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ABSTRACT ARTICLE HISTORY

The problem of sequential hypothesis testing is studied, where sam- Received 29 April 2021
ples are taken sequentially, and the goal is to distinguish between Revised 2 December 2021
the null hypothesis where the samples are generated according to a  Accepted 5 December 2021
distribution p and the alternative hypothesis where the samples are
generated according to a distribution g. The defender (decision
maker) aims to distinguish the two hypotheses using as few samples
as possible subject to false alarm constraints. The problem is studied
under the adversarial setting, where the data generating distribu- SUBJECT

tions under the two hypotheses are manipulated by an adversary, CLASSIFICATIONS
whose goal is to deteriorate the performance of the defender—for  62L10; 62L15; 60G40
example, increasing the probability of error and expected sample

sizes—with minimal cost. Specifically, under the null hypothesis, the

adversary picks a distribution p € P with cost ¢y(p), and under the

alternative hypothesis, the adversary picks a distribution g € Q with

cost ci(q). This problem is formulated as a non-zero-sum game

between the defender and the adversary. A pair of strategies (the

adversary’s strategy and the defender’s strategy) is proposed and

proved to be a Nash equilibrium pair for the non-zero-sum game

between the adversary and the defender asymptotically. The defend-

er's strategy is a sequential probability ratio test and thus is compu-

tationally efficient for practical implementation.

KEYWORDS
Nash equilibrium; non-zero-
sum game; SPRT

1. INTRODUCTION

With recent advancements in wireless communication and sensing technology, rich and
complex sequential high-dimensional data from large-scale distributed sensor networks
and cyber-physical systems are made available for a wide range of statistical inference
applications. However, the reliance on wireless communication and the sparse spatial
distribution of these networked systems make them extremely vulnerable to adversarial
attacks, such as measurement manipulation, communication blocks, and false data injec-
tion. Those attacks may result in substantial damage to critical infrastructures, the econ-
omy, the ecosystem, and even public safety and thus need to be detected in an efficient
and reliable manner. For example, an adversary would like to inject false measurements
into a smart grid. The adversary may choose different false data injection strategies and
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will receive different rewards. The utility of the defender can be defined according to
the damage to the power system caused by the attack.

An adversary may adapt its strategy according to the detection scheme to increase the
error probability and expected sample size and, therefore, classical hypothesis testing
approaches (Kay 1993; Cover and Thomas 2012; Poor 2013; Moulin and Veeravalli 2018)
may fail. This motivates the study of hypothesis testing in adversarial environments in this
article, which is of great importance especially in security applications. The adversary is
often caused by human factors (Marano, Matta, and Tong 2008; Mo, Hespanha, and
Sinopoli 2014; Jin and Lai 2021). Thus, any attempts to improve the performance of test
schemes may result in a dual effort to devise more powerful counterthreat detection tech-
niques that leave less evidence. Although this is an unavoidable and possibly virtuous
loop, which may finally lead to more powerful threat detection and counterthreat detec-
tion tools, it is desired to investigate the ultimate limits of such a procedure.

In this article, we propose a game-theoretic approach to study the limit of such a
procedure; that is, Nash equilibrium (Reny 2008). The defender receives samples
sequentially (see Tartakovsky, Nikiforov, and Basseville [2014]; Poor and Hadjiliadis
[2009]; Moulin and Veeravalli [2018]; Siegmund [1985] for sequential hypothesis test-
ing). Specifically, under the null hypothesis H,, the samples are generated independ-
ently by a distribution p € P that is picked by the adversary with cost co(p); and under
the alternative hypothesis H;, the samples are generated independently by another dis-
tribution g € Q that is picked by the adversary with cost ¢;(g). The defender aims to
use as few samples as possible to accurately decide which hypothesis is correct, whereas
the adversary aims to fool the defender with a minimal cost. To model the interaction
between the adversary and the defender and to take into consideration the costs cy(p)
and ¢;(q) of using strategies p and q by the adversary, we formulate the problem as a
non-zero-sum game between the defender and the adversary. The goal of this article is
to find a Nash equilibrium strategy pair for this non-zero-sum game and analyze the
performance of the defender and the adversary in the Nash equilibrium.

Our problem in this article is related to the problem of robust hypothesis testing
(Huber 1965, 1981; Veeravalli, Basar, and Poor 1994; Pandit, Meyn, and Veeravalli
2004; Levy 2009; Wilcox 2011; Giil and Zoubir 2017; Molloy and Ford 2017; Gao et al.
2018; Qin and Priebe 2017). For robust hypothesis testing, the goal is to design algo-
rithms that are robust to model uncertainty. Specifically, the problem of robust hypoth-
esis testing is usually formulated into a minimax problem, which is to first find the
least favorable distributions and then design likelihood ratio test between the least
favorable distributions. However, such an approach does not take into consideration the
interaction between the adversary and the defender. In adversarial environments, where
security is crucial, the adversary (defender) may change its strategy according to the
defender’s (adversary’s) strategy and vice versa. Therefore, it is of more practical
importance to formulate the problem into a game and study its Nash equilibrium. More
important, in this article, we design different utility functions for the defender and the
adversary that take into consideration the cost of picking particular strategies, which
were not investigated in these robust hypothesis testing studies.

