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Annular Link Invariants from the Sarkar—Seed—Szabd
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ABSTRACT. For a link in a thickened annulus A x I, we define a Z @&
7 & Z filtration on Sarkar-Seed—Szabd’s perturbation of the geometric
spectral sequence. The filtered chain homotopy type is an invariant
of the isotopy class of the annular link. From this, we define a two-
dimensional family of annular link invariants and study their behavior

under cobordisms. In the case of annular links obtained from braid
closures, we obtain a necessary condition for braid quasi-positivity

and a sufficient condition for right-veeringness, as well as Bennequin-
type inequalities.

1. Introduction

In 2000, Khovanov introduced his categorified knot invariant now known as s[((2)
cohomology or Khovanov cohomology [ ]. Soon after, Ozsvéth and Szabé
[ ] and Rasmussen [ ] independently introduced knot Floer homology,
which arises from a filtration on Heegaard Floer homology. Among their many
topological applications, knot Floer homology and Khovanov cohomology have
led to a wealth of concordance invariants.

Ozsvith and Szabé extracted information on the four-ball genus of a knot
by constructing the concordance invariant t [ ], defined using a filtration
induced by a knot on the Heegaard Floer chain complex of the three-sphere.
Through a similar algebraic construction as that for r, Rasmussen defined a con-

cordance invariant s [ ], which is derived from a filtration spectral sequence
from Khovanov cohomology to Lee’s perturbation [ ] of Khovanov coho-
mology.

The concordance invariants t and s are defined using a single filtration grading
on a Heegaard Floer or Khovanov complex. Concordance invariants constructed
using two linearly independent filtration gradings include:

e Ozsviath—Stipsicz—Szabd’s concordance homomorphism Y; [ ], a piece-
wise linear function that generalizes the Ozsvath—Szabé t invariant. The Y} in-
variant is defined using the Z @ Z-filtered knot Floer chain complex CFK*° (K).

e Grigsby-Licata—Wehrli’s d; [ ], a smooth annular link invariant with
applications to annular link cobordisms and braids, defined from the Z & Z-
filtered annular Khovanov-Lee complex.
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e the Sarkar—Seed—Szabd generalized Rasmussen invariants sY [ ] derived
from a perturbation of the Szabd geometric spectral sequence and the Bar-
Natan complex.

e Lewark-Lobb’s smooth concordance invariants J, [ ], piecewise linear
functions arising from Khovanov—Rozansky’s complex for sl,, knot cohomol-
ogy over the ring C[x]/x" ' (x — 1).

e Dai-Hom-Stoffregen-Truong’s concordance homomorphisms ¢; [ ] de-
fined using the knot Floer chain complex over the ring R =F[U, V]/UV.

We study the Sarkar—Seed—Szabd perturbation of the geometric spectral sequence
in the setting of annular links, that is, isotopy classes of links in a thickened an-
nulus A x I, or equivalently, a solid torus D? x S'. We will show that for an
annular link, the Sarkar-Seed—Szabd complex admits an annular filtration. This
extra filtration allows us to define a two-dimensional family of real-valued annular
link invariants s, ;, by using three filtration gradings on the Sarkar—Seed—Szabd
complex. This family of invariants recovers the Sarkar-Seed—Szab6 generalized
s-invariants and shares many properties with Grigsby—Licata—Wehrli’s d; annular
link invariants from Khovanov-Lee cohomology (cf. [ ], Theorem 1).

THEOREM 1.1. Let (L, 0) be an annular link L C A x I equipped with an orien-

tation o. Let r € [0, 1], ¢ € [0, 1].

(1) For each pairr,t €0, 1], s,:(L, 0) is an oriented annular link invariant.

(2) Suppose that L is a knot. Then so o(L, 0) = s, (L, 0) — 1, where sy, is Ras-
mussen’s concordance invariant over [ coefficients [ ; 1.

(3) For fixed r (respectively t), the function s,;(L, o) is piecewise-linear with
respect to the variable t (respectively r).

(4) Let w be the wrapping number of L. Fix r € [0, 1]. Then, for all ty € [0, 1],

1 L’ — or L7
(— ) lim Sr1 (L 0) = Sri (L, 0) e{l-w,—w+2,...,0—2, 0.
1—r)t—=t0+ t—1

(5) Let F : (L,0) — (L',0") be an oriented cobordism between two nonempty,
oriented links such that each component of F has a boundary component
in L. Let ag be the number of annular births or deaths, a| the number of
saddles, and by the number of nonannular births or deaths. Then

$ri(L,0) = s (L, 0") < (r = D)(ap — a1 + bo(1 —1)).

If furthermore each component in F has a boundary component in L' as well,
then

Isr1 (L, 0) = 5r¢ (L', 0" < (r = D)(ao — a1 + bo(1 —1)).

(6) sr:(L,o0) is an annular concordance invariant.

We apply properties of the annular link invariants in Theorem to the study
of braid closures. Let o € B, be an n-braid. Its braid closure & is naturally
an annular link equipped with a braid-like orientation o4 as described in Sec-
tion 3.4. We abbreviate s,;(0, 04) by s.,(0). Analogous to properties of the d;
invariant [ Theorem 2, Theorem 4], we obtain a necessary condition for
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braid quasi-positivity and a sufficient condition for right-veeringness. For fixed
ro € [0, 1], we find that the function s, () is piecewise-linear and has a slope
bounded above by n, the braid index of o. Let m; 4 (L, 0) denote the right-hand
slope with respect to the variable ¢, of s,, (L, 0) at #y.

THEOREM 1.2. If ¢ is a quasi-positive braid of index n and writhe w > 0, we have
5r.4(@) = (1 —r)(w — (1 —1)n)
forallr €[0,1] and t € [0, 1].

THEOREM 1.3. Let o € B,,. Fixro < 1. If sy, ;(0') attains a maximal slope at some
t=ty< % (that is, my, 4,(0) = n for some tg € [0, %)), then o is right-veering.

In addition, we study the behavior of s, ,(c) under Markov stabilizations. We
achieve bounds which can be compared to the analogous d; bounds ([ 1,
Proposition 5).

PROPOSITION 1.4. Let o € B, and suppose that & € B, is obtained from
o by either a positive or negative Markov stabilization. Then, for all r € [0, 1],
t €[0,1],

574@) = (1 =)t <5,1(@) < 5,4@) + (1 = ).

A complete understanding of the behavior of the s,; (and similarly, d;) annu-
lar link invariants under positive and negative stabilization is currently unknown.
This question is related to the question of the effectiveness of transverse invariants
obtained from Khovanov cohomology.

QUESTION 1.5. Suppose that o+ € 9B, | is obtained from o € 98, by a positive
Markov stabilization. Does the equality

$r1@ ) = 5,1@) + (1 =)t
hold for all € [0, 1], ¢ € [0, 1]?

A positive answer to Question would yield a new transverse invariant:
sr),(ff) — n(1 — r)t. It is unclear whether such an invariant would be effective
in the sense that it would provide more information than the self-linking number
of the transverse link. The analogous questions with respect to the d; invariant are
open, as well as the effectiveness of Plamenevskaya’s transverse link invariant v
[ I

Analogous to the annular Khovanov—Lee setting [ Corollary 4], we
produce a lower bound on the band rank rk,, of a braid [ ]. Given B8 € B,,,

c
k, (B) := min{c ez?° ) B = 1_[ a)jal.f(a)j)_l for some w; € B, }
j=l
where o;; denotes the elementary Artin generators. Note that band rank rk,, is a
braid conjugacy class invariant. Topologically, band rank rk,, (8) is the minimum
number of half-twist bands (running perpendicularly to the strands) needed to
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construct a Seifert surface for E from n disks (the obvious Seifert surface for the
identity braid closure in 98,,).

PROPOSITION 1.6. Let r # 1. Given an oriented cobordism F from (L, o) to
(L', 0") with ay annular even index critical points, a; annular odd index criti-
cal points, and bg nonannular even index critical points, we have

st (B)
1—r

+n(l—1)| =< rkn(,B)~

As described in [ ; ], the work of Rudolph [ Section 3] sug-
gests that a braid conjugacy class invariant (like s, ,) that yields a lower bound on
band rank could potentially lead to an effective ribbon obstruction. This question
is explored using the d; invariant in [ ]; we do not pursue this question using
syt here.

The Sarkar—Seed—Szabé theory conjecturally relates the Khovanov and Hee-
gaard Floer worlds by combining the Szab6 geometric spectral sequence with
Bar-Natan’s homology. Szabd’s geometric spectral sequence [ ] is conjec-
turally isomorphic to the Ozsvath—Szabd spectral sequence [ ] relating the
Khovanov cohomology of (the mirror of) a link L to the Heegaard Floer homol-
ogy ITIF(Z(L)) of the double branched cover. In addition, Lin [ ] recently
constructed a spectral sequence relating a version of Bar-Natan’s homology of
(the mirror of) a link L to the involutive monopole Floer homology H/MI(E(L))
of the double branched cover X (L), which is analogous to the hat version of the
involutive Heegaard Floer homology HFI(X(L)) of Hendricks and Manolescu
[ I

We will study a version of the Sarkar—Seed—Szab¢ theory for annular links. In
[ ] Roberts constructed an annular analogue to the Ozsvath—Szabé spectral
sequence [ ]. Therefore, the annular version of Szabd’s geometric spectral
sequence conjecturally converges to (a variant of) the knot Floer homology of
the preimage B of the annular axis B in the double branched cover. Although
we study a filtered version of the Sarkar—Seed—Szab6 complex, the full Sarkar—
Seed-Szabd complex is defined over the two-variable polynomial ring Fo[H, W1.
It may also be interesting to extend the techniques in this work to, for instance,
an annular version of the Sarkar—Seed—Szab6 complex over Fp[ H] and compare
the resulting spectral sequence with that of Lin [ ], potentially yielding a
spectral sequence abutting to an involutive knot Floer invariant of B in the double
branched cover X (L).

2. Background

The purpose of this section is to review the cohomology theories used in this paper
and to set notation.

REMARK 2.1. We will be working cohomologically throughout, that is, differen-
tials in our complexes increase homological grading as in the majority of literature
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on “Khovanov homology”. Although we use the terms “chain” and “chain com-
plex” throughout, the reader may choose to replace these terms with “cochain”
and “cochain complex” for more specificity.

2.1. Links and Their Diagrams

We are concerned with defining a functorial invariant for links in S via link
diagrams. Following [ ], we first define the relevant categories.

