
“Bring-your-own” Plug-in Management Middleware
for Programmable Science Gateways

Komal Bhupendra Vekaria, Prasad Calyam, Roland Oruche, Yuanxun Zhang, Songjie Wang
University of Missouri, Columbia, USA

Email: {kvhg2, rro2q2, yzd3b}@mail.missouri.edu; calyamp@missouri.edu; wangso@missouri.edu

Abstract—There is a growing need for next-generation science

gateways to increase the accessibility of data sets and cloud com-

puting resources using latest technologies. Most science gateways

today are built for specific purposes with pre-defined workflows,

user interfaces, and fixed computing resources. There is a need

to modernize them with middleware that can provide ‘plug

in’ support to programmatically increase their extensibility and

scalability to meet users’ growing needs. In this paper, we propose

a novel middleware that can be integrated into science gate-

ways using a “bring-your-own” plug-in management approach.

This approach features microservice architectures to decouple

applications, and allows users (i.e., administrators, developers,

researchers) to customize and incorporate domain-specific com-

ponents in an existing science gateway. We detail the application

programming interfaces in our middleware for creation of end-to-

end pipelines with diverse infrastructure, customized processes,

detailed monitoring and flexible programmability for a scientific

domain. We also demonstrate via a OnTimeRecommend case

study on how our “bring-your-own” approach can be seamlessly

integrated by a science gateway administrator/developer using a

web application.

Index Terms—Science Gateways, Microservices, Intelligent

Middleware, Modularity, Application Decoupling

I. INTRODUCTION

Science gateways hide the complexities for scientific do-
main users to access distributed computing resources, and
perform big data management. Through easy-to-use domain
application interfaces, they handle user needs for a variety
of scientific tasks related to research and education. Science
gateways have been developed in many scientific domains,
including bioinformatics, neuroscience, physics, chemistry,
and material science [1] [2]. Many of today’s science gate-
ways help domain science users in execution of workflows,
automation for data integration, and analysis/visualization of
voluminous data - on distributed high-performance computing
resources (HPC) and cloud resources (e.g., Amazon Web
Services, CyVerse [3]).

However, most science gateways today are built for specific
purposes with pre-defined workflows, user interfaces, and fixed
computing resources. Such a state-of-practice makes it difficult
for users whose science gateway needs constantly evolve in
terms of e.g., data-intensive workflow automation or choice
of cloud computing platform. Also, science gateway adminis-
trators/developers often are challenged to integrate advanced
technologies (e.g., knowledge bases, recommenders, machine
learning tools) due to original architecture design limitations.
To overcome such issues, there is a need to modernize science

gateways with middleware that can provide ‘plug in’ support to
programmatically increase their extensibility and scalability to
meet users’ growing needs. By thus increasing the modularity
of science gateways with such a middleware, diverse user
needs can be satisfied at the front-end, and dynamic resource
management can be supported at the back-end.

In this paper, we propose a novel middleware that can be
integrated into science gateways using a “bring-your-own”
plug-in management approach. Our middleware to manage
plug-in services is inspired by a “pluganized” management
framework developed in [4], which enables plugin of network
protocols as extensions to support fast/secure data transmis-
sion. Using a plug-in management approach, our middleware
features microservice architectures to decouple applications,
and allows users (i.e., administrators, developers, researchers)
to customize and incorporate domain-specific components in
an existing science gateway. We detail the application pro-
gramming interfaces (APIs) in our middleware for creation of
end-to-end pipelines with diverse infrastructure, customized
processes, detailed monitoring and flexible programmability
for a scientific domain. The APIs provide science gateway
administrators/developers with the following benefits:

• Modularity “Bring-your-own” plug-in approach leverages
microservice architectures that decouples the science
gateway application code, and enables addition of new
services that function independently but interconnect to
each other. Consequently, the microservices code can be
reused by processes that have similar execution behavior
across multiple science gateways.

• Extensibility “Bring-your-own” plug-in management ap-
proach allows science gateway administrators/developers
to easily extend the middleware with additional appli-
cation components or plug-ins such as e.g., multi-cloud
based workflows with templates, execution pipelines in-
volving machine learning algorithms, and more.

• Scalability “Bring-your-own” plug-in management ap-
proach allows users to reserve pre-configured and ready-
to-use cloud infrastructure resources in order to help them
scale their workloads as and when needed. Replacing
a microservice for a different scale of resource needs
allows for dynamic resource management for changing
user workflow needs.