The problem of hypothesis testing using a game-theoretic approach was studied in
Yasodharan and Loiseau (2019), Vamvoudakis et al. (2014), and Barni and Tondi (2013).
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We note that those studies are nonsequential; that is, one decision is made using a fixed
number of samples. However, as observed in sequential hypothesis testing (Tartakovsky,
Nikiforov, and Basseville 2014), sequential tests can achieve the same accuracy using fewer
samples on average than fixed-sample-size tests and are more suitable for online applica-
tions with time series data. In this article, we focus on the sequential setting, where sam-
ples arrive sequentially, one at each time instant. Specifically, in Vamvoudakis et al. (2014)
and Barni and Tondi (2013), the problem was formulated as a zero-sum game, where the
probability of error is used as the utility function. Moreover, Vamvoudakis et al. (2014)
focused on the particular case where the distributions are Bernoulli. In Yasodharan and
Loiseau (2019), the non-zero-sum setting was investigated, where the adversary picks a
distribution g € Q with cost ¢(q). The utility functions used in Yasodharan and Loiseau
(2019) are linear combinations of the error probabilities and the cost function ¢(q). For a
large number of samples, the error probabilities converge to zero; however, c(q) does not
scale with the sample size. Therefore, such utility functions fail to consider the error prob-
abilities asymptotically because when comparing to the cost c(g), the vanishing error prob-
abilities are negligible. This article proposes designing utility functions using error
exponents instead of error probabilities to overcome this challenge.

Our article is also related to the studies of sequential detection and quickest change
detection in sensor networks with Byzantine sensors (Bayraktar and Lai 2015; Fellouris,
Bayraktar, and Lai 2018; Li, Mo, and Hao 2019; Y.-C. Huang, Lin, and Huang 2019b; Y.-]J.
Huang, Lin, and Huang 2019). In Li, Mo, and Hao (2019), a game-theoretic approach was
constructed to solve sequential hypothesis testing with Byzantine sensors. In Bayraktar
and Lai (2015), Y.-J. Huang, Lin, and Huang (2019), Fellouris, Bayraktar, and Lai (2018),
and Y.-C. Huang, Lin, and Huang (2019), the problem of quickest change detection with
Byzantine sensors was studied but not under a game-theoretic framework. The main dif-
ference lies in that in Li, Mo, and Hao (2019), Bayraktar and Lai (2015), Fellouris,
Bayraktar, and Lai (2018), Y.-J. Huang, Lin, and Huang (2019), and Y.-C. Huang, Lin, and
Huang (2019), it was assumed that the adversary can modify samples from compromised
sensors arbitrarily. However, only a limited number of sensors can be compromised; in
this article, we only have one single data stream, and the adversary can only choose its
strategy p and q from two fixed sets P and Q with costs ¢o(p) and ¢;(q).

In this article, we construct a pair of strategies and prove that they are in Nash equi-
librium for the non-zero-sum game asymptotically. More specifically, our main contri-
butions can be summarized as follows: (i) we propose a non-zero-sum game to model
sequential detection in adversarial environments, which provides a general framework
for this type of problem; (ii) we develop a novel scheme with utility functions defined
by the error exponents of the sequential tests and the cost functions ¢, and ¢;; (iil) we
construct a pair of strategies, prove that they are in Nash equilibrium of the game
asymptotically, and characterize their utilities at the Nash equilibrium; and (iv) provide
some examples and extensive numerical results to validate our theoretical assertions.

1.1. Article Organization

The article is organized as follows. In Section 2, we introduce the problem formulation. In
Section 3, we provide preliminaries and background information on Nash equilibrium
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and the sequential probability ratio test (SPRT). In Section 4, we present our main results.
Specifically, we provide general sufficient conditions to construct a pair of strategies in the
Nash equilibrium asymptotically. We also characterize the utilities of both the defender
and the adversary at the equilibrium. In Section 5, we use several examples to illustrate
how to construct strategies in Nash equilibrium and present extensive numerical experi-
ments to illustrate our theoretical results. In Section 6, we conclude our article with a
few remarks.

2. PROBLEM FORMULATION

Suppose we are observing a data stream {X,},°, sequentially. There are two players: the
adversary and the defender. Under the null hypothesis, X;s are independent and identi-
cally distributed (i.i.d.) according to a distribution p picked by the adversary from a set
of distributions P. Under the alternative hypothesis, X;s are ii.d. according to another
distribution g € Q picked by the adversary. It is assumed that PN Q = @. The adver-
sary’s strategy is defined by x = (p,q), where p € P and g € Q. The problem can be
formulated as a sequential hypothesis testing problem where the null hypothesis is

Ho : X¢’s ~ p iid., (i.e.,adversary picks p € P),
and the alternative hypothesis is
Hy: Xs ~q iid., (i.e.,adversary picks g € Q).

The adversary’s goal is to pick a strategy k = (p,q) so that the defender needs more
samples to accurately make a conclusion about the two hypotheses. We further define
two cost functions ¢y(p) : P— RT and ¢i1(g) : @+— R to model the cost of the adver-
sary using strategy r; for example, for x = (p,q), co(p) is the power consumption of
choosing p € P and ¢,(q) is the power consumption of choosing q € Q.