DEFINITION 2.2. Let Link denote the category of smooth links in §3 = R3 U {c0}.
Objects are smooth oriented links in $3. Morphisms are smooth isotopy classes of
oriented, collared link cobordisms in S x [0, 1]: two surfaces from Ly C S3 x {0}
to L1 C S x {1} are equivalent if there is a smooth isotopy taking F to F’ that
fixes a collar neighborhood of the boundary $3 x {0, 1} pointwise.

Link invariants are typically computed from a link diagram.

DErFINITION 2.3. Let Diag denote the diagrammatic link cobordism category rep-
resenting links in S3. Objects are oriented link diagrams in S2. (Since every link
diagram will miss some point on S2, we actually draw the diagrams on R2.) Mor-
phisms are diagrammatic cobordisms, usually described as movies, up to a set of
equivalences.

Movies are scans of surfaces in $3 x [0, 1], where [0, 1] is the time compo-
nent. The scan at a fixed time is called a frame, which can either look like a link
diagram or something more singular. We can always arrange the link cobordism
via isotopy such that there are only finitely many isolated singular frames. In this
situation, the movie is a composition of planar isotopies interspersed with finitely
many elementary string interactions (ESIs): Reidemeister moves or oriented di-
agrammatic 0-, 1-, and 2-handle attachments. We sometimes refer to the handle
attachments as births, saddles, and deaths, respectively, because a tiny snippet of
the movie surrounding these critical levels looks like the birth or death of a circle,
or describes a saddle cobordism. We visually depict ESIs by drawing the first and
last frames of this tiny snippet.

Two movies are equivalent if they can be related by a finite sequence of the
following moves ([ ], Appendix):

e a Carter—Saito movie move [ ] localized to a disk in R2,
e atime-level preserving isotopy of the associated immersed surfaces,
e an interchange of the time-levels of distant (noninteracting) ESIs.

A functorial link invariant is a functor from Link. Baldwin, Hedden, and Lobb
describe how to lift a functor from Diag to a functor from Link and show that
these two categories are equivalent [ ]. In this paper we focus on functors
into a category of filtered complexes.
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DEerINITION 2.4. Let Filt be the homotopy category of filtered complexes. The ob-
jects are filtered chain complexes, up to chain homotopy equivalence (we denote
this relation by =), and the morphisms are induced by filtered chain morphisms.

2.2. Annular Links and Cobordisms

Let A be a closed, oriented annulus, and let I = [0, 1] be the closed, oriented unit
interval. Via the identification

AxI={(r6,2)|re[l,2],0 €[0,27],z€[0,1]} C (S* =R> U 0),

any link L C A x I may be naturally viewed as a link in the complement of
a standardly embedded unknot, U = (z-axis U 00) C $3. Such an annular link
L C A x I admits a diagram D(L) C A obtained by projecting a generic isotopy
class representative of L onto A x {1/2}.

We shall view D(L) as a diagram on 52 \ {0, X} where X (resp. Q) are base-
points on S? corresponding to the inner (resp. outer) boundary circles of A. Note
that if we forget the data of X, we may view D(L) as a diagram on R> = §2\ O
of L, viewed as a link in S3.

In the annular context, we can categorize these moves as annular or nonannular,
based on whether they interact with the axis:

e (1-handles) By transversality, all saddle moves can be thought of as annular.

e (0, 2-handles) There are annular and nonannular births/deaths depending on
whether the circles being born/dying are trivial or not, respectively.

e (Reidemeister moves and planar isotopies) If the local disk in which a Reide-
meister move occurs does not include the basepoint, then it is called an annular
Reidemeister move; otherwise, it is nonannular. The same goes for planar iso-
topies.

REMARK 2.5. The homology theories / TQFTs of interest will still be defined
as functors Link — Filt; in particular, the distinguished homology classes come
from the link diagram on S2. However, the basepoints indicating the presence of
the embedded unknot will provide an extra filtration.

2.3. Khovanov Chains, Gradings, and Annular Filtration

In this subsection we give a brief review of Khovanov cohomology and the vari-
ants appearing in this paper. We refer the reader to [ ; ] for more
details on the construction and focus mainly on setting the notation to be used in
the rest of the paper.

Let 2" be the n-dimensional Boolean cube {0, 1}". The vertices u € 2" are
graded by |u| =) ; u;, and there is a directed edge u — v whenever u < v and
[v] — |u] = 1.

Let D be an oriented link diagram with # crossings. The Khovanov chain com-
plex Kc(D) lies above 2". In this section we only describe the chains and leave
the differentials to a more general discussion in Section
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Each vertex u € 2" corresponds to a complete resolution D,, of D. Let S, be
the collection of planar circles in this resolution. A marked resolution is this reso-
lution D,, where each circle is decorated with either a 4+ or a —. The vector space
Kc associated with u is generated by all these marked resolutions. Equivalently,
let V be the two-dimensional vector space generated by x_ and x4 ; Kc(D,) is
then V®!5«! where the marked resolution corresponds to a pure tensor. Equiva-
lently, the marked resolution corresponds to a monomial in the symbols {xi}li’ll
where x; belongs to the ith circle. Here is the dictionary relating these three ways
of describing the distinguished generators:

e circle 7 is labeled — in the marked resolution = x_ in position i in the pure
tensor = x; appears in the monomial;

e circle i is labeled 4 in the marked resolution = x4 in position i in the pure
tensor = x; does not appear in the monomial.

Marked resolutions are useful in diagrammatic computations; Grigsby, Licata,
and Wehrli use the pure tensors in [ ]; Sarkar—Seed—-Szabd use monomials
in [ ].

Let X be a pure tensor in Kc(D(L)) located above vertex u € 2". Let ny (resp.
n_) be the number of positive (resp. negative) crossings in the oriented link dia-
gram D.

e The homological grading gr;, (X) is given by |u| —n_.
e The quantum grading gr, (X) is given by |u| + #(x4) —#(x_) + nqy —2n_.

In the presence of the basepoints X and O, we tweak the definition above
to reflect the position of the circles with respect to these basepoints. In a given
complete resolution D,,, the circles S, fall into two categories: those that separate
the basepoints and those that do not. We refer to the former as nontrivial circles
and the latter as trivial circles. To notationally distinguish these circles in the
pure tensor setting, in place of x1 in the previous paragraphs, we write vy for
the £-labeling of a nontrivial circle and w+ for the £-labeling of a trivial circle.
(The quantum grading does not depend on the triviality of circles, e.g., #(x_) =
#(v-) +#(w-).)

We can now associate a third grading with the distinguished generators.

e The k-grading gr;, (X) is given by #(vy) — #(v_).
The Khovanov differential preserves the homological and quantum gradings

producing a bigraded homology theory. In the annular context, the differential is
filtered (nonincreasing) with respect to the k-grading.

2.4. Szabo’s Geometric Spectral Sequence

In [ ], Szab6 introduced his geometric spectral sequence in Khovanov co-
homology. The underlying chains are the same as those described in Section

The differentials are described in terms of resolution configurations of index > 1
described in what follows. Resolution configurations describe individual compo-
nents of the differential by encoding two distinguished generators—one “before”
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(A) Type A (B) Type B

/ \ / \ e
/ N \/Vk J
! T [ \
. ' [ VNIV N
f ;,‘ H\/_"\/_’\,/_”J l
> \ .
\ > -
' . N\
(D) Type D

(E) Type E (F) Type B

Figure 1 The oriented configurations that contribute to the Szabé differential.

picture and one “after” picture—and what arcs are used to surger to the “before”
picture to arrive at the “after” picture. If a resolution configuration displays the
ordered pair of distinguished generators (before, after) = (¥, ¥), then y appears
in the image of X under the differential. Figure | illustrates the five types of reso-
lution configurations that contribute to the Szabo differential.

Szabd’s theory is gry,-filtered (cf. Proposition 3.1). The index 1 resolution con-
figurations correspond to the original Khovanov differential. Thus gr;, -filtration
gives rise to the “geometric spectral sequence” from Khovanov cohomology.

2.5. The Sarkar—Seed—Szabo Perturbation of the Geometric Spectral Sequence

The Sarkar—Seed—Szabd perturbation adds further differentials to the Szab6 com-
plex inspired by Bar-Natan’s deformation of Khovanov cohomology [ ]. The
index 1 resolution configurations correspond to the original Bar-Natan deforma-
tion differentials.
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The total chain complex of Sarkar—Seed—Szab6 [ ]is
Ciot = (CQF[H, W],
Sov=dy +Wdy+W?ds+---+ Hhy + HWhy + HW?h3 +---),

where the chain groups C are the same as the Khovanov chain groups and the total
differential lies in (homological, quantum)-grading (1,0). The maps d; correspond
to the Szaboé differential maps, and we refer the reader to [ ] for the defini-
tion of the maps %;. The Bar-Natan deformation of the Khovanov chain complex
can be obtained from Cyy by setting W = 0, and the Szabd chain complex can be
obtained from Cio by setting H = 0. In this paper, we are mainly interested in the
filtered version (Crot, Oftot):

Ciot =Cot/{H=W=1}=(C,di+dr+d3+---+hi+hy+h3+---).

3. Annular Sarkar-Seed—Szabé Invariants
3.1. The Annular Filtration

From the data of the diagram D(L) C 52\ {0, X} of an oriented annular link
L C A x I, we will use the construction of Sarkar—Seed—Szab¢ [ ], building
on constructions of Khovanov [ ], Bar-Natan [ ], and Szabé [ 1,
to define a Z @ Z @ Z-filtered chain complex as follows.

We obtain a third grading (the k grading) on the Sarkar—Seed—Szabé chain
complex Ci as follows. In the language of [ 1, a “0” (respectively, “17)
marking on a starting circle denotes that the circle appears (respectively, does not
appear) in the starting monomial. In a break with their conventions, we write +
and — instead of the “0” and “1” that Sarkar, Seed, and Szabé use on starting
circles. (This change is made to reserve the use of numbers for the k grading.) We
keep the [ ] notation for the ending monomial: A dashed blue (respectively,
solid red) ending circle in a complete resolution of D (L) denotes that the ending
circle does not appear (respectively, does appear) in the ending monomial. Re-
call that a circle is either trivial (respectively, nontrivial) if it intersects any fixed
oriented arc y from X to O in an even (respectively, odd) number of points. We
define the k grading of a basis element of C (or a square-free monomial in circles
in a complete resolution) to be the number of nontrivial circles not appearing in
the monomial minus the number of nontrivial circles appearing in the monomial.

