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ABSTRACT
The problem of sequential hypothesis testing is studied, where sam-
ples are taken sequentially, and the goal is to distinguish between
the null hypothesis where the samples are generated according to a
distribution p and the alternative hypothesis where the samples are
generated according to a distribution q. The defender (decision
maker) aims to distinguish the two hypotheses using as few samples
as possible subject to false alarm constraints. The problem is studied
under the adversarial setting, where the data generating distribu-
tions under the two hypotheses are manipulated by an adversary,
whose goal is to deteriorate the performance of the defender—for
example, increasing the probability of error and expected sample
sizes—with minimal cost. Specifically, under the null hypothesis, the
adversary picks a distribution p 2 P with cost c0ðpÞ, and under the
alternative hypothesis, the adversary picks a distribution q 2 Q with
cost c1ðqÞ: This problem is formulated as a non-zero-sum game
between the defender and the adversary. A pair of strategies (the
adversary’s strategy and the defender’s strategy) is proposed and
proved to be a Nash equilibrium pair for the non-zero-sum game
between the adversary and the defender asymptotically. The defend-
er’s strategy is a sequential probability ratio test and thus is compu-
tationally efficient for practical implementation.
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1. INTRODUCTION

With recent advancements in wireless communication and sensing technology, rich and
complex sequential high-dimensional data from large-scale distributed sensor networks
and cyber-physical systems are made available for a wide range of statistical inference
applications. However, the reliance on wireless communication and the sparse spatial
distribution of these networked systems make them extremely vulnerable to adversarial
attacks, such as measurement manipulation, communication blocks, and false data injec-
tion. Those attacks may result in substantial damage to critical infrastructures, the econ-
omy, the ecosystem, and even public safety and thus need to be detected in an efficient
and reliable manner. For example, an adversary would like to inject false measurements
into a smart grid. The adversary may choose different false data injection strategies and
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will receive different rewards. The utility of the defender can be defined according to
the damage to the power system caused by the attack.
An adversary may adapt its strategy according to the detection scheme to increase the

error probability and expected sample size and, therefore, classical hypothesis testing
approaches (Kay 1993; Cover and Thomas 2012; Poor 2013; Moulin and Veeravalli 2018)
may fail. This motivates the study of hypothesis testing in adversarial environments in this
article, which is of great importance especially in security applications. The adversary is
often caused by human factors (Marano, Matta, and Tong 2008; Mo, Hespanha, and
Sinopoli 2014; Jin and Lai 2021). Thus, any attempts to improve the performance of test
schemes may result in a dual effort to devise more powerful counterthreat detection tech-
niques that leave less evidence. Although this is an unavoidable and possibly virtuous
loop, which may finally lead to more powerful threat detection and counterthreat detec-
tion tools, it is desired to investigate the ultimate limits of such a procedure.
In this article, we propose a game-theoretic approach to study the limit of such a

procedure; that is, Nash equilibrium (Reny 2008). The defender receives samples
sequentially (see Tartakovsky, Nikiforov, and Basseville [2014]; Poor and Hadjiliadis
[2009]; Moulin and Veeravalli [2018]; Siegmund [1985] for sequential hypothesis test-
ing). Specifically, under the null hypothesis H0, the samples are generated independ-
ently by a distribution p 2 P that is picked by the adversary with cost c0ðpÞ; and under
the alternative hypothesis H1, the samples are generated independently by another dis-
tribution q 2 Q that is picked by the adversary with cost c1ðqÞ: The defender aims to
use as few samples as possible to accurately decide which hypothesis is correct, whereas
the adversary aims to fool the defender with a minimal cost. To model the interaction
between the adversary and the defender and to take into consideration the costs c0ðpÞ
and c1ðqÞ of using strategies p and q by the adversary, we formulate the problem as a
non-zero-sum game between the defender and the adversary. The goal of this article is
to find a Nash equilibrium strategy pair for this non-zero-sum game and analyze the
performance of the defender and the adversary in the Nash equilibrium.
Our problem in this article is related to the problem of robust hypothesis testing

(Huber 1965, 1981; Veeravalli, Basar, and Poor 1994; Pandit, Meyn, and Veeravalli
2004; Levy 2009; Wilcox 2011; G€ul and Zoubir 2017; Molloy and Ford 2017; Gao et al.
2018; Qin and Priebe 2017). For robust hypothesis testing, the goal is to design algo-
rithms that are robust to model uncertainty. Specifically, the problem of robust hypoth-
esis testing is usually formulated into a minimax problem, which is to first find the
least favorable distributions and then design likelihood ratio test between the least
favorable distributions. However, such an approach does not take into consideration the
interaction between the adversary and the defender. In adversarial environments, where
security is crucial, the adversary (defender) may change its strategy according to the
defender’s (adversary’s) strategy and vice versa. Therefore, it is of more practical
importance to formulate the problem into a game and study its Nash equilibrium. More
important, in this article, we design different utility functions for the defender and the
adversary that take into consideration the cost of picking particular strategies, which
were not investigated in these robust hypothesis testing studies.
The problem of hypothesis testing using a game-theoretic approach was studied in

Yasodharan and Loiseau (2019), Vamvoudakis et al. (2014), and Barni and Tondi (2013).
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We note that those studies are nonsequential; that is, one decision is made using a fixed
number of samples. However, as observed in sequential hypothesis testing (Tartakovsky,
Nikiforov, and Basseville 2014), sequential tests can achieve the same accuracy using fewer
samples on average than fixed-sample-size tests and are more suitable for online applica-
tions with time series data. In this article, we focus on the sequential setting, where sam-
ples arrive sequentially, one at each time instant. Specifically, in Vamvoudakis et al. (2014)
and Barni and Tondi (2013), the problem was formulated as a zero-sum game, where the
probability of error is used as the utility function. Moreover, Vamvoudakis et al. (2014)
focused on the particular case where the distributions are Bernoulli. In Yasodharan and
Loiseau (2019), the non-zero-sum setting was investigated, where the adversary picks a
distribution q 2 Q with cost c(q). The utility functions used in Yasodharan and Loiseau
(2019) are linear combinations of the error probabilities and the cost function c(q). For a
large number of samples, the error probabilities converge to zero; however, c(q) does not
scale with the sample size. Therefore, such utility functions fail to consider the error prob-
abilities asymptotically because when comparing to the cost c(q), the vanishing error prob-
abilities are negligible. This article proposes designing utility functions using error
exponents instead of error probabilities to overcome this challenge.
Our article is also related to the studies of sequential detection and quickest change