The defender’s strategy is defined by a sequential decision rule = (T,d), where T €
{1,2,...} is a stopping time and d € {0,1} is the decision rule. Here d=0 is to accept
Ho, and d=1 is to reject Hy. The defender’s goal is to minimize the number of sam-
ples needed for correct decisions. There are two types of expected number of samples.
One is the expected number of samples needed to make a decision under the null
hypothesis, denoted by E,[T]. The other one is the expected number of samples needed
to make a decision under the alternative hypothesis, denoted by E,[T]. We further
define the type I error o = P,(d = 1) and the type II error § = P,(d = 0). The defender
considers stopping rules in the following set:

Cla, f) :=={6=(T,d) : Py(d = 1) < 0, Py(d = 0) < B,E,[T] < 00,E,[T] < c0}. (2.1)
If the defender’s strategy is 0 € C(a, §), and the adversary’s strategy is k, the defender’s

utility function is defined as

_ ogB| | |loge|
up() =7°g 1] VR, 1)

> (2.2)

where y > 0 is a positive number to capture the weights for E,[T] and E,[T]. Such a
definition of the defender’s utility function captures the error exponent of the two types
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of errors, and the defender would like to maximize it so that the detection is more sam-
ple efficient.

The adversary’s goal is to fool the defender as much as possible; that is, to maximize
the expected number of samples needed. We then define the adversary’s utility when it
plays the strategy x = (p,q) and the defender plays the strategy é € C(a, f§) as follows:

|log | _ |loga|
us(0,K) = —c —c -y — . (2.3)
A( ) 0(p) l(q) EP[T] Eq[T]
By comparing (2.2) and (2.3), it can be observed that if there is no cost for the adver-
sary to use strategy x—that is, co(p) = c1(q) = 0—then the game is a zero-sum game.
The goal of this article is to construct a Nash equilibrium pair of strategies for
this game.

3. PRELIMINARIES

In this section, we provide some preliminaries for Nash equilibrium, which is the cen-
tral concept of rational behavior in noncooperative game theory, and the SPRT, which
is optimal for the simple sequential hypothesis testing problem.

3.1. Nash Equilibrium Strategy

Based on the discussion in the previous section, the problem of sequential hypothesis
testing in an adversarial environment can be modeled as a two-player game, where the
defender’s strategy and utility function are (6, up(d,«)) and the adversary’s strategy and
utility function are (i, u4(0,x)). Both players intend to maximize their corresponding
utility functions.

Under this game-theoretic framework, we are ready to introduce the concept of Nash
equilibrium (Reny 2008).

Definition 3.1. For the strategies 6* € C(a, ), k* = (p*,q%), p* € P.q* € Q, (¢",«*) is
a pure strategy Nash equilibrium if

ua (0", K*) > ua (6%, )  for all k,
up(6*,k*) > up(6,k*)  for all 6 € C(a, B).

In particular, for the zero-sum game where u4 (3, k) + up(d, k) =0, (6%,k*) is a pure
strategy Nash equilibrium if for all x and 6 € C(o, ), ua(0", k) <wa(0",x*) <
us (0, x").

Based on the definition, a strategy (6", x*) is in Nash equilibrium if no player can do
better by unilaterally changing its own strategy. It is interesting to see the difference
between the Nash equilibrium strategy and the minimax optimal strategy robust sequen-
tial test. Specifically, the minimax optimal strategy ¢ is usually obtained by solving the
following problem:

i 3,x)), 3.1
somin, max(ua(9, 1)) 3.1

the solution to which is not necessarily in Nash equilibrium.
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3.2. The Sequential Probability Ratio Test

For the simple sequential hypothesis testing problem, the SPRT, which was developed
by Wald (1945), is widely used. Consider the following sequential hypothesis testing
problem:

Ho : X's ~ p iid., (3.2)
Hy : Xi’s ~q iid, (3.3)

where {X,},2, is the observing data stream.
Let S, =Y ., log %. Then the SPRT testing p against g is a pair of a stopping
time T and a decision rule d, where

T(a,b) =inf{n:S, & (a,b)}, (3.4)
[0, ifSr<a
d= { 1, if S > b. (3:5)

Here a, b are two stopping thresholds that control the type I and type II errors of the
SPRT. The SPRT has nice optimality that of all tests with the same power, on average,
it requires the fewest observations (Wald and Wolfowitz 1948).

Denote the Kullback-Leibler divergences between p and q by KL(p|lq) =
[ p(x)log %dx, and assume that KL(p||q) and KL(q||p) are well defined and finite for
any p € P and any q € Q. Then, as a — —00,b — +00, it can be shown that

P,(Sr > b) = (1+0(1))e?, (3.6)
P,(St <a) = (1+o0(1))e". (3.7)

Thus, the choices of a = log f, and b = log 1, guarantee that P,(d = 1) = (1+ o(1))x
and Py(d = 0) = (1+o(1))B. Additionally, the expected sample sizes of the SPRT can
be characterized as follows:

E,[T(a,b)] = (1 + 0(1))%, (3.8)
E,[T(a,b)] = (1+ "“”ﬁmp)' (3.9)

See Tartakovsky, Nikiforov, and Basseville (2014), Moulin and Veeravalli (2018), and
Siegmund (1985) for more details of the SPRT.