LEMMA 3.1. The (filtered) total differential g0 decomposes into (gry,, gr,, gt;)-
homogeneous pieces. In particular,

e d; increases gry and gr, by i and 2i — 2, respectively, and decomposes into
three gry-homogeneous summands d;, _», d; o, and d; >, corresponding to a shift
in gr;, by an element of =2, 0, and 2, respectively. Furthermore, d1 » = 0.

e h; increases gry, and gr, by i and 2i, respectively, and decomposes into gry-
homogeneous summands h; j corresponding to a shift in gr) by an even integer

jel0,i+1].
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Therefore we may write Sfor = Zi (d;i + hi), where d; and h; decompose into
summands

e di=d; _>+dio+dio, withd2=0,
e hi=hio+hia+hia+---+hiiy1,

and each summand is (gry, gr,, gr;)-homogeneous.

Proof. The gr),- and gr,-homogeneities of d; and h; are given in [ 1. We
will check the k-grading (gry) shifts of d; and h;. First, note that d; coincides
precisely with the Khovanov differential. In [ Lemma 3] it is shown that

dy splits into homogeneous summands that shift the k-grading by either 0 or —2.
Thus, we have dj » = 0 as claimed.

We next check the k-grading gr; shift by d;. We will consider all possible con-
figurations of the Szab¢d differential (see Figure 1). For each possible configura-
tion and possible placement of the basepoints X and O, we compute the k-grading
difference of the ending and starting monomial associated with the configuration.
If X is located in the same region of the plane as O, then the k-grading shift is
zero. In the following discussion, we leave out this possibility.

(1) InaType A configuration (Figure |a), there are two starting circles with some
(at least one) parallel arcs between them. Note that after removing the two
starting circles from $2, there are three connected components: two disks and
an annulus. Up to symmetry, the basepoint O is either inside a disk region
bounded by a starting circle (Figure 2b) or inside the unique annulus bounded
by the two starting circles (Figure 2a). In every possible Type A configuration,
the k-grading shift is either —2, 0, or 2. See Figure 2.

(2) A Type B configuration (Figure 1b) is the dual of a Type A configuration. Up
to symmetry, there are two possibilities for the placement of Q: either outside
the starting circles (Figure 3a) or inside a starting circle (Figure 3b). In every
possible Type B configuration, the k-grading shift is either —2, 0, or 2. See
Figure 3.

(3) In a Type C configuration (Figure Ic), up to symmetry, there are two possi-
bilities for the placement of O (Figure 4c): the basepoint O is either between
two parallel arcs or not. For each possible Type C configuration, the k-grading
shift is either O or 2 depending on the location of X. See Figure 4.

0 ‘;ﬂ—;’ | 0 0 ja—g {2
— —
o + . +
(A) Type A configuration (B) Type A configuration

Figure 2 Type A configurations with k-grading shifts corresponding
to the placement of X basepoint.
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£ VR
0 | 0 | \ (0] | 0
R R
( — | [ L |
~_/ </ </ </
(A) Type B configuration (B) Type B configuration

Figure 3 Type B configurations with k-grading shifts.

(c) Type C configuration: O basepoint symmetries

Figure 4 Type C configurations with k-grading shifts.

(4) A Type D configuration (Figure 1d) is the mirror of the dual of a Type C
configuration. Thus, the k-grading shift candidates are the same as those of a
Type C configuration: 0 or 2.

(5) In a Type E configuration (Figure le or Figure If), up to symmetry, there
are three possibilities for the location of the O basepoint: see Figure 5a. For
each possible X and O pairing, the k-grading shift is either —2, 0, or 2. See
Figure

To see that gr, only ever changes in even number increments, consider the mod
2 nesting of circles. Observe that, with respect to an arc y drawn from O to X, a
surgery does not change the mod 2 intersection number between y and the circles.

To see the k-grading shifts of h;, recall that the resolution configurations
(R, x, y) contributing to &; are disjoint unions of trees and dual trees (see [
Definition 3.2]). We first focus on computing the k-grading shift of a single tree.
Recall that a tree is a labeled resolution configuration of some index i > 0 with
exactly (i + 1) starting circles, exactly one ending circle, and no passive circles
(unless i = 0), and with all the starting circles appearing in the starting monomial,
and the ending circle appearing in the ending monomial. Therefore, the initial k-
grading must be a nonpositive integer in the interval [—(i 4 1), 0], whereas the
ending k-grading is either 0 or —1. Moreover, it is easy to check that k-grading
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) Type E conﬁgulamon

W\/\U)
o | /(\ 0 +
\\ /

A0

(c) Type E configuration (D) Type E conﬁguration

Figure 5 Type E configurations with k-grading shifts.

increases twice the number of nontrivial node circles in the tree. Therefore, the
gr;, shift must be an even integer. Thus, an index i tree configuration contributes to
h; (increasing the homological grading gr;, by i) and must increase the k-grading
by an even integer in [0,7 + 1].

Next, observe that a configuration and its dual admit the same k-grading shifts.
Therefore, the k-grading shift of a single dual tree of index i is also an even integer
in[0,i 4+ 1].

Finally, we analyze the behavior of the k-grading shift under disjoint unions
of trees and dual trees. Given any resolution configuration (R, x, y), we may find
an “equator” circle C on the sphere which does not intersect any of the arcs or
circles in the resolution configuration. This “equator” circle C does not belong to
the circles in (R, x, y). Moreover, C divides the sphere into two disks Dy and D;
containing the two resolution configurations (R, x1, y1) and (R», x2, y2), respec-
tively. We have (R, x,y) = (R1 U R2, x1X2, y1)2).

(1) If the basepoints O and X lie in the same disk, say Dj, then the k-grading
shift of the resolution configuration (R, x, y) is the same as the k-grading
shift of a resolution configuration (R, x1, y1).

(2) If the basepoints @ and X lie in the disks D; and D, respectively, then the
overall k-grading shift of the resolution configuration (R, x, y) equals the
sum of the following two quantities:

e the k-grading shift (R, x1, y1) where X is placed at “the point at infinity”
of Dy,

e the k-grading shift (R, x2, y2) where Q is placed at “the point at infinity”
of Ds.

This can be seen by dividing the arc from X to O into two pieces.

It follows that h; increases gr; by an even integer in [0, i 4 1]. U
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CoRrOLLARY 3.2. The g1y, gry, and gr, — gy gradings on C endows (Crot, Sftot)
with the structure of a (7. & 7 ® Z.)-filtered complex.

Proof. For each (a,b,c) € Z®7Z & Z, define

]:a,b,c = Span{x € C | (gr}p grq5 grq_k)(x) 2 (a5 b5 c)}'
Lemma tells us that Sfioc 18 nondecreasing with respect to the gr,, gr,, and
gr, — gry gradings. So F; p. is a subcomplex for each (a,b,c) e (Z S Z D Z).
Moreover, (a’,b’,c’) > (a,b,¢) € (Z & Z & Z) implies Fr py. o+ C Fyp.c, as de-
sired. (]

Having considered the (gry, gr,, gr;) triple degree of all the elementary cobor-
disms (see Lemma 3.1), we can now define a two-parameter family of gradings

8-

DEFINITION 3.3. Let x be a (gry,, gry, gr;)-homogeneous basis element of C. Let
t €[0,1] and r € [0, 1]. Define

gr, (x) =r-gr,(x) + (I —r)(gr,(x) — 1 - gri(x)).

We note that r = 0 corresponds to gr, , = gr, — 7 - gr;, which agrees with the j;
grading in [ ] (although their construction uses the Khovanov-Lee com-
plex instead of the Sarkar—Seed—Szab6 complex). The case t = 1 corresponds to
gr =r-gr, + (1 —r)-gr,, which is precisely the filtration grading used in
Sarkar—Seed—Szabé to define a family of concordance invariants that generalize
the Rasmussen s invariant.

COROLLARY 3.4. For every r,t € [0, 1], the gr,, grading endows (C, 8ttot) with
the structure of a (discrete, bounded) R-filtered complex equipped with a finite
filtered graded basis.

Proof. Lemma implies that ¢ is nondecreasing with respect to the gr,
grading for each r, ¢ € [0, 1]. It follows that, for each a € R, the subcomplexes

Fu = Spanfx €C | gr,,,(x) = a)

endow C with the structure of an R-filtered complex. The finiteness of the
distinguished filtered graded basis implies that the R-filtration is discrete and
bounded. g

Therefore, C admits a filtration grading given by
gr,(x) =max{i € I | x € F;}.
The homology H,(C) inherits a grading from C as follows.
DEFINITION 3.5. Given 0 # [x] € H,(C), we define the e, grading of [x] to be
gr,, ([x]) = r;lgg{grr,,(y) [ [y]=[x]}.
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Let L C (A x I) be an [-component annular link. By Proposition 5.4 of [ 1,
H, (Criot(L)) has rank 2! and there are canonical generators g(o) in canonical
correspondence with orientations o on L, just as in the Bar-Natan [ ] and
Lee [ ] theories. Given a link diagram D with an orientation, the canonical
generator g(0) € Cyy is given by the tensor product of labels x; or 1 + x; on the
circles in the oriented resolution, assigned by the following rule. Fix the white-
and-black checkerboard coloring of the oriented resolution where the unbounded
region is white, and label circle i with x; if it bounds a black region or 1 + x; if it
bounds a white region.

DEFINITION 3.6. Letr € [0, 1] and ¢ € [0, 1]. Define s, (L, 0) = gr, ,([g(0)]).

We will show in part 1 of Theorem that the s, (L, 0) invariants are indeed
oriented annular link invariants.

ExamPLE 3.7. We compute sr,,(i\n, 0) for the closure of the identity n-braid in
with a choice of orientation o. Using the crossingless diagram for 1,,, we observe
Srt (@, 0) =gt (1@ Vv_®@ - @ v_) = (1 —r)(=n +tn) = —n(l —r)(1 — ).
In particular, s, ,(in, 0) is independent of the choice of orientation o of in.

ExaMPLE 3.8. Let ’]If' € *B; denote the closure of the positive Markov stabiliza-
tion of the identity 1-braid. Given any choice of orientation 0 on 17,

s (@F,0) = (1 —r)(=1+20).

Let /lff € B, denote the closure of the negative Markov stabilization of the iden-
tity 1-braid. Given any choice of orientation o on 1,

sy, 0)=(1—r)(=1)
REMARK 3.9 (Comparison with the Sarkar—Seed—Szabd concordance invariants).

