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Abstract

This paper presents a “two-dimensional Fourier Continuation” method (2D-FC) for construction of
bi-periodic extensions of smooth non-periodic functions defined over general two-dimensional smooth
domains. The approach can be directly generalized to domains of any given dimensionality, and even
to non-smooth domains, but such generalizations are not considered here. The 2D-FC extensions are
produced in a two-step procedure. In the first step the one-dimensional Fourier Continuation method
is applied along a discrete set of outward boundary-normal directions to produce, along such directions,
continuations that vanish outside a narrow interval beyond the boundary. Thus, the first step of the
algorithm produces “blending-to-zero along normals” for the given function values. In the second step,
the extended function values are evaluated on an underlying Cartesian grid by means of an efficient,
high-order boundary-normal interpolation scheme. A Fourier Continuation expansion of the given func-
tion can then be obtained by a direct application of the two-dimensional Fast Fourier Transform (FFT).
Algorithms of arbitrarily high order of accuracy can be obtained by this method. The usefulness and
performance of the proposed two-dimensional Fourier Continuation method are illustrated with appli-
cations to the Poisson equation and the time-domain wave equation within a bounded domain. As part
of these examples the novel “Fourier Forwarding” solver is introduced which, propagating plane waves
as they would in free space and relying on certain boundary corrections, can solve the time-domain wave
equation and other hyperbolic partial differential equations within general domains at computing costs
that grow sublinearly with the size of the spatial discretization.

Keywords: Two-dimensional Fourier Continuation, Poisson Equation, Wave Equation, FC Solver, Fourier
Forwarding, FFT.

1 Introduction

This paper presents a “two-dimensional Fourier Continuation” method (2D-FC) for construction of bi-
periodic extensions of smooth non-periodic functions defined over general two-dimensional smooth domains.
The approach can be directly generalized to domains of any given dimensionality, and even to non-smooth
domains, but such generalizations are not considered here. The usefulness and performance of the proposed
two-dimensional Fourier Continuation method are illustrated with applications to the Poisson equation and
the time-domain wave equation within a bounded domain. As part of these examples the novel “Fourier
Forwarding” solver is introduced which, propagating plane waves as they would in free space and relying
on certain boundary corrections, can solve the time-domain wave equation and other constant-coefficient
hyperbolic partial differential equations within general domains at computing costs that grow sublinearly
with the size of the spatial discretization.
The periodic-extension problem has actively been considered in the recent literature, in view, in par-
ticular, of its applicability to the solution of various types of Partial Differential Equations (PDE) [1, 3,
,0,8,13,16,20,23]. The contributions [3,4, 8, 20], in particular, utilize the Fourier Continuation (FC)
method in one dimension in conjunction with dimensional splitting for the treatment of multidimensional



PDE problems. The dimensional splitting is also used in [1 1] to produce Fourier extensions to rectangular
domains in two dimensions, where the Fourier Continuation is effected by separately applying the one-
dimensional FC-Gram method [3, 4, 8] first to the columns and then to the rows of a given data matrix
of function values. The method does assume that the given smooth function is known on a rectangular
region containing the domain for which the continuation is sought.

The approach to periodic function extension presented in [0, 23] is based on the solution of a high-
order PDE, where the extension shares the values and normal derivatives along the domain boundary.
Reference [13], in turn, presents a function-extension method based on use of radial basis functions. In
that approach, overlapping circular partitions, or patches, are placed along the physical boundary of the
domain, and a local extension is defined on each patch by means of Radial Basis Functions (RBFs). A
second layer of patches is placed outside the first, on which the local values are set to vanish. The zero
patches are used in conjunction with a partition of unity function to blend the local extensions into a global
counterpart. The choice of functions used to build-up the partition of unity determines the regularity of
the extended function.

The 2D-FC extensions proposed in this paper are produced in a two-step procedure. In the first step
the one-dimensional Fourier Continuation method [!] is applied along a discrete set of outward boundary-
normal directions to produce, along such directions, continuations that vanish outside a narrow interval
beyond the boundary. Thus, the first step of the algorithm produces “blending-to-zero along normals” for
the given function values. In the second step, the extended function values are evaluated on an underlying
Cartesian grid by means of an efficient, high-order boundary-normal interpolation scheme. A Fourier
Continuation expansion of the given function can then be obtained by a direct application of the two-
dimensional FFT algorithm. Algorithms of arbitrarily high order of accuracy can be obtained by this
method. Since the continuation-along-normals procedure is a fixed cost operation, the cost of the method
grows only linearly with the size of the boundary discretization.

As mentioned above, this paper demonstrates the usefulness of the proposed general-domain 2D-FC
technique via applications to both, the Poisson problem for the Laplace equation and the time-domain
wave equation. In the Poisson case the 2D-FC method is utilized to obtain a particular solution for a
given right hand side; the boundary conditions are then made to match the prescribed boundary data by
adding a solution of the Laplace equation which is produced by means of boundary-integral methods. The
Fourier Forwarding approach, in turn, uses the 2D-FC method to solve the spatio-temporal PDE in the
interior of the domain and it then corrects the solution values near the boundary by means of a classical
time-stepping solver. The overall procedure, which utilizes large time-steps for the interior solver and small
CFL-constrained time-steps for the near-boundary solver, runs in computing times that grow sublinearly
with the size of the spatial discretization mesh.

It is interesting to note that the primary continuation device in the 2D-FC method, namely, continuation
along normals to the domain boundary, is a one-dimensional procedure. This one-dimensional continuation
procedure can be utilized in a generalization of the method to n-dimensional domains with n > 2. This
is in contrast with other extension methods mentioned above. For example, the RBF-based extension
method [13] requires solution of boundary problems of increasing dimensionality as the spatial dimension
grows, which, given the method’s reliance on dense-matrix linear algebra for the local-extension process,
could have a significant impact on computing costs. Similar comments apply to PDE-based extension
methods such as [23].

The proposed 2D-FC algorithm performs favorably in the context of existing related approaches. Spe-
cific comparisons with results presented in [13] are provided in Section 4.1.1 for a Poisson problem con-
sidered in that reference. The recent contribution [12], in turn, presents an FFT-based high-order solver
for the Poisson problem for rectangular domains, namely, Cartesian products of one-dimensional intervals
in either two- or three-dimensional space. The present 2D-FC based Poisson solver achieves, for general
domains, a similar performance (similar accuracy and computing time) to that demonstrated in [12, Tables
3 and 4] under the Cartesian-domain assumption.



This paper is organized as follows. After a brief review of the 1D-FC method presented in Section 2,
the proposed 2D-FC method is introduced in Section 3. The two main applications considered, namely,
solution of the Poisson and Fourier-Forwarding for the wave equation, are presented in Sections 4.1 and 4.2.
Finally our conclusions are presented in Section 5.
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(a) Demonstration of the 1D-FC method. The continuation values are computed as the sum of the blended-
to-zero rightward and leftward extensions.
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Figure 1: Illustration of the 1D-FC procedure. Figure la depicts the Fourier Continuation of the non-periodic function
¢ :10,1] — R given by ¢(z) = exp(sin(b.47x — 2.77) — cos(27z)) — sin(2.57z) + 1. Figure 1b presents a close up of the right
continuation region [1 — (d — 1)k, b]. Subsequently Figure 1c illustrates the use of a number E of extra zeroes in the blending
to zero process, to yield a continuation mesh containing FFT-friendly numbers (products of powers small prime numbers) of
point values.

2 Background: 1D “blending-to-zero” FC algorithm

This section presents a brief review of the one-dimensional Fourier Continuation (1D-FC) method [3,1],
with an emphasis on one of its key components, the blending-to-zero procedure—which is employed in
the normal-direction continuation portion of the proposed two-dimensional Fourier Continuation (2D-FC)
approach presented in Section 3.