4. ASYMPTOTIC NASH EQUILIBRIUM STRATEGY

In this section, we construct a pair of strategies (0%, (p*, q*)), yjsy are in Nash equilibrium
asymptotically. Specifically, if we can find a distribution p* € P and a g* € Q satisfying

(p*.q") = argmax(—co(p) — c1(q)
PEP, qeQ (4 1)
. P (x) - q"(x) '
— v, (g, 0%, g )E, log ——= — J{(p, p*,g")E, lo s
22(4:p",q")E, 8 i) 1(p, 0" q")Ey gp*(x))
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inf [KL(plla') — KL(p|")] > (42)
and

inf [KL(q||p* - KL(q||q*)] >0, (4.3)

qeQ

and a sequential test 0" € C(a, ), which is the SPRT testing q* against p* with P,.(d =
1) = o and Py (d =0) = f, then we have the following theorem of asymptotic Nash
equilibrium. Note that ;(p,p*,g") is a positive number such that

5 (5) o) e

and 4,(q,p*,q") is a positive number such that

(2] fan (£ .

For simplification, we use 1;(p) and 4(q) to denote them respectively.

E

B

Theorem 4.1. Assume that there exists a distribution p* € P and a distribution q* € Q

satisfying (4.1), (4.2), and (4.3) and Ep[<log Zig ) } and Eq{(log Zig)) } are finite

forany p € P and q € Q. Then as o, § — 0, floga — 0,alog f — 0, (0, k™) is in Nash
equilibrium asymptotically for the utility functions us (0, k) and up(0, k); that is,

h/m up (s, ) > liﬁm0 up(9, k%), (4.6)
lm ug (e &%) > lim up (O, ), (4.7)
oy f—0 oty f—

where 6 = (T, d) is any sequential test in C(o, ), k* = (p*,q"), O is the SPRT for test-
ing p* against q*.

We note that (4.6) also holds without the limit. Before providing the detailed proof
of Theorem 4.1, we first present the following useful lemma.

Lemma 4.1. Suppose that Y is a continuous random variable that takes both positive and
negative values with nonzero probabilities, and assume that ¢(2) = E[e Y] is well
defined over —oo < A < co. Then there exists a constant 1* > 0 satisfying p(2*) =1 if
and only if E[Y] > 0.

The proof of Lemma 4.1 can be found in Zhang and Zou (2020). Note that in
Lemma 4.1, we assume that Y is a continuous random variable for simplicity. In gen-
eral, this lemma still holds with mild assumptions on Y. See appendix A2 of Wald
(2013) for more details. With Lemma 4.1, we are ready to prove Theorem 4.1.

Proof. This is the proof of Theorem 4.1. To simplify the notation, in this proof, P, and
E, denote the probability measure and expectation when the data have the probability
distribution p(x).
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For fixed k € P x Q, let 6, = (T\, di) € C(a, ) be the SPRT testing g against p with
P,(dc =1) =a and P,(d, = 0) = f.

First, we show that up(d,, k) > up(d, k) for any test 6 = (T,d) € C(o, ). In fact, this
follows easily from the optimality of the SPRT (Wald and Wolfowitz 1948). Specifically,
for any test 0 = (T,d) € C(a, ), we have that E,(T,) < E,(T) and E,(T.) < Ey(T).
Thus, up(dy, k) > up(0, k). In particular, we have that up(J,., €*) > up(9, k*).

Next, we will show that (0, k") > ua(0ps, k) for any x € P x Q. For any fixed
Kk € P x Q, we first find the thresholds of SPRT J, to guarantee the type I and type II
error constraints. Specifically, consider the stopping time

b)} (4.8)

T*(a,b) = inf { Z log
(4.9)

We need to determine a and b such that

P, (Z log -
(Z log T

First we compute the following probability

W
Il
K

)
)

(Xi)
) > b). (4.11)

T* X
q
P, (Z log I
i=1

By the condition in (4.2), we have that [ p(x)log £ 4 (x) ydx > 0. Thus, if Y, = log 1s a
continuous random variable and can take both posmve and negative values, by Lemma
4.1, there exists a positive number 4;(p) (which depends on p, p*, q*) such that

B, [e- 1] _ J (%) (g 8); Pl (4.12)

Then, if we define h;(x) = p(x)(% E?)“(p) hyi(x) is just a probability density function.
(x)

Moreover, we have that log ];‘(

\ /\

Il
=

(4.10)

S,

J1(p)log &) Therefore, the stopping time T*(a, b)

P )
would be the same as T :inf{n 2y r, log p(x ) o (all(p),b)q(p))}, which is the

SPRT for h, against p. By the property of the SPRT in (3.6), it then follows that

(Bt

> bm(p)) = (14 0(1))e b4®), (4.13)

St

Note that

P, (Z; log gi E§ > b)»l(p))

which yields that
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-
q"(Xi)
P lo >
’ (Z &y (X)
Next, we need to compute the following probability:
-
q (X))
P log———=<a|. (4.15)
’ <Z & (X) )

By the condition in (4.3), we have that [g(x) log x) jdx > 0. Thus, if Y, = log 1s a
continuous random variable and can take both posmve and negative values, by Lemma
4.1, there exists a positive number 4,(q) (which depends on g, p*, g*) such that