detection in sensor networks with Byzantine sensors (Bayraktar and Lai 2015; Fellouris,
Bayraktar, and Lai 2018; Li, Mo, and Hao 2019; Y.-C. Huang, Lin, and Huang 2019b; Y.-J.
Huang, Lin, and Huang 2019). In Li, Mo, and Hao (2019), a game-theoretic approach was
constructed to solve sequential hypothesis testing with Byzantine sensors. In Bayraktar
and Lai (2015), Y.-J. Huang, Lin, and Huang (2019), Fellouris, Bayraktar, and Lai (2018),
and Y.-C. Huang, Lin, and Huang (2019), the problem of quickest change detection with
Byzantine sensors was studied but not under a game-theoretic framework. The main dif-
ference lies in that in Li, Mo, and Hao (2019), Bayraktar and Lai (2015), Fellouris,
Bayraktar, and Lai (2018), Y.-J. Huang, Lin, and Huang (2019), and Y.-C. Huang, Lin, and
Huang (2019), it was assumed that the adversary can modify samples from compromised
sensors arbitrarily. However, only a limited number of sensors can be compromised; in
this article, we only have one single data stream, and the adversary can only choose its
strategy p and q from two fixed sets P and Q with costs c0ðpÞ and c1ðqÞ:
In this article, we construct a pair of strategies and prove that they are in Nash equi-

librium for the non-zero-sum game asymptotically. More specifically, our main contri-
butions can be summarized as follows: (i) we propose a non-zero-sum game to model
sequential detection in adversarial environments, which provides a general framework
for this type of problem; (ii) we develop a novel scheme with utility functions defined
by the error exponents of the sequential tests and the cost functions c0 and c1; (iii) we
construct a pair of strategies, prove that they are in Nash equilibrium of the game
asymptotically, and characterize their utilities at the Nash equilibrium; and (iv) provide
some examples and extensive numerical results to validate our theoretical assertions.

1.1. Article Organization

The article is organized as follows. In Section 2, we introduce the problem formulation. In
Section 3, we provide preliminaries and background information on Nash equilibrium
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and the sequential probability ratio test (SPRT). In Section 4, we present our main results.
Specifically, we provide general sufficient conditions to construct a pair of strategies in the
Nash equilibrium asymptotically. We also characterize the utilities of both the defender
and the adversary at the equilibrium. In Section 5, we use several examples to illustrate
how to construct strategies in Nash equilibrium and present extensive numerical experi-
ments to illustrate our theoretical results. In Section 6, we conclude our article with a
few remarks.

2. PROBLEM FORMULATION

Suppose we are observing a data stream fXtg1t¼1 sequentially. There are two players: the
adversary and the defender. Under the null hypothesis, Xts are independent and identi-
cally distributed (i.i.d.) according to a distribution p picked by the adversary from a set
of distributions P: Under the alternative hypothesis, Xts are i.i.d. according to another
distribution q 2 Q picked by the adversary. It is assumed that P \ Q ¼ Ø: The adver-
sary’s strategy is defined by j ¼ ðp, qÞ, where p 2 P and q 2 Q: The problem can be
formulated as a sequential hypothesis testing problem where the null hypothesis is

H0 : Xt’s � p i:i:d:, ði:e:, adversary picks p 2 PÞ,
and the alternative hypothesis is

H1 : Xt’s � q i:i:d:, ði:e:, adversary picks q 2 QÞ:
The adversary’s goal is to pick a strategy j ¼ ðp, qÞ so that the defender needs more
samples to accurately make a conclusion about the two hypotheses. We further define
two cost functions c0ðpÞ : P 7!Rþ and c1ðqÞ : Q 7!Rþ to model the cost of the adver-
sary using strategy j; for example, for j ¼ ðp, qÞ, c0ðpÞ is the power consumption of
choosing p 2 P and c1ðqÞ is the power consumption of choosing q 2 Q:

The defender’s strategy is defined by a sequential decision rule d ¼ ðT, dÞ, where T 2
f1, 2, :::g is a stopping time and d 2 f0, 1g is the decision rule. Here d¼ 0 is to accept
H0, and d¼ 1 is to reject H0: The defender’s goal is to minimize the number of sam-
ples needed for correct decisions. There are two types of expected number of samples.
One is the expected number of samples needed to make a decision under the null
hypothesis, denoted by Ep½T�: The other one is the expected number of samples needed
to make a decision under the alternative hypothesis, denoted by Eq½T�: We further
define the type I error a ¼ Ppðd ¼ 1Þ and the type II error b ¼ Pqðd ¼ 0Þ: The defender
considers stopping rules in the following set:

Cða, bÞ :¼ fd ¼ ðT, dÞ : Ppðd ¼ 1Þ � a,Pqðd ¼ 0Þ � b,Ep T½ � < 1,Eq T½ � < 1g: (2.1)

If the defender’s strategy is d 2 Cða, bÞ, and the adversary’s strategy is j, the defender’s
utility function is defined as

uDðd, jÞ ¼ c
j log bj
Ep T½ � þ

j log aj
Eq T½ � , (2.2)

where c > 0 is a positive number to capture the weights for Ep½T� and Eq½T�: Such a
definition of the defender’s utility function captures the error exponent of the two types
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of errors, and the defender would like to maximize it so that the detection is more sam-
ple efficient.
The adversary’s goal is to fool the defender as much as possible; that is, to maximize

the expected number of samples needed. We then define the adversary’s utility when it
plays the strategy j ¼ ðp, qÞ and the defender plays the strategy d 2 Cða, bÞ as follows:

uAðd, jÞ ¼ �c0ðpÞ � c1ðqÞ � c
j logbj
Ep T½ � �

j log aj
Eq T½ � : (2.3)

By comparing (2.2) and (2.3), it can be observed that if there is no cost for the adver-
sary to use strategy j—that is, c0ðpÞ ¼ c1ðqÞ ¼ 0—then the game is a zero-sum game.
The goal of this article is to construct a Nash equilibrium pair of strategies for
this game.

3. PRELIMINARIES

In this section, we provide some preliminaries for Nash equilibrium, which is the cen-
tral concept of rational behavior in noncooperative game theory, and the SPRT, which
is optimal for the simple sequential hypothesis testing problem.

3.1. Nash Equilibrium Strategy

Based on the discussion in the previous section, the problem of sequential hypothesis
testing in an adversarial environment can be modeled as a two-player game, where the
defender’s strategy and utility function are ðd, uDðd, jÞÞ and the adversary’s strategy and
utility function are ðj, uAðd, jÞÞ: Both players intend to maximize their corresponding
utility functions.
Under this game-theoretic framework, we are ready to introduce the concept of Nash

equilibrium (Reny 2008).

