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(2) (0)

FIG. 3. Volumetric renderings of the fluctuating temperature for various cases. Top row (Q =2 x 10%):
(a) Ra/Ra, = 1.3, (b) Ra/Ra. = 13.2, (c) Ra/Ra, = 132. Middle row (Q =2 x 10%): (d) Ra/Ra, = 1.4,
(e) Ra/Ra, = 7.4, (f) Ra/Ra, = 27.8. Bottom row (Q =2 x 10°): (g) Ra/Ra, = 1.5, (h) Ra/Ra. = 3.9, (i)
Ra/Ra, = 6.8. The orientation for all visualizations is shown in panel (a).

scaling is not observed. For sufficiently large values of Ra/Ra., both VMC and TMC show similar
scaling behavior in Nu, at least for Q =2 x 10* and Q = 2 x 10°.

Vertical profiles of the rms temperature fluctuation are shown for all values of Q in Fig. 5. For a
fixed value of Q, we find that the temperature fluctuation within the interior begins to decrease for
sufficiently large Ra/Ra, once robust thermal boundary layers form; the growth of 77 with increasing
Ra/Ra, is then achieved within the vicinity of the thermal boundary layer. Comparing the profiles for
different values of Q reveals that the rms temperature fluctuation is generally a decreasing function

o0 Lige a-oL 3 I
102 | * Q= 105 VMC -&-Q=2x 105 TMC | ¥y
-#-Q=10° VMC -®-Q =2 x 10° TMC v '\.\ \"w.
-¥%-Q=10° VMC -@- Q=2 x 10% TMC 100 ¢ =D ey ¥y
v = SB%e . TV
- X 3 = I:\-‘I"-\ R
o & N B el Ty
3 2 g 1’ 5 Se e T
1| A /m < RS T
= 10 } 0% A < S
% - 3 RS
P% . A = N
4 »
o 7 RN
& Y
100 L # ) 1 107" | : hs
10° 107 109 10° 10! 102
Ra Ra/Ra.
(a) (b)

FIG. 4. Nusselt number data: (a) Nu vs Ra; (b) compensated Nusselt number, Nu(Ra./Ra), vs Ra/Ra,.
Tilted magnetoconvection cases are denoted by TMC, and the vertical field cases from Ref. [5] are denoted by
VMC.
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0.8 0.8 0.8
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0.4 0.4 0.4
0.2 0.2 0.2
0.0 0.0 0.0
0.00 0.25 050 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
T T
(a) (c)
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z z
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()

FIG. 5. Vertical profiles of the time-averaged temperature for all cases. Top row [(a)—(c)]: horizontally

averaged temperature. Bottom row [(d)-(f)]: rms temperature fluctuation. [(a), (d)] Q = 2 x 10%; [(b), (e)]
Q =2 x 10°; [(c), (D] Q = 2 x 10°. Darker grayscale lines correspond to larger Rayleigh numbers.

of Q, as predicted by asymptotic theory [34-36]. Although not shown, we find that for all values
of O the horizontally averaged temperature shows a trend toward a nearly isothermal bulk with
well-developed thermal boundary layers as Ra is increased. These results indicate that, like RBC
and VMC [5], the heat transfer is ultimately limited by the thermal boundary layers in TMC. These
data suggest that the initial rapid growth in Nu for small Ra/Ra, is due to the formation of thermal
boundary layers.

The Nusselt number and the energy dissipation are related via

Nu— D2 4 @)
u—1)— =g, + &,
Pr? b

where the viscous and ohmic dissipation are given by ¢,
vorticity vector is denoted by { = V x u.
It is helpful to define the ratios of viscous and ohmic dissipation according to

(&%) and g, = Q(j?), respectively. The

Eu Ep
by = . Py = , (22)
&+ &y &+ &y

1.0 1.0 N L0
0.8 1} win Gy, meEs Oy 0.8 N 08 e
0.6 | i D S e 0.6 | SR ae S . 0.6 | -
04t R R . 04 L & mmmdmSETemm T ° o4 -
02 f 0.2 7/-" 02 e
0.0 0.0 L

0 25 50 75 100 125 0 5 10 15 20 25 30 1 2 3 4 5 6 7

Ra/Ra,. Ra/Ra,. Ra/Ra,.