2.1 1D-FC algorithm: Outline

Given the vector ¢, = (¢o,...,dn—1)" of values of a smooth function ¢ : [0,1] — C on the equispaced
grid D = {z; = jk:0 < j < N — 1} of step-size k = 1/(N — 1), the 1D-FC method [3,4] of order d (with,
e.g., 4 < d < 12) produces, at first, an (N + C)-dimensional vector ¢¢ of discrete continuation function
values (including the N given function values) over an extended interval [0,b],b > 1. To do this, the



algorithm utilizes the d-dimensional vectors ¢, = (do, ..., dq-1)" and ¢, = (¢n_a, ..., dn_1) of values of
the function ¢ on the left and right “matching-point” sets Dy = {xq,...,24-1} and D, = {&n_4,...,ZN-1},
respectively, each one of which is contained in a small subinterval of length (d — 1)k near the corresponding
endpoint of the containing interval [0, 1]. In order to obtain the C necessary continuation values, the 1D-
FC method blends ¢, and ¢, to zero (see Section 2.2), towards the left and right, respectively, resulting
in two zero-blending vectors of length C. The sum of these two vectors is then utilized as a rightward
discrete continuation to the set D¢ = {x; = 14+ jk : 1 < j < C}} of points in the interval (1,b]—as
described in Section 2.3. As indicated in that section, the overall 1D-FC procedure is then completed
via an application of the FFT algorithm to the (N + C)-dimensional vector ¢ (cf. equation (2.7) below)
of “smoothly-periodic” discrete continued function values. The following two subsections describe the
blending-to-zero and 1D-FC approaches, respectively.

2.2 Blending-to-zero Algorithm

In our description of the order-d blending-to-zero algorithm [1] we only present details for the rightward
blending-to-zero technique, since the leftward blending-to-zero problem can easily be reduced to the right-
ward problem. Thus, given the column vector F'p = (Fp, ..., Fy_1)! of values of a complex-valued function
F on the set D = {xo,x1,...,24-1}, the rightward blending-to-zero approach starts by producing a poly-
nomial interpolant for F' over the interval [xg, z4—1] relying on the Gram polynomial basis

Gq = {go(:r),gl(:n),...,gd,l(x)} (2'1)

for this interval. The functions g;(z) (j =0,...,d — 1) are the polynomials with real coefficients that are
obtained as the Gram-Schmidt orthogonalization procedure is applied, in order of increasing degree, to the
polynomials in the set {1,z,22,... ,xdil}, with respect to the discrete scalar product

d—1

(g:h) = gla;)h(z;).

J=0

Discrete values of the Gram polynomials on the set D can be computed on the basis of the QR factoriza-
tion [14] ‘
P =QR of the matrix P = (mi]_l)ogijgd—l- (2.2)

(Note that the 5™ column of @ contains the values of the j®* Gram polynomial on the set D.) Following [4]
we obtain the necessary QR factorization by applying the stabilized Gram-Schmidt orthogonalization
method to the matrix P.

In order to closely approximate each one of the Gram polynomials in G4, throughout the continuous
interval [0, (d—1)k] containing D, by corresponding trigonometric polynomials, as described below, we use a
certain “oversampled matching” method. According to this method the polynomials in G4 are oversampled
to an equispaced set of discretization points with stepsize k/nos (containing nes(d—1)+1 points) where ng
denotes the oversampling factor, and where the oversampled values are used as part of a certain Singular
Value Decomposition (SVD) matching procedure described in what follows. Note that the aforementioned
oversampled values on the refined grid Dos = {Z; = jk/nos : 0 < j < ngs(d—1)} coincide with the columns
of the matrix

Qos = POSR_la (2'3)

where P, is the Vandermonde matrix of size (nes(d — 1) + 1) x d corresponding to the oversampled
discretization D,g, and where R is the upper triangular matrix in equation (2.2).



The aforementioned SVD matching procedure, which is one of the crucial steps in the FC approach [1],
produces a band-limited Fourier series of the form

M
. 2wimz
gjc(x) — E al e@r2C+Z=1F (2.4)
m=—M

for each polynomial g; € G4 (0 < j < d — 1), where C is the number of blending-to-zero values to be
produced, and Z being the number of “zero-matching” points. The Fourier coefficients are selected so as to
match, in the least square sense, both the oversampled polynomial values over the interval [0, (d —1)k], and
identically zero values on an equally fine discretization of the “zero matching” interval [(d + C)k, (d+ C +
Z —1)k] of length (Z — 1)k. The coefficients in (2.4) are taken to equal the solution a of the minimization
problem

, (2.5)
2

q’
min Boa— | 79
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where B, is a matrix whose entries are values of (2.4) at all points in the set Dos as well as all the set of
k/nes-spaced points in the “zero matching” interval mentioned above (which, in particular, contains the
endpoints (d + C)k and (d + C + Z — 1)k). The minimizing Fourier coefficients a are then found via an
SVD-based [11] least-squares approach. Once the coefficients a have been obtained, the resulting Fourier
expansions (2.4) are used to produce a certain “continuation matrix” A € C¢*?, whose columns equal the
values of the expression (2.4) at the C' (unrefined) k-discretization points in the interval [dk, (d + C — 1)k]
(cf. Remark 2.2 below). The desired vector F" of rightward blending-to-zero function values at the C
continuation points in the interval [dk, (d + C' — 1)k] is then given by the expression

F" = AQ'F. (2.6)

2.3 1D-FC Algorithm

As outlined in section 2.1, the 1D-FC algorithm requires use of a certain rightward (resp. leftward) blending-
to-zero vector @' (resp. ¢}) for a given matching-point vector ¢, (resp. ¢,). In view of equation (2.6) we
define ¢, = AQT ¢,. To obtain the leftward extension d)ﬁ, in turn, we first introduce the “order reversion”
matrix R € C**¢ (e € N) by

Re(907gl ce. 796—2796—1)t = (96—1798—27 o 7glag0)t7

and we then define q’)é = RCAQTRY¢p,. A vector ¢¢ containing both the N given values in the vector
¢ = (b0, ¢1,-.-,6n_1)" as well as the C' “continuation” function values is constructed by appending the
sum ¢§ + ¢, at the end of the vector ¢, so that we obtain
(o} for0<j<N-1
P = (¢‘+¢T) for N<j<N+C-— 27)
0 r),. or S7 > + C 1.
(J—N)

Following the various stages of the construction of the vector ¢¢ it is easy to check that, up to numerical
error, this vector contains point values of a smoothly periodic function defined over the interval [0,5]. An
application of the FFT algorithm to this vector therefore provides the desired continuation function in the
form of a trigonometric polynomial,

(N+C)/2 A 2milx
¢a)= Y deTr, (2.8)
t=—(N+C)/2



which closely approximates ¢ in the interval [0,1]. In fact, as demonstrated in previous publications
(including [3,1]), for sufficiently smooth functions ¢, the corresponding 1D-FC approximants converge to
¢ with order O(k?)—so that, as expected, the number d of points used in the blending-to-zero procedures
determines the convergence rate of the algorithm. (As discussed in these publications, further, in view of
its spectral character the 1D-FC approach enjoys excellent dispersion characteristics as well.) The 2D-FC
algorithm introduced in the following section also relies on the one-dimensional blending-to-zero procedure
described in section 2.2, and its convergence in that case is once again of the order O(k?).

It is important to note that, for a given order d, the matrices A and @ can be computed once and
permanently stored on disc for use whenever an application of the blending-to-zero algorithm is required—
as these matrices do not depend on the point spacing k. A graphical demonstration of various elements of
the 1D-FC procedure is presented in Figure 1.

Remark 2.1 (Extra vanishing values). The 1D-FC implementations [3, 1] allow for an additional
number E > 0 of identically zero “Extra” function values to be added on a (unrefined) k-discretization of
the interval [(d + C)k, (d+ C + E — 1)k], as illustrated in Figure lc, to obtain a desired overall number of
discrete function values (including the given function values and the continuation values produced) such as
e.g., a power of two or a product of powers of small prime numbers, for which the subsequent application
of the fast Fourier transform is particularly well suited. The corresponding use of extra vanishing values
for the 2D continuation problem is mentioned in Remark 3.2.