*(x)\ 2@
Eq[efiz(‘J)‘Yz] = Jq(x) <Z*Ex§> ! dx =1. (416)

b) = (14 o(1))e 4@, (4.14)

Then, if we define hy(x) = gq(x)( *8)&2@ hz( ) is a probability density function.
)

Moreover, we have that log - ol 2(q) log . Therefore, the stopping time T*(a, b)

would be the same as T, = 1nf{n Sy log q<X & (al2(q), b)uz(q))}, which is the
SPRT for g against h,. By the property of the SPRT in (3.6), it then follows that

i

< alz(q )) = (1+0(1))e=@, (4.17)

Note that

T iy T '
P (; log 2* gg = a) =P, (; log Pi((};)) < a)~2(‘1)),

which yields that

P <i log %) _ ) = (14 0(1))e*=@. (4.18)
N& ) = e ‘
Combining (4.14) and (4.18), as o, § — 0, we can choose
a=(logf)/2(q), and b= —(loga)/ i (p). (4.19)

to achieve the type I and type II error constraints asymptotically.
By Wald’s identity, we have that

i . v
E, [Z: log z* g ; E,T"]E, []og Iz* gﬂ , (4.20)
[Z log L2V — g, [17]E |:log ;f: gﬂ ‘ (4.21)

pr(Xi)

‘Zi g;)z] are finite, then the overshoot can be ignored (Siegmund 1985). Thus, we have that

Note that as o, f — 0, alogff — 0 and floga — 0, and Ep[(log 4 (X, ) } and E,[(log
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__logp alogf oclogoc

“h@ e O
_log
 Ja(q) + o)
and
- j 4N 4N
E, izzllog =aP, izzllogp*(X)Sa + bP, izzllogp*(X)Zb +0(1)

=af +b(1 - )+ 0O(1)

L loga  Bloga Blogp

~am A ae PO

—— rfpo)‘ +0(1).
Therefore, we have that for any p € P and q € Q,

1
(1) = (1-+ of1) —— 0o
| )
By(T7) = (14 0(1) ———0
h(p)E [Iogp (Xi)}
and the utlhty function lim,, p—o ua(0xss k) = —co(p) — c1(q) — 722(q)Ep[log %] -
J1(p)Eq[log > g ] It then follows from the definition of k* in (4.1) that
. o P (Xi) q"(X)
') = = ) e =l s B 55| - 0, { )
>~ alp) — (o) ~ vl log 25 | 0By log L ).

We then conclude that lim,, g ua (O, k*) > limy, go U (Oxs» k). Therefore, (9, k) is
a pair of strategies in Nash equilibrium asymptotically as o, f — 0, which completes
the proof.

Based on Theorem 4.1, we can get a pair of strategies in Nash equilibrium asymptot-
ically once we can find a pair of distributions p* € P,q* € Q that satisfy conditions
(4.1), (4.2), and (4.3). For a special case when the cost functions ¢y(p) = ¢;(q) =0, we
can get the least favorable pair distributions that satisfy these conditions. In the next
section, we will consider several examples to construct strategies in Nash equilibrium
when the cost functions are nonzero.

Furthermore, based on Theorem 4.1, we can get the following corollary, which sum-
marizes the asymptotic utilities for the strategies in Nash equilibrium.
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Corollary 4.1. If there exist distributions k* = (p* € P,q* € Q) satisfying (4.1), (4.2),
and (4.3) and (0, k*) are in Nash equilibrium asymptotically, then the utilities of adver-
sary and defender are

lim ua(dw, %) = —¢o(p") — a1(q’) — vKL(p"llg") — KL(q'[[p"),

o f—

lim up(dx, k") = yKL(p"|lq") + KL(q"|lp")-

o, f—

5. EXAMPLES AND NUMERICAL RESULTS

In this section, we consider four examples to illustrate our theoretical result.

5.1. Sparse Attack

In this subsection, we consider a special case when the attack is sparse. Specifically, sup-
pose under the null hypothesis when there is no attack, X;s are ii.d with probability
density function p(x). Under the alternative hypothesis, the adversary will attack each
data with probability e > 0. The data that will be attacked have probability density func-
tion g(x). In the other word, we assume the set P = {p} has only one distribution. The
set @ ={(1 —e)p+€q|0 < e < 1}, where g is a known density. In this case, the adver-
sary’s strategy is determined by the attack probability e and its goal is to choose an €
that can maximize its utility.

By Theorem 4.1, we can get the following corollary, which provides a sufficient con-
dition to a pair of strategies in Nash equilibrium.

Corollary 5.1. Suppose that P = {p} and Q = {(1 — €)p + €q|0 < € < 1}, where p and
q are two fixed probability density functions. Let c(€) be the cost function by choosing e.
If there exists € minimizing

(1 —€)p(x) +€'q(x)
—c(e) — J [(1 = e)p(x) + €q(x)] log 20 dx (5.1)
and
J [(1 = e)p(x) + €q(x)] log (1= 6*)1;(()2)+ q() dx >0 (5.2)

for all e € (0,1), then (Jc,€") is in Nash equilibrium asymptotically.