Definition 3.1. For the strategies d� 2 Cða, bÞ, j� ¼ ðp�, q�Þ, p� 2 P, q� 2 Q, ðd�, j�Þ is
a pure strategy Nash equilibrium if

uAðd�, j�Þ � uAðd�, jÞ for all j,

uDðd�, j�Þ � uDðd, j�Þ for all d 2 Cða, bÞ:
In particular, for the zero-sum game where uAðd, jÞ þ uDðd, jÞ ¼ 0, ðd�, j�Þ is a pure
strategy Nash equilibrium if for all j and d 2 Cða, bÞ, uAðd�, jÞ � uAðd�, j�Þ �
uA ðd, j�Þ:
Based on the definition, a strategy ðd�, j�Þ is in Nash equilibrium if no player can do

better by unilaterally changing its own strategy. It is interesting to see the difference
between the Nash equilibrium strategy and the minimax optimal strategy robust sequen-
tial test. Specifically, the minimax optimal strategy ~d is usually obtained by solving the
following problem:

min
d2Cða, bÞ

max
j

ðuAðd, jÞÞ, (3.1)

the solution to which is not necessarily in Nash equilibrium.
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3.2. The Sequential Probability Ratio Test

For the simple sequential hypothesis testing problem, the SPRT, which was developed
by Wald (1945), is widely used. Consider the following sequential hypothesis testing
problem:

H0 : Xt ’s � p i:i:d:, (3.2)

H1 : Xt ’s � q i:i:d:, (3.3)

where fXtg1t¼1 is the observing data stream.
Let Sn ¼

Pn
i¼1 log qðXiÞ

pðXiÞ : Then the SPRT testing p against q is a pair of a stopping
time T and a decision rule d, where

Tða, bÞ ¼ inf n : Sn 62 ða, bÞ� �
, (3.4)

d ¼ 0, if ST � a,
1, if ST � b:

�
(3.5)

Here a, b are two stopping thresholds that control the type I and type II errors of the
SPRT. The SPRT has nice optimality that of all tests with the same power, on average,
it requires the fewest observations (Wald and Wolfowitz 1948).
Denote the Kullback-Leibler divergences between p and q by KLðpjjqÞ ¼Ð
pðxÞ log pðxÞ

qðxÞ dx, and assume that KLðpjjqÞ and KLðqjjpÞ are well defined and finite for
any p 2 P and any q 2 Q: Then, as a ! �1, b ! þ1, it can be shown that

PpðST � bÞ ¼ ð1þ oð1ÞÞe�b, (3.6)

PqðST � aÞ ¼ ð1þ oð1ÞÞea: (3.7)

Thus, the choices of a ¼ logb, and b ¼ log 1
a , guarantee that Ppðd ¼ 1Þ ¼ ð1þ oð1ÞÞa

and Pqðd ¼ 0Þ ¼ ð1þ oð1ÞÞb: Additionally, the expected sample sizes of the SPRT can
be characterized as follows:

Ep Tða, bÞ½ � ¼ ð1þ oð1ÞÞ jaj
KLðpjjqÞ , (3.8)

Eq Tða, bÞ½ � ¼ ð1þ oð1ÞÞ b
KLðqjjpÞ : (3.9)

See Tartakovsky, Nikiforov, and Basseville (2014), Moulin and Veeravalli (2018), and
Siegmund (1985) for more details of the SPRT.

4. ASYMPTOTIC NASH EQUILIBRIUM STRATEGY

In this section, we construct a pair of strategies ðd�, ðp�, q�ÞÞ, yjsy are in Nash equilibrium
asymptotically. Specifically, if we can find a distribution p� 2 P and a q� 2 Q satisfying

ðp�, q�Þ ¼ argmax
p2P, q2Q

ð�c0ðpÞ � c1ðqÞ

� ck2ðq, p�, q�ÞEp log
p�ðxÞ
q�ðxÞ � k1ðp, p�, q�ÞEq log

q�ðxÞ
p�ðxÞÞ,

(4.1)
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inf
p2P

KLðpjjq�Þ � KLðpjjp�Þ� �
> 0, (4.2)

and

inf
q2Q

KLðqjjp� � KLðqjjq�Þ� �
> 0, (4.3)

and a sequential test d� 2 Cða, bÞ, which is the SPRT testing q� against p� with Pp� ðd ¼
1Þ ¼ a and Pq� ðd ¼ 0Þ ¼ b, then we have the following theorem of asymptotic Nash
equilibrium. Note that k1ðp, p�, q�Þ is a positive number such that

Ep

�
q�ðxÞ
p�ðxÞ

�k1
" #

¼
ð
pðxÞ q�ðxÞ

p�ðxÞ
� �k1

dx ¼ 1, (4.4)

and k2ðq, p�, q�Þ is a positive number such that

Eq

�
p�ðxÞ
q�ðxÞ

�k2
" #

¼
ð
qðxÞ p�ðxÞ

q�ðxÞ
� �k2

dx ¼ 1: (4.5)

For simplification, we use k1ðpÞ and k2ðqÞ to denote them respectively.

Theorem 4.1. Assume that there exists a distribution p� 2 P and a distribution q� 2 Q
satisfying (4.1), (4.2), and (4.3) and Ep

	
log q�ðXiÞ

p�ðXiÞ

2� �

and Eq

	
log q�ðXiÞ

p�ðXiÞ

2� �

are finite

for any p 2 P and q 2 Q. Then as a, b ! 0, b log a ! 0, a log b ! 0, ðdj� , j�Þ is in Nash
equilibrium asymptotically for the utility functions uAðd, jÞ and uDðd, jÞ; that is,

lim
a, b!0

uDðdj�, j�Þ � lim
a, b!0

uDðd, j�Þ, (4.6)

lim
a, b!0

uAðdj�, j�Þ � lim
a, b!0

uAðdj�, jÞ, (4.7)

where d ¼ ðT, dÞ is any sequential test in Cða, bÞ, j� ¼ ðp�, q�Þ, dj� is the SPRT for test-
ing p� against q�:

We note that (4.6) also holds without the limit. Before providing the detailed proof
of Theorem 4.1, we first present the following useful lemma.

Lemma 4.1. Suppose that Y is a continuous random variable that takes both positive and
negative values with nonzero probabilities, and assume that uðkÞ ¼ E½e�kY � is well
defined over �1 < k < 1: Then there exists a constant k� > 0 satisfying uðk�Þ ¼ 1 if
and only if E½Y� > 0:

The proof of Lemma 4.1 can be found in Zhang and Zou (2020). Note that in
Lemma 4.1, we assume that Y is a continuous random variable for simplicity. In gen-
eral, this lemma still holds with mild assumptions on Y. See appendix A2 of Wald
(2013) for more details. With Lemma 4.1, we are ready to prove Theorem 4.1.