(2)

FIG. 6. Dissipation ratios: (a) @ =2 x 103, (b) Q =2 x 10, (c) Q = 2 x 10°. Note that the scale of the
horizontal axis is different for each figure.
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FIG. 7. Normalized dissipation profiles averaged in time for select cases from Q = 2 x 10°. (a) normalized
viscous dissipation; (b) normalized ohmic dissipation.

where we note that ¢, + ¢, = 1. The dissipation ratios are shown in Fig. 6 for all values of Q. For
all cases, near the onset of convection we observe a rapid decrease (increase) in the ohmic (viscous)
dissipation ratio as Ra/Ra, is increased. For Q = 2 x 103, there is an approximate saturation in both
dissipation ratios in the range 25 < Ra/Ra, < 75. For the largest value of Ra/Ra, ~ 132 we find a
slight increase (decrease) in the ohmic (viscous) dissipation ratio. We note that within the saturated
regime we find significant mean flows, though the mean flow is negligibly small at the largest value
of Ra/Ra, &~ 132. This increase (decrease) in the ohmic (viscous) dissipation ratio may be due to
the strongly 3D flow that occurs, thus leading to significant induced magnetic field and associated
current. The data suggest that viscous dissipation is important for all Q, though it is always smaller
than ohmic dissipation.

To examine the depth dependence of the dissipation, we compute horizontally averaged profiles

of the squared vorticity and current density, i.e., ¢> and Qj2. Figure 7 shows these profiles,
normalized by the total dissipation, for Q =2 x 103 and three different values of Ra. Due to the
stress-free mechanical boundary conditions, we find that viscous dissipation is dominant within
the interior of the domain, and momentum boundary layers are evident. In contrast, we find that
ohmic dissipation is dominant near the boundaries though we do not observe obvious boundary
layer regions even for the largest values of Ra/Ra,. As a result, it is not relevant to separate the
ohmic dissipation into interior and boundary layer contributions.

The convective flow speeds, as characterized by the Reynolds number based on the vertical com-
ponent of the velocity, Re,, are shown in Fig. 8(a). For the VMC data, we show the total Reynolds
number, as derived from Ref. [5], though the vertical component of the velocity is larger than the cor-
responding horizontal components so long as the Lorentz force remains dominant (e.g., Ref. [34]).
We find that the scaling of the convective flow speeds are qualitatively similar in both TMC and
VMC where there are a rapid rise in amplitude near the onset of convection and a slower growth for
larger Ra/Ra,. There is a general trend of increasing Re, with increasing Q for both data sets—we
find a good collapse of the data by rescaling the convective flow speeds according to Re, Q~'/4, as
shown in Fig. 8(b). This Q'/* scaling was used in the asymptotic models of Refs. [35,36], though
only single mode (i.e., single wave number) solutions were analyzed. Asymptotic behavior is only
expected in the magnetically constrained regime in which Ha/Re, >> 1; as previously mentioned,
for Q = 2 x 10? the cases with Ra/Ra. > 10 are characterized by Ha/Re, = O(1).

The anisotropy in the velocity field can be characterized by computing the ratio of the volumetric
rms of each velocity component to the total volumetric rms velocity (Re); the resulting data are
shown in Fig. 9. Near the onset of convection, in which the flow consists of two-dimensional rolls,
we find that the vertical component of the velocity dominates. However, we find a rapid decrease
in the relative size of wnys as the large-scale flow forms and the y component of the velocity field,
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FIG. 8. Reynolds number data for both TMC and VMC. Re, is shown for TMC and Re is shown for VMC.
(a) Reynolds number Re, vs Ra/Ra,; (b) rescaled Reynolds number, Re. Q~'/4, vs Ra/Ra...

Urms, dominates. All cases show a region in parameter space in which a saturation of v,y,s/Re occurs
within the magnetically constrained regime. Moreover, this saturation is observed to occur at smaller
values of Ra/Ra, as Q increases. The relative size of u;,s/Re exhibits a slow but steady increase with
Ra/Ra, and we find that the standard deviation also increases. For Q = 2 x 10° we find relaxation
oscillations (discussed more below in Sec. III D 2) for supercriticalities Ra/Ra, = 7.5—in this
regime both u.,ms and vyys become of comparable magnitude and exhibit large amplitude variations
with time.