We regard the real-valued s, 0(K, 0) invariant (where ¢ = 0) as a continuous sib-

ling of the Sarkar—Seed—Szab6 27Z-valued s(zfl ' (K) concordance invariant as fol-
lows. For r € [0, 1], Sarkar—Seed—Szabé define the upright set

Upy ={(h.q) €Zx QL x 1) |
r-h+{1—-r)-g>0,or[r-h+(1—r)-g=0andqg > 0]}
Sarkar—Seed—-Szab¢ introduce notation for shifts /[n] of an upright set ¢/ in the
(gry, gr,)-plane:
(h.q) eUln] <= (h.g—n) el

for any upright set /. Sarkar—Seed—Szab6 only allow shifts by even integers n €
Z, but for purposes of comparison with our invariants, we extend the definition to
allow for shifts by any real number n € R. Sarkar-Seed—Szab6 define

sy(K, 0) =max{n € 2Z | Fy4n|Ciot(K) contains a rep. of [g(0)]} + 2,

where [g(0)] denotes the homology class of the generator g (o).
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In our case, the filtration level .7-',?0 of Cpo defined by the grading gr, o is the
half-plane

FFO={(h,q) eRxR|r-h+1—=r)-q>n},

where we abuse notation by conflating a filtration level of C with the half plane in
(gry,, gry)-space it is defined to be supported on. We see that

FrON(Z x Q7+ 1))
zu(r)[lnj}u{(h,q)lﬁh—k(l —r)-g=nand (1 —r)q <n}.

That is, our discretized filtration levels ]_-;,0 N(Z x (2Z + 1)) agree with the
Sarkar—Seed-Szabd filtration levels ([ 1= ], with a different boundary condi-
tion.

REMARK 3.10. If the annular link L is unlinked from the unknotted axis U, then
sr.t(L) = s.0(L) forall ¢ € [0, 1]. Furthermore, if [ L] denotes the isotopy class of
L in S3, then sr0(L, 0) “agrees” with sUM (L], 0) by the relationship described
in Remark

Proof. Observe that all distinguished generators have gr, = 0, in which case
gr,, =r-gr, + (1 —rgr,. (]

3.2. Behavior Under Cobordisms

Let us now review the definitions of the maps on Cg associated with the ele-
mentary movie moves and describe their (gry, gr,, gr;) tridegree in an annular
context. For the nonannular case, just consider the (gr,, gr,) bidegree. Actual
computations are performed in Section 3.1, specifically in Lemma

In all of these cases, we consider a diagrammatic cobordism F : D — D’. The
cobordism map associated with the elementary move is a map f : Cgor(D) —
Criot(D).

For annular isotopies, the associated map is the canonical isomorphism of the
target and source complexes.

To a birth, Sarkar—Seed—Szabé associate the map a — a ® x4. Dually, to a
death, Sarkar—Seed—Szab¢ associate the map a ® x_ > a and a @ x4 > 0. In the
annular case, let x3 = vy or wi depending on whether the circle is nontrivial or
trivial, respectively.

To an annular saddle, we get the associated map from looking at the differential
in the complex corresponding the link diagram D” with a crossing at the site of
the saddle cobordism, so that Cro (D) = cone(Criot (D) = Criot (D)[11{1}) (see
Remark ). So the cobordism map f looks like the sum of the components of
the differential (the d; and h;), except that the homological and quantum degrees
are one less than that of the true components of the differential.

In[ Section 4], Sarkar—Seed—Szabé use cancelation to give chain homo-
topy equivalences corresponding to Reidemeister moves for the a more general,
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bigraded complex (actually, a pair of complexes). By setting H = W = 1, one
obtains filtered chain homotopy equivalences for the filtered theory Crio.

REMARK 3.11. The chain map associated with a saddle cobordism is defined
as a map Criot(D) — Crot(D’). Following [ ], we use the convention that
Clal{b)9 = Ch=%49=b We can visualize degree shift as follows: C[a]{b} is the
result of grabbing C and moving it a units along the gr,-axis and b units along
the gr, -axis.

We may now describe the filtration degrees of the elementary cobordism maps.

ProrosITION 3.12 (cf. [ ] Prop. 2). Forr,t €0, 1], the er, filtration de-
grees of Sarkar—Seed—Szabd chain map associated with

(1) an annular elementary saddle cobordism is (1 —r)(—1),
(2) an annular birth / deathis 1 —r,

(3) a nonannular birth / death is (1 —r)(1 —t), and

(4) an annular Reidemeister move is 0.

Proof. First note that the homological filtration degree shift for all of these el-
ementary cobordism maps is 0. In the following, “bifiltration” means (gr,, gry)
bifiltration. In what follows, we compute the lower bound on the degree shift un-
der elementary cobordism maps on gr, — rgr;, so that the lower bound on the
degree shift for gr, , is (I — r) times that of gr, —zgr;.

(1) Recall that diot =) ;- di + h;, where
@) di=di—2+dio -Fdi,z, with dj 2> =0,
() hi=hjo+hizs+hia+-+hiit1.
See Table 1. Therefore, the lower bound for the gr, — rgr; shiftis 0.

Note that the filtration degrees in the chart take into account the quantum
grading shift of 41 when we move along an edge within a chain complex.
The map associated with a saddle cobordism corresponds to such an edge
map, but without this shift in quantum grading, so the lower bound for the
gr, — tgr; shiftis —1 for a saddle cobordism.

(2) Let W denote the two-dimensional vector space over [F> generated by two
distinguished generators at (gry, gry) degrees (1,0) and (—1, 0). This is the
vector space underlying the chain complex for a single annular circle.

Table 1 Filtration degree shifts of components of the differential df

grh grq grk grq —tgrk
i>1 di.—> i 2i —2 -2 2i — 242t
i>1 dio i 2i —2 0 2i —2
i>1 din i 2i —2 2 20 —2—2t
i>1,jel0,i+1] hi, i 2i j 2i — jt
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Associated to the birth of an annular circle, we have the inclusion map
C — C®W, which takes x — x ® w. and hence has bifiltration degree (1, 0).
The death of an annular circle corresponds to the projection map C @ W —
C, which takes x ® w4 — 0 and x ® w_ > x and hence also has bifiltration
degree (1, 0) as well. (Note that one can think of gr,(0e Falx]/(x2)) = 00.)
Therefore, the lower bound for the gr, — rgr; shiftis 1.
(3) Similarly, let V be the two-dimensional vector space underlying the chain
complex for a single nonannular circle. This has two distinguished generators
at bifiltration degrees (1, 1) and (—1, —1).
The nonannular birth map C — C ® V sends x +— x ® v and hence has
bifiltration degree (1, 1).
The nonannular death map C® V — C sends x @ vy — O and x @ v_ > x
and hence has bifiltration degree (1, 1) as well.
Therefore, the lower bound for the gr, — rgr; shiftis 1 — 1.
(4) Asin [ ] Proposition 2, the chain homotopies that give Reidemeister
equivalences do not interact with the annular axis, so the gr; filtration degree
of the annular cobordism (“annular” in the sense of a concordance) is 0.
The gr, filtration degree is 0 by Section 4 of [ 1. U

For reference, here are the tridegrees associated with elementary cobordism maps.

COROLLARY 3.13. Consider the components of the saddle cobordism map corre-
sponding to the d; and h; maps which define the differential. For d;, the gr;,-degree
isi— 1, the gr, -degree is 2i — 3, and the gr;-degree is =2, 0, or 2. For h;, the
gry,-degree is i — 1, the gr, degree is 2i — 1, and the gr; degree is an integer in
[0, + 1]. The (gry, gr,, gr) triple degree of the cobordism map is (0, 1, 0) for
annular births and deaths, and (0, 1, 1) for nonannular births and deaths.

We now state the main properties of the two-dimensional family of annular link
invariants s, ; (L, 0). These features can be compared with corresponding proper-
ties of Grigsby—Licata—Wehrli’s annular Rasmussen invariants d;, see [
Theorem 1].

DEFINITION 3.14. The wrapping number w (L) of an annular link L is the minimal
number of (transverse) intersections between the image of L in a diagram D(L)
and an arc connecting X and O over all possible diagrams of L.

THEOREM 3.15. Let (L, 0) be an oriented annular link. Let r € [0, 1], t € [0, 1].

(1) For each pair r,t € [0, 1], s,:(L, 0) is an oriented annular link invariant.

(2) Suppose that L is a knot. Then so o(L, 0) = s, (L, 0) — 1, where sy, is Ras-
mussen’s concordance invariant over o coefficients [ ; ].

(3) For fixed r (respectively t), the function s,;(L, o) is piecewise-linear with
respect to the variable t (respectively r).

(4) Let w be the wrapping number of L. Fix r € [0, 1). Then, for all ty € [0, 1),

1 L,o)— L,
<— ) lim S0 =SaBi0) s w—2.0),
1—r)t>t0+ t—1
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(5) Let F : (L,0) — (L', 0") be an oriented cobordism between two nonempty,
oriented links such that each component of F has a boundary component
in L. Let ap be the number of annular births or deaths, a1 the number of
saddles, and by the number of nonannular births or deaths. Then

sri(L,0) — s (L', 0") < (r — 1)(ag — ar + bo(1 — 1)).

If furthermore each component in F has a boundary component in L' as well,
then

Isr1 (L, 0) = 5r.¢ (L', 0" < (r = D)(ao — a1 + bo(1 —1)).

(6) sy is an annular concordance invariant.

Proof. (1) Let D and D’ be two annular link diagrams related by an annular Rei-
demeister move: that is, an isotopy or Reidemeister move that never crosses
either of the marked points X or Q. Forgetting the location of the basepoints,
Sarkar-Seed-Szabd show in Section 4 of [ ] that Ciot(D) =~ Ciot(D)),
that is, are equal in the homotopy category of (bigraded) chain complexes
K F,[H, W]) over Fo[H, W]. Thus they are also equal after applying the
functor IC(IF2[H, W]) — Filt that sets H =1 and W = 1. Hence the gr;, and
gr, degrees of the chain homotopy equivalence between Crior (D) and Crioc (D)
are both 0.

As Reidemeister moves are local, we can ensure that the small neighbor-
hood where D differs from D’ is disjoint from the basepoints.

It remains to check that the chain homotopy equivalence between the
images Crot(D) and Cgor(D') in Filt (where H, W = 1 throughout) has
gro,| = gr, — gry filtered degree 0.

The chain homotopy equivalences are defined using the well-known can-
cellation principle (see [ Lemma 4.5]). Cancellation works by deleting
certain “canceling pairs” of generators, thus simplifying the chain complex at
the cost of adding new “zigzag” differentials. Cancellation of a cancellation
data (see [ Definition 4.4]), which specifies which generators will be
canceled, is a filtered chain homotopy equivalence if the component of the
differential in the cancellation data is minimal in gr, ; degree.

For Reidemeister I and II, it is easy to see that each cancellation step in-
volves canceling a differential between resolutions where all circles involved
keep their trivial or nontrivial status, or are new trivial circles. Reidemeis-
ter III invariance is proven by reducing each complex to a smaller complex,
and then noting that the smaller complexes are equivalent by isotopy. So, it
suffices to check that either of these reductions constitutes a filtered chain
homotopy equivalence. Again, the cancellation data involve differentials that
maintain the annular status of all circles.