Proof. This is the proof of Theorem 4.1. To simplify the notation, in this proof, Pp and
Ep denote the probability measure and expectation when the data have the probability
distribution pðxÞ:
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For fixed j 2 P �Q, let dj ¼ ðTj, djÞ 2 Cða, bÞ be the SPRT testing q against p with
Ppðdj ¼ 1Þ ¼ a and Pqðdj ¼ 0Þ ¼ b:
First, we show that uDðdj, jÞ � uDðd, jÞ for any test d ¼ ðT, dÞ 2 Cða, bÞ: In fact, this

follows easily from the optimality of the SPRT (Wald and Wolfowitz 1948). Specifically,
for any test d ¼ ðT, dÞ 2 Cða, bÞ, we have that EpðTjÞ � EpðTÞ and EqðTjÞ � EqðTÞ:
Thus, uDðdj, jÞ � uDðd, jÞ: In particular, we have that uDðdj�, j�Þ � uDðd, j�Þ:
Next, we will show that uAðdj�, j�Þ � uAðdj�, jÞ for any j 2 P �Q: For any fixed

j 2 P �Q, we first find the thresholds of SPRT dj to guarantee the type I and type II
error constraints. Specifically, consider the stopping time

T�ða, bÞ ¼ inf n :
Xn
i¼1

log
q�ðXiÞ
p�ðXiÞ 62 ða, bÞ

( )
: (4.8)

We need to determine a and b such that

Pp

XT�

i¼1

log
q�ðXiÞ
p�ðXiÞ � b

 !
¼ a, (4.9)

Pq

XT�

i¼1

log
q�ðXiÞ
p�ðXiÞ � a

 !
¼ b: (4.10)

First we compute the following probability

Pp

XT�

i¼1

log
q�ðXiÞ
p�ðXiÞ � b

 !
: (4.11)

By the condition in (4.2), we have that
Ð
pðxÞ log p�ðxÞ

q�ðxÞ dx > 0: Thus, if Y1 ¼ log p�ðXÞ
q�ðXÞ is a

continuous random variable and can take both positive and negative values, by Lemma
4.1, there exists a positive number k1ðpÞ (which depends on p, p�, q�) such that

Ep e
�k1ðpÞ	Y1½ � ¼

ð
pðxÞ q�ðxÞ

p�ðxÞ
� �k1ðpÞ

dx ¼ 1: (4.12)

Then, if we define h1ðxÞ ¼ pðxÞðq�ðxÞp�ðxÞÞk1ðpÞ, h1ðxÞ is just a probability density function.

Moreover, we have that log h1ðxÞ
pðxÞ ¼ k1ðpÞ log q�ðxÞ

p�ðxÞ : Therefore, the stopping time T�ða, bÞ
would be the same as T0

1 ¼ inf n :
Pn

i¼1 log h1ðXiÞ
pðXiÞ 62 ðak1ðpÞ, bk1ðpÞÞ

n o
, which is the

SPRT for h1 against p. By the property of the SPRT in (3.6), it then follows that

Pp

XT0
1

i¼1

log
h1ðXiÞ
pðXiÞ � bk1ðpÞ

0
@

1
A ¼ ð1þ oð1ÞÞe�bk1ðpÞ: (4.13)

Note that

Pp

XT�

i¼1

log
q�ðXiÞ
p�ðXiÞ � b

 !
¼ Pp

XT0
1

i¼1

log
h1ðXiÞ
pðXiÞ � bk1ðpÞ

0
@

1
A,

which yields that
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Pp

XT�

i¼1

log
q�ðXiÞ
p�ðXiÞ � b

 !
¼ ð1þ oð1ÞÞe�bk1ðpÞ: (4.14)

Next, we need to compute the following probability:

Pq

XT�

i¼1

log
q�ðXiÞ
p�ðXiÞ � a

 !
: (4.15)

By the condition in (4.3), we have that
Ð
qðxÞ log q�ðxÞ

p�ðxÞ dx > 0: Thus, if Y2 ¼ log q�ðXÞ
p�ðXÞ is a

continuous random variable and can take both positive and negative values, by Lemma
4.1, there exists a positive number k2ðqÞ (which depends on q, p�, q�) such that

Eq e
�k2ðqÞ	Y2½ � ¼

ð
qðxÞ p�ðxÞ

q�ðxÞ
� �k2ðqÞ

dx ¼ 1: (4.16)

Then, if we define h2ðxÞ ¼ qðxÞðp�ðxÞq�ðxÞÞk2ðqÞ, h2ðxÞ is a probability density function.

Moreover, we have that log qðxÞ
h2ðxÞ ¼ k2ðqÞ log q�ðxÞ

p�ðxÞ : Therefore, the stopping time T�ða, bÞ
would be the same as T0

2 ¼ inf n :
Pn

i¼1 log qðXiÞ
h2ðXiÞ 62 ðak2ðqÞ, bk2ðqÞÞ

n o
, which is the

SPRT for q against h2: By the property of the SPRT in (3.6), it then follows that

Pq

XT0
2

i¼1

log
qðXiÞ
h2ðXiÞ � ak2ðqÞ

0
@

1
A ¼ ð1þ oð1ÞÞeak2ðqÞ: (4.17)

Note that

Pq

XT�

i¼1

log
q�ðXiÞ
p�ðXiÞ � a

 !
¼ Pq

XT 0
2

i¼1

log
qðXiÞ
h2ðXiÞ � ak2ðqÞ

0
@

1
A,

which yields that

Pq

XT�

i¼1

log
q�ðXiÞ
p�ðXiÞ � a

 !
¼ ð1þ oð1ÞÞeak2ðqÞ: (4.18)

Combining (4.14) and (4.18), as a, b ! 0, we can choose

a ¼ ð log bÞ=k2ðqÞ, and b ¼ �ð log aÞ=k1ðpÞ: (4.19)

to achieve the type I and type II error constraints asymptotically.
By Wald’s identity, we have that

Ep

XT�

i¼1

log
q�ðXiÞ
p�ðXiÞ

" #
¼ Ep T

�½ �Ep log
q�ðXiÞ
p�ðXiÞ

� �
, (4.20)

Eq

XT�

i¼1

log
q�ðXiÞ
p�ðXiÞ

" #
¼ Eq T

�½ �Eq log
q�ðXiÞ
p�ðXiÞ

� �
: (4.21)

Note that as a, b ! 0, a log b ! 0 and b log a ! 0, and Ep ð log q�ðXiÞ
p�ðXiÞÞ

2
h i

and Eq ð log�
q�ðXiÞ
p�ðXiÞÞ

2� are finite, then the overshoot can be ignored (Siegmund 1985). Thus, we have that
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Ep