• Programmability “Bring-your-own” plug-in manage-
ment approach helps science gateway administra-

Presented at Gateways 2020, Online, USA, October 12–23, 2020.

https://osf.io/meetings/gateways2020/



tors/developers to program, register and upload various
components into their existing setup using a customizable
application interface.

Lastly, we demonstrate the benefits of our “bring-your-own”
plug-in management approach via an OnTimeRecommend
case study. Specifically, we show how our middleware can
be seamlessly integrated by a science gateway administra-
tor/developer using a web application.

The remainder of the paper is organized as follows: Section
II presents related work. Section III details our “bring-your-
own” plug-in management middleware design and imple-
mentation. Section IV describes an OnTimeRecommend case
study to show our middleware integration within a science
gateway. Section V discusses the challenges we addressed in
the integration of emerging AI/ML tools in next-generation
science gateways. Section VI concludes the paper.

II. RELATED WORK

Designing and developing a successful science gateway
takes a significant amount of time, funding and personnel
effort. However, science gateways have to continuously evolve
to adapt to the changing needs in scientific research/education
tasks. Leveraging advanced technologies can help science
gateways to address this issue. One such technology in-
volves use of microservices via RESTful APIs. For example,
GenApp [5] leverages decoupling of application code from the
science gateway to allow researchers to specify only the input
and output parameters to run their command line applications
via a graphical interface. Agave [6], a science-as-a-service
API platform, was built largely with Docker container based
microservices to seamlessly integrate API management, capac-
ity scaling, and community contributions to provide platform
services, science APIs and support services.

A number of science gateways are looking to use easily
reusable and transferable building blocks. Apache Airavata [7]
provides a software suite to compose, manage, execute, and
monitor large-scale applications and workflows for science
gateways. PaaSage [8] supports the design and deployment
of multi-cloud applications by optimizing and customizing
workflows in science gateways. Agave [6] offers platform-as-
a-service for hybrid cloud computing and data management
purposes and is being adopted as the API layer by several
science gateways, such as CyVerse [3]. Globus Galaxies [9] is
a domain-independent, cloud-based science gateway providing
a web-based interface for creating, executing, sharing, and
reusing workflows composed of arbitrary applications, tools,
and scripts. MiCADO [10], a microservice-based application
orchestrator middleware, offers scalable Docker container-
based microservice deployment by integrating services from
federated private and public cloud resource providers. Today’s
science gateways provide comprehensive user services and
convenient workflow automation; however, they largely lack
the capability for users to customize programmable plug-ins.
The integration of plug-ins require modular programming to
extensively maintain and deploy heterogeneous components.
Our middleware development is inspired by these leading

science gateways and frameworks to allow highly portable and
reusable building blocks in next-generation science gateway
development, as well as decoupling of system components to
allow users to customize their workflows and computing tasks.

III. “BRING-YOUR-OWN” PLUG-INS MANAGEMENT
MIDDLEWARE

In this section, we detail design of our “Bring-Your-Own”
plug-ins management middleware and its implementation.

A. System Design

Design of “Bring-Your-Own” plug-in management middle-
ware is shown in Figure 1. The plug-ins are integrated with
the Application Layer featuring a science gateway such as e.g.,
CyNeuro [2] with the help of a OnTimeRecommend applica-
tion that is used by science gateway administrators/developers.
In addition, the plug-ins also interface with the Infrastructure
Layer through REST APIs offered by resource providers
such as e.g., CyVerse or AWS. The Infrastructure Layer can
include cloud templates, machine learning tools, artificial in-
telligence platforms featuring chatbots, recommender modules
or domain-specific knowledge bases.

Fig. 1. Multi-layered “Bring-your-own” Plug-ins Management Design.

Application Layer is assumed to be comprised of two cate-
gories of user roles: end user researchers/scientists accessing
a science gateway such as CyNeuro, and science gateway
administrators/developers who use the OnTimeRecommend
web application. The OnTimeRecommend web application
features an ‘Admin interface’ to integrate, manage and execute
different plug-ins using functional components implemented
as microservices. Once integrated, augmented interfaces are
provided to end users (researchers, students) when using
the domain-specific gateways to access and use the capa-
bilities provided by the plug-ins. As shown in Figure 1,
several application-specific or infrastructure-specific microser-
vices can be chained to customize capabilities and allow



information sharing between the different microservices to
execute specific functional components.