Remark 2.2 (Blending to zero on a refined grid). As indicated above in the present section, the
two-dimensional Fourier continuation procedure introduced in Section 3 utilizes the 1D blending-to-zero
strategy described above in this section to extend a function given on a two-dimensional domain 2 along
the normal direction to I'; the continuation values obtained at all normals are then utilized to obtain the
continuation function on the Cartesian grid by interpolation. As detailed in Section 3.4, in order to prevent
accuracy loss in the 2D interpolation step we have found it necessary to use 1D normal-direction grids finer
than the grids inherent in the blending-to-zero process itself. To easily provide the necessary fine-grid
values, a modified fine-grid continuation matrix A, € COrxd g constructed, where C,. > C' denotes the
number of fine-grid points utilized. The modified continuation matrix A, can be built on the basis of the
minimizing coefficients a in (2.5): the corresponding columns of the fine-grid continuation matrix A, are
obtained by evaluating (2.4) on the given fine-grid points in the interval ((d — 1)k, (d + C — 1)k]. The
necessary blending-to-zero function values at the C, fine-grid points are given by A,Q% ¢ .

3 Two-dimensional Fourier Continuation Method

This section presents the proposed volumetric Fourier continuation method on two-dimensional domains
Q) C R? with a smooth boundary I' = Q\ 2, some elements of which are illustrated in Figure 2. Let a smooth
function f : Q — C be given; we assume that values of f are known on a certain uniform Cartesian grid
within  as well as a grid of points on the boundary I'. The 2D-FC algorithm first produces one-dimensional
“blending-to-zero” values for the function f along directions normal to the boundary I, yielding continuation
values on a certain two-dimensional tangential-normal curvilinear grid around I'; as detailed in Sections 3.1
and 3.2 and illustrated in Figure 2. These continuation values, which are produced on the basis of the
corresponding blending-to-zero procedure presented in section 2.2 in the context of the 1D-FC method,
are then interpolated onto a Cartesian grid around the domain boundary, to produce a two-dimensional
blending-to-zero continuation of the function f. The necessary interpolation from the curvilinear grid to
the Cartesian grid is accomplished by first efficiently obtaining the foot of the normal that passes through
a given Cartesian grid point r = (z,y) exterior to {2 and near the boundary I'" (Section 3.3), and then
using a local two-dimensional interpolation procedure to produce the corresponding continuation value at
the point r (Section 3.4). Once the interpolated values have been obtained throughout the Cartesian mesh



around I', the desired two-dimensional Fourier continuation function

N./2 Ny /2

oy = Y 3 fzme%"(ﬁ”f) (3.1)

(=—N./24+1m=—N,/2+1

(where L, and L, denotes the period in the x and y directions, respectively) is obtained by means of a
2D FFT. Following the algorithmic prescriptions presented in Sections 3.1 through 3.4, a summary of the
overall 2D-FC approach is presented in Section 3.5.

3.1 Two-dimensional tangential-normal curvilinear grid

The necessary curvilinear grids around I' can be produced on the basis of a (smooth) parametrization
r=q(f) = (2(0),y(0)), 0<0<2m, (3.2)

of the boundary I'. In view of their intended application (blending to zero along the normal direction in
accordance with section 2.2), the curvilinear grids are introduced within interior and exterior strips V—
and V7 (illustrated in Figure 2) given by

(3.3)

V- ={q0) —n()y:0<0<2rand 0 <~ < (d— 1)k},
VT ={q6) +n(0)y:0<60<2rand 0 < < Cky},

where n(0) = (nz(0),ny(#)) denotes the unit normal to the boundary I' at q(f), and where d, C' and
k1 denote, respectively, the number of matching points, the number of blending-to-zero points, and the
stepsize used, in the present application of the 1D blending-to-zero procedure described in Section 2.2.
Using, in addition, the uniform discretization

IB:{H Zpk220§p<B}, ko = — (3.4)

of the interval [0, 27], we then construct a curvilinear two-dimensional discretization

Ba=1Tpg: Tpq=a(0p) +n(0p)(g—d+1)k;; 0<p<Band0<qg<d-—1} (3.5)

Vio, = {8nat Spa = a(8y) +n(0,)aki /s 0<p< Band 0< g < C,}, (3.6)

within V™~ and VT respectively, for the given stepsize ki where C,. = Cn,. for certain integer (refinement
factor) n,; note that the points in V , for ¢ = d — 1 and the points in VE ¢, for ¢ = 0 coincide and
that they lie on I'. Here the constants d, C' and n, are independent of B. The continuation function is

constructed so as to vanish at all points s, , € VE’CT with ¢ = C,. Let now R = [ao, a1] X [bo, b1] denote
the smallest closed rectangle containing Q U V™, and consider the equispaced Cartesian grid of stepsize h,

H = {Z@j = (a:i,yj) cx; = ag +th; Y; =by+jh: 0<i<N,0<5< Ny} (37)
on R, where the two-dimensional continuation function values are to be computed. We note that the size
of the rectangle R along with the strips V'~ and VT decrease as the stepsize ko is decreased.

3.2 Computation of FC values on Vg

A continuation of the function f to the exterior of 2 is obtained via application of the blending-to-zero
procedure presented in Section 2.2 (cf. Remark 2.2) along each one of the normal directions inherent in
the definition of the set Vg c,- For given p, the d equidistant points sp4 € Vg, (0 < g <d-1), which
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Figure 2: Geometrical constructions underlying the 2D-FC procedure, with reference to the various regions defined in Sec-
tion 3.1.

are indicated by the solid circles in Figure 3, constitute a set D, of matching points that are used to
effect the blending-to-zero procedure per the prescriptions presented in Section 2.2. To obtain the desired
continuation function values it is necessary to first obtain the vector po of the values of the function f (or
suitable approximations thereof) on the set D,. In the proposed method, the needed function values po
are computed on the basis of a two-step polynomial interpolation scheme, using polynomials of a certain
degree (M — 1), as briefly described in what follows.

With reference to the right image of Figure 3, and considering first the case |n.(0,)| > |ny(6,)|, the
algorithm initially interpolates vertically the function values at M open-circle Cartesian points selected as
indicated in the figure, onto the points of intersection, shown as red-stars, of the normal line and the vertical
Cartesian grid lines. For intersection (red-star) points close enough to the boundary, boundary function
values at boundary points shown as squares in the figure, are utilized in the one-dimensional interpolation
process as well. Once the red-star function values are acquired, the function value at the matching solid-
black point is effected by interpolation from the M red-star point values previously obtained, on the basis
of a polynomial of degree (M — 1).

The case |ng(0p)| < |ny(6p)| is treated similarly, substituting the initial interpolation along vertical
Cartesian lines, by interpolation along horizontal Cartesian lines; the algorithm then proceeds in an entirely
analogous fashion.
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Figure 3: Interpolation scheme for evaluation of fp, in the case [ne(0p)| > [ny(6p)|. Left: Black solid circles indicate the
matching points that define the set D,. Right: Known function values at the Cartesian points (denoted by the empty circles)
and, in some cases, at the point of intersection (represented by an empty square) of the vertical grid lines with I", are used
to interpolate the matching function values at the red-star intersection points of the normal with the vertical grid lines. The
function values at the red-points are then used to obtain, by interpolation, the function values at the matching points.



3.3 Proximity map

As described below in Section 3.4, the 2D FC algorithm interpolates the Fourier continuation values on
VE ¢, onto the Cartesian mesh H. The interpolation algorithm used in that section relies on a certain
“proximity map” P : HNV™*T — V]; ¢, which associates a curvilinear grid point s, = P(zij) € Vg: c,
in the “proximity” of each given Cartesian grid point z; ;. The proximity function we use is obtained by
first associating to each curvilinear discretization point s, , the nearest Cartesian point, a procedure that
results in a set Py C (HNV™T) x Vg o, of pairs of points, one in the Cartesian grid and the other in the
curvilinear grid. (The initial set Py can easily be obtained by using the “integer part” floor ([.]) and the
ceil ([.]) operators.) The set Py is then modified by removing multiple associations for a given Cartesian
point, and, if necessary, by adding a “next-nearest” curvilinear neighbor to Cartesian points that previously
remained un-associated. The resulting set P defines the desired function.