XT�

i¼1

log
q�ðXiÞ
p�ðXiÞ

" #
¼aPp

XT�

i¼1

log
q�XiÞ
p�ðXiÞ � a

 !
þ bPp

XT�

i¼1

log
q�ðXiÞ
p�ðXiÞ � b

 !
þ Oð1Þ

¼að1� aÞ þ baþ Oð1Þ
¼ log b
k2ðqÞ �

a log b
k2ðqÞ � a log a

k1ðpÞ þ Oð1Þ

¼ log b
k2ðqÞ þ Oð1Þ,

and

Eq

XT�

i¼1

log
q�ðXiÞ
p�ðXiÞ

" #
¼aPq

XT�

i¼1

log
q�ðXiÞ
p�ðXiÞ � a

 !
þ bPq

XT�

i¼1

log
q�ðXiÞ
p�ðXiÞ � b

 !
þ Oð1Þ

¼abþ bð1� bÞ þ Oð1Þ
¼ � log a

k1ðpÞ þ
b log a
k1ðpÞ þ b log b

k2ðqÞ þ Oð1Þ

¼ � log a
k1ðpÞ þ Oð1Þ:

Therefore, we have that for any p 2 P and q 2 Q,

EpðT�Þ ¼ ð1þ oð1ÞÞ log b

k2ðqÞEp log
q�ðXiÞ
p�ðXiÞ

� � ,

EqðT�Þ ¼ ð1þ oð1ÞÞ � log a

k1ðpÞEq log
q�ðXiÞ
p�ðXiÞ

� � ,

and the utility function lima, b!0 uAðdj�, jÞ ¼ �c0ðpÞ � c1ðqÞ � ck2ðqÞEp½log p�ðXiÞ
q�ðXiÞ� �

k1ðpÞEq½log q�ðXiÞ
p�ðXiÞ�: It then follows from the definition of j� in (4.1) that

lim
a,b!0

uAðdj�, j�Þ ¼ � c0ðp�Þ � c1ðq�Þ � ck2ðq�ÞEp� log
p�ðXiÞ
q�ðXiÞ

� �
� k1ðp�ÞEq� log

q�ðXiÞ
p�ðXiÞ

� �

�� c0ðpÞ � c1ðqÞ � ck2ðqÞEp log
p�ðXiÞ
q�ðXiÞ

� �
� k1ðpÞEq log

q�ðXiÞ
p�ðXiÞ

� �
:

We then conclude that lima, b!0 uAðdj�, j�Þ � lima, b!0 uAðdj�, jÞ: Therefore, ðdj�, j�Þ is
a pair of strategies in Nash equilibrium asymptotically as a, b ! 0, which completes
the proof.

Based on Theorem 4.1, we can get a pair of strategies in Nash equilibrium asymptot-
ically once we can find a pair of distributions p� 2 P, q� 2 Q that satisfy conditions
(4.1), (4.2), and (4.3). For a special case when the cost functions c0ðpÞ ¼ c1ðqÞ ¼ 0, we
can get the least favorable pair distributions that satisfy these conditions. In the next
section, we will consider several examples to construct strategies in Nash equilibrium
when the cost functions are nonzero.
Furthermore, based on Theorem 4.1, we can get the following corollary, which sum-

marizes the asymptotic utilities for the strategies in Nash equilibrium.
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Corollary 4.1. If there exist distributions j� ¼ ðp� 2 P, q� 2 QÞ satisfying (4.1), (4.2),
and (4.3) and ðdj� , j�Þ are in Nash equilibrium asymptotically, then the utilities of adver-
sary and defender are

lim
a, b!0

uAðdj� , j�Þ ¼ �c0ðp�Þ � c1ðq�Þ � cKLðp�jjq�Þ � KLðq�jjp�Þ,
lim

a,b!0
uDðdj� , j�Þ ¼ cKLðp�jjq�Þ þ KLðq�jjp�Þ:

5. EXAMPLES AND NUMERICAL RESULTS

In this section, we consider four examples to illustrate our theoretical result.

5.1. Sparse Attack

In this subsection, we consider a special case when the attack is sparse. Specifically, sup-
pose under the null hypothesis when there is no attack, Xts are i.i.d with probability
density function p(x). Under the alternative hypothesis, the adversary will attack each
data with probability � > 0: The data that will be attacked have probability density func-
tion q(x). In the other word, we assume the set P ¼ fpg has only one distribution. The
set Q ¼ fð1� �Þpþ �qj0 < � < 1g, where q is a known density. In this case, the adver-
sary’s strategy is determined by the attack probability � and its goal is to choose an �

that can maximize its utility.
By Theorem 4.1, we can get the following corollary, which provides a sufficient con-

dition to a pair of strategies in Nash equilibrium.

Corollary 5.1. Suppose that P ¼ fpg and Q ¼ fð1� �Þpþ �qj0 < � < 1g, where p and
q are two fixed probability density functions. Let cð�Þ be the cost function by choosing �:

If there exists �� minimizing

�cð�Þ �
ð

ð1� �ÞpðxÞ þ �qðxÞ� �
log

ð1� ��ÞpðxÞ þ ��qðxÞ
pðxÞ dx (5.1)

and ð
ð1� �ÞpðxÞ þ �qðxÞ� �

log
ð1� ��ÞpðxÞ þ ��qðxÞ

pðxÞ dx > 0 (5.2)

for all � 2 ð0, 1Þ, then ðd�� , ��Þ is in Nash equilibrium asymptotically.

Note the �� depends on distributions p and q. In general, there is no closed form to
get �� from (5.1) explicitly. Fortunately, numeric methods can be used to search for ��:
For example, let pðxÞ ¼ Betað2, 1Þ, qðxÞ ¼ Betað3, 1Þ, and cð�Þ ¼ ð1� �Þ2: Define

function f ð�Þ ¼ �ð1� �Þ2 � Ð 10 ð1� �þ 2�xÞ log½1þ ð2x � 1Þ���dx: By Corollary 5.1, if
�� maximizes f ð�Þ, then ðd�� , ��Þ are in Nash equilibrium. Note that f ð�Þ is a concave
function of �: If �� is the maximizer of f ð�Þ, we should have @f

@� ð��Þ ¼ 0, which yields

�� ¼ 1� 1
2

ð
ð3x2 � 2xÞ log 1þ 3

2
x� 1

� �
��

� �
dx: (5.3)
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Then, we can use numerical method such as bisection to search for the solution of (5.3)
and get �� ¼ 0:93:
The simulation result below shows a similar result. We first simulate the utility of the

attacker when the defender chooses the strategy d�� with �� ¼ 0:93: We can see from
Figure 1 that the utility of the attacker is maximized at � ¼ 0:93: Similarly, we simulate
the defender’s utility when the attacker fixes �� ¼ 0:93: The resulting defender’s utility
is shown in Figure 2. We can see it is maximized when � is closed to 0.93.