The gr, degree of these cancellation data is known to be 0, and by
Lemma 3.1, all components of the differential have gry, ; degree at least 0.
Thus the components of the differential chosen for cancellation are indeed
components with minimal gr, ; degree.
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One can prove this using Lemma 5.5 in [ ], but perhaps the quickest
proof relies on Sarkar—Seed—Szabd’s invariants. When r = 0, U(g)[n] and
.7-',9 0 agree on the lattice Z x (2Z + 1). Note that the quantum grading of
any generator in the Khovanov complex for a knot is an odd integer. Now

Sarkar—Seed—Szabé’s s(Z,/{ ©(K), which they show is equal to s, is the first
even integer for which the filtration level Fy, [n] does not contain a rep-
resentative of [g(0)]. Hence s0,0(K, 0) = gr,[g(0)] must be the odd integer

YO K) —1=sp, — 1.
For fixed r (resp. t), the function s, ; (K, 0) is piecewise because the complex
Crior 1s finitely generated. Along intervals on which the same representative
cycle x € [g(0)] achieves the maximum grading gr, ,(x) = gr, ,[g(0)], the
values gr, (x), gr, (x), gry (x), and r (resp. t) are constant.
Suppose that [y] is a nontrivial homology class. Then gr, ,[y] is achieved by
some representative cycle y € [y], thatis, gr, ,(y) = gr, ,[y]. Write y = Do vi
where each y; is a distinguished generator. Then gr, ,(y) = min; {gr, , (yi)}.
So, it suffices to prove the statement for distinguished generators.

Let x be a distinguished generator. Then

gr, () =r-gr,(x) + A —r)-(gr,(x) —1-gr(x)),

SO

. grr,t ()C) - grr, i) ('x)
lim

P t—1o

=1 =r) - (=g ().

Now the state of x has at most w v-circles, each of which contributes 1 (for
v, respectively) to gr (x), so gri(x) € {—w, — 0 +2,..., 0 — 2, w}.

Let ¢r denote the chain map associated with the cobordism F, and let
@ be the induced map on homology. Let x € [g(0)] such that gr, ,(x) =
gr,.;[8(0)] = sy.: (L, 0). By Proposition ,

gt (pr(x)) =571 (L,0) + (1 —r)(ao — ay + bo(1 —1)).

By asserting that every component of F has a boundary on (L, 0), we assure
that ¢7,[g(0)] is (a nonzero multiple of) [g (0")]. (See BN-2 of Proposition 5.3
in [ ] and references therein.) Hence ¢F (x) € [g(0)], so gr, ,(pr(x)) <
gr, [g(0")]=s,,(L', 0'). Putting these two inequalities together, we obtain

sre(L',0') = sp.1(L, 0) + (1 = r)(ap — a1 +bo(1 — 1))

and rearrange to obtain the desired inequality. To obtain the statement with
absolute value, consider the opposite cobordism —F : (L’,0") — (L, 0) as
well.

Now consider the case where there is an annular concordance F between
(L,0) and (L', 0'). In particular, (L, 0) and (L', 0’) each have [ components,
F is a disjoint union of / annuli, each with one boundary component in L and
the other in L'. Recalling the notation from Section 2.2, since F is an annular
concordance, F is disjoint from U x I C $3 x I.Hence by =0 and ap = aj,
so we have |s,,(L,0) — s, (L', 0)| <0. O
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REMARK 3.16. The one-parameter family of invariants s, ¢ for r € [0, 1] is related
to the Sarkar—Seed—Szabd generalized Rasmussen invariants (see Remark 3.9).
The definition of the one-parameter family of so ; invariants resembles Grigsby—
Licata—Wehrli’s annular d; invariants that specialize to Rasmussen’s s-invariant
with Q coefficients (at t = 0 and 2).

ReEMARK 3.17. Cotton Seed [ Remark 6.1] has found examples where
s, (K) # s(K).

3.3. Tangle Closures

Viewing annular links as tangle closures, we can relate the annular horizontal
composition with the nonannular isotopy type of their (vertical) tangle composi-
tion by a sequence of 1-handle additions.

Before studying the behavior of s,, under such an operation, we need a few
topological definitions. See Figure 6 for examples.

Let 7./, be the set of oriented (1, n)-tangles whose top and bottom strands
agree (i.e. the tangle can be closed up). Composition of 77 - T» is given by stack-
ing, if orientations on the ends permit this. Let T denote the closure of T. If we
view T C A x I as the annular closure of T there is an ambiguity: we set the
convention that the basepoint X is located directly to the left of 7', and that T is
then closed around X, so that in the diagram of /T\, T is situated on the right.

Define an involution 8 on annular links which swaps T with the result of the
other convention: diagrammatically, 6 is equivalent to swapping the basepoints X
and Q. For T € 7.}, define 6 as the involution that rotates 7' by 180°. Observe
that 6T =0T

For an annular link L, let [ L] denote its (nonannular) isotopy class in $3. Recall
(from Remark ) that if an annular link L is disjoint from the axis (diagram-
matically, L is situated in a disk disjoint from an arc connecting ©Q and X), then
St (L) = s0(L) for all £. With this in mind, we write s, ([L]) = s,0(L).

Lemma 3.18. Let Ty, T» € T,)\,. Then

159 (L1 - T2]) — s (T1 LOTY)| < (1 = ).

8O0

Figure 6 From left to right: the tangles T and 677 in 77 3 and their
closures Tl and 9T1 , respectively.
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Figure 7 The dotted lines on the left indicate the three saddle cobor-
disms, which transform 67, U Ty into T 75, shown on the right.

Proof. By adding n 1-handles to Ti UOT>, we obtain the nonannular represen-
tative of 77 - T» (see Figure 7). Then inequality then follows from Theorem
part 5. O

LEMMA 3.19. Let T € T,)\,. Then, for all r,t € [0, 11, 5,(T) = 5,,,(9T).

Proof. In the hypotheses of Lemma , let T be the identity tangle 1,,, and let
T, = T. Combining with Proposition , we obtain the inequality

s, ([T2]) = . (T1) — 5,.4(OT2)| < (1 — r)n.

Now obtain a similar inequality by replacing 7> with 67> and observing that
01, =1, and that [T3] =[0T32]:

15, (IT2]) = 5. (T1) = s,.1(T2)| < (1 — r)n.

Resolving the absolute values in two different ways and combining these two
inequalities forces s,.;(012) — sr:(T2) =0. O

THEOREM 3.20. Let T, T, € 7;@, be two composable tangles. Then, for r,t €
[0, 1],

Is-([T1 - T2)) = sr. (TY L T2)| < (1 — ).
In particular,

I5:(LT1 - To]) — 5, ([T - 0Ta])| <2(1 — r)n.

(Note that [Tfé\Tz] = [Hﬁz], as 0 acts as identity on links in $3)

Proof. The first inequality follows by applying Lemma to the statement of
Lemma . The second inequality follows from the first, since both s, (77 - T>)

and s, (77 - 6T3) are related to s,,(Ty U T2) = 5,0 (7)) + 5,.4(F2) = s,1(T1) +
5r1(OT2). O
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3.4. Applications to Braids and More Properties

The annular Sarkar—Seed—Szab¢ invariants are well suited to studying annular
braid closures equipped with their braid-like orientation. In fact, we will see many
similarities in these applications to the annular d; invariants of Grigsby, Licata,
and Wehrli [ ].

Let o € 9B,, be an n-strand braid and ¢ C A x [ its annular closure. The braid-
like orientation oy of & is the one whose strands all wind positively around the
braid axis. Its diagram winds counterclockwise about X in $2\ {0, X}. We shall
abbreviate s,;(0, 04) to 5, (0).

LEMMA 3.21. Let o € %B,, have writhe w. Then
(I=r(w—(0-=1n) <s.,(0)

forallr €[0,1],t €[0, 1].
Proof. We calculate from the definitions:
gr,(g(oy)) =0, gry(g(or)) =—n+w, and gr(g(oy))=—n.
Thus, for all r € [0, 1], t € [0, 1],
gr.,(gor)) = (1 —r)(w— (1 —)n) < gr, ,([g(o1)]) = 5,,,(T)
as desired. O

When r = 0, the lower bound on s, ; given by Lemma is analogous to lower
bound on the d; invariant of [ Lemma 6]. In particular, we recover a
“sr,-Bennequin inequality” (proven by Plamenevskaya [ Proposition 4] and
Shumakovitch [ Lemma 4.C] originally for s over Q coefficients).

COROLLARY 3.22. Let o € ‘B, have writhe w. Then
Sl(a\) < SFZ (3) - 17

where sg, is the Rasmussen concordance invariant over Fy and s1(0) = —n + w
is the self-linking number of the transverse link represented by o .

Proof. We specialize the result of Lemma tor=0andt=0. (]

By the work of Cotton Seed (see Remark ), in some cases this produces a
stronger upper bound on the self-linking number than the “s-Bennequin inequal-
ity” for s over Q. Moreover, Lemma gives rise to a new family of Bennequin-
type inequalities.
COROLLARY 3.23. Let o € B,, have writhe w. Then

(1 =7r)sl©@) <s,,0(0)

forallr € [0, 1].

Proof. We specialize the result of Lemma tor=0. (]
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Furthermore, Theorem shows that for quasi-positive braid closures the sy, -
Bennequin bound is sharp.

THEOREM 3.24. If o is a quasi-positive braid of index n and writhe w > 0, we
have

5r4(@) = (1 —=r)(w— (1 =1)n)
forallr €[0,1] and t € [0, 1].

Proof. Lemma gives us the lower bound
(I=r)(w = (1=0n) <s5.,(0).

To obtain the upper bound, note that if & is quasi-positive, there is an oriented
(annular) cobordism F from & to 1,, obtained by performing an orientable saddle
cobordism near each quasi-positive generator of o as in [ Theorem 2] and
[ Figure 7], and each component of this cobordism has a boundary on &.
Using the crossingless diagram for 1,, we have

sra(@p) =—(1—r)(1 —nn.
Part (5) of Theorem tells us that s, ,(0) — sr,,(/ﬂ\n) < (1 —r)w. Thus,
s;0@) <=1 =r(1A=tn+1—rw,

as desired. g
THEOREM 3.25. Suppose that o € B, has writhe w. Then s, 1(0) = (1 — r)w.