3.4 FC Values on the Cartesian Grid

Once Fourier continuation values on VE{ ¢, have been obtained, per the procedure presented in Section 3.2,
the two-dimensional FC scheme can be completed by (a) Interpolation onto the set H N V™' of outer
Cartesian grid points; and, (b) Subsequent evaluation of the corresponding Fourier coefficients in equa-
tion Equation (3.1) by means of an FFT. (Note that since the continuation function f€ is a smooth function
which vanishes outside Q U VT, this function can be viewed as the restriction of a smooth and bi-periodic
function with periodicity rectangle R—whose Fourier series approximates f¢, and therefore f, accurately.)
The efficiency of the interpolation scheme is of the utmost importance in this context—since interpolation
to a relatively large set H NV T of Cartesian points is necessary. An accurate and efficient interpolation
strategy is obtained by combining two one-dimensional (local) interpolation procedures based on nearby
normal directions. The first interpolation procedure produces the parameter value 6 of the foot of the
normal to I' passing through a given Cartesian point; the second procedure then approximates the contin-
uation function value utilizing the parameter value 6 just mentioned and the continuation function values
at the points in V]; ¢, around the given Cartesian point. A detailed description of the combined interpola-
tion methodology is presented in what follows. Specifically, we describe the strategy we use to interpolate
the continuation function onto each point @ = z; ; € HNV ™ and, to do this, we first obtain the foot F(Q)
of this point. Using the proximity map P described in Section 3.3, the algorithm utilizes the curvilinear
discretization point s, 4 = P(z;;) € VB+ ¢, as well as the corresponding boundary discretization parameter
value 6,; according to equation (3.6), the point g(f),) equals the foot of the normal passing through s, 4:
q(0p) = F(sp,q). The algorithm then seeks approximation of the foot F(Q) and the corresponding parame-
ter value § = 09 via a preliminary interpolation step, as indicated in what follows. The foot F (Q) and the
corresponding parameter value § = 6% are then used by the algorithm to produce the desired interpolated
continuation value at ).
In order to obtain F(Q) the algorithm uses the M boundary parameter values in the set

Sgp = {eprgv prKngl) sy 0})7 9p+la HE 79p+KT} C IB (38)

around 6, (where K, + Ky + 1 = M, and where K, = K, if M is odd and K, = K, + 1 if M is even.
Parameter values 6 with negative values of k, which may arise in Equation (3.8), are interpreted by
periodicity: 6 = 0p1k).

The algorithm then utilizes the line Lé passing through @ that is orthogonal to the normal vector
n(6),) (see left image in Figure 4), together with the parametrization £5(7) of L}, where the parameter
T represents the signed distance of the points on Lé from the point ). Clearly, then, 65(0) = . Each
point of intersection of Lé-z with the normals n(0;) (; € Sp,), on the other hand, equals £¢(7;) where
7; denotes the signed distance between () and the corresponding intersection point. Thus, defining the



function § = T (1), where T(7) gives the parameter value of the foot of the normal through the point
£55(7), we clearly have

0, =T(rj); p—K/<j<p+K,. (3.9)

It follows that a 1D interpolation procedure on the function 7 (7) can be used to obtain the desired
approximation of the value #% = T(0) of the parameter corresponding to the foot of the point @ = z; ;:
F(Q) = q(0?) = q(T(0)).

Once we have the corresponding foot parameter value 89 for the given Cartesian point Q, the distance
ng of the point () to the boundary I is easily computed. Let Sypqo C Ip be a set of M boundary parameter
values, similar to the set Sp, defined in ( 3.8), but with Sye “re-centered” around 6%. In order to obtain
the continuation function value at the point () using the continuation function values on Vg ¢, » we employ
a local two-dimensional polynomial interpolation scheme based on the set Spe and the distance nQ, as
indicated in what follows and illustrated in the right image of Figure 4. First, the continuation values are
obtained at each point (marked by blue asterisks in the figure) at a distance 7¢g from the boundary I' along
the normal grid lines in VE ¢, that correspond to boundary parameter values in the set Sye. Each one
of these values is obtained via one-dimensional interpolation of the continuation function values on Vg’ c,
along the corresponding normal grid line in Vg c,- The desired continuation value at the point (), then,
is obtained via a final one-dimensional degree—(M — 1) interpolation step based on the parameter set Syo
and values at the “blue-asterisk” points just obtained. Finally, by applying the two-dimensional FFT to

N ) el
HPHBN/ """"""""""""""""" | /e””]/g/e?/‘a/ o
-k, | ‘ — ]
/ \ |

Figure 4: Interpolation schemes utilized to obtain the continuation function values on HNV on the basis of the continuation
values on VEJ{ o, Left: Evaluation of the boundary parameter value for the foot of the normal line passing through @, depicted
as a finely dotted line passing through that point. The left image also displays the set of red-star interpolation points along the
dashed-orange line Lé. Right: Interpolation of continuation values from the curvilinear mesh to a point @ on the Cartesian
mesh.

the continuation function values computed above we then obtain the desired Fourier series expression in
(3.1) for the continuation function.

Remark 3.1 (Function values on I'). I. For definiteness, in this paper we have assumed that the bound-
ary data is provided in the form of values of the given function—which corresponds to the the Dirichlet
boundary data in the PDE context. But the approach is also applicable in cases for which the boundary
data is given as the normal derivative of the function, (Neumann boundary data), or even a combination
of function and normal derivative values (Robin data) by relying on a slightly modified blending-to-zero
procedure of the type presented in [1]. II. If no boundary data available, the two-dimensional Fourier
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continuation method can still be utilized on the basis of interior data only, albeit with a certain reduction
in accuracy near the boundary.

Remark 3.2 (Extra vanishing values in 2D). As in the 1D case, prior to the FFT procedure the grid
H can be enlarged, with vanishing function values assigned to the added discretization points to obtain a
discretization containing a number of discretization points equal to a power of two (or a product of powers
of small prime numbers) along each Cartesian direction, which leads to specially fast evaluations by means
of the fast Fourier transform.

10° . . 0.1 T T T T

—&— Geom. Setup, d =4 Ve

[ |==g-= Cart. Eval.,, d =4 vd 8
—+— Geom. Setup, d =5 S/

f|==s== Cart. Eval., d =5 / 8
—e— Geom. Setup, d = 10 s
f|==3== Cart. Eval., d = 10 é g

i
10728
q

104

Relative Error
=
o
o

10-10

10-12 L 1 L 0
50 100 150 200 300 400 500 50 100 200 300 400 500

Spatial Discretization (N*) Spatial Discretization (N*)

Figure 5: Numerical errors in log-log scale (left graph) and computing times required (right graph) in the 2D-FC approxima-
tion of the function f in (3.10) in the setting of Example 3.1. The interpolating polynomial degree M = d + 3 was used in all
cases. The integer N © equals the number of spatial grid points used over the diameter of the disc. Times reported correspond
to averages over 10 runs.

3.5 Summary of the 2D-FC procedure

This section presents a summary of the 2D-FC procedure described in the Sections 3.1 through 3.4 for a
function f given on a uniform Cartesian grid HN) within the domain of definition €2, where H is a Cartesian
mesh over the rectangle R containing both 2 and the near-boundary outer region V*; see Section 3.1 and,
in particular, Figure 2. The construction of the continuation function f¢ for the given function f relies
on use of three main parameters associated with the 1D blending-to-zero approach presented in Section 2,
namely d (number of points in the set D), C' (number of unrefined discrete continuation points), and
nes (oversampling factor for the 1D blending-to-zero FC procedure), together with the parameters n,
(refinement factor for the discrete continuation points, Remark 2.2 and Section 3.1), and, M — 1 (degree
of the interpolating polynomials, Sections 3.2 and 3.4). Additionally, the 2D-FC procedure utilizes the
precomputed matrices A, and @, which, with reference to Section 2.2, are obtained as per the description
provided in Remark 2.2.

Using the aforementioned parameters and matrices, the algorithm proceeds in two main steps, namely
step (a) A “Geometrical Setup” precomputation procedure (comprising points 1. through 4. below); and step
(b) A “Cartesian Evaluation” procedure (comprising points 5. through 7. below). Part (a) only concerns
geometry, and, for a given domain and configuration, could be produced once and used for evaluation
of Fourier continuations for many different functions, as is often necessary in practice. The full 2D-FC
algorithm thus proceeds according to the following seven-steps:
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1. Discretize the boundary I' using a smooth parametrization {g(f) = (z(0),y(#)) : 0 < 0 < 27}
of I' and the uniform discretization Ip = {0 = 6y < 01,...,< 0p_1 < 27} of the interval [0, 27]
(Section 3.1).