5.2. Mean Attack to Gaussian Distributions

Let P be a set of normal distributions Nðh0, 1Þ, where h0 2 ½�1, 1�, and Q be another
set of normal distributions Nðh1, 1Þ, where h1 2 ½2, 4�: By Theorem 4.1, if there exist h�0

Figure 1. Utilities of the attacker in beta distribution.

Figure 2. Utilities of the defender in beta distribution.
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and h�1 satisfying (4.1), (4.2), and (4.3); that is,

ðh�0, h�1Þ ¼ argmax
h02 �1, 1½ �, h12 2, 4½ �

�
� c0ðh0Þ � c1ðh1Þ

þ ðcþ 1Þ ðh�0 þ h�1Þ2=2� ðh0 þ h1Þðh�0 þ h�1Þ þ 2h0h1
h i


(5.4)

,

inf
h02 �1, 1½ �

�ðh�02 � h�1
2Þ=2þ ðh�0 � h�1Þh0

� �
> 0, (5.5)

and

inf
h12 2, 4½ �

�ðh�12 � h�0
2Þ=2þ ðh�1 � h�0Þh1

� �
> 0, (5.6)

then let j� ¼ ðh�0, h�1Þ and ðdj� , j�Þ is in Nash equilibrium asymptotically. Specifically, if
we set c0ðh0Þ ¼ 10h20, c1ðh1Þ ¼ 2ðh1 � 3Þ2, and c¼ 1, we have h�0 ¼ 0:1875 and h�1 ¼
2:0625, which correspond to Nð0:1875, 1Þ in P and Nð2:0625, 1Þ in Q: If we set
c0ðh0Þ ¼ h20, c1ðh1Þ ¼ 5ðh1 � 2:2Þ2, and c¼ 1, we have h�0 ¼ 1 and h�1 ¼ 2, which cor-
respond to Nð1, 1Þ in P and Nð2, 1Þ in Q:

We then simulate the adversary’s utility and the defender’s utility by 105 Monte Carlo
simulations to validate our theoretical results. We first simulate the adversary’s utilities
when the defender fixes its strategy to be the SPRT testing p� to q�: Figure 3 shows the
simulated adversary’s utility when the attacker chooses strategy ðh0, h�1 ¼ 2:0625Þ with
varies h0 2 ½�1, 1�: From Figure 3, we can see that the attacker gets its utility maximized
when h0 is close to h�0 ¼ 0:1875: Similarly, in Figure 4, we plot the adversary’s utilities
when the attacker chooses its strategy ðh�0 ¼ 0:1875, h1Þ with varies h1 2 ½2, 4�: From
Figure 4, we can see that the attacker gets its utility maximized when h1 is close
to h�1 ¼ 2:0625:

Figure 3. Utilities of the attacker at h1 ¼ 2:0625 of mean attack in Gaussian distribution.
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5.3. Variance Attack to Gaussian Distributions

Let P be a set of distributions Nð0, r20Þ, where r0 2 ½a, b�, and Q be a set of distribu-
tions Nð0, r21Þ, where r1 2 ½c, d�: Assume that 0 < a < b < c < d: Based on Theorem
4.1, we get the following corollary, which provides a pair of strategies that are in Nash
equilibrium.

Corollary 5.2. Assume that c0ðrÞ is a decreasing function—that is, c00ðrÞ � 0 for all
r 2 ½a, b�,—and c1ðrÞ is an increasing function; that is, c01ðrÞ � 0 for all r 2 ½c, d�. Let
c ¼ 1, r�0 ¼ b, r�1 ¼ c and j� ¼ ðr�0, r�1Þ. Then ðdj� , j�Þ is in Nash equilibrium
asymptotically.

The proof of Corollary 5.2 is postponed to Appendix A.1.

Figure 4. Utilities of the attacker at h0 ¼ 0:1875 of mean attack in Gaussian distribution.

Figure 5. Utilities of the attacker at r1 ¼ 9 of variance attack in Gaussian distribution.
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Figures 5 and 6 show the utility of the attacker when the defender fixes its strategy to
be dj� , and Figures 7 and 8 show the utility of the defender when the attacker fixes its
strategy to be j�: Specifically, we choose r0 2 ½2, 3� and r1 2 ½9, 10� with c0ðr0Þ ¼
c1ðr1Þ ¼ 0: Thus, by Corollary 5.2, r�0 ¼ 3 and r�1 ¼ 9 so that p� ¼ N ð0, 9Þ and
q� ¼ N ð0, 81Þ: Figure 5 shows the utility of the attacker at r�1 when the defender fixes
its strategy to be dj� ¼ ðp�, q�Þ, and it can be seen that when r0 ¼ r�0 ¼ 3, the utility of
the attacker reaches its maximum. Figure 6 shows the utility of the attacker at r�0 when
the defender chooses its strategy at dj� ¼ ðp�, q�Þ, and it can be seen that the utility of
the attacker reaches the maximum at r�1 ¼ 9: Therefore, Figures 5 and 6 show that
when the defender fixes its strategy to be dj� , the utility of the attacker reaches the
maximum at r�0 ¼ 3 and r�1 ¼ 9: In Figure 7, we plot the utility of the defender at r�1
when the attacker chooses j� ¼ ðr�0 ¼ 3, r�1 ¼ 9Þ: We can see that the utility of the

Figure 6. Utilities of the attacker at r0 ¼ 3 of variance attack in Gaussian distribution.

Figure 7. Utilities of the defender at r1 ¼ 9 of variance attack in Gaussian distribution.
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defender reaches the maximum at r0 ¼ 3, which is r�0: Figure 8 shows that the utility
of the defender reaches the maximum at r1 ¼ 9, which is r�1, when the attacker choo-
ses j� ¼ ðr�0 ¼ 3, r�1 ¼ 9Þ: Therefore, Figures 7 and 8 indicate that when the attacker
fixes its strategy to be j�, the utility of the defender is maximized by r�0 ¼ 3 and r�1 ¼
9: Hence, ðj�, dj� Þ is a pair of strategies in Nash equilibrium.

5.4. Mean Attack to Bernoulli Distributions

Let P be a set of distributions Bernoulliðh1Þ, where h1 2 ½a, b�, and Q be a set of distri-
butions Bernoulliðh2Þ, where h2 2 ½c, d�, and assume that 0 < a < b < c < d; that is,
h1 < h2: Based on Theorem 4.1, we can find a pair of strategies in Nash equilibrium as
stated in the following corollary.