C. Horizontally averaged mean fields

As previously noted, mean flows form in TMC for all values of Q investigated here. These mean
flows take various forms and are associated with corresponding mean magnetic fields. In the present
section, we analyze mean fields, both velocity and magnetic, that are defined by averages over the
entire horizontal plane. In the next subsection, we examine the dynamics of what we refer to as
zonal flows, which are y-directed flows averaged only in the y direction.

We restrict the present analysis to the x component of the mean velocity field, u, and the
associated magnetic field by, since the y components are observed to be significantly smaller in
magnitude and approach zero for sufficiently long time averages. The mean momentum equation in
the x direction is given by

— = N 7 2—
it + 0,G/w) = On3d.by + 07, (23)
1.0 1.0 = 1.0 =
P i ES o \ B T s
0.8 f R { J, I 0.8 ky o Upms/Re
06 ¥ Sy 06 % + """"""""""""" 0.6 1 4 =& Vrms/Re
t# e 2 = i J J~ / \I\ -k w /Re
(O S 0.4 ::*\‘ I. = 0.4/ . rme
i e I S by ! e S
0.2 0.2 % 4 s 02 ¥ =
0.0 0.0 0.0
0 25 50 75 100 125 0 5 10 15 20 25 30 1 2 3 4 5 6 7
Ra/Ra,. Ra/Ra, Ra/Ra,.
(a) (b) (c)

FIG. 9. Time-averaged velocity ratios: (a) Q = 2 x 10%, (b) Q =2 x 10°, (c) Q = 2 x 10°. All quantities
are volumetric rms values and the error bars show the standard deviation. Note that the scale of the horizontal
axis is different for each figure.
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FIG. 10. Time and horizontally averaged x component of the velocity field and magnetic field: [(a), (d)]
0 =2 x10% [(b), (e)] Q=2 x 10%; [(c), ()] Q =2 x 10°. Darker lines correspond to higher Rayleigh
numbers.

where 1’ = u — u, etc. The corresponding mean magnetic field is governed by

0 = 130.% + 32b, (24)

so that vertical shear in the mean flow is associated with a mean magnetic field.

The computed time-averaged x components of the mean fields, @ and by, are shown in Fig. 10 for
a range of Ra and all three values of Q. In a subset of the QO = 2 x 10° simulations, we observed
a depth invariant (i.e., constant) component of u; this component of the flow was subtracted off
from all of the data presented since it has no dynamical significance. We find that the magnitude
of the mean fields increases with Ra/Ra., with the singular exception of the case (Q = 2 x 103,
Ra/Ra. = 132), which shows a sudden decrease; profiles for this case are indicated by the darkest
shade in Figs. 10(a) and 10(d). This latter case has reached sufficiently large Rayleigh number such
that the magnetic field is no longer constraining the motion. We find that the x components of the
mean fields are robust in the sense that they maintain a similar structure with varying Q and Ra, and
evolve on a timescale much longer than the underlying convection.

The mean velocity is observed to point in the positive (negative) x direction for z > 0.5 (z < 0.5)
for nearly all cases investigated. The direction of the mean flow is controlled by the Reynolds stress
term, u’'w’, appearing in Eq. (23). This component of the Reynolds stress represents the vertical flux
of x-directed momentum. Because of the propensity for the convection to align with the direction of
the imposed magnetic field, one expects «'w’ > 0 in both up-welling and down-welling regions and
this behavior was confirmed in the simulation data. Thus, a net vertical flux of x-directed momentum
implies the mean flow should be positive in the upper half of the fluid layer (z > 0.5), and the
corresponding deficit of x-directed momentum in the bottom half of the layer (z > 0.5) yields a
negative mean flow in this region.