2. Using the discretization Ip, construct two curvilinear meshes Vi and VE'; ¢, in the near-boundary
regions V= (within Q) and VT (outside ), respectively (equations (3.5) and (3.6)). Note that the
discrete boundary points g(#;) with 6; € Ip are common to both Vg 4 and Vg’ c, -

3. Determine the set H N V™ of Cartesian grid points and construct the proximity map P: HNV™ —
VI;F,CT (Section 3.3).

4. For all @ € HNV* obtain the the parameter value % € [0, 1] of the foot F(Q) of the normal through
@ (Section 3.4 and the left image in Figure 4).

5. For each normal grid line (inherent in V ; and V4 c,) given by the discretization I, compute the
blending-to-zero function values along that normal ’(Section 3.2).

6. For all the points Q € HNV ™, obtain the continuation function value at @ by local 2D interpolation
(Section 3.4 and the right image in Figure 4).

7. Apply the two-dimensional FFT once to the continuation function values to obtain the desired Fourier
series in (3.1).

3.6 2D-FC approximation: Numerical Results

This section demonstrates the accuracy and efficiency of the proposed 2D-FC method. Use of the 2D-
FC method requires selection of specific values for each one of the following parameters (all of which are
introduced in Sections 2 and 3):

o d: number of points in the boundary section (Section 2.2).

o (" number of continuation points (Section 2.2).

o Z: number of zero matching points (Section 2.2).

o nes: oversampling factor used in the oversampled matching procedure (Section 2.2).
e n,: refinement factor along the normal directions in V]; o, (Remark 2.2).

o R: the smallest rectangle containing Q UVt (Section 3).

e« N = N, x N,: number of points in the uniform spatial grid H (Section 3).

o B: number of points in the boundary discretization (Section 3).

e M — 1: interpolating polynomial degree (Sections 3.2 and 3.4).

All the errors reported in this section were computed on a Cartesian grid of step size h/2 within Q. In
all of the numerical examples considered in this article the parameter selections were made in accordance
with Remark 3.3. The computer system used, in turn, is described in Remark 3.4.

Remark 3.3 (Parameter selections). For a given step-size h in the two-dimensional Cartesian grid H,
the normal and the boundary step-sizes k; and kg (Section 3) were taken to coincide with h: k1 = ko = h.
The parameter values C' = 27, n,s = 20, Z = 12 and n, = 6 were used in the evaluation of the matrices
A, and @Q (see Section 2.2 and Remark 2.2). And, finally, with exception of the interpolation-degree
experiments presented in Example 3.2 (Table 2) and Example 4.2 (Table 3), the interpolating-polynomial
degree (M — 1) = (d + 2) was used for the various matching-point numbers d considered.

Remark 3.4 (Computer system). All of the numerical results reported in this paper were run on a
single core of a 3.40 GHz Intel Core i7-6700 processor with 15.4Gb of 2133 MHz memory.

Example 3.1 (Performance and efficiency of the 2D-FC method). In our first example we consider
a problem of FC approximation of the function f: ) — R given by

f(z,y) = —sin(brz) sin(5ry) (3.10)
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h N® B Tp Tr Ty Ty Rel. Err. (£o)
21072 100 313 2.1-107% 26-102% 1.7-1073% 6.5-1073 4.7-1074
21072 200 628 4.2-107% 5.2-107% 3.8-1073 1.2-10°2 27-107°%d =4
21073 400 1250 1.0-107% 1.2-1072 1.0-107* 2.5-1072 1.8-10°°
21072 100 313 2.1-107% 29-1072% 22-107% 9.0-1073 1.4-107%
21072 200 628 5.9-107% 6.9-10% 5.8-107% 1.9-1072 43-107%%Yd =5
21073 400 1250 1.1-1072 1.3-1072 1.2-1072 3.1-10°2 1.4-1077

21072 100 313 22-107% 3.9-102% 4.2-1073% 2.6-102 4.1.10—5}d_10

N OU=E N O =N

21072 200 628 4.3-107% 6.6-1073 8.8-1073 4.7-1072 1.6 -107

Table 1: Times (in sec.) required by the various tasks in the 2D-FC algorithm in the setting of Example 3.1. The times
reported were calculated as time-averages over 10 runs. The integer N equals the number of spatial grid points used over
the diameter of the disc.

on the unit disc Q = {(z,y) € R? : 22 +y?> < 1}. The left graph in Figure 5 displays the relative £
and fy errors, in log-log scale, obtained from 2D-FC approximations of the function f, for three different
values of polynomial degree d defined in Section 3.2, namely, d = 4, d = 5 and d = 10 —demonstrating the
respective fourth, fifth and tenth orders of convergence expected. Higher rates of convergence, which are
useful in some cases, can be achieved by using higher values of d, as demonstrated in the context of the
Poisson solver in Section 4.1.1. The corresponding computing costs, including “Geometrical Setup” cost
as well as the “Cartesian Evaluation” cost are presented in the right graph of Figure 5. The Geometrical
setup cost combines the setup time for the grids (Section 3.1) V5, VE o, and H; the time Tp required
for construction of the proximity map P (Section 3.3); and the time Tr required for evaluation of the
foot of the normal for all points in H NV (Section 3.4). The Cartesian Evaluation time, in turn, equals
the sum of the time T required for evaluation of the f¢ values on the curvilinear grid V* and time
Ty required for subsequent interpolation onto the Cartesian grid H. Table 1 reports additional details
concerning computing times required by various tasks associated with the Geometrical Setup and Cartesian
Evaluation for this example, including the times Tp, T'r, Ty and Ty. The Cartesian-interpolation time
Ty dominates the overall Cartesian Evaluation step (cf. Table 1). In all of these cases we see that the
computation time grows linearly with 1/h. Also, the slope of the Cartesian evaluation cost depends on
the degree d whereas the Geometrical setup cost, which remains similar in all the cases considered in this
example, depends mainly on B and the refinement factor n,.

Remark 3.5 (Use of higher degree Gram polynomials). Comparison of the various accuracy and
timing values reported in Figure 5 suggests that use of lower 2D FC degrees such as d = 4 or d = 5 may
provide the highest efficiency for approximation accuracies up to single precision.

Example 3.2 (Interpolation degree (M —1) for a given 2D-FC order d). Our next example concerns
the approximation of the trigonometric function

f=—(2%+ %) sin(107z) sin(107y), (3.11)

defined over the kite shaped domain contained within the curve given by x(6) = cos(6)+0.35 cos(26) —0.35;
y(0) = 0.7sin(0) for 0 < # < 27. A convergence study for this test case is presented in Table 2 for the
values d =4 and d = 5, and with M =d+1, M =d+ 2 and M = d+ 3. Clearly, the selections M = d + 2
and M = d + 3 provide similar accuracy in most of the 2D-FC approximation cases considered. The value
M = d + 3, which yields somewhat better interpolation accuracy for larger step-sizes (e.g. h = 1072),
and which, as illustrated in Table 3, gives rise to some improvements for all step-sizes in the Poisson-
problem applications considered in Section 4.1, was used in all of the numerical experiments presented in
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this article (except for the cases specifically designed to test the dependence of the accuracy on variations
of the parameter M).

M=d+1 M=d+2 M=d+3
h N, Ny  Abs. Err.  Order Abs. Err.  Order Abs. Err.  Order
1-1072 207 197 1.8-103 — 14-1073 —  9.2-107% —

5-1073 537 337 20-100* 32 9.0-107° 39 31-107° 4.9
2.5-107% 1017 617 1.0-107®> 43 4.6-1076 43 23-107 3.8 pd=4
1.25-1073 1977 1177 6.2-1077 4.0 1.4-1077 50 1.4-1077 4.0
6.25-10"% 3897 2297 3.4-107% 42 9.0-107? 40 9.0-107° 4.0

1-1072 297 197 44-107% —  23-1073 —  25-107¢ —
5-1073 537 337 3.3-100% 3.7 42.107° 58 1.5-107° 4.1
2.5-107% 1017 617 1.8-107° 42 43-1077 6.6 2.6-1077 5.8 3d=25
1.25-1073 1977 1177 4.1-1007 54  6.4-107° 6.1 4.1-1079 6.0
6.25-107% 3897 2297 1.2-10® 50 1.3-107%° 56 1.3-1009 5.0

Table 2: Convergence table for the 2D-FC method in the setting of Example 3.2. For both d =4 and d = 5, we observe the
expected fourth and fifth orders of convergence, respectively, for all the three choices of M, namely, M =d+ 1, M =d + 2
and M = d + 3. The value M = d + 3 leads to somewhat improved accuracy.