We implement our “Bring-Your-Own” plug-in management
middleware as an end-to-end framework that provides admin-
istrators/developers plug-in management capabilities. Herein,
we detail the ‘Admin interface’ functionality with the follow-
ing plug-in components:

• Plug-in Registry is the repository for all clients and plug-
ins related data. It also includes the metadata of plug-
ins–which is the configuration to execute the processes
related to the client’s plug-in selection–as well as the
science gateway application details. This metadata is
formatted using JSON and stored in the database when
add or update actions are taken on plug-ins/processes. Our
current implementation of this registry uses the Hibernate
framework for object-relational mapping over a relational
database i.e., a MySQL backend.

• Plug-in Process Manger is used to create plug-in pro-
cesses for a science gateway. Plug-in management and
execution can be broken down into multiple processes.
We implemented microservices that help users to con-
figure and execute processes for specific plug-ins. This
component is also responsible as a client to the Plug-
in Registry for persistently storing all process details,
metadata information related to each process of plug-ins.

• Plug-in Orchestrator abstracts the configuration of the
middleware queuing layer for individual clients. Specif-
ically, it configures execution parameters for different
processes of plug-ins, and consequently queues all pro-
cesses of plug-ins. This component is also responsible as
a client to the Plug-in Registry for persistently storing
all parameter configurations and queuing requests for
processes in a queue.

• Render, Execute and Monitor Plug-in provides the web-
based user interface to the application layer using a
client software development kit that we implemented.
Execute plug-ins component executes different processes
for specific plug-ins based on user requests, and the
Monitor plug-ins component checks the execution status
of the plug-ins.

B. Implementation Details

We have implemented microservices that follow the stan-
dard practices of RESTful API design. All microservices have
been developed in the backend using Spring Boot, which is a
widely used framework in Java. Spring Boot is pre-configured
and pre-sugared with a set of technologies that drastically
minimize the manual efforts of configuration compared to
conventional frameworks. In addition, we have used Apache
Maven, which is a comprehensive build management tool
to manage dependencies and versions, compile source code,
runs tests, package code into deployment-ready file formats,
and deploy a final production code instance using Docker
containers.

The microservice architecture involves enabling flexible
interactions between multiple services. Each instance of a ser-

vice exposes a remote REST API at a particular location (host
and port), and the number of service instances as well as their
locations change dynamically. In this case, a combination of
service registry and client-side service discovery allow services
to find and communicate with each other without hard-coding
the host names and ports. The service registry handles details
of services such as their instances and locations. Service
instances are registered with the service registry on startup
and are de-registered on shutdown. We have implemented
microservices for both service registry and discovery client
microservices using Spring cloud [11] and Eureka. We have
also developed gateway edge service using Spring cloud and
Zuul to enable dynamic routing in our middleware.

In addition, we have implemented the OAuth 2.0 security
protocol with Spring Boot and Spring Security to provide
authentication support to science gateway clients. It enables
third-party applications (e.g., GitHub API, Google API) to ob-
tain limited access to web applications. This allows for science
gateway administrators/developers to enable access control to
plug-in services they want to provision. With the integration of
OAuth 2.0, we can validate users by allowing them to sign-on
to the web application with necessary authorized permissions.

C. Plug-in Management Middleware Benefits

The implementation of our plug-in management middleware
allows developers/administrators to integrate and monitor the
use of plug-ins in science gateway applications. Herein, we
detail salient benefits of our middleware architecture for ad-
ministrators/developers:

• It enables administrators/developers to modularize the
plug-in services used to develop microservices in science
gateway applications. These design benefits can support
plug-ins to independently operate by decoupling pro-
cesses into microservices.

• It supports customizable design and deployment to aug-
ment scientific workflows. The architecture uses Docker
containers to construct deployment patterns across the
distributed resources to optimize the pre-defined work-
flows commonly used in a domain science community
(e.g., neuroscience, bioinformatics).

• It also provides the flexibility for disparate code bases
to be integrated through microservices. Administra-
tors/developers typically create microservices using their
preferred coding language. Our architecture allows devel-
opers to use their preferred coding language for creating
customizable science gateways.

IV. ONTIMERECOMMEND CASE STUDY

In our recent prior work, we implemented the OnTimeRe-
commend [2], which features a variety of recommender
modules to help novice/expert users with knowledge discov-
ery through data sources such as e.g., publications, funding
records, cloud templates and Jupyter notebooks. OnTimeRec-
ommend also features a Vidura Advisor (i.e., a Chatbot) using
Google DialogFlow to provide a guided user interface with
step-by-step navigational support. Vidura generates distinct



responses of OnTimeRecommend recommenders for users
based on novice/expert user intent to accomplish targeted
research and education tasks.