Note the € depends on distributions p and g. In general, there is no closed form to
get €* from (5.1) explicitly. Fortunately, numeric methods can be used to search for €*.

For example, let p(x) = Beta(2,1), q(x) = Beta(3,1), and c(e) = (1 — €)*>. Define
function f(e) = —(1 —€)* — Jg(l — €+ 2ex)log[l + (2x — 1)e*]dx. By Corollary 5.1, if
€* maximizes f(e), then (J.,€") are in Nash equilibrium. Note that f(e) is a concave
function of €. If ¢* is the maximizer of f(¢), we should have % (¢*) = 0, which yields

ef=1-— %J(3x2 — 2x) log[l + <;x - 1)5‘} dx. (5.3)
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Figure 1. Utilities of the attacker in beta distribution.
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Figure 2. Utilities of the defender in beta distribution.

Then, we can use numerical method such as bisection to search for the solution of (5.3)
and get €* = 0.93.

The simulation result below shows a similar result. We first simulate the utility of the
attacker when the defender chooses the strategy . with €* = 0.93. We can see from
Figure 1 that the utility of the attacker is maximized at e = 0.93. Similarly, we simulate
the defender’s utility when the attacker fixes € = 0.93. The resulting defender’s utility
is shown in Figure 2. We can see it is maximized when ¢ is closed to 0.93.

5.2. Mean Attack to Gaussian Distributions

Let P be a set of normal distributions N (0p, 1), where 0, € [—1,1], and Q be another
set of normal distributions N (0}, 1), where 0; € [2,4]. By Theorem 4.1, if there exist 0,
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Figure 3. Utilities of the attacker at 0; = 2.0625 of mean attack in Gaussian distribution.

and 0] satisfying (4.1), (4.2), and (4.3); that is,

(0y,07) = argmax { —¢co(0o) — c1(01)

Oo€[~1, 1], 0,€[2,4]

1) [0+ 0722 — (B + 0,)(0; + 07) + 2000, } (5.4)

L0t [0 = 07)/2+ (05 - 0] >0, (55)
and

elier[lzfA] [—(07% — 0,2)/2+ (0} — 0;)01] > 0, (5.6)

then let k* = (0, 07) and (0,,x") is in Nash equilibrium asymptotically. Specifically, if
we set co(0p) = 1002, ¢;(0;) = 2(0, —3)%, and y=1, we have 0 = 0.1875 and 0} =
2.0625, which correspond to A(0.1875,1) in P and AN(2.0625,1) in Q. If we set
co(00) = 02, c1(0,) = 5(0, —2.2)>, and y=1, we have 0} =1 and 07 = 2, which cor-
respond to N'(1,1) in P and N'(2,1) in Q.

We then simulate the adversary’s utility and the defender’s utility by 10° Monte Carlo
simulations to validate our theoretical results. We first simulate the adversary’s utilities
when the defender fixes its strategy to be the SPRT testing p* to q*. Figure 3 shows the
simulated adversary’s utility when the attacker chooses strategy (6o, 6; = 2.0625) with
varies 0y € [—1,1]. From Figure 3, we can see that the attacker gets its utility maximized
when 6, is close to 6; = 0.1875. Similarly, in Figure 4, we plot the adversary’s utilities
when the attacker chooses its strategy (6, = 0.1875,0;) with varies 6; € [2,4]. From
Figure 4, we can see that the attacker gets its utility maximized when 0; is close
to 0 = 2.0625.
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5.3. Variance Attack to Gaussian Distributions

Let P be a set of distributions N(0,02), where ao € [a,b], and Q be a set of distribu-
tions A'(0,0%), where o, € [¢,d]. Assume that 0 < a < b < ¢ < d. Based on Theorem
4.1, we get the following corollary, which provides a pair of strategies that are in Nash
equilibrium.

Corollary 5.2. Assume that co(o) is a decreasing function—that is, cy(c) <0 for all
o € [a,b],—and c,(0) is an increasing function; that is, ¢|(¢) > 0 for all ¢ € [c,d]. Let
y=1, gy =>b, 0 =c and «*=(0},07). Then (0,,Kk*) is in Nash equilibrium
asymptotically.

The proof of Corollary 5.2 is postponed to Appendix A.I.
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Figure 7. Utilities of the defender at o7 = 9 of variance attack in Gaussian distribution.

Figures 5 and 6 show the utility of the attacker when the defender fixes its strategy to
be d,~, and Figures 7 and 8 show the utility of the defender when the attacker fixes its
strategy to be k*. Specifically, we choose oo € [2,3] and ¢, € [9,10] with ¢o(ap) =
ci(o1) =0. Thus, by Corollary 52, o5 =3 and o; =9 so that p* =N(0,9) and
q* = N(0,81). Figure 5 shows the utility of the attacker at ¢ when the defender fixes
its strategy to be d,» = (p*,q*), and it can be seen that when oy = o = 3, the utility of
the attacker reaches its maximum. Figure 6 shows the utility of the attacker at o when
the defender chooses its strategy at d,- = (p*,q*), and it can be seen that the utility of
the attacker reaches the maximum at o] =9. Therefore, Figures 5 and 6 show that
when the defender fixes its strategy to be .-, the utility of the attacker reaches the
maximum at o5 =3 and o] = 9. In Figure 7, we plot the utility of the defender at o}
when the attacker chooses k* = (af = 3,07 =9). We can see that the utility of the
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defender reaches the maximum at gy = 3, which is ¢j. Figure 8 shows that the utility
of the defender reaches the maximum at g, =9, which is ¢}, when the attacker choo-
ses k* = (0p = 3,07 =9). Therefore, Figures 7 and 8 indicate that when the attacker
fixes its strategy to be x*, the utility of the defender is maximized by o =3 and ¢} =
9. Hence, (", 0,+) is a pair of strategies in Nash equilibrium.