Example 3.3 (Graphical illustration of the 2D-FC method). Figure 6 demonstrates the 2D-FC
extension method for the function defined by

fz,y) =4+ (1 + 2% + y*)(sin(2.57z — 0.5) 4 cos(2my — 0.5)),

over the kite shaped domain considered in Example 3.2. Both the original function and its extension are
presented in Figure 6.

Figure 6: Demonstration of the 2D-FC procedure. Continuation of an oscillatory function defined on a kite shaped domain,
as detailed in Example 3.3. The left and right images display the original and 2D-FC function values, respectively. The blue
curve in the left image indicates the boundary of the kite-shaped domain 2. Note the narrowness of the region wherein the
transition to zero takes place.
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4 Applications of the 2D-FC method

The 2D-FC method introduced in Section 3 can be used to facilitate spectral treatment in cases for which
iterated use of the 1D Fourier expansions does not suffice, but for which use of full 2D Fourier expansions
is beneficial. Sections 4.1 and 4.2 briefly describe two such cases, one concerning solution of the Poisson
problem via Fourier expansions, and, the other, the solution of the wave equation via a novel Fourier
Forwarding (FF) technique. A few numerical examples are presented illustrating the character of the
resulting numerical solvers.

4.1 Application Example I: Poisson Problem
In this section we present a 2D-FC based method for the solution of the 2D Dirichlet Poisson problem

{Au(x,y) - f(-f,y); (xvy) S Q

w(z,y) =gz, y), (z,y) €} (1)

the corresponding problem under Neumann or Robin boundary conditions can be treated similarly. Only
a brief sketch is presented here, as an illustration of the 2D-FC approach. A complete description of
the method, including a detailed geometrical treatment needed for reliable evaluation of the solution near
boundaries, is presented in [10].

The proposed Poisson solver obtains the solution u within the prescribed tolerance as a sum

u=1up+v (4.2)

of a “particular solution” u,, produced by means of the 2D-FC method, which satisfies the Poisson equa-
tion Au = f (but which generically does not satisfy the boundary conditions), and a solution v of the
“homogeneous problem”, produced by means of a boundary integral equation, which satisfies the Dirichlet
boundary value problem for Laplace’s equation

{Av(x,y) =0, (z,y) € Q (4.3)
U($7y) = ghom(xay)v ($7y) el
where

ghom(x’ y) = g($7 y) - ’LLp(x, y)h—‘ (44)

A particular solution w, for the problem (4.1) can easily be obtained from the 2D-FC expansion f¢(z,y)
of the right-hand function f(z,y) (equation (3.1))—in view of the diagonal character of the Laplace operator
in Fourier space. We thus obtain

R Nz/2 Ny/2 2m‘<ﬂ+ﬂ)
up(z,y) = —f&o(xQ + y2)/4 + Z Z beme La = Ly (4.5)
(=—N_/24+1 m=—N,/2+1
where
0, if (¢,m)=1(0,0
bem = —fe. , (o) = 0:0) (4.6)
(2w€/L2)2+<2wm/Ly)2 9 lf (6, m) # (07 0)7

where one of a variety of possible selections was made for the constant Laplacian term. In view the
asymptotically small factors that relate the Fourier coefficients b, to the original FC coefficients f;m it
can be shown [10] that, as illustrated in Section 4.1.1, the rate of convergence in the overall numerical
2D-FC based solution u is of O(h4*2) if a 2D-FC algorithm of O(h¢) is utilized to compute the particular
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solution w,, (provided a sufficiently accurate method is subsequently used for evaluation of the homogeneous
solution).

Values uy(7) of the particular solution at points r on the boundary I' are required as an input (via (4.4))
in the boundary-value problem (4.3) for the Laplace solution v. It is therefore necessary to utilize an efficient
method for evaluation of u, at points r that are not part of the Cartesian mesh H. The straightforward
procedure based on direct addition of all terms in (4.5) for each discretization point on I" does not match the
optimal O(N log(N)) cost asymptotics enjoyed by all the other elements of the algorithm and is therefore
avoided. Instead, the proposed algorithm first obtains the values of the right hand side of (4.5) for all
r € H via a direct application of the FFT algorithm, and, then, using these values, it produces the values
for r € T via iterated one-dimensional interpolation, as described in [21, Sec. 3.6.1]. In order to match the
overall order (d 4 2) accuracy of the overall Poisson solution, one-dimensional polynomial interpolants of
degree (Mp — 1) > (d + 2) (cf. Example 4.2) are used in this context for both the x and y interpolation
directions.

The numerical solution of the Laplace equation in (4.3), in turn, can be obtained rapidly and efficiently
on the basis of the boundary integral method (see e.g. [18]). Relying on the boundary parametrization (3.2),
the proposed algorithm incorporates an integral equation with a smooth kernel together with the simple
and effective Nystrom algorithm presented in [18, Sec. 12.2]. Based on trapezoidal-rule quadrature, this
algorithm results in highly accurate solutions: in view of the periodicity and smoothness of the solution
and the kernel, the approach yields super-algebraically small errors provided the boundary and right-hand
side gnom are both smooth. The associated linear system is solved by means of the iterative linear algebra
solver GMRES [22]. Note that the integrand exhibits a near singular behavior for evaluation points that
are near the boundary I' but that are not on I'. In order to address this difficulty, the proposed method
uses a scheme (some elements of which were introduced in [2,7]) which, based on local mesh refinement
and subsequent interpolation using polynomial of degree (Mp — 1), successfully resolves this difficulty. A
detailed description of this and other aspects concerning the 2D-FC based Poisson solver is presented in
the forthcoming contribution [10].

Once the particular and homogeneous solutions u, and v have been obtained, the solution u of the
Poisson problem is given by (4.2). The numerical convergence rate of the solution produced by the algorithm
is mainly determined by the order d of the 2D-FC algorithm used. In all, the method is fast and highly
accurate; a few illustrations, including accuracy and timing comparisons with leading solvers, are presented
in the following section.

4.1.1 Numerical Illustrations for the Poisson Problem

The numerical illustrations presented in this section utilize the 2D-FC parameter selections presented
in Remark 3.3, with various choices of the order parameter d. In addition, the size of the uniform boundary
discretization used by the trapezoidal-rule based Nystrom method is taken, for simplicity, to equal N,—
but, of course, in view of the super-algebraic convergence of the trapezoidal-rule quadrature, a smaller
discretization size could have been used without sacrificing accuracy. The f5 and £, errors reported in this
section were computed over the Cartesian grid H N 2 unless indicated otherwise. The first Poisson-solver
example concerns a simple problem previously considered in [13].

Example 4.1 (High-order 2D-FC based Poisson solution). We consider the Poisson problem 4.1 in
the domain Q = {(z,y) € R? : 22 + y? < 1} with f = —sin(27z)sin(27y). The left portion of Figure 7
presents the numerical errors in the solutions produced by the 2D-FC based Poisson solvers for d =4, d = 6
and d = 8 for f = —sin(27x) sin(27y). The observed rates of convergence for all the three cases match the
expected increased rates of convergence, as discussed in Section 4.1, that is, rates convergence of orders
6, 8 and 10, respectively. This problem was also considered in [13]. Comparison of the results presented
in [13, Fig. 8] and those on the left graph in Figure 7 suggests the 2D-FC based Poisson solver performs
favorably for high accuracies. For instance, a number N = 100 of spatial grid points over the diameter of
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Q, that is to say, N, = 154 grid points over one length of the rectangular computational domain, provides,
as shown in the Figure 7, an /5 error 1.4 - 10712 whereas, in [13, Fig. 8], a similar discretization provides
{5 errors close to 1079, The 107'2 error is achieved in that reference at a number of approximately 275
points in spatial discretization points in each spatial direction. For a different test case in this problem
setting we now take f = —sin(57x)sin(57y) (a function that was also used for the convergence study of
the 2D-FC algorithm as presented in Example 3.1), and we report, on the right graph in Figure 7, the
numerical errors in the solution produced by the solvers for higher values of d, namely, d = 10 and d = 12.
Once again the expected convergence rates (in this case, of orders 12 and 14, respectively) are observed in
practice.
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Figure 7: Numerical solution errors, in log-log scale, resulting from use of the 2D-FC based Poisson solver over the unit
disc (Example 4.1). Left graph: solution errors for 2D-FC methods of orders d = 4, d = 6 and d = 8 for the function
f = —sin(27z) sin(2my). Right graph: solution errors with d = 10 and d = 12 for the function f = — sin(57z) sin(57y). The
parameter N? denotes the number of spatial grid points used over the diameter of the disc. A total of N, = Ny = N 420
points (C' = 27) were used over each dimension of the periodic square R. As discussed in the text, a convergence rate of order
(d + 2) results from use of a 2D-FC approximation of order d.