A. “Bring-Your-Own” Plug-in Management Middleware Inte-

gration in OnTimeRecommend

Herein, we detail how we customized our “Bring-Your-
Own” plug-in management middleware into the OnTimeRe-
commend system. The integration involves: (i) “Bring-Your-
Own-Recommender” customized middleware and Admin in-
terface for OnTimeRecommend to add, manage, execute rec-
ommender modules, and (ii) a recommender user interface
for providing recommendations on available resources to sci-
ence gateway end users. Using these two integration thrusts,
OnTimeRecommend provides a ‘recommender-as-a-service’
functionality to the CyNeuro science gateway that is currently
being used by researchers and educators in the neuroscience
community. We integrate OAuth 2.0 to authenticate and autho-
rize the clients of the CyNeuro science gateway by allowing
them to customize their desired plug-in services. The plug-ins
in this case study are the recommender modules within the
OnTimeRecommend system, which features different recom-
mender modules that can be integrated as shown in Figure 2.
The details of the recommender modules are as follows:

Fig. 2. ‘Bring-Your-Own’ Plug-in Management Interface to Add, Manage,
and Execute Recommender Modules in OnTimeRecommend

• Domain-specific Topic Recommender guides users to-
wards successfully identifying topic associations e.g.,
tools that are popularly used in specific domains such
as e.g., neuroscience.

• Publication Recommender discovers relevant publications
for researchers using key words.

• Jupyter Notebook Recommender searches and retrieves
relevant Jupyter notebooks when users have a specific
training requirement to accomplish a research/education
task.

• Workflow Template Recommender suggests cloud tem-
plates according to researcher’s requirement in terms of
cost or performance.

• Scholar Finder suggests scholars who are experts that
are competent to accomplishing a research task based on
their publication and funding records.

B. Plug-in Management Middleware Integration Steps

Figure 3 illustrates the steps to configure middleware com-
ponents to add and execute the different recommender mod-
ules. The steps for a science gateway administrator/developer
to customize OnTimeRecommend modules for a science gate-
way are as follows:

• Step-1: register different recommender modules in On-
TimeRecommend using the web application interface.
This interface uses Plug-in Registry services to register
information related to recommender modules for a sci-
ence gateway.

• Step-2: register scientific plug-in processes such as data
collection/processing parameters, and knowledge base,
such that all the necessary information is provided to
execute relevant recommenders in OnTimeRecommend
using the ‘Plug-in Workflow Manager’.

• Step-3: add a science gateway (i.e., CyNeuro in this case
study) client and link recommender modules with the
client to allow users to use recommenders on their science
gateway interface.

• Step-4: configure parameters of recommender processes
and queue processes of recommender modules for a
specific science gateway client.

• Step-5: execute all recommender processes using pro-
vided configurations and publish recommender outputs
to end users on their science gateway interface.

Fig. 3. Sequence Diagram to Add, Manage, Execute Plug-ins customized for
a Science Gateway

V. DISCUSSION

Our novel middleware framework for managing plug-in
services provides new capabilities for users (e.g., administra-
tors/developers, researcher) in the science gateways commu-
nity. The core feature of our middleware is in the integration
of plug-in management middleware components for AI/ML
execution pipelines, which pose new challenges and open
questions in next-generation of science gateways. We showed
how our plug-in management for application providers could
be designed to keep up with the rapid increase of voluminous
data, tools, and various resources openly available to scientific
communities. The maintenance of the plug-ins also is an



important aspect of our middleware, which involves collecting
up-to-date data to train and re-train the models to ensure latest
guidance is provided from the plug-in services, especially
involving recommender modules in OnTimeRecommend.

Proper facilitation of updated resources via plug-in manage-
ment also needs to be adapted with respect to human cognition.
For instance, it is crucial to develop flexible features that
ensure users are able to customize the plug-in management
middleware to be relevant across different science domains
(e.g., neuroscience, bioinformatics) that have unique workflow
requirements. Moreover, our middleware can be augmented
with additional plug-ins that support natural language pro-
cessing as well as context-aware chatbots to handle diversity
of user requirements and to ensure update of the knowledge
bases on a regular basis. Failure to address these demands
in the middleware to manage plug-in services could result
in irrelevant information from the recommender responses.
Consequently, users may not be willing to adopt the new tools
being considered in this work, which provide user guidance
to handle big data handling needs in next-generation science
gateways.