5.4. Mean Attack to Bernoulli Distributions

Let P be a set of distributions Bernoulli(0;), where 0; € [a,b], and Q be a set of distri-
butions Bernoulli(6,), where 6, € [c,d], and assume that 0 < a < b < ¢ < d; that is,
0, < 0,. Based on Theorem 4.1, we can find a pair of strategies in Nash equilibrium as
stated in the following corollary.

Corollary 5.3. Assume that c¢(0,) is a decreasing function—that is, ¢'(0;) <0 for all

0 € [a,b], —and c(0,) is an increasing function; that is, ¢(0,) > 0 for all 0 € [c,d]. Let

0] =b, 05 =c and k* = (0,05). Then (0,+, ") is in Nash equilibrium asymptotically.
The proof of Corollary 5.3 is postponed to Appendix A.2.

In the experiments, we choose 0; € [0.2,0.3] and 0, € [0.5,0.6] with ¢(0;) = ¢(0,) =
0; then by Corollary 5.3, ] = 0.3 and 0, = 0.5 so that p* = Bernoulli(0.3) and q* =
Bernoulli(0.5). In Figures 9 and 10, we plot the utilities for the attacker when the
attacker changes its strategy and the defender fixes its strategy to be J,- = (p*,g"). In
Figure 9, the utility of the attacker is maximized by 6; = 0.3 = 6}, and in Figure 10,
the utility of the attacker is maximized by 6, = 0.5 = ;. Figures 11 and 12 show the
utility for the defender when the defender changes its strategy and the attacker fixes its
strategy to be k* = (p*,q*). In Figure 11, the utility of defender is maximized by 0, =
0.3 = 0], whereas in Figure 12, the utility of the defender is maximized by 0, = 0.5 =
0. Therefore, k*, d,+ provides a pair of strategies in Nash equilibrium.
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6. CONCLUSION

In this article, we proposed a game-theoretic approach for sequential detection in adver-
sarial environments. We derived a pair of strategies and proved that they are in Nash
equilibrium asymptotically. The analysis in this article, especially the analysis of the
adversary’s utility function, is in the asymptotic regime with vanishing type I and type
IT errors. It is of future interest to develop Nash equilibrium strategies in the nona-
symptotic setting. In this article, we assume that the adversary chooses distributions p €
P and g € Q, and the samples are then generated i.id. by p and q under the two
hypotheses, respectively; that is, the adversary is memoryless. For the adversary with
memory, we can model the strategy of the adversarial as a finite-order Markov process
and using the transition probability as the new observation; however, the analyses will
be more challenging. We also note that in some cases, it may not be possible to find a
pair of p* and q* satisfying (4.1) and (4.2) simultaneously.

APPENDIX
A.1. Proof of Corollary 5.2

Let o5 =b and ¢} =c. By (41) and Theorem 4.1, define f(ao,01) = —co(00) — c1(01) —

42 _ o2 <2
99—, 9

+ * *2_
A2(01)[log Z—; + 20 o] — Z1(00)[log %‘l‘ + (;‘agﬁoﬂ, where 4 (09), 42(01) are constants satisfying

(4.12) and (4.16); that is,

gy 1
21(09) log 6—2 = Elog (03207 — J(00)ai(a}* — ai?)) — log (ap07), (A1)
1
1 G* 1 ] X k. k. * %
(o) log 24 = Tlog (65761 — Ia(n)a (a5’ — o7%)) — log (5307, (A2)
0

In the proof below, we will show that oy = o) = b,0, = 0] = ¢ maximize function f(ay,01).
Thus, by Theorem 4.1, (J,+, x*) is in Nash equilibrium asymptotically.



SEQUENTIAL ANALYSIS e 929

Note that
of , 6t — a3 dli(a) oy 2 —op?
- = — - log L4+ L 0 52| A3
902 cp(a0) = 22(a1) 20207 902 o8 x + 2077072 g1 (A3)
and
af , 622(0'1) o* 0.*2 _ 0_*2 . 0*2 _ 0_*2
_ _ log L4 00" 00 2t 5 o397 Oy A4
8(;2 (o) o3 8 oy 203072 % 1(o0) 2032072 (A4)

First, we will show that df > 0 so that f is an increasing function of ¢7. Note that ¢j(cp) <0

and —4,(0y) 2‘;320{2 >0 because 632 > 0}*. Moreover, we have that the inequality

O'* 0.*2 0.*2
log 2+ _—0g2>0 A5
8 £ 2082012 ! (A-5)

holds for o) € [¢,d]. Thus, the condition in (4.3) will always hold.
Next, we will show that di‘(“‘)) < 0. By (A.1) we have that