Proof. Let D be a diagram of the annular braid closure @ C A x I, and let C
denote the graded vector space underlying the Sarkar—Seed—Szab6 complex. The
vector space C is generated by resolutions of D whose circles are labeled by a =
v_ + v4 or b = v_. The set of a/b markings of resolutions of D forms a basis
for C. (This is not a Z & Z @ 7Z filtered basis for (C, 8gor).) We will denote the set
of these generators by S. We will partition S into three subsets:
1 Si={s}
(2) S2={x €(S\ S1)|x is alabeling of the braid-like resolution of D},
(3) S3=8\ (51U S%).
(Recall that the braid-like resolution of D is the oriented resolution for the braid-
like orientation 04.) Corresponding to this partition of S, there is a direct sum
decomposition of C into subspaces: C = V| @ V, & V3, with V; = Span(S;).

Let

p:C—>VieW,
qg:VieV,—V
denote the projection maps. Note that p and g satisfy the following properties.
(1) With respect to the gr, j-grading on C, p is a grading-preserving map of
graded vector spaces.
(2) g o p is a chain map.
(3) (g o p)(g(0)) =g(0).
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We can now prove the following claims.
Cram 1. If z € C is a cycle satisfying [z] = [g(0)], then p(z) #0 € C.

Proof. Suppose z = g(0) + 8ot (x) for some x € C. Hence

(g o p)(2) = (g ° p)(g(0)) + (g © p)(Biorx) = g(0) + 0t (g © p)(x).
Thus [(g o p)(z)] = [g(0)], and since g(o) is nonzero, this shows that p(z) is
nonzero. O

CLam 2. s,,1(0) < w.

Proof. Let z be a representative of [g(0)] for which gr, | (z) = gr,.[g(0)]. Then
p(z) is nonzero by Claim 1. Since all elements in V| & V; have gr, | = (1 —r)w,
we have gr, 1 (p(z)) = (1 —r)w. Since p is graded as a map of gr,, ;-graded vector
spaces, this implies

5,1(0) = gr,1(2) < gr,, 1 (p(2) = (1 = rw. g
On the other hand,

5,1(0) = gr, 1 [g(0)] = gr,. 1 (8(0)) = (1 — Nw,
$0 57.1(0) = (1 — r)w as desired. O
Recall from [ ] that the obstruction to being quasi-positive from d; is no
more sensitive than the one coming from the sharpness of the s-Bennequin bound.
Similarly, the obstruction to being quasi-positive from sp ; iS no more sensitive
than the one coming from the sharpness of the sg,-Bennequin bound.
COROLLARY 3.26. If o € B, has writhe w, then
so,@)=w—(1—-0n <<= sl@©)=sp0)—1.

Proof. Recalling that s1(¢) = —n + w, the forward implication follows from set-

ting r = 0 and ¢t = 0 and applying part 2 of Theorem
For the converse, note the following:

(1) The function s¢ ; is piecewise linear (by part 3 of Theorem ).
(2) The slope of so,; with respect to ¢ is bounded above by n (by part 4 of Theo-
rem ).

(3) By the hypothesis, so0 = —n 4+ w.
(4) We have so,1 = w by Theorem

These observations immediately imply the reverse implication. (|

Let

L,o)— L,
Mg 1o (L, 0) = lim Sra(L, 0) = Sriy (L, 0)
=1 t—1p
We have a sufficient condition for a braid conjugacy class to be right-veering. This
property is analogous to that of the d, invariant (cf. [ ] Theorem 4). The
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bounds on m,; (L, o) by part 4 of Theorem will be essential in the following
theorem.

THEOREM 3.27. Let 0 € B,. Fixr =ry < 1. Ifsro,t(’a\) attains a maximal slope
at some t =ty < %, that is, m,o,to(ff) =n for some ty € [0, %), then o is right-
veering.

Proof. The proof relies on Hubbard—Saltz’s annular invariant « [ ], which
has the following property: if o € B, is not right-veering, then « (6) = 2.

First, we review the definition of x and explain how it is related to the Sarkar—
Seed—-Szabd complex. Throughout this proof, let G denote the set of distinguished
generators of the Khovanov complex C = (g € G), over F; (which is equal to Crior
as a vector space). Let o € B,,. A generic cycle can be thought of as a subset of
G, as we are working over I.

Recall from Lemma that (C,d;) is gr, filtered: let F.(C) = (x € G |
gr; (x) <c); the gr, degree of a component of d is either 0 or —2.

Let v_ € G denote Plamenevskaya’s cycle (denoted by &(E) in [ 1), the
distinguished generator at the braid-like resolution with all circles labeled with
v_. Plamenevskaya proves that v_ is a cycle and is invariant under transverse
link isotopies. The homology class [v_] of v_ is Plamenevskaya’s transverse link
invariant, called ¢ in the literature. Hubbard and Saltz define

k(@) =n+min{c|[v_] =0 e Hy(F.(C))}.

We record a few computations for future use:

o Ifa= gr, (x) and b = gry_(x), then gr (x) =a — b and grj ,(x) = (1 — t)a +
th.
e Note that grj,(v—) = 0. We have gr, (vo)=—n+w, gr,(v—) =—n, so

g, (Vo) = (1= r)(—n(l = 1) + w).

Note that v_ is the unique generator with the minimum possible gr,-grading,
namely gr, (v_) = —n, so it indeed is a cycle in (C, d1), and it is the unique cycle
with (gr,, gr,_;) bigrading (—n + w, w).

Suppose, by way of contradiction, that «(6) = 2 and there exists a time fo €
[0, 1/2) at which m, 4, (G) = (1 — ro)n.

Since k (¢) = 2, there is some chain 6 € C such that d; () =v_ € F_,,. Since
dy shifts gr;, degree by 0 or —2, 6 € F_, 4, but since v_ is the unique cy-
cle in F_,, we know that in fact gr,(f) = —n + 2, and so has homogeneous
(gry, gry, gr,—y) trigrading (=1, —n + w, w — 2).

Since my, 4, (@) = (1 — ro)n, there is a cycle &€ C G for which g0 E) =
Sro.10(0) and gry (§) = —n. Hence v_ € &, and is one of the generators in & whose
gradings determine s,.; at (rg, fo), that is,

Min (g, , (1) = 17,1, (V-) = (1 = ro)(=n(1 — ) +w).

At this point, there are a priori two possibilities. Let &' =& \ {v_}.
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(1) There is a generator x” € &’ achieving this minimum, that is,
10" =r0(=1) + (1 = ro) (=n 4w — togr.(x")) = (1 = ro) (—=n(1 — 19) + w).

Then s, ;, can be computed by measuring x” as well. But this forces gr; (x") =
—n, contradicting x’ ¢ F(—n).
(2) Otherwise, for all x’ € &/,

g o)) > g o (Vo).

Recall that 8gop = Y oy di + Y o hi Let & =& + Q.72 di + D72 hi)b,
so that [§"] = [g(0)] € Hy(Cfior)- Since v_ =d (0),

£ =¢+ (Zdi + Zhl)@.
i=2 i=1

From Lemma 3.1, one computes that Y >, d; + Y o, h; increases gr;, by at
least 1, gr, by at least 2, and gr,_; by at least 0. Since (gr,,, gr,, gr,_)(0) =
(-1, —n4+w,w-—2),

grro,,0(<zdi + Zm)e) > (I =ro)(=n(l —10) + w + 2 — 410),
i=2 i=1

which is strictly greater than gr, , (v—) = (1 —ro)(—n(1 — 7o) + w) when
(1 —rp)(2 —41y) > 0, that is, when rg € [0, 1) and 1y € [0, 1/2), contradicting
the assumption that gr(§) = gr, , [g(0)]. O

ReMARK 3.28. The upper bound f < % in Theorem is reminiscent of the
upper bound 7 < 1 on the slope of T in Theorem 1.0.4 of [ 1.

PROPOSITION 3.29. Let o € B, have writhe w. If my;,(0) = (1 — r)n for some
to€[0,1), thenm,; = (1 —r)n forallt € [ty, 1).

Proof. Recall that there is a unique distinguished basis vector, Plamenevskaya’s
cycle v_, with k-grading —n. In view of part 4 of Theorem , this implies that

gr, , ([g()]) =gr, , (v—) = (1 = r)((=n + w) + ni).
Recall that s, 1 () = (1 — r)w by Theorem and
mry < (1—r)n

by part 4 of Theorem . Therefore, the slope m,; = (1 —r)n forall ¢ € [0, 1).
O

We will show that the annular s, ; invariants are additive under horizontal compo-
sition and behave well under orientation reversal. These properties are also shared
with the d; invariants of [ ].
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ProPosITION 3.30. Let (L,0), (L', 0') C A x I,andlet (L,o)U(L',0')C A xI
denote their annular composition as in [ Figure 2]. Then, for all r €
(0,11, 7 € [0, 1],

spi((L,0)U (L' o) = sre(L,0) + Sr,t(L/» o).

Proof. As (Z @ Z & Z)-filtered complexes,
Ctot(L u L/) = Ctot(L) ® Ctot(L/)‘

Suppose first that the wrapping numbers of at least one of L or L’ is even. Then
glouo’) = g(0) ® g(0'), and the statement of the proposition follows.
In the case that the wrapping numbers of L and L’ are both odd, we have that

glouo) =g(0) @ g(—0') = g(—0) ® g (o).

The two tensor product expressions on the right are achieved by considering the
two possible annular diagrams for L U L. (Begin with annular diagrams for the
individual links, and then identify the inner boundary of one annulus with the
outer boundary of the other, or vice versa.) Thus, we have

sre((L,o) U (L', 0") =s54(L,0) + sp4(L', —0") = 5,4 (L, —0) + 5,4 (L', 0).

In particular, when L’ =1, is the trivial 1-braid closure, an easy computation for
both orientations o’ and —o’ on 1| shows that s, ;(11,0") = s,,(1;, —0’). Thus,
we have s, (L, 0) = s,:(L, —o) for any link with odd wrapping number. There-
fore,

sr((L,0) U (L',0")) = sri(L,0)+ Sr,t(L/» o)
as desired. O
PropPOSITION 3.31. Let (L,0) C A x I be an oriented annular link. Then, for all

rel0,1],7 €[0, 1],
Sr,t(LsO):Sr,l(L, _0)'

Proof. By Proposition , we have
sra((L,0) U (11,07) = 50,1 (L, 0) + 54 (11, 0).

By considering the annular diagram for (L, 0) U (11, 0') where we identify the
outer annulus of the diagram for (L, 0) with the inner annulus for (11, o), we
have

sra((L,0) U (L1,0)) =54 (L, —0) + s, (L1, 0).
The statement follows. O

We study the behavior of a braid under Markov stabilizations.