Corollary 5.3. Assume that cðh1Þ is a decreasing function—that is, c0ðh1Þ � 0 for all
h 2 ½a, b�,—and cðh2Þ is an increasing function; that is, c0ðh2Þ � 0 for all h 2 ½c, d�. Let
h�1 ¼ b, h�2 ¼ c, and j� ¼ ðh�1, h�2Þ: Then ðdj� , j�Þ is in Nash equilibrium asymptotically.
The proof of Corollary 5.3 is postponed to Appendix A.2.

In the experiments, we choose h1 2 ½0:2, 0:3� and h2 2 ½0:5, 0:6� with cðh1Þ ¼ cðh2Þ ¼
0; then by Corollary 5.3, h�1 ¼ 0:3 and h�2 ¼ 0:5 so that p� ¼ Bernoullið0:3Þ and q� ¼
Bernoullið0:5Þ: In Figures 9 and 10, we plot the utilities for the attacker when the
attacker changes its strategy and the defender fixes its strategy to be dj� ¼ ðp�, q�Þ: In
Figure 9, the utility of the attacker is maximized by h1 ¼ 0:3 ¼ h�1, and in Figure 10,
the utility of the attacker is maximized by h2 ¼ 0:5 ¼ h�2: Figures 11 and 12 show the
utility for the defender when the defender changes its strategy and the attacker fixes its
strategy to be j� ¼ ðp�, q�Þ: In Figure 11, the utility of defender is maximized by h1 ¼
0:3 ¼ h�1, whereas in Figure 12, the utility of the defender is maximized by h2 ¼ 0:5 ¼
h�2: Therefore, j

�, dj� provides a pair of strategies in Nash equilibrium.

Figure 8. Utilities of the defender at r0 ¼ 3 of variance attack in Gaussian distribution.
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Figure 9. Utilities of the attacker in at h2 ¼ 0:5 of mean attack in Bernoulli distribution.

Figure 10. Utilities of the attacker at h1 ¼ 0:3 of mean attack in Bernoulli distribution.

Figure 11. Utilities of the defender at h2 ¼ 0:5 of mean attack in Bernoulli distribution.
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6. CONCLUSION

In this article, we proposed a game-theoretic approach for sequential detection in adver-
sarial environments. We derived a pair of strategies and proved that they are in Nash
equilibrium asymptotically. The analysis in this article, especially the analysis of the
adversary’s utility function, is in the asymptotic regime with vanishing type I and type
II errors. It is of future interest to develop Nash equilibrium strategies in the nona-
symptotic setting. In this article, we assume that the adversary chooses distributions p 2
P and q 2 Q, and the samples are then generated i.i.d. by p and q under the two
hypotheses, respectively; that is, the adversary is memoryless. For the adversary with
memory, we can model the strategy of the adversarial as a finite-order Markov process
and using the transition probability as the new observation; however, the analyses will
be more challenging. We also note that in some cases, it may not be possible to find a
pair of p� and q� satisfying (4.1) and (4.2) simultaneously.

APPENDIX

A.1. Proof of Corollary 5.2

Let r�0 ¼ b and r�1 ¼ c: By (4.1) and Theorem 4.1, define f ðr0, r1Þ ¼ �c0ðr0Þ � c1ðr1Þ �
k2ðr1Þ½log r�1

r�0
þ r�20 �r�21

2r�20 r�21
r20� � k1ðr0Þ½log r�0

r�1
þ r�21 �r�20

1r�20 r�21
r21�, where k1ðr0Þ, k2ðr1Þ are constants satisfying

(4.12) and (4.16); that is,

k1ðr0Þ log r�0
r�1

¼ 1
2
log r�20 r�21 � k1ðr0Þr20ðr�21 � r�20 Þ� �� log ðr�0r�1Þ, (A.1)

k2ðr1Þ log r�1
r�0

¼ 1
2
log ðr�20 r�21 � k2ðr1Þr21ðr�20 � r�21 ÞÞ � log ðr�0r�1Þ: (A.2)

In the proof below, we will show that r0 ¼ r�0 ¼ b, r1 ¼ r�1 ¼ c maximize function f ðr0, r1Þ:
Thus, by Theorem 4.1, ðdj� , j�Þ is in Nash equilibrium asymptotically.

Figure 12. Utilities of the defender at h1 ¼ 0:3 of mean attack in Bernoulli distribution.
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Note that

@f
@r20

¼ �c00ðr0Þ � k2ðr1Þr
�2
0 � r�21
2r�20 r�21

� @k1ðr0Þ
@r20

log
r�0
r�1

þ r�21 � r�20
2r�20 r�21

r21

" #
, (A.3)

and

@f
@r21

¼ �c01ðr1Þ �
@k2ðr1Þ
@r21

log
r�1
r�0

þ r�20 � r�21
2r�20 r�21

r20

" #
� k1ðr0Þr

�2
1 � r�20
2r�20 r�21

: (A.4)

First, we will show that @f
@r20

> 0 so that f is an increasing function of r20: Note that c00ðr0Þ � 0

and �k2ðr1Þ r
�2
0 �r�21
2r�20 r�21

> 0 because r�21 > r�20 : Moreover, we have that the inequality

log
r�0
r�1

þ r�21 � r�20
2r�20 r�21

r21 > 0 (A.5)

holds for r1 2 ½c, d�: Thus, the condition in (4.3) will always hold.
Next, we will show that dk1ðr0Þ

dr20
< 0: By (A.1) we have that

r20 ¼
r�20 r�21 � exp 2k1ðr0Þ log r�0

r�1
þ 2 log ðr�0r�1Þ

h i
k1ðr0Þ � ðr�21 � r�20 Þ : (A.6)

Taking the derivatives of r20 with respect to k1 yields

@r20
@k1

¼ ðxe�x � 1þ e�xÞðr�0r�1Þ2ðr�21 � r�20 Þ
k21ðr0Þ � ðr�21 � r�20 Þ2 , (A.7)

where x ¼ 2k1ðr0Þ log r�1
r�0
: Note for x> 0,

xe�x � 1þ e�x ¼ ðxþ 1Þe�x � 1 < exe�x � 1 ¼ 0,

and all of the other terms on the right-hand side of (A.7) are positive. Therefore, we have @r20
@k1

<

0, which implies @k1
@r20

< 0, and @f
@r20

> 0:

Similarly, we can show that @f
@r21

< 0 so that f is a decreasing function of r21: Note that c01ðr1Þ �
0 and �k1ðr0Þ r

�2
1 �r�20
2r�20 r�21

< 0 because r�21 > r�20 : Moreover, we have that

log
r�1
r�0

þ r�20 � r�21
2r�20 r�21

r20 > 0 (A.8)

holds for any r0 2 ½a, b�: Thus, condition (4.2) will always hold. Next, we will show that @k2
@r21