0"520"{2 — exp [211(0'0) log < —‘l + 2log (cj0%)

o= (A6)
o A1(00) x (07 = 03?)
Taking the derivatives of 2 with respect to 4, yields
8_(;(2) — (xe_x -1 + e_x)((;z;o-l) (O-lZ — 632) , (A7)

0% 7(00) % (07 = 03)’
where x = 24,(0y) log Z—‘ Note for x>0,
0
xe*—1l+e*=(x+1e"—-1<ee*—1=0,

and all of the other terms on the right-hand side of (A.7) are positive. Therefore, we have % <
0, which implies 57 ‘M‘ <0, and > 0.
Similarly, we can show that 6}1 < 0 so that f is a decreasing function of ¢2. Note that ¢} (o) >

0 and —1 (ao) e 2 <0 because 632 > g}2. Moreover, we have that

0_* 0_*2 0_*2
log L+ _—1g2>0 A8
J oy 20202 0 (A8)

holds for any gy € [a,b]. Thus, condition (4.2) will always hold. Next, we will show that : 0’2 > 0.
By (A.2) we have

a2 — exp [212(51) log Z—; +2log (aj07)

o7 = . . (A9)
' Aa(01) x (03 — 07%) )
Taking the derivatives of 2 with respect to 4,(a;) and letting x = 24, (a;) log % yields
a_o-%: (xeX7 1+ex)( 0 *1‘)2(6’1&7682). (AlO)

0ia [22(a)]* (07 — 03?)*
Note for x>0, xe* — 1+ ¢&* > 0 and all of the other terms on the right-hand side of (A.10) are
positive, so gi > 0. Therefore, 3y 2 < 0.

Because afz >0 and < 0, f(ao,al) is maximized when oo = b and oy =¢, which com-
pletes the proof.
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A.2. Proof of Corollary 5.3
Let 0] = b and 0 = c. By (4.1) and Theorem 4.1, define

S(00,02) = ~<(0r) —(62) - viz(@z){ log G - z) s {M] }

(A11)
_ ;bl(el){ log (i = %) +0,log [M} }
where 4;(0,), 72(02) are constants satisfying (4.12) and (4.16); that is,
TORREEE
02<9—£)12+(1—62)<1_91);‘214 (A.13)
0 1-0;

In the proof below, we will show that 6, = 0] = b,0, = 0, = ¢ maximize function f(0;,0,). Let
k* = (67, 05). Then, by Theorem 4.1, (J,+, k") is in Nash equilibrium asymptotically.
Note that

Of _ / )2 9?(179;) _0/11(91) 179; M
20 = ¢ (01) — 942(0,) log {9;(1 — 9?)] 2, {log (1 — 97> + 0, log {9*{(1 — 93)} } (A.14)

and

9 e - 0;(1 = 07)| _ 04a(0) 1-0; 0;(1— 03)
o, = (02~ i) log {0’;(1_9;) o0, iz ) T gy | [

(A.15)

First, we show that ;—({l > 0, and thus f is an increasing function of ;. Note that ¢/(6;) < 0 and

—722(6) log [g;g:gf;] > 0. Moreover, we have that

1-0, 0,(1 —6,)

holds for any 6, € [c,d]. Therefore, the condition in (4.3) always hold. Next, we will show that
o

50- < 0 s0 that the right-hand side of (A.14) is positive. By (A.12) we have that

—031 7
(=) -1
' (a.17)
(17();) - (@)
Let x = log <tg£> and y = log (Z—f) Clearly, x,y > 0. Rewriting (A.17), we can get
e — 1
Taking the derivatives of 0, with respect to 4,(0;) yields
391 _ 7xe*llx(1 _ ekly) +ye),.y(e—/11x _ 1)
ﬁ o 1y — p—lix)2
' (e — %) (A.19)

xe*i"‘em(l — e*i‘y) +ye)‘1ye*;'1"(1 — ei"‘)

(elly _ efz,x)2

>
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which is always negative because
xe HI(1 — ) 4 yePe (1 - %) < xe IR hyy — e A =0, (A20)

Hence, og > 0.
Next, we show that ;g > 0., and thus f is a decreasing function of 6,. Note that ¢/(6,) >

and —4,(0,) log [ )] < 0 because 0] < 05 by the assumption. Moreover, we have

1—0; 07(1-03)
1 0log | -——2| >0, A2l
for any 6, € [a, b]. Therefore, condition (4.2) always holds. Now we need to show that %z > 0 so
that the right-hand side of (A.15) is negative. By (A.13) we can get

16,1/
(=)? -1

T E g e
0, %
Recalling x = log i:gg and y = log Z—é,x >0,y > 0, we can get
2 1
e —1
Taking the derivative of 0, with respect to /,, we have that
00, _xeiz"(l — ezzx) — ye*}‘zy(e’iz" -1)
oz (e — err)? (A.24)
xe’*e "2V (M) — 1) + yelV el (e — 1) '
= (e/,sz _ e*jvz}/)z >
which is always positive because
xe e (Y — 1) 4 ye Ve (e7R* — 1) > xe e Ny — ye Ve )yx = 0. (A.25)

Hence, a({ < 0.
Because ddg >0 and < 0, f(0y,0,) is maximized when 0; = b and 0, = ¢, which completes
the proof.
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