M=Mp=d+1 M=Mp=d+2 M=Mp=d+3
h N, Ny Rel Err.(¢3) Order Rel. Err.(¢3) Order Rel. Err.(¢2) Order

4-1072 117 93 6.0-107¢ — 751077 —  4.1-1077 —
2-107%2 177 127 1.7-107" 51 1.0-1078 6.2 6.3-107Y 6.0
1-1072 297 197 5.2-107° 50 1.5-1071 6.1 87-1071 6.2
5-107% 537 337 1.6-1071° 51  2.6-10712 59 1.2-107'2 6.2
4-1073% 657 407 5.2-107U4 4.9  6.8-10713 6.0 3.0-10713 6.2

Table 3: Convergence of the 2D-FC based solution of the Poisson problem described in Example 4.2.

Example 4.2 (Poisson solution interpolation degree (Mp — 1)). Once again we consider the prob-
lem (4.1) over a kite shaped domain as in Example 3.2 with f = —sin(27x) sin(27y). The errors in the
solutions produced by the 2D-FC based Poisson solver and the corresponding convergence rates for d = 4
and three different values of Mp(= M), namely, Mp =d+ 1, Mp = d+ 2 and Mp = d + 3, are presented
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in Table 3. The observed rates of convergence for Mp = d+2 and Mp = d+ 3 show the increased d—+2 = 6-
th order convergence rate whereas the selection Mp = d + 1 = 5 shows a fifth order convergence as the
overall error in the Poisson solution is dominated by the error associated with the order-five interpolation
process. The value Mp = d+ 3 is utilized for all Poisson-problem numerical results presented in this paper.

Example 4.3 (Highly oscillatory Poisson problem). Here we consider the problem (4.1) over the kite
shaped domain considered in Example 3.2 with the highly oscillatory right hand side f = — sin(407x) sin(407y).
In this example, where we have used d = 10 for the 2D-FC particular-solution algorithm, the overall con-
vergence rate, as reported in Table 4, is close to the expected convergence rate of order (d + 2). In order

to avoid near-singular integration problems which arise, under the fine discretizations considered in this
example, as the numerical solution is evaluated at points very near the boundary I', here we report the
error at all the Cartesian points within the computational domain that are at a greater distance from I’
than 0.2. Near boundary evaluation algorithms capable of evaluating the solution at points arbitrarily
close to I' are presented in [10].

h N, Ny Rel. Err. ({5) Order Rel. Err. (¢3) Order
5.1073 537 337 9.3-107% — 34-107% —
25-107% 1017 617 6.0-10°% 139 1.7-10°8 14.3
1.25-1073 1977 1177 5.8-10712 13.3  1.6-10712 13.4

Table 4: Interior errors in the numerical solutions produced by the 2D-FC based Poisson solver of order d = 10, in the setting
of Example 4.3. (Errors are computed over points lying at a distance 0.2 from the domain boundary; see Example 4.3.) A
scaling-error even better than the expected order (d 4+ 2) = 12 was observed in this case.

4.2 Application Example II: Fourier Forwarding (FF) method for Wave propagation
problems

This section presents the 2D-FC based Fourier-Forwarding method (FF) for the solution of the wave
equation and other constant coefficient hyperbolic problems. Only a brief sketch of the FF approach, for
demonstration purposes, is presented here; a detailed account of this methodology, including a variety
of techniques designed for treatment of boundary conditions, and with application to linear hyperbolic
systems, including, e.g., treatment of propagation in anisotropic media, is presented in the forthcoming
contribution [9]. In what follows attention is restricted to the initial boundary value problem for the wave
equation in 2D, namely

Uy = (Ugy +uyy), for (z,y,t) € 2 x Ry (4.7)

with initial conditions w(z,y,t)|i=0 = f(x,y) and u(z,y,t)|t=0 = g(x,y) for (z,y) € , and with appro-
priate boundary conditions on I'.

In order to obtain a solution of this problem, the FF method 1) Exploits the fact (also used in [15,241]
in the context of bi-periodic problems) that the solution of the wave equation in all of R? with the initial
data u(r,0) = ae’™" and uy(r,0) = be’® is itself given in closed form as a combination of two time-domain
plane waves; and, 2) Constructs auxiliary solutions Upc(x,y,t;T;) of the form

N, /2 Ny/2 , -
2m(£—w+L—y)
Upc(z,y, :Tj) = > > am(t;Ty)e \tr ), (4.8)

l=—N,/2+1 m=—N,/2+1

of equation (4.7) utilizing the 2D-FC algorithm on certain initial solution values at various times: Tj; = jAT
(j =0,...,n) with a “large” time step value AT (that is selected so as to optimize the overall computational
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cost of the FF algorithm), and for an arbitrary user-prescribed positive integer n. In view of the limited
domain of dependence of solutions of the wave equation [17], the auxiliary solution Urpc(z,y,t;T}), for
T; <t < Tjq1, provides a valid numerical approximation of the solution w(x,y,t) over a certain subset
Qar = {r = (z,y) € Q : dist(r,T") > cAT}, away from the boundary T', of the domain Q. To compute
the solution Ug(z,y,t;T;) on the region Q \ Qa7 adjacent to the physical boundary, the FF method uses
a classical time-stepping scheme, with spatial derivatives obtained by means of the 1D-FC method, and
using a (typically much smaller) time step At¢, which should be small enough so to ensure stability (as
dictated by the CFL condition) and to yield an accuracy level consistent with that inherent in the 2D-FC
approximation used. In what follows we discuss the evaluation of the solution

UFC(x7y7t; TO) for (.’B,y,t) € QAT X [T07T1]7

4.9
Up(z,y,t;Ty)  for (z,y,t) € Q\ Qar x [To, T1] (49)

u(z,y,t) = {
for the time interval Ty = 0 < ¢t < T} = AT a similar procedure can be used to evaluate, inductively, the
solution at all other time intervals T; <t < T};. For notational simplicity the argument Tj is suppressed
in what follows.

In order to obtain the auxiliary solution Urc(x,y,t) the method utilizes the Cartesian grid H (equa-
tion (3.7)) together with the 2D-FC expansions

2m(f—j+%j>
" my) (4.10)

_ —Ney2 Ny/2 2
Fo,y) = 220N, ja1 Zom Ny 241 Tim®

_ Ne/2 Ny/2 e 2mi oI
G(x,y) = Zg:_Nw/g_H Zm:—Ny/2+1 Jem® v/,

(cf. equation (3.1)) of the initial data f(x,y) and g(x,y). (Note that while F' and G are obtained from
the given initial conditions in the present case j = 0, they are produced from the numerical values of
the solution u(w,y,t)|;=7, and its time derivative u;(w,y,t)|;=1; in the case j > 0.) Clearly, provided the
functions agy,(t) in (4.8) satisfy the equations

A (t) + Qemam () = 0,
aom(t)|i=0 = fim, (4.11)
o] m ~
50 = Gy,
for —N,/2+1 < ¢ < N;/2 and —N, /2 +1 < m < N,/2 (where ag, = (2mc)?[(¢/L)? + (m/Ly)%),
the function Upc(z,y,t) satisfies (4.7) as well as the initial conditions Upc(z,y,t)|i=0 = F(z,y) and

%W\t:o = G(x,y) for (z,y) € R%. Substituting the explicit solutions

» Fon + ti5m: - for (¢,m) = (0,0) )
m ) = fs cos(aumt) + gfﬂ sin(aymt), for (£,m) # (0,0). '
Im

of the ODE (4.11) into (4.8) the solution Upc(w,y,t) for (z,y) € R? is obtained. An application of the
two-dimensional spatial inverse FFT over the Cartesian grid H to the coefficients ag,,,(T1) then yields,
per the discussion above concerning domains of dependence, a numerical approximation of the solution
u(z,y,t) for To < t < Ty and for all (z,y) € H N Qar. Note that the accuracy of the auxiliary solution
in its domain of validity Qa7 at time ¢ (Tp < ¢t < T7), is only limited by the accuracy of the underlying
2D-FC approximation of the functions f and g by the FC expansions F' and G throughout 2, respectively.