PROPOSITION 3.32. Let o € B, and suppose that o+ € B, is obtained from
o by either a positive or negative Markov stabilization. Then, for all r € [0, 1],
t €[0,1],

574 @) = (1 =)t < 5,,1(@) < 5,4 @) + (1 = ).
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Proof. Consider the oriented annular cobordism from = to & U'1; (the horizontal
composition of & with the trivial 1-braid closure) with a single odd-index critical
point that resolves the extra & crossing. The associated chain map on the Sarkar—
Seed—Szabé complex sends g (G, or)tog(@ Uy, 0+). By Proposition , this
map is filtered of degree (1 — r)(—1). Therefore,

50 (@F) — (1 —r) <s,, (G UTY).

Using additivity of s, ; under horizontal composition (cf. Proposition ) and
Theorem , we have

5,0@UTD =5,,@) — (1 =1 —1),
which gives us one of our two desired inequalities:
574 (@F) <574 @) + (1 =)t

For the other inequality, consider the cobordism F : ¢ — G~ consisting of
one nonannular birth and one saddle. Then the associated filtered chain map ¢r
increases gr,, by at least —#(1 — r) by Proposition . Hence we obtain the
bound s, ,(@) —t(1 —r) <s,,(@F). O

+

PROPOSITION 3.33. Let o € B, and suppose that o+ € B, 1 is obtained from o
by performing a positive stabilization. For t < 1 and sufficiently close to 1,

mr,t(a+) - mr,t(a\) > 1.
Proof. Suppose that o has writhe w, then ot has writhe w + 1. We fix r
throughout this proof. By Theorem , we have that s, 1(¢) = (1 — r)w and
s5.1(@T) = (1 — r)(w + 1). For the purposes of this proof, let m = m,;(c) and
mt =m, (@) denote the right-hand slope of s, for t < 1 and sufficiently close

to 1. Since the functions s, ,(5) and s, (G ) are piecewise linear with respect to
t, for t < 1 and sufficiently close to 1, we have that

s; @) =mt+ (1 —r)w—m
s @D =mt+ 1 —-r)(w+1)—mt.
By Proposition , we have that
$r.0 (@) —57.4(@) < (1 =)t
m*—m)t —1) <1 —r)t—1).

Thus, m™ —m > (1 —r). Since m* — m are integers of different parity mod 2 by
part 4 of Theorem , the lower bound can be improved to 1. U

Inspired by the sets introduced in [ Remark 15], we study the following
set of braids whose s,.;(¢") invariants attain the maximal slope for some 7 € [0, 1),
and therefore, by Proposition for all 7 € [tg, 1).

DEFINITION 3.34. Let #y € [0, 1). Define

zm;o ={Braids o |m,; = (1 —r)nforallt € [ty, 1) and all r € [0, 1]}.
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The following two lemmas show that the membership in zm;o is preserved under
positive stabilization.

LEMMA 3.35. Let o € B, have writhe w, and suppose o’ € B, is obtained from
o by inserting a single positive crossing. Then, if o € 93?;0 for some ty € [0, 1),
then o’ € M .
0
Proof. Since o € 9)?;0, we know that, for each ¢ € [#g, 1), we have
5r,6(0) = gr,,,(v_(0)) = (1 = r)((=n + w) +n1).

Note that o’ has writhe w + 1. By applying part 5 of Theorem to the annular
saddle cobordism 6’ — G that resolves the single extra positive crossing tells us

$r1(@) =574 (@) < (1 =),

and hence
sp@) <A =r)((=n+w + 1) +nt).
On the other hand,
dI-=r((-n+w+1)+nt)= gfr,r(g(g/)) <s5,,(@").
Hence m,;(6") = (1 — r)n for all t € [1p, 1) as desired. O

LEMMA 3.36. Let 1y €[0,1). Let 0 € B, and o' € B, and let 0 Lo’ € B,
denote their horizontal composition. If o, 0’ € zm;o, then o UG’ € 9)?;0.

Proof. This follows immediately from Proposition . (]

The behavior of the s, ; invariant under positive destabilization is currently un-
known. As described in the introduction, a complete understanding of the be-
havior of s,, under positive stabilization and destabilization could potentially
yield a new transverse invariant. This invariant may or may not be effective, or
contain more information than the self-linking number. The question of whether
Plamenevskaya’s transverse link invariant v [ ] is effective remains open.
It is shown in [ Theorem 1.2] that for braids representing Khovanov thin
knot types, the vanishing of the transverse link invariant ¥ only depends on the s-
invariant and the self-linking number. Recently, Martin [ ] used d; to show that
for 3-braid closures, the vanishing of Plamenvskaya’s transverse link invariant
depends only on the s-invariant and and the self-linking number. In this direction,
it is natural to ask whether the s, ; invariant of a braid closure only depends on s,
and the self-linking number.

In another direction, we produce a lower bound on the band rank rk,, of a braid
[ ]. Given 8 € B,,,

C
k, (B) := min{c ez ) B = 1_[ a)jaif(a)j)fl for some w; € B, }
j=1
where oi; denotes the elementary Artin generators. Note that band rank rk, is a
braid conjugacy class invariant. Topologically, band rank rk, (8) is the minimum
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number of half-twist bands (running perpendicularly to the strands) needed to
construct a Seifert surface for 8 from n disks (the obvious Seifert surface for the
identity braid closure in 98,,).

PROPOSITION 3.37. Let r # 1. Given an oriented cobordism F from (L, o) to
(L', 0") with ag annular even index critical points, a; annular odd index critical
points, and bg nonannular even index critical points, we have

sr(B)

——+n(l—-1) Srkn(ﬁ)~
1—r

Proof. Recall that 1, denotes the identity braid in B,,. Observe that
sr,t(/]l\n) =g, (v-®v-Q - Qu_)=1—r)(—n+tn)=—n(1—-r)1—1).

Let F be the cobordism from E to 1, realizing the band rank of B\, that is,
aj =1k, (B). Then, by Proposition s

$rt(B) = 57t @) = 574 (B) +n(1 —r)(1 — 1) < (1 — r)rk, (B).

Since —F is a cobordism from i,, to E with the same a;, we have the bound
[sr.:(B) =87 (1y)| < (1 —r)rk,(B). Finally, we divide both sides of the inequality
byl —r>0. (|

4. Functoriality

4.1. Strong Functoriality

In [ ], Saltz defines strong Khovanov—Floer theories and proves that any
conic strong Khovanov—Floer theory is functorial.

To motivate the definition of a strong Khovanov-Floer theory, we briefly dis-
cuss what functoriality should mean, and how we will use it.

An assignment K : Diag — Filt (see Definition 2.4) is a functor if the follow-
ing conditions are met. First of all, K must give a well-defined map on objects. So,
if IC describes how to map a link diagram D to a filtered chain complex C, it must
map all equivalent link diagrams to the chain homotopy equivalence class of C as
well. Furthermore, oftentimes C will be described using some auxiliary informa-
tion attached to D; we must also check that ultimately, the assignment (D) did
not depend on this auxiliary information. Next, C must also give a well-defined
map on morphisms. Again, it must send two equivalent diagrammatic cobordisms
to homotopic maps between filtered complexes. This assignment must also not
depend on any auxiliary information used to describe the assignment.

The above ensures that the assignment K is a functor. In the special case when
KC resembles the Khovanov cohomology functor, some of the functorial properties
will follow automatically. Such a functor K behaves as a categorification of some
skein relations and should satisfy:

e /C agrees with Kh on the unknot diagram with no crossings. In terms of mor-
phisms, this should have the structure of a Frobenius algebra with multiplica-
tion and comultiplication maps.
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e /C sends disjoint unions to tensor products.
e K is built from a cube of resolutions picture. This property is called conicity.

These special structural constraints help prove the functoriality of . For ex-
ample, if KC is conic (in Saltz’s vocabulary, because it is built with mapping cones),
IC is essentially a lift of a functor from the cube category, and these are very nice
diagrams to understand. For example, handleswap invariance follows from the
fact that faces commute in many of these cubical complexes.

Once such a functor C is established, we can consider well-defined homology
classes in JC(L) as link invariants and study their properties under cobordism. In
particular, we may study the filtration gradings of some distinguished homology
classes as in this paper.

With all this in mind, the following is Saltz’s definition of a strong Khovanov—
Floer theory. If it seems abstract, we recommend cross-referencing with the proof
of Proposition in Section for the concrete application needed for our re-
sults.

DEFINITION 4.1 (Definition 3.8, [ 1. A strong Khovanov—Floer theory is an
assignment

K : {Link diagrams with auxiliary data} — {filtered chain complexes}

satisfying the following conditions:

(S-1) For two collections A, and Ag of auxiliary data associated with a diagram
D, there is a chain homotopy equivalence

al  K(D, Ay) — K(D, Ap)

such that the collections {KC(D, Ay)} together with the maps {ag } form a
transitive system in Filt. Let (D) denote the inverse limit or the canonical
representative for this diagram D.

(S-2) For a crossingless diagram of the unknot D, we have Hio (JC(D)) = Kh(D).

(S-3) For a disjoint union of diagrams D U D’, we have a chain homotopy equiv-
alence K(DUD") ~ K(D) ®r K(D).

(S-4) If D’ is the result of a diagrammatic handle attachment to D,

e there is a function ¢ : Aux(D) — Aux(D’),
e there is amap ha, y(4,),8 : K(D, Ay) = K(D', (Ay)) where B is ad-
ditional auxiliary data for the handle attachment,
e for fixed B, these maps extend to maps on transitive systems, therefore
defining a map hp : K(D) — K(D') on canonical representatives,
e and for any two sets of additional auxiliary data B and B’, we have hg ~
hp.
(S-5) For U a crossingless diagram of an unknot, KC(U) is a Frobenius algebra A
with the operations t :F— A, e : A—>F, m: AQA— A,and A: A—
A ® A given by diagrammatic birth, death, merge, and split, respectively.
(S-6) If D’ is the result of a planar isotopy on D, then K (D) ~ K(D').
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(8-7) If D =Dy u Dy, D' =DyuD),and X is a diagrammatic cobordism D —
D' that is a disjoint union of cobordisms %o : Dy — D, and X1 : D1 — D],
then K(Z) >~ K(Zg)  K(Z1).

(S-8) The handle attachment maps satisfy handleswap invariance and movie
move 15, up to homotopy.

DEeFINITION 4.2 (Definition 3.9, [ ]). Let ¢ be some crossing in a link di-
agram D. For i = 0, 1, let D; be the diagram where c is replaced with its i-
resolution. Let y be the arc in Dy along which a 1-handle is attached to produce
the diagram D . A strong Khovanov—Floer theory K is conic if (D) >~ cone(h,, :
K (Do) — K(D1)) where h,, is the handle attachment map.