1. Scaling analysis

Estimates for the sizes of the various terms in the above equations can be made and help to
explain some of the numerical findings shown in Fig. 10. We scale vertical derivatives of mean

043504-12



QUASISTATIC MAGNETOCONVECTION WITH A TILTED ...

quantities as 9, — Z;l, where ¢, is some characteristic length scale in the vertical dimension, and
the arrow is used to denote the scaling form for a particular operation or term in the governing
equations. In what follows, we assume 73 = O(1), and the symbol ~ is used to indicate a balance
of terms in the governing equations. Equation (24) then gives

u-~

(25)

Nllyl

~

If, for the purpose of the present scale analysis, we interpret the overline as also including a time

average, then we have three terms in the mean momentum equations to consider, which we scale as

u'w’ — b u

o,(uw') — Z—, 0On30;b, — QZ a Bzzﬁ - . (26)
4 Z z

Using relationship (25) in the above Lorentz force term, we then have

Q_b" — Q. 27)

Z

Balancing the mean Lorentz force with the mean viscous force would imply €, ~ Q~'/2, which is

the well-known Hartmann boundary layer scaling. We assume that such a strong dependence on
Q is only relevant within the Hartmann layer, and not in the bulk of the domain. We do observe a
Hartmann boundary layer in the horizontally averaged fields, though its effects appear to be small.
Outside of the Hartmann layer it is unclear that there should be any Q dependence on the vertical
length scale with regards to mean quantities. Therefore, as a first approximation we neglect any
Q dependence on this length scale and the mean Lorentz force can then only be balanced by the
divergence of the Reynolds stress in the bulk; the resulting balance gives

—_ 11—
b, ~ éu/w/. (28)

This result shows that Reynolds stresses are directly responsible for the generation of a mean
magnetic field. Using the mean induction equation then gives a relationship between the mean flow
and the Reynolds stresses,

— 1 207y
3,1 ~ —Q—ngaz Ww). (29)

Assuming €. = O(1), the above balance leads to

u'w’

Q 9
so that both the mean velocity and mean magnetic field scale similarly with Q. These relationships
suggest that we require knowledge on the asymptotic size of the fluctuating velocity components

in order to estimate the asymptotic size of both & and b,. Figure 8 suggests that w’ = 0(Q'/*) and,
though not shown, we also find that the ' = O(Q'/*), which suggests that

U~

(30)

i=00""%, b.=0Q'?. (31)

Figures 11(a) and 11(c) show rms values of the mean velocity and magnetic field, respectively.
The corresponding rescaled components are given in Figs. 11(b) and 11(d). The collapse of the
rescaled quantities suggests that the scaling arguments given above lead to good estimates for
the asymptotic dependence of these mean fields. These results suggest that the mean flow (and
associated mean magnetic field) becomes less significant dynamically in the limit Q — oo.
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D. Zonal flow dynamics

The horizontally averaged fields analyzed in the previous section represent one particular compo-
nent of the mean flows that are observed in TMC. However, the strongest mean flows observed in the
simulations are dominated by horizontal wave number k, = 1, and such motions are eliminated by
a horizontal average over the entire horizontal plane. These mean flows are a combination of zonal
(y-directed) flows and large-scale vortices that result in a meandering jet structure. For a fixed value
of O, we find that the y component of the flow dominates, though for sufficiently strong forcing
for Q = 2 x 10° the nonzonal (x-directed) flow becomes comparable to the zonal component and
relaxation oscillations occur. Given the directional dependence of the flow, it is helpful to average in
only a single horizontal direction, either x or y. Here we focus only on the zonal, or y-directed, mean
flows since they are observed for all values of Q and tend to dominate over much of the parameter
space investigated here. A brief description of the relaxation oscillations is given in the next section.

As Q is increased, we find that the zonal flow quickly becomes the dominant component of
the velocity. To illustrate this behavior, Fig. 12 shows instantaneous volumetric renderings of the
y component of the velocity, v, for Q = 2 x 10° and three different values of Ra, increasing from
left to right. Just beyond the onset of convection we find a mode with k, = 1 appears, as shown
in Fig. 12(a), which suggests the formation of the zonal flow. As Ra increases in Figs. 12(b) and
12(c), this zonal flow becomes stronger and eventually becomes energetically dominant relative to
the small-scale convection by which it is driven.