To obtain the near boundary solution Ug(x, y,t), on the other hand, the method uses a classical explicit
time stepping scheme in a certain open set Qp D 0\ Qa7 adjacent to the boundary. In the proposed near-
boundary evaluation algorithm (which is based on use of the small time step At on a Cartesian grid on
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)p) various time stepping schemes, including the Adams-Bashforth [19] and the Taylor series [5] methods,
can be utilized; the required spatial derivatives, in turn, are computed, with spectral accuracy and without
dispersion, by means of the 1D-FC method (Section 2.2; cf. also [1,8]). In the present j = 0 case the initial
values for Up are obtained from the initial conditions f(z,y) and g(z,y); for subsequent time intervals the
solution process for Up is simply continued forward in time: no additional initial values are needed for Up
at the start of the time intervals [T}, T 1] for j > 0. Boundary conditions for Up must be enforced at all
boundary points in H \ Qapr—including those near I'" and those near 9Qa7. The boundary condition at
Cartesian points near I' is enforced, with high-order accuracy, as proposed in [5], on the basis of a certain
interpolation procedure which utilizes the given boundary values on I' as well as previously obtained
solution values on interior points of H N ). The corresponding boundary condition at Cartesian points
near OQar, on the other hand, are produced, for efficiency, by means of a special procedure [9] which avoids
a full evaluation of the FC expansion for Upc at each small-At time interval and each boundary point, and
which constructs and use, instead, solutions similar to (4.8) (without imposition of boundary conditions)
but over some small square regions contained in {2 and centered at points on the interior boundary of
Q\ Qar.

Combining the 2D-FC forwarded solution Upc and the near boundary solution Up according to (4.9)
the desired FF numerical approximation of the solution u throughout the Cartesian set H N € is thus
obtained up to time ¢t = AT. Repeating this procedure as many times as necessary, the solution can be
advanced up to t = nAT for arbitrarily large values of n, and, thus, up to an arbitrary final time 7.

In view of the fact that auxiliary solutions Upc(z,y,t) need to be computed only once per large time
step AT, a significant improvement in the asymptotic global computational cost per small time step At
results over the cost required by classical finite-difference and finite-element spatial discretizations. Indeed,
calling d the thickness of the boundary region 2\ Qar, letting n. = [§/h] > 0 and assuming the Cartesian
mesh H N Q contains a total of O(N) discretization points, it follows that €\ Qa7 contains a total of
O(VNn,) grid points. As shown in [9], the optimum value of n. is O(N'/4), so that the computational
cost per time step of the overall FF algorithm is O(N 3/4 log N') operations. As shown in that contribution,
further, owing to a certain large multiplicative constant in front of the asymptotic cost estimate for the
time-stepping portion in the boundary region Q \ Qar, large increases in N are necessary for the optimal
n. value to increase by one or a few units. Thus, in the numerical examples considered in the present
paper, for all of which we have N < 4 - 106, the value of n. is set to a constant. This selection leads to
an overall cost estimate of approximately O(v/N) operations for the cases considered in this paper as the
asymptotically large O(N log N) FFT cost incurred by the algorithm has in fact a limited impact in such
cases. A detailed discussion in this regard is presented in [9]. The performance of the resulting Fourier
Forwarding method for a number of test cases is demonstrated in Section 4.2.1 below.

102 . S R
. B 1 —o—Comp. Time | -
2 & ====O(N'logN)| =T
5 .
< 8

102 . . . . . ~ 0.08 . .

20 40 60 80 100 120 10 40 80 120
Wavelengths Wavelengths

Figure 8: Accuracies and computing times (in seconds) for the problem considered in Example 4.4. Left graph: maximum
absolute errors at time ¢ = 2 for various wavelengths. Right graph: computing times required for each small-At time step.
Fifteen points per wavelength and n. = 6 points across the boundary region were used for this numerical experiment.

4.2.1 Numerical Examples for the Fourier Forwarding method

Two examples presented in this section demonstrate the character of the FF method. The numerical
examples presented in this section were produced using Fourier continuations of order d = 4 for both the
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1D-FC (for time stepping in the boundary region) and the 2D-FC (for interior FC-forwarding) algorithms.
In both the cases, the 2D-FC parameter selections were made in accordance with Remark 3.3 and the
simulations were run in the computer described in Remark 3.4. For time-stepping in the boundary region
we have utilized second order Taylor series method with the CFL number 0.125.

Example 4.4 (Accuracy and efficiency of the FF method). In this example, we demonstrate the
accuracy in the wave equation solution obtained via the FF method as well as other properties, namely,
dispersionlessness and sublinear computing costs, enjoyed by the FF algorithm (Section 4.2) via the method
of manufactured solutions. Here we consider the wave equation (4.7) with the initial and (Dirichlet)
boundary conditions taken such a way that the exact solution is given by

u(x,y,t) = cos(2k(x +t)/3) + cos(k(y + 1)), (4.13)

on the unit disc Q = {(z,y) € R? : 22 +y2 < 1}. A fixed fifteen spatial points per wavelength, and a
fixed number n. = 6 of points across the boundary region (6 = n.h) have been utilized for this numerical
experiment. In left graph of Figure 8, we report the maximum absolute error (computed over all the
Cartesian grid points within ) of the solution, produced by the FF method, at time ¢ = 2. The required
computational times for each small-At time step for various spatial frequencies x (cf. (4.13)) are reported
in right graph of Figure 8. As discussed at the end of Section 4.2, we have observed an O(N 1210g N )
growth in the computational time as the size N of the spatial discretization grows.

Figure 9: Fourier Forwarding method applied to an interior-domain wave propagation problem described in Example 4.5.
The solution is shown, from top left to bottom right, after 100, 500, 2050, 2750, 3200 and 4300 timesteps.

Example 4.5 (Interior-domain wave scattering). For an interior-domain graphical demonstration of
the FF method, we consider the wave equation problem with boundary condition

u = cos(ks) exp(—s2/a)g(t), (4.14)
where
s = (t—|r —wrol)/[r —7ol,
and
0, for t =0,
g(t)=¢1—exp (2.0 exp (t/;(f—o—/lt())> , for t < tg, (4.15)
1, for t > tg,
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with ro = (1.1, —0.72), tp = 0.05 and k = 20w. The PDE domain is the interior of the kite-shaped curve
considered in Example 3.2. A fixed number n. = 8 of points across the boundary region and slightly over
20 points per wavelength have been utilized in this numerical experiment. Vanishing initial values of
and uy at t = 0 were used; note that both the imposed boundary values (4.14) vanish for ¢ < ¢y > 0. For
clear visibility, a version of the computed solution values at certain selected times scaled by the maximum
value at that specific point in time are displayed in the left portion of Figure 9. (The scaling values range
approximately between 1 and 3, and they are nearly equal to 1 for the first four images, all three in the
upper row, and the leftmost image in the lower row.)

5 Conclusions

This paper introduced a novel two-dimensional Fourier continuation (2D-FC) method, for bi-periodic
extension of functions defined on arbitrary smooth two-dimensional domains. Applications to the Poisson
and wave-equation problem, including the development of the Fourier Forwarding method, have resulted
in numerical PDE solvers of high orders of accuracy, and, most importantly, of extremely low numerical
dispersion. FExtensions of these methodologies to problems in higher dimensions, and to problems on
non-smooth domains, are left for future work.
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