> 0:

By (A.2) we have

r21 ¼
r�20 r�21 � exp 2k2ðr1Þ log r�1

r�0
þ 2 log ðr�0r�1Þ

h i
k2ðr1Þ � ðr�20 � r�21 Þ : (A.9)

Taking the derivatives of r21 with respect to k2ðr1Þ and letting x ¼ 2k2ðr1Þ log r�1
r�0

yields

@r21
@k2

¼ ðxex � 1þ exÞðr�0r�1Þ2ðr�21 � r�20 Þ
k2ðr1Þ½ �2ðr�21 � r�20 Þ2 : (A.10)

Note for x> 0, xex � 1þ ex > 0, and all of the other terms on the right-hand side of (A.10) are

positive, so @r21
@k2

> 0: Therefore, @f
@r21

< 0:

Because @f
@r20

> 0 and @f
@r21

< 0, f ðr0, r1Þ is maximized when r0 ¼ b and r1 ¼ c, which com-
pletes the proof.
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A.2. Proof of Corollary 5.3

Let h�1 ¼ b and h�2 ¼ c: By (4.1) and Theorem 4.1, define

f ðh1, h2Þ ¼ �cðh1Þ � cðh2Þ � ck2ðh2Þ log
1� h�1
1� h�2

 !
þ h1 log

h�1ð1� h�2Þ
h�2ð1� h�1Þ

" #( )

� k1ðh1Þ log
1� h�2
1� h�1

 !
þ h2 log

h�2ð1� h�1Þ
h�1ð1� h�2Þ

" #( )
,

(A.11)

where k1ðh1Þ, k2ðh2Þ are constants satisfying (4.12) and (4.16); that is,

h1

�
h�2
h�1

�k1

þ ð1� h1Þ
�
1� h�2
1� h�1

�k1

¼ 1, (A.12)

h2

�
h�1
h�2

�k2

þ ð1� h2Þ
�
1� h�1
1� h�2

�k2

¼ 1: (A.13)

In the proof below, we will show that h1 ¼ h�1 ¼ b, h2 ¼ h�2 ¼ c maximize function f ðh1, h2Þ: Let
j� ¼ ðh�1, h�2Þ: Then, by Theorem 4.1, ðdj� , j�Þ is in Nash equilibrium asymptotically.

Note that

@f
@h1

¼ �c0ðh1Þ � ck2ðh2Þ log h�1ð1� h�2Þ
h�2ð1� h�1Þ

" #
� @k1ðh1Þ

@h1
log

1� h�2
1� h�1

 !
þ h2 log

h�2ð1� h�1Þ
h�1ð1� h�2Þ

" #( )
, (A.14)

and

@f
@h2

¼ �c0ðh2Þ � k1ðh1Þ log h�2ð1� h�1Þ
h�1ð1� h�2Þ

" #
� @k2ðh2Þ

@h2
c log

1� h�1
1� h�2

 !
þ h1 log

h�1ð1� h�2Þ
h�2ð1� h�1Þ

" #( )
:

(A.15)

First, we show that @f
@h1

> 0, and thus f is an increasing function of h1. Note that c0ðh1Þ < 0 and

�ck2ðh2Þ log h�1ð1�h�2Þ
h�2ð1�h�1Þ
h i

> 0: Moreover, we have that

log
1� h�2
1� h�1

 !
þ h2 log

h�2ð1� h�1Þ
h�1ð1� h�2Þ

" #
> 0 (A.16)

holds for any h2 2 ½c, d�: Therefore, the condition in (4.3) always hold. Next, we will show that
@k1
@h1

< 0 so that the right-hand side of (A.14) is positive. By (A.12) we have that

h1 ¼
ð1�h�2
1�h�1

Þk1 � 1

ð1�h�2
1�h�1

Þk1 � ðh�2h�1Þ
k1
: (A.17)

Let x ¼ log 1�h�1
1�h�2

	 

and y ¼ log h�2

h�1

	 

: Clearly, x, y > 0: Rewriting (A.17), we can get

h1 ¼ e�xk1 � 1
e�xk1 � eyk1

: (A.18)

Taking the derivatives of h1 with respect to k1ðh1Þ yields
@h1
@k1

¼ �xe�k1xð1� ek1yÞ þ yek1yðe�k1x � 1Þ
ðek1y � e�k1xÞ2

¼ xe�k1xek1yð1� e�k1yÞ þ yek1ye�k1xð1� ek1xÞ
ðek1y � e�k1xÞ2 ,

(A.19)
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which is always negative because

xe�k1xek1yð1� e�k1yÞ þ yek1ye�k1xð1� ek1xÞ < xe�k1xek1yk1y� yek1ye�k1xk1x ¼ 0: (A.20)

Hence, @f
@h1

> 0:
Next, we show that @f

@h1
> 0:, and thus f is a decreasing function of h2. Note that c0ðh2Þ > 0

and �k1ðh1Þ log h�2ð1�h�1Þ
h�1ð1�h�2Þ
h i

< 0 because h�1 < h�2 by the assumption. Moreover, we have

log
1� h�1
1� h�2

 !
þ h1 log

h�1ð1� h�2Þ
h�2ð1� h�1Þ

" #
> 0, (A.21)

for any h1 2 ½a, b�: Therefore, condition (4.2) always holds. Now we need to show that @k2
@h2

> 0 so

that the right-hand side of (A.15) is negative. By (A.13) we can get

h2 ¼
ð1�h�1
1�h�2

Þk2 � 1

ð1�h�1
1�h�2

Þk2 � ðh�1h�2Þ
k2
: (A.22)

Recalling x ¼ log 1�h�1
1�h�2

and y ¼ log h�2
h�1
, x > 0, y > 0, we can get

h2 ¼ exk2 � 1
exk2 � e�yk2

: (A.23)

Taking the derivative of h2 with respect to k2, we have that

@h2
@k2

¼ xek2xð1� ek2xÞ � ye�k2yðek2x � 1Þ
ðek2x � e�k2yÞ2

¼ xek2xe�k2yðek2y � 1Þ þ ye�k2yek2xðe�k2x � 1Þ
ðek2x � e�k2yÞ2 ,

(A.24)

which is always positive because

xek2xe�k2yðek2y � 1Þ þ ye�k2yek2xðe�k2x � 1Þ > xek2xe�k2yk2y� ye�k2yek2xk2x ¼ 0: (A.25)

Hence, @f
@h2

< 0:
Because @f

@h1
> 0 and @f

@h2
< 0, f ðh1, h2Þ is maximized when h1 ¼ b and h2 ¼ c, which completes

the proof.
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