Figures 13(a)-13(c) show instantaneous views of v”(x, z, t) in the x-z plane for all three values
of Q with values of Ra chosen such that the zonal flow is energetically dominant (relative to the
convection). For all values of Q, we find that the zonal flow is aligned with the imposed magnetic
field, and dominated by a k, = 1 structure at all depths. Corresponding top-down views of v at depth
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FIG. 12. Volumetric renderings of the y component of the velocity, v, illustrating the development of the
zonal flow for Q = 2 x 10° and increasing Ra: (a) Ra = 1.04 x 107; (b) Ra = 1.1 x 10”; (c) Ra = 1.3 x 107.
The orientation for all visualizations is shown in panel (a).

z ~ 0.5 are shown in Figs. 13(d)-13(f), where the meandering structure of this mean flow can be
seen. Comparing the y-averaged flows shown in Figs. 13(a)-13(c) with the full field in Figs. 13(d)—
13(f) shows how the action of y averaging removes much of the small-scale features present in
Figs. 13(d)-13(f).

1. Scaling analysis

The scaling behavior of the zonal velocity is shown in Fig. 14(a) where rms values are plotted
for all values of Q. We observe a trend of increasing magnitude with both increasing Ra/Ra, and
increasing Q. As shown in Fig. 14(b), the data can be collapsed by scaling the zonal velocity as
v’ = O(Q'?). As done previously for the horizontally averaged mean flows, the cause of this zonal
flow scaling can be found by analyzing dominant balances in the zonal momentum equation.

The alignment of the zonal flow with the imposed magnetic field suggests that the use of a
nonorthogonal (i.e., skewed) coordinate system is helpful. Such a coordinate system was used, for
example, in Ref. [37] for studying the asymptotic behavior of rapidly rotating convection with a
tilted rotation axis. We follow Ref. [37] and define the nonorthogonal coordinate system with unit

.

X T T

(c)
500 | 1000
0 4 0
500 . ; ~1000
i

(d) (e) )

FIG. 13. Structure of the zonal flow from representative cases. [(a), (d)] Q =2 x 10°, Ra = 1 x 10%; [(b),
(€)]0 =2 x 10°,Ra = 8 x 10%[(c), ()] @ = 2 x 10°, Ra = 7 x 107. The top row shows instantaneous views
of the zonal velocity, v”, and the bottom row shows instantaneous views of the y component of the velocity, v,
in the horizontal plane at depth z ~ 0.5.
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FIG. 14. Scaling behavior of the rms value for the zonal flow: (a) raw data and (b) rescaled data.

vectors X, ¥, and 7 and coordinates (X, ¥, ). The relevant transformations between the orthogonal
and nonorthogonal variables are given by

~ n ~ 1
X=x——z, Y=y, n=—z (32)

n3 13

~ m ~ ~ 1
U=u——w, vV=0v, W=—uw. (33)

n3 13

Similarly we have ’l;y = b,. The y component of the momentum equation can now be written as

v ~ ~ 1 1
8 4 aeiv) + 0,(v7) + 8, (i) = —d,P + (—28§ + 92+ 02 — 2”—;a§n)u +0d,b,.  (34)
ot 3 . 3 n3
Averaging in the y direction, 5 direction, and in time yields
Tt 1 R T
U v + o'y = ——09,0" + 500" (35)
n3 0 n3

Here the fluctuating terms are given by v’ = v — v””, etc. We note the absence of the Lorentz force
in the above equation, indicating that it plays an indirect role in the zonal dynamics. The first term
on the left side represents advection by the mean whereas the first term on the right side contains
boundary terms associated with averaging the viscous force along 7; the numerical simulations
show that both of these terms are small in comparison to the two other terms present in the above
equation. Advection by the mean is small because 7 is not generally aligned with 7. In addition,
because v” is aligned with 7, the n-averaged value of 9, " is expected to be small. Therefore, the
largest terms are the Reynolds stress term and the viscous force,

=y 1
@Y ~ 02T, (36)
3

Furthermore, if we let € denote a length scale associated with y- and n-averaged quantities, we
find
1~ ¢ Gy, (37)

where we have dropped the factor of n% since it is of order unity. In all simulations in which a
zonal flow is observed, we find that the zonal flow grows to fill the domain and is dominated by
a k, = 1 structure. As mentioned previously, as Q is varied, we fix the total number of horizontal
critical wavelengths in the domain to be n = 10. Since the critical wavelength changes with Q, i.e.,
Xe ~ Q7% as Q becomes large, this implies that the horizontal (and vertical) scale of the zonal flow

043504-16



QUASISTATIC MAGNETOCONVECTION WITH A TILTED ...

500 — . . .
E Re /__,,0—':
400 = Fe ]
- T s e
: Py A
2O
£ 200 % —
&
wor ]

FIG. 15. Behavior of various measurements of flow speed with increasing horizontal dimension of the
simulation domain for Q =2 x 10° and Ra = 6 x 10°. The horizontal length of the simulation domain is
represented by the number of unstable horizontal wavelengths, n; the aspect ratio for the cases shown is I' =
(3.31,4.30,4.97, 5.63, 6.62). Dotted lines show the corresponding least squares fits to the data.

is also changing as we vary Q in our simulations. Therefore, we can scale the characteristic zonal
length scale as

" ~nr. = 0" ~nQ7V8 (38)
Combining this scaling with relationship (37) then yields
=000, (39)

where we have again used the numerical data that indicates (@', v') = 0(0'"*).

The zonal length scaling relation (38) implies that for a fixed value of Q the zonal flow magnitude
increases linearly with the horizontal dimension (as quantified by n) of the simulation domain.
Figure 15 shows various measurements of flow speed as a function of n for Q =2 x 10° and
Ra = 6 x 10°. This particular combination of parameters is used since it shows significant zonal
flows. The linear dependence between Re and n, as well as v),, and n, is clearly observed, as is the
independence of Re, on n. This linear dependence between the large-scale flow and the horizontal
domain size is in agreement with a previous investigation of the inverse kinetic energy cascade in
rotating convection where the same scaling was observed [38].

2. Relaxation oscillations

Relaxation oscillations were observed in simulations with Q =2 x 10° and 10Ra, < Ra <
30Ra,, where 30Ra, was the highest supercritical Rayleigh number achieved for this value of
Q. Relaxation oscillations were also found for a case with Q =2 x 10° but no statistics were
collected due to the long time integration required. The relaxation oscillations are characterized
by a zonal flow magnitude that exhibits large oscillations in time. Figures 16(a) and 16(b) show
the Reynolds number and Nusselt number, respectively, as a function of time for Q = 2 x 10° and
Ra = 1.5 x 107. During times when the mean flow is strong (weak), the Nusselt number is generally
smaller (larger) than the corresponding time-averaged value. Figure 17 shows how the horizontal
components of velocity change when the Reynolds number goes from increasing to decreasing.
The y component of the velocity decays rapidly and the x component of velocity grows to be the
dominant velocity component.
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FIG. 16. Times series data illustrating the temporal behavior of relaxation oscillations for Q = 2 x 103 and
Ra = 1.5 x 10: (a) Reynolds number, Re(t); (b) Nusselt number, Nu(z).

IV. CONCLUSION

The direct numerical simulations reported here have shown that magnetoconvection with a tilted
magnetic field (TMC) has both dynamic similarities, and key differences with magnetoconvection
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FIG. 17. Instantaneous plots of the horizontal velocity components illustrating relaxation oscillations for
0 =2 x 10° and Ra = 1.5 x 107. The two plots on the left [(a), (c)] are taken at time t = 5.200, just prior to
the peak in Reynolds number. The two plots on the right [(b), (d)] are taken at time r = 5.228, just after the
Reynolds number reaches a peak. [(a), (b)] y-velocity component; [(c), (d)] x-velocity component.
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with a vertical field (VMC). For a meaningful comparison between these two cases, we have chosen
imposed field strengths that yield critical parameters that are identical to those used in an analogous
VMC study [5]; i.e., the strengths of the vertical components of the imposed magnetic fields are
identical for our chosen values of Q. The simulations span dynamical regimes that are characterized
as magnetically constrained, in which Ha/Re, > 1, and those that might be considered magnetically
influenced when Ha/Re, = O(1). Like VMC, we find that when Ha/Re, > 1 and for sufficiently
strong buoyancy forcing, the convective structures consist of anisotropic “columns” that align with
the direction of the magnetic field. This alignment is no longer obvious when Ha/Re, < O(1).

The heat transport for TMC is qualitatively similar to VMC in which there is a rapid increase in
the Nusselt number near the onset of convection that is associated with the formation of the thermal
boundary layers, and the growth of Nu with increasing Ra/Ra, slows beyond this regime. We do
not observe a clear power law scaling of the Nusselt number for TMC over our investigated range
of parameter space. Ohmic dissipation dominates viscous dissipation in all simulations, including
those in which Ha/Re, = O(1). However, viscous dissipation remains important and represents
approximately 40% of the total dissipation as the Rayleigh number is increased.

Convective flow speeds, as characterized by the Reynolds number based on the vertical compo-
nent of the velocity, Re,, show behavior that is similar to VMC. However, it is unclear whether
Re, exhibits power law behavior due to the limited range of parameter space accessible in the
present simulations. We find that an asymptotic scaling of Re. ~ Q'/* describes the Q dependence
of the convective flow speeds. This scaling is the same that was used in the asymptotic models of
Refs. [35,36]. Further investigation, particularly simulations with larger values of Q, is necessary to
confirm the robustness of this scaling.

Mean flows, and associated mean magnetic fields, form for all values of Q investigated. We
find and study two distinct forms of mean flows, as characterized by the horizontal wave vector k.
Those mean flows in which k = (0, 0) (i.e., averaged over the horizontal plane) are dominated by
the x components, % and b,. The propensity for convective structures to align with the magnetic
field yields a vertical flux of x-directed momentum that generates a positive mean flow above the
midplane (i.e., z > 0) and a negative mean flow below the midplane (z < 0). The simulations show
that the rms value of % is a decreasing function of Q; a balance analysis suggests that # = O(Q~'/?),
which is in agreement with the numerical findings. An identical scaling holds for by, suggesting that
this particular component of the mean fields becomes less significant dynamically as Q is increased.

The energetically dominant mean flows are characterized by a meandering jet structure that tends
to be aligned with the tilt of the imposed magnetic field. These mean flows are dominated by either
k = (1, 0) at lower values of Ra/Ra., or exhibit relaxation oscillations that shift between the k =
(0, 1) and k = (1, 0) modes for sufficiently large Ra/Ra, and Q > 2 x 103. We find that the “zonal”
flows scale strongly with Q, i.e., v ~ Q!/3; this scaling is the result of the Q-dependent Reynolds
stresses and the fact that the zonal flow magnitude scales linearly with the horizontal dimensions
of the simulation domain. The zonal flows become energetically negligible for sufficiently large
Ra/Ra,, since then Ha/Re, < 1 and the convection is no longer aligned with the imposed magnetic
field. The relaxation oscillations evolve on the timescale of a large-scale viscous diffusion unit and
therefore require substantial computational resources to study.

It is interesting to note that several phenomena observed here for convection in a tilted magnetic
field are also observed for rotating convection [24,25]. In convection with a tilted rotation vector,
the fluid structures tend to align along the tilt axis of the rotation, much like how the fluid structures
in this investigation were aligned along the magnetic field. In addition, a strong shear flow arises in
convection with a tilted rotation vector that closely resembles the mean flow found for convection in
a tilted magnetic field. We anticipate that scalings for the strength of the mean flow and convective
flow speeds can be found in tilted rotating convection, as was done in the present investigation for
magnetoconvection.

The structure of the observed mean flows in the present work is a manifestation of the plane
periodic geometry that was used. Confined geometries will yield mean flows of different structures.
However, the present work has shown that a robust inverse kinetic energy cascade is nevertheless
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present in TMC, and there is no a priori reason why such a cascade would not also be present in
confined geometries such as cylinders or cubes. We might expect that the inverse cascade would
manifest itself in the form of only large-scale vortices in confined geometries, but future work is
necessary to confirm this assertion.
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