THEOREM 4.3 ([ 1). Conic, strong Khovanov-Floer theories are functorial.
In other words, IC gives rise to a functor Diag — Kom(Vect), the homotopy cate-
gory of complexes over IF;.

REMARK 4.4. Saltz dubbed this functoriality property “strong” to differentiate
from the functoriality of Khovanov—Floer spectral sequences described by Bald-
win, Hedden, and Lobb in [ ]. The key difference is that if the spectral
sequence associated with a link homology theory fits into the framework of a
Khovanov-Floer theory, then the spectral sequence is functorial, but not neces-
sarily the link invariant itself. For more details, we refer the reader to [
Section 6.1].

4.2. Functoriality of the Sarkar—Seed—Szabé Complex

In[ Theorem 6.9], Saltz proves that Szabd’s geometric spectral sequence is
a functorial link invariant. Here we prove that the Sarkar—Seed—Szab6 complex is
a functorial link invariant.

PROPOSITION 4.5. The Sarkar—Seed—Szabd theory K (D) = (Crot, Oftot) IS a conic,
strong Khovanov—Floer theory, and is therefore functorial.

Proof. First of all, conicity follows by Sarkar—Seed—Szabd’s definition of saddle
maps [ Definition 5.2].

(S-1) Suppose that, for a diagram D, two sets of decorations A_ and A differ at
exactly one crossing c; here we think of — and + as the two ways to deco-
rate the crossing c. We form a diagram D differing from D in a small disk
around c that replaces ¢ with three crossings, by way of a Reidemeister 11
move as in Figure 8. We associate a decoration A4 with D as follows: the
two outer crossings are labeled with opposite decoration choices, labeled —
and +, and we choose an arbitrary decoration for the middle crossing. By
[ Corollary 4.3], the complex (D, A) is chain homotopy equiva-
lent to each of (D, A_) and K (D, A, ); Sarkar—Seed—Szabé use the can-
cellation lemma to show that these chain isomorphisms are cancellations of
acyclic direct summands. (A change of basis allows the complex to split.)
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A
(D= A+>

(D, A)

Figure 8 Changing the decoration at a single crossing.

The chain homotopy equivalence at KD, A_) - K(D, A,) is the com-
position
at = ?i;_t ob*,

where @} : KD, Ay) - K(D, A_) and afl: KD, Ax) — K(D, A,) are
the Sarkar—Seed—Szabd Reidemeister II chain homotopy equivalences de-
scribed in Proposition 4.7 of [ ], and Ei K(D,A_) —> lC(ﬁ A)
is the chain map induced by the identification of (D, A_) with the “01”
partial resolution of (D Ay) and satisfies a o b ~id.

Now, for decorations A, and Ag on D differing at multiple crossings,
define the map relating their complexes

al : K(D, Ay) = K(D, Ap)

as a composition of the chain homotopy equivalences of single crossing
changes. If this is well defined (i.e. does not depend on the order of cross-
ings we choose to compose the chain homotopy equivalences), then these
maps form a transitive system.

Thus, without loss of generality, we may assume that the decorations
Ay = A_ _ and Ag = A4 4 differ at exactly two crossings, ¢; and c;.
Let Ay = Ay and A; = A_  be the two decorations for D that differ
from A, by exactly one decoration change at either c; or ¢, respectively.
To show that the system of crossing change maps is transitive, we need to
check that

af, oall :a,’? oap.

By decoration invariance of the Sarkar—Seed—Szabé complex, K(D,
A4 1) is chain homotopy equivalent to each chain complex K(D, A,),
K(D, Ag), K(D, Ay), and K(D, A,y). By symmetry, it suffices to show
that the following box commutes up to homotopy (the diagram names are
omitted but should be clear from the decoration notation):

K(Ax 1) —2 K(Ax_)

K(A_+) —2= K(A__)

=2
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Figure 9 The partial cube of resolutions of D for the RII invariance.
We first cancel along the orange double arrows, then along the violet
double arrows between the “01 * x” resolutions, leaving a subquotient
complex isomorphic to the complex for D.

where the chain isomorphism subscripts, 1 or 2, indicate the crossing, c|
or ¢y, associated with the Reidemeister II chain map. A detailed descrip-
tion of each composition requires drawing the four-dimensional cube of 2*
vertices in the partial cube of resolutions corresponding to the four cross-
ings we wish to eliminate and performing cancellations according to the
usual proof (described in Proposition 4.7 of [ ]) twice, as illustrated
in Figure 9. Ultimately, we find that both chain homotopy equivalences
identify C(A_ _) with the complex (A~ +)(1,0,1,0) Situated at the vertex
(1,0, 1, 0) of this four-dimensional cube.

This is clear by definition at the chain level. Since there are no differentials,
this also holds in homology.

This holds at the chain level by definition. Furthermore, there are no cross-
differentials (i.e. differentials are of the form ¢ ® 1) between the two tensor
factors, so this also holds for homology.
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(S-4) Let D and D’ differ by a diagrammatic handle-attachment, and let Aux(D)
denote the set of decorations for the diagram D. There is a canonical bi-
jection @ : Aux(D) — Aux(D’) in the sense that D and D’ differ only on
a disk on which there are no crossings to decorate. For a 0- or 2-handle
attachment, there is no additional auxiliary data B for the cobordism. For
a 1-handle attachment, the auxiliary data B consists of the oriented arc y
along which surgery is performed. Let —y denote the oppositely oriented
arc.

Let Ay and Ag denote decorations for a diagram D. Let D), be the dia-
gram obtained from D by adding an extra crossing as follows: the directed
arc y is replaced with a crossing whose O-resolution is D,.o and whose
1-resolution is D, 1, decorated to agree with the orientation of y. Define
D_, similarly; the only difference is the decoration at the new crossing.
Thus, D = D,,0 and D’ = D,,.; differ by a diagrammatic one-handle at-

tachment. Associated with the additional auxiliary data of the oriented arc

y, there are chain homotopy equivalences ag,o and af . as defined in (S-1),

and there exist chain maps f, , and fg , as in the following diagram:

B
aa;
K(Dy.0, A) ———= K(Dy.0, Ap)
fa,yl \Lfﬂ#
B

a..
K(Dy:1,0(Aa)) — = K(Dy.1, 0(Ap))

We will show that the diagram commutes up to homotopy. Observe that
the left and right columns are the mapping cone complexes cone( f,, ) =
K(Dy, Ay) and cone(fp,,) = K(D,, Ag), respectively. Here we abuse
notation by using A, to denote the decoration on D, associated with
adding the decoration induced by y on the additional crossing. By dec-
oration invariance of the Sarkar—Seed—Szabd complex up to chain homo-
topy as in (S-1), we have a chain homotopy equivalence ag KDy, Ag) —
K(D,, Ap).

CLAIM 4.6. As a chain homotopy equivalence between mapping cones, the
chain map af KDy, Ax) = K(D,, Ap) is of the form

B
aa;O a/;o
aoi aa;l

g _ |aoo aio
al, =
aopr aii

and consider the diagonal entries. The decoration changes between A,
and Ag occur at only crossings that do not include the crossing associ-
ated with y. Thus, the (Reidemeister II invariance) cancellation data used

to define ag are the union of the arrows used to define af .o and af .- Any

Proof. Write
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zigzag differentials induced by these cancellations must travel between res-

olutions where crossing y is 0-resolved to resolutions where crossing y is
1-resolved, and therefore do not affect either of the diagonal entries. O

B
B Ay.0 410
aO( = ’ ,3
aol aoz;l

is a chain map, where ag; : K(D,.0, Ay) — K(D,.1, 9(Ap)). Thus, ao’? o

In particular,

8pm + BDM o ag =0, or

B B B
dg;0 910 agzﬂ 0 + aV?O 0 Qoo @10 _ 0
M =0.
aopl (15;1 fOL,)/ ay;l fﬂ;V a;1/3;1 aol af;]

The bottom left entry of the resulting matrix shows that the square com-
mutes up to homotopy, via the homotopy ao; .

Then, by Lemma 3.6 of [ I, the maps fa, o(A,).y and fag.p(ap).y
can be extended to a map f, on the canonical representative of /C(D).
Hence we may write f,, (and f_,) as a map K(D,.0) — K(D,;1), and
it remains to show that f, >~ f_,.

We write
0 O
H, =
’ [h{y} 0]

for the change of decoration isomorphism at the crossing corresponding to
y (and —y), where h(y,y : K(D,,.0) = K(D,.1) is the map in Definition 3.6
of [ 1. We will first show that
Sftot,y + 8ftot,—y = Hy o 8ftot,y + ‘Sftot,y o Hy-

Recall $fior,y = dp, + hp,, where dp, = > dip, and hp, =

> h; p, . By the proof of Lemma 3.10 [ 1,
dDy + dD_y =H,o dDy —i—dpy oH,.
By Corollary 3.9 of [ 1, H, commutes with hp, . Moreover, the map
hpy is independent of the choice of orientation of y, and hence hpy =
hpfy. Thus,
Stiot,y + Sfot,—y =dp, +hp, +dp_, +hp_,
= Hy o 5ft0t,y + aftot,y o Hy-

This immediately implies that
fy + f—y = h{y} o 8ftot,y;0 + Sftot,—y;l ° h{y}

hence f, >~ f_,,.

The Frobenius algebra is F[x]/(x(x + 1)), since the differential for a dia-
gram with only one crossing is just di + A1, which is the Bar-Natan differ-
ential.
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(S-6) This condition follows from the proof that the Sarkar—Seed—Szab¢é theory
Ciot (and thus, Cgor) is invariant under Reidemeister moves. See Corol-
lary 4.3 of [ ].

(S-7) Resolution configurations that do not share any active circles will not
give cross differentials between the two tensor factors. In the language of
Sarkar—Seed—-Szabo the differentials satisfy the extension rule (see [
Lemma 3.3]. We can view the disjoint union cobordism ¥ = ¥y LI X as a
composition of cobordisms X Uidp,) and idD(/) U ¥1). By the extension
rule, we have

K(X) = (idp, ® K(%1)) o (K(Z0) ® idp,) = K(Zo) ® K(Z1).

(S-8) Movie move 15 invariance follows from conicity and Proposition 6.2 of
[ ]. One can also check this directly, by comparing the identity map
to a birth followed by a merge; dually, compare the identity map to a split
followed by a death. (Recall that the birth map sends x — x ® v4.)

Handleswap invariance follows from conicity and Proposition 6.1 of

[ ]. Both of the cobordism maps 4, o h), and hy o h, are given by
the sum of all the differentials in the complex D,,,,» =D, from the 00-
resolution to the 11-resolution. ]
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