VI. CONCLUSION

In this paper, we presented a novel “Bring-You-Own” plug-
in management middleware design and implementation to
enable science gateways to leverage advanced technologies
in a customizable manner to increase their extensiblity and
scalability. Through integration of our middleware with an
Application Layer and Infrastructure Layer, changing needs
of domain scientists can be satisfied. The Application Layer
involves a science gateway such as e.g., CyNeuro [2] for
neuroscience researchers/educators. The Infrastructure Layer
involves REST APIs offered by resource providers such as e.g.,
CyVerse or AWS. The Infrastructure Layer can include cloud
templates, machine learning tools, artificial intelligence plat-
forms featuring chatbots, recommender modules or domain-
specific knowledge bases. Through an OnTimeRecommend
case study, we showed how a science gateway administra-
tor/developer can configure relevant recommender modules for
the science gateway users (i.e., CyNeuro in the case study)
to perform knowledge discovery of cloud templates, Jupyter
notebooks, publications and domain experts. Our plug-in man-
agement approach involving microservices can be generally
applied to extend and scale any science gateway through a
series of integration steps supported by our middleware via a
web application.

As part of future work, we plan to develop additional plug-
in support features in our middleware for: (a) integration of
chatbots for guided interfaces, and (b) knowledge bases for
intelligent data analytics, in other domain science gateways
such as bioinformatics and health informatics.

ACKNOWLEDGMENT

This work is supported by the National Science Foundation
under awards: OAC-1730655 and OAC-2006816. Any opin-
ions, findings, and conclusions or recommendations expressed

in this publication are those of the author(s) and do not nec-
essarily reflect the views of the National Science Foundation.

REFERENCES

[1] B. Demeler, “Ultrascan: a comprehensive data analysis software pack-
age for analytical ultracentrifugation experiments,” Modern analytical

ultracentrifugation: techniques and methods, pp. 210–229, 2005.
[2] S. S. Sivarathri, P. Calyam, Y. Zhang et al., “Chatbot guided domain-

science knowledge discovery in a science gateway application,” Pro-

ceedings of Gateways, 2019.
[3] N. Merchant, E. Lyons, S. Goff, M. Vaughn, D. Ware, D. Micklos, and

P. Antin, “The iplant collaborative: cyberinfrastructure for enabling data
to discovery for the life sciences,” PLoS biology, vol. 14, no. 1, 2016.

[4] Q. De Coninck, F. Michel, M. Piraux, F. Rochet, T. Given-Wilson,
A. Legay, O. Pereira, and O. Bonaventure, “Pluginizing quic,” Proceed-

ings of the ACM SIG on Data Communication, pp. 59–74, 2019.
[5] A. Savelyev and E. Brookes, “Genapp: Extensible tool for rapid gener-

ation of web and native gui applications,” FGCS, pp. 929–936, 2019.
[6] R. Dooley, S. R. Brandt, and J. Fonner, “The agave platform: An

open, science-as-a-service platform for digital science,” Proceedings of

PEARC, pp. 1–8, 2018.
[7] M. Pierce, S. Marru, B. Demeler, R. Singh, and G. Gorbet, “The apache

airavata application programming interface: overview and evaluation
with the ultrascan science gateway,” Gateway Workshop, 2014.

[8] A. Rossini, “Cloud application modelling and execution language
(camel) and the paasage workflow,” Advances in Service-Oriented and

Cloud Computing, 2015.
[9] R. Madduri, K. Chard, R. Chard, L. Lacinski, A. Rodriguez, D. Sulakhe,

D. Kelly, U. Dave, and I. Foster, “The globus galaxies platform: deliv-
ering science gateways as a service,” Concurrency and Computation:

Practice and Experience, vol. 27, no. 16, pp. 4344–4360, 2015.
[10] T. Kiss, P. Kacsuk, J. Kovács, B. Rakoczi, A. Hajnal, A. Farkas,

G. Gesmier, and G. Terstyanszky, “Micado—microservice-based cloud
application-level dynamic orchestrator,” Future Generation Computer

Systems, vol. 94, pp. 937–946, 2019.
[11] “Spring cloud netflix. accessed may 2020,” [Online] Available at

https://spring.io/projects/spring-cloud-